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Deep learning (DL) models are increasingly used to forecast water quality variables

for use in decisionmaking. Ingesting recent observations of the forecasted variable

has been shown to greatly increase model performance at monitored locations;

however, observations are not collected at all locations, and methods are not

yet well developed for DL models for optimally ingesting recent observations

from other sites to inform focal sites. In this paper, we evaluate two di�erent

DL model structures, a long short-term memory neural network (LSTM) and a

recurrent graph convolutional neural network (RGCN), both with and without

data assimilation for forecasting daily maximum stream temperature 7 days into

the future at monitored and unmonitored locations in a 70-segment stream

network. All our DL models performed well when forecasting stream temperature

as the root mean squared error (RMSE) across all models ranged from 2.03 to

2.11◦C for 1-day lead times in the validation period, with substantially better

performance at gaged locations (RMSE = 1.45–1.52◦C) compared to ungaged

locations (RMSE = 3.18–3.27◦C). Forecast uncertainty characterization was near-

perfect for gaged locations but all DL models were overconfident (i.e., uncertainty

bounds too narrow) for ungaged locations. Our results show that the RGCN with

data assimilation performed best for ungaged locations and especially at higher

temperatures (>18◦C) which is important for management decisions in our study

location. This indicates that the networked model structure and data assimilation

techniques may help borrow information from nearby monitored sites to improve

forecasts at unmonitored locations. Results from this study can help guide DL

modeling decisions when forecasting other important environmental variables.
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Introduction

Near-term environmental forecasts aid water resource

managers in meeting both human and ecological needs. For

example, forecasts of lake water quality enable better informed

decisions about in situ management to meet safe drinking water

criteria (Thomas et al., 2020), broad-scale flood forecasts alert the

public and emergency responders to potentially harmful water

inundation (Nevo et al., 2022), and forecasts of the distribution

of endangered aquatic species (e.g., Atlantic sturgeon [Acipenser

oxyrinchus]) allow commercial fishers to steer clear of potentially

harmful interactions (Breece et al., 2021). Similarly, managers can

use water temperature forecasts and monitoring to mitigate fish

stress during warm periods through short-term interventions such

as temporary fishing restrictions and closures (Boyd et al., 2010;

Gale et al., 2013; Jeanson et al., 2021) or timed cool-water releases

from reservoirs (Jager and Smith, 2008; Olden and Naiman, 2010;

Zwart et al., 2022). Aquatic forecasts are important tools for

managing water resources, and there are benefits to aquatic science

and society when advances in environmental modeling techniques

are applied to forecasting problems (Dietze et al., 2018).

Recent advances in data-driven, deep learning (DL) models

show improvements for aquatic forecasting (Nearing et al., 2021b;

Appling et al., 2022; Varadharajan et al., 2022; Zwart et al.,

2022). DL models learn complex environmental relationships

and can be extremely accurate when predicting under a variety

of conditions and locations with sufficient training data (e.g.,

Read et al., 2019; Fang and Shen, 2020; Feng et al., 2020).

For example, DL models have outperformed process-based and

statistical alternatives for stream temperature predictions with

respect to Nash Sutcliffe Efficiency (NSE) and bias (Rahmani

et al., 2020) and have yielded similar or better root mean square

errors (RMSEs) for stream dissolved oxygen predictions across the

continental United States compared to regional non-DL models

with more input data (Zhi et al., 2021). Once trained, DL models

have trivial time costs for prediction, meaning that forecasts can

be delivered nearly as quickly as the forcing data, allowing for

quick management decisions. A growing number of examples

of DL models are being used for water forecasting applications,

including for streamflow (Feng et al., 2020; Xiang and Demir,

2020; Nevo et al., 2022), harmful algal blooms (Kim et al.,

2022), water demand (Guo et al., 2018), and stream temperature

(Zwart et al., 2022). DL models with temporal awareness, such

as a long-short term memory network (LSTM), are designed to

learn and remember long-term dependencies in sequential data,

making them particularly wellsuited for environmental time series

forecasting. Spatial variants of LSTMs, such as a recurrent graph

convolutional neural network (RGCN), also known as GCN-LSTM

(Sun et al., 2021), extend the capabilities of LSTMs by incorporating

graph-based structures to model complex spatial relationships,

and are particularly effective in applications that involve spatially

distributed data with meaningful connections, such as stream

networks (Jia et al., 2021). Techniques that introduce process

guidance, such as adding in custom loss functions penalizing the

model when it violates physical laws (Read et al., 2019), pretraining

the DL model on process-based model output (Jia et al., 2021),

and adding in structural awareness of real-world systems (Daw

et al., 2020; Karniadakis et al., 2021) have shown to improve DL

model prediction accuracy, especially when making predictions

in locations or time periods that are outside the training dataset

(Willard et al., 2022). DL models can also make use of real-time

observations by ingesting these data via autoregressive techniques

(Nearing et al., 2021a), data integration kernels (Fang and Shen,

2020), ensemble-based data assimilation methods (Zwart et al.,

2022), or inverse neural network-basedmethods (Chen et al., 2021).

Ingesting recent observations into DL models can help correct for

errors in themodels in real-time and potentially make use of nearby

observations for unmonitored locations. These technical advances

in DL modeling show improvements for forecasting many aquatic

variables and aid in decision making.

Forecasting aquatic variables becomes much more challenging

in unmonitored locations because general relationships and

information learned at monitored locations would need to be

appropriately applied to the unmonitored locations (Hrachowitz

et al., 2013; Meyer and Pebesma, 2021). This prediction challenge

has spurred decades of research in the hydrologic community

to develop techniques to improve predictions at unmonitored

locations with progress in monitoring networks, hydrologic theory,

statistical methods, and process-based modeling (Sivapalan et al.,

2003; Hrachowitz et al., 2013). However, DL techniques have

recently been shown to have superior performance at predicting

water quantity and quality in unmonitored locations even over

the state-of-the-art process-based models; for example, LSTMs

of lake temperature that are trained on wellmonitored lakes

and transferred to unmonitored lakes yield lower RMSEs than a

process-based modeling alternative 1.88 vs. 2.34◦C (Willard et al.,

2021); median NSE was higher for an LSTM predicting in out-of-

sample basins (0.69) than for a calibrated Sacramento Soil Moisture

Accounting (SAC-SMA) model (0.64) or the National Water

Model (0.58) (Kratzert et al., 2019); and streamflow Kling-Gupta

Efficiencies (KGEs) were 0.556 for a DL model applied to out-of-

sample regions (harder) and 0.46 for the process-based HBVmodel

applied to out-of-sample basins (easier yet worse KGE) (Feng et al.,

2021). DL models and their process-guided variants are currently

the best tools for extrapolation to unmonitored locations, such that

evaluation of current architectures and further improvement to

these models is likely to advance our overall forecasting capability.

In this paper, we evaluate two different DL model architectures,

LSTM and RGCN, both with and without data assimilation (DA)

for forecasting daily maximum stream water temperature 7 days

into the future at monitored and unmonitored locations in the

upper Delaware River Basin in the northeastern United States; this

is a natural extension of the previous analysis described in Zwart

et al. (2022) where they forecasted stream temperature only at

monitored locations within the DRB.We conducted a k-fold spatial

cross-validation experiment where we withheld representative

river segments for each fold and validated each model on these

“unmonitored” locations during a validation period where we

issued 7-day forecasts for 354 consecutive forecast issue days. Based

on the validation results, we chose a model with which to issue 7-

day forecasts for 522 consecutive forecast issue days in a separate

test period. The best performing model from this experiment can

be trained on all available data in the stream network and used

to make operational forecasts of maximum water temperature in
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FIGURE 1

Map of the target water temperature forecasting sites in the upper

Delaware River Basin as indicated by training, validation, and test

stream segments along the stream network. The stream segments’

downstream endpoints were our forecast target sites and are

indicated by circles on the map. Training segments are indicated by

a gray circle and a blue upstream segment, validation segments are

indicated by a white circle and white highlighted upstream segment,

and test segments are indicated by a black circle and black

highlighted upstream segment. The Delaware River at Lordville site is

indicated with a bolded open circle where management provisions

aim to maintain maximum water temperature below 23.89◦C (75◦F).

the Delaware River Basin. These operational forecasts can aid

water resources managers in optimizing reservoir releases to cool

downstream river segments while retaining enough water to supply

New York City and other municipalities with drinking water.

Methods

Study site

Our objective was to generate accurate forecasts of daily

maximum stream water temperature (hereafter referred to as

“maximum water temperature”) at 70 locations (both monitored

and unmonitored) in the upper Delaware River Basin in support

of drinking water reservoir management decisions (Figure 1).

The Delaware River Basin is an ecologically diverse region

and a societally important watershed along the East Coast of

the United States as it provides drinking water to more than

15 million people (Williamson and Lant, 2015). A multi-state

agreement includes provisions that aim to maintain maximum

water temperature below 23.89◦C (75◦F) in the upper Delaware

River Basin upstream from Lordville, New York, to ensure cold-

water stream habitat. The Neversink watershed in northeastern

Delaware River Basin is home to similarly temperature-sensitive

populations of recreationally and environmentally important

species such as brook trout (Salvelinus fontinalis), brown trout

(Salmo trutta), and dwarf wedgemussel (Alasmidonta heterodon)

(Lawrence et al., 2001; St. John White et al., 2017). Forecasts

of stream water temperature can be used to anticipate expected

exceedances of the 23.89◦C thermal threshold and help managers

with decisions on deep, cool water releases from reservoirs

to mitigate temperature exceedances. For more details on

the Delaware River Basin study location, see (Zwart et al.,

2022).

Datasets and model development overview

We used 5-fold spatial cross-validation to train our models

and assessed their performance on a spatial validation set. We

then selected the best model from this evaluation and tested it

on a representative holdout set of sites. Each cross-validation

fold omitted the same 6 testing sites and 3–4 strategically

selected wellobserved validation sites (Figure 1). The 6 testing

sites contained 2 mainstem stream segments, 2 headwater stream

segments, and 2 reservoir-impacted stream segments, and the

validation sets for each fold contained at least 1 of each of the

mainstem, headwater, and reservoir-impacted stream segments.

Reservoir-impacted stream segments were segments directly

downstream from the New York City drinking water reservoirs

or within 3 stream segments of the reservoirs. Mainstem stream

segments were those on the East or West Branch of the Delaware

River and the Neversink River that were 4th order streams or

greater, while the rest of the segments were considered headwater

stream segments. The testing and validation sites were used to

simulate unmonitored (hereafter named “ungagged”) conditions.

Our aim was to assess the model’s performance on both gaged

and ungaged segments while encountering previously unobserved

conditions. Thus, we used the 2019 calendar year as our validation

time period for all 5 spatial cross-validation folds and April 2021

to September 2022 as our testing time period and withheld these

times during training. First, we pretrained our stream network

DL models on process-based model output to guide the model

towardmore physically consistent predictions of water temperature

as in Jia et al. (2021) and Zwart et al. (2022), but see Topp

et al. (2023) for limitations to this approach. Next, we fine-

tuned our models on observed maximum daily water temperatures.

Using the trained models, we then forecasted maximum water

temperature 7 days into the future for every issue date (forecasts

issued daily) during the validation period. Finally, we adopted

the model framework (i.e., architecture and choice of DA or not)

that performed best across spatial cross-validation experiments, re-

trained this model on all available training data (including 2019

validation year and all non-test sites), and issued daily forecasts

in the testing period. Below, we describe the pretraining, fine-

tuning, and forecasting datasets used to make near-term forecasts

of water temperature.

Frontiers inWater 03 frontiersin.org

https://doi.org/10.3389/frwa.2023.1184992
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Zwart et al. 10.3389/frwa.2023.1184992

Spatial fabric

We used the National Geospatial Fabric to define the physical

characteristics (stream segment length, slope, and elevation) of 70

stream reaches (Figure 1), each with <1 day travel time, whose

downstream endpoints were our 70 target sites (Viger, 2014; Viger

and Bock, 2014).

Stream temperature observation dataset

We downloaded sub-daily observations of stream water

temperature from U.S. Geological Survey’s (USGS) National Water

Information System (NWIS) (US Geological Survey, 1994; date

accessed: 2022-03-23), the Water Quality Portal (WQP; Read

et al., 2017; date accessed: 2022-03-23), and Spatial Hydro-

Ecological Decision System (EcoSHEDS, http://db.ecosheds.org/;

date accessed: 2022-03-23). We assigned and aggregated these

observations to stream reaches and daily maxima as described

in Zwart et al. (2022) for both the fine-tuning dataset and for

assimilating when making forecasts.

Historical driver dataset

We used 10 dynamic drivers (i.e., input features) to train our

DL models from 1982 to 2020 (excluding the 2019 validation year),

including gridMET daily minimum air temperature and relative

humidity, daily mean downward shortwave radiation, wind speed,

and relative humidity, daily maximum air temperature and relative

humidity, and daily accumulated precipitation (Abatzoglou, 2013).

As additional dynamic input features, we also used NWIS daily

mean reservoir release rate at reservoir gage locations, and

observations of yesterday’s maximumwater temperature. Reservoir

releases were applied only to sites where the reservoirs were

discharging water (3 stream segments), while all other sites this

input was set to zero for all times (67 stream segments). When

observations of yesterday’s maximum water temperature were

not available, we used yesterday’s predicted daily mean water

temperature from the process model pretraining dataset (described

below). We also used four static input features to train our models

including stream reach mean elevation, slope, length, and mean

stream width. These static features did not change with time for

each segment and were also used in the forecast driver dataset (see

description below).

Process-based model pretraining dataset

We used process-based model output from 1982 to 2020

(excluding the 2019 validation year) to pretrain the DL

models before fine-tuning on observations of maximum water

temperature. In-depth details on the pretraining dataset can be

found in Zwart et al. (2022), and we briefly describe this dataset

here. We used the Precipitation Runoff Modeling System with a

coupled Stream Temperature Network model (PRMS-SNTemp)

to make initial predictions of daily mean stream temperature

(Markstrom, 2012; Sanders et al., 2017) using the calibrated flow

parameters of Regan et al. (2018). Following Zwart et al. (2022),

we simulated the water temperature of reservoir releases from

two major reservoirs in the basin, Cannonsville and Pepacton

Reservoirs, using the General Lake Model (GLM v3.1; Hipsey et al.,

2019). We combined outputs from these two models by computing

a weighted mean of temperature predictions from PRMS-SNTemp

and GLM, where GLM predictions only affected stream segments

downstream from GLM-simulated reservoirs. The weight given to

GLM predictions was a function of distance downstream from the

reservoir, where segments closer to the upstream reservoirs had

stream water temperatures more similar to the output from GLM.

Forecasted driver dataset

During the 2019 validation period, we generated forecasts

using the National Oceanic and Atmospheric Administration’s

Global Ensemble Forecast System model version 12.0 0.25-

degree reforecast archive (GEFS, https://noaa-gefs-retrospective.

s3.amazonaws.com/index.html), and we used the operational

GEFSv12 0.25-degree archive during the testing period (https://

registry.opendata.aws/noaa-gefs/). The GEFS reforecast archive

spans 2000–2019 and we used a GEFS operational archive for

2021–2022 for testing. For both GEFS datasets, we aggregated

the GEFSv12 sub-daily output of the day-0 forecasts to daily

meteorological drivers that matched the gridMET drivers used in

the training phase. The GEFS reforecast and operational archive

contains the 00 UTC (19:00 EDT) forecast cycle for each day,

and saves valid times at 3-hour intervals (i.e., 00:00, 03:00, etc.)

in UTC for 240 hours past the forecast issue time. Starting with

the 03:00 valid time, values at each timestep represent the mean,

minimum, or maximum of the preceding 3 hours depending

on the meteorological driver forecasted. To transform these 3-

hourly values to daily values in mean solar time in the Delaware

River Basin (approximately UTC −5:00), we treated the 09:00

through 30:00 UTC (4:00–25:00 in UTC −5:00) timesteps as day

0. This provided the closest possible alignment of GEFS timesteps

with mean solar time in the Delaware River Basin. Minimum,

maximum, and mean daily values for day 0 reforecasts were

then calculated for each GEFS grid cell for all meteorological

drivers listed above. To map GEFS values to individual stream

segments, we matched a 0.25-degree GEFS grid cell with the

centroid of the target stream segment and used the meteorological

drivers of that grid cell for the given segment. All 5 GEFS

reforecast and 31 GEFS operational ensemble members were

used during the validation and testing phases, respectively, as

separate batches for the DL model. See the Model forecasts section

below for how the GEFS ensembles are incorporated into the

DL forecasts.

When making stream temperature forecasts during the

validation and test periods, we used GEFS forecasts of daily

minimum air temperature and relative humidity, daily mean

downward shortwave radiation, wind speed, and relative humidity,

daily maximum air temperature and relative humidity, and
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TABLE 1 Summary of the di�erent datasets used to train the deep learning (DL) models and forecast stream temperature 7 days into the future.

Input
category

Input Source Deep learning models Persistence
model

Pretraining Fine-
tuning

Forecasting Forecasting

Observations Aggregated daily maximum stream

temperature

NWIS, WQP,

EcoSHEDS

• • •

Daily mean reservoir release rate NWIS, NYCDEP • •

Reservoir releases on forecast issue date NWIS •

Scenarios Reservoir release scenarios for days 1-7 ODRM •

Gridded weather

drivers

Daily minimum air temperature gridMET • •

GEFS •

Daily maximum air temperature gridMET • •

GEFS •

Daily mean solar radiation gridMET • •

GEFS •

Daily accumulated precipitation gridMET • •

GEFS •

Daily mean wind speed gridMET • •

GEFS •

Daily minimum relative humidity gridMET • •

GEFS •

Daily maximum relative humidity gridMET • •

GEFS •

Daily mean relative humidity gridMET • •

GEFS •

Stream segment

characteristics

Elevation PRMS-SNTemp • • •

Slope • • •

Length • • •

Width • • •

Modeled stream

temperature

Process-based mean daily stream

temperature predictions

PRMS-SNTemp,

GLM

•

The DL model performance was compared to a baseline persistence model that assumes yesterday’s maximum water temperature will recur on all 7 future days. Dataset sources include the

U.S. Geological Survey’s National Water Information System (NWIS; US Geological Survey, 1994), the Water Quality Portal (WQP; Read et al., 2017), Spatial Hydro-Ecological Decision

System (EcoSHEDS, http://db.ecosheds.org/), New York City Department of Environmental Protection (NYCDEP), the Office of the Delaware River Master (ODRM), gridMET (Abatzoglou,

2013), National Oceanic and Atmospheric Administration’s Global Ensemble Forecasting System (GEFS; https://registry.opendata.aws/noaa-gefs/), Precipitation Runoff Modeling System with

a coupled Stream Temperature Network Model (PRMS-SNTemp; Markstrom, 2012; Sanders et al., 2017), and the General Lake Model (GLM; Hipsey et al., 2019). Deep learning and persistence

model architecture and training procedures are described in the Deep Learning Model, Model Training, and Model Forecast sections below.

daily accumulated precipitation to predict daily maximum

stream temperature for the forecast issue date and 7 days

into the future. We also used yesterday’s maximum stream

temperature (i.e., autoregression) and today’s reservoir releases as

additional drivers (Table 1; Figure 2). We generated predictions

one day at a time, building on predictions from days earlier

in the prediction sequence. For predictions made with a 0-

day lead time (i.e., nowcast), we used observed reservoir

releases and yesterday’s maximum water temperature analysis

after assimilating observations (see data assimilation section)

as drivers. For predictions made with 1–7-day lead times,

we used observed reservoir releases and model predictions of

yesterday’s maximum water temperature as drivers. The 2019

validation phase used GEFS reanalysis forecasts while the 2021–

2022 testing phase used GEFS operational forecasts. We chose

the reanalysis archive for validation as it closely resembles the

operational forecasting scheme we use in real-time, while still

preserving the operational archive we have acquired for model

testing. The April 2021 to September 2022 period was selected

for model testing because it encompasses the entire NOAA

GEFS operational archive that we have available for forecasting

stream temperature.
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FIGURE 2

Model forecast accuracy as a function of forecast lead time for gaged and ungaged sites in the Delaware River Basin time for the validation period

from 2019-01-03 to 2019-12-23 for persistence model, long short-term memory neural network (LSTM) and recurrent graph convolutional neural

network (RGCN) both with and without data assimilation (DA). Accuracy metrics include bias, root mean squared error (RMSE), and continuous

ranked probability score (CRPS), each of which is a mean across 5 spatial cross-validation folds and 5 initial seeds for a given model and lead time.

High temperatures are observations equal to or above 18◦C. Gaged segments were any segments that had observations during training, while

ungaged were those that did not have any observations during training.

Deep learning models

We used two different DL model architectures to forecast

daily maximum water temperature: a LSTM (Hochreiter and

Schmidhuber, 1997) neural network and a spatially-aware variant

of the LSTM, the RGCN (Jia et al., 2021). We only briefly describe

the LSTM structure because it is described extensively elsewhere

(Hochreiter and Schmidhuber, 1997; Rahmani et al., 2020) and in

Zwart et al. (2022). The following are the LSTM equations:

c̃t = tanh
(

Wc
hht−1 +Wc

xxt + bc
)

(1)

ft = σ

(

W
f

h
ht−1 +W

f
xxt+bf

)

(2)

it = σ
(

Wi
hht−1 +Wi

xxt + bi
)

(3)

ot = σ
(

Wo
hht−1 +Wo

xxt + bo
)

(4)

ct = ft ⊗ ct−1 + it ⊗ c̃t (5)

ht = ot ⊗ tanh (ct) (6)

where the cell states (ct), and the hidden states (ht) of the

LSTM evolve through time and are modified at each time t by

a filtered, transformed version of the model inputs at that time,

xt (e.g., meteorological drivers and static reach attributes). The

LSTM is also given information from previous model timesteps

via the previous timestep’s hidden and cell states, ht−1 and ct−1.

W
g

h
and W

g
x are learnable weight matrices of the hidden state

and input features, respectively, and bg is a learnable bias vector,

where g ∈
{

c, f , i, o
}

. Using the weights and biases, the LSTM

generates a forget gate, ft , an input gate, it , and an output gate,

ot . c̃t represents a temporary memory at time t before filtering the

historical information, and ct represents the memory after filtering

and combining the historical information using the gate variables ft
and it . The information encoded by ct can be used for predictions.
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The RGCN alters the calculation of the ct such that the forget

gate f t filters historical information not just from its own stream

segment, ct−1
i , but also from neighboring segments, qt−1

j , weighted

by their level of adjacency; here, this level of adjacency, Aji, is

computed from the downstream distance along the network of

every segment j relative to segment i . Thus, for the RGCN, equation

8 replaces equation 5:

qt−1
i = tanh

(

Wqh
t−1
i + bq

)

(7)

cti = f ti ⊗

(

ct−1
i +

∑

(j,i)
Ajiq

t−1
j

)

+ iti ⊗ c̃ti (8)

Generally, the model produces output predictions, ŷ, by using

additional hidden layers, such as:

ŷt = Wyh
t + by (9)

However, we used a unimodal mixture density network (MDN;

Bishop, 1994) approach to quantify model prediction uncertainty,

following the implementation of MDN for streamflow prediction

as described in Klotz et al. (2022). Instead of predicting the

maximum daily stream temperature directly, ŷ, we predicted the

mean and standard deviation parameters of a Gaussian distribution

(µt , σ t), which describes the probability of all possible daily

maximum stream temperatures at a given timestep. Thus, we use

the final layers:

htintermediate = Whh
t + bh (10)

µt , σ t = Wyh
t
intermediate + by (11)

During training, all model weights are incentivized to produce

Gaussian parameters that assign high likelihood, L, to model

targets. In ideal circumstances, this would result in µ parameters

that are equal to the observed daily maximum temperature, y

(i.e., µ = y ), and very small standard deviations (e.g., σ ≈

0 ); if the exact value of the target is hard to predict, then

increased standard deviation will likely be the route to maximize

likelihood. Although this intuition remains valid (i.e., maximizing

the likelihood), in practice the negative log likelihood is minimized

for numerical stability:

L
(

y
∣

∣x
)

= − log
(

N
(

y
∣

∣µ (x) , σ (x)
))

(12)

where N
(

y
∣

∣µ (x) , σ (x)
)

is the conditional probability of the

observed daily maximum temperature, y, given the Gaussian

distribution with parameters µ and σ as a function of the inputs,

x. During forecasting, the predicted µ and σ parameters are used

to generate samples from the distribution that is compatible with

ensemble data assimilation methods (i.e., ensemble Kalman filter).

In conjunction with our MDN probabilistic predictions, we

also used Monte Carlo Dropout (MCD). We implemented MCD

as described in Gal and Ghahramani (2016), where the DL model

randomly removes a proportion of the network’s recurrent and

input elements (by setting their weights to 0) during each training

iteration or prediction activity. When making many predictions

using MCD, this produces an ensemble of DL structures and

improved forecast uncertainty characterization based on inspecting

reliability plots and percent of observations within 90% confidence

intervals (CIs) (described in theModel evaluation section).

Data assimilation

During the forecasting period, we used the ensemble Kalman

filter (EnKF) as our data assimilation algorithm to update

maximum water temperature predictions, hidden, and cell states

of the DL as described in Zwart et al. (2022). At each time

step, we sample from the predicted probability distribution of

daily maximum water temperature to generate ∼1,000 ensemble

member predictions (validation period = 5 weather ensemble

members ∗ 200 samples; testing period = 31 ensemble weather

members ∗ 33 samples). These ensemble predictions were

compared to observations of daily maximum water temperature,

and the temperature predictions and DL model cell states were

adjusted using the Kalman gain weighting matrix. After maximum

water temperature and model states were updated with the EnKF,

the updated states were used to initialize the model states of the

DL at the next time step to make new predictions. Both the LSTM

and RGCN had a model variation that used this DA method,

hereafter called the “LSTM-DA” and “RGCN-DA.” See Zwart et al.

(2022) for more detailed description of the EnKF method used in

this study.

Model training

We trained the DL models on 70 stream segments of the

Delaware River Basin, including management-relevant, gaged, and

ungaged segments (Figure 1). Our model was first pre-trained

for 50 epochs with modeled stream temperature from 1982-

04-01 to 2021-04-14 (excluding 2019 validation year) using the

pretraining dataset as the target features and the gridMET historical

drivers as the input features. Next, pretrained model weights and

biases were fine-tuned using observations of maximum daily water

temperature for 350 epochs, using the same gridMET historical

drivers from 1982-04-01 to 2021-04-14 (excluding 2019 validation

year). Due to permissible size, models were updated with the entire

training set, not batches. We used the LSTM and RGCN model

structures described above, hidden layer dimensions of 16 for both

the recurrent layer and intermediate feedforward layer, recurrent

and elemental dropout rates of 0.40, and an Adam learning rate

of 0.05 for both phases of training. We trained each model across

the 5 spatial cross-validation folds using 5 different starting seeds,

resulting in 25 trainedmodels for eachmodel type (e.g., LSTM-DA)

in the validation period.

The model hyperparameters (e.g., number of epochs, learning

rates, hidden units, and dropout rates) were tuned manually to

achieve reasonable model performance and did not differ much

from previous welltrained DL models used in the Delaware River

Basin (Zwart et al., 2022). We found these hyperparameters and

input features to perform well for our DL forecasting models

based on examining accuracy and uncertainty quantification

metrics (e.g., root mean squared error, model reliability). After

the models were trained, the ending DL model states from the

fine-tune training phase were used to initialize the DL model

states during the start of the forecasting phase. We used PyTorch

1.12.1 to train and forecast with the DL models (Paszke et al.,

2019).
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Model forecasts

Forecasts were issued retrospectively, but we attempted

to mimic operational conditions as closely as possible (e.g.,

observations of maximum temperature only available from

yesterday). On each issue date, we made predictions for the issue

date (day 0) and 1 through 7 days into the future using the previous

issue date’s (day −1) DL model states as the starting conditions

(i.e., maximum water temperature, hidden, and cell states). We

made predictions using trained LSTM and RGCNmodels with and

without data assimilation (LSTM-DA, RGCN-DA, LSTM, RGCN)

as well as a deterministic persistence forecast as our baseline

model (Table 1). The persistence model simply forecasts the same

maximum water temperature that was observed yesterday for all 8

days that follow. If no observations were observed yesterday, then

there was no forecast from the persistence model. If there were

observations available on the preceding date (day −1), the LSTM-

DA and RGCN-DA models assimilated the observations into the

LSTM or RGCNmodel as described in the data assimilation section

and in Zwart et al. (2022).

The DL models had a total of ∼1,000 ensemble member

predictions, which were generated by sampling 200 (validation

period) or 33 (test period) times from the predicted distribution

when using each of the 5 or 31 GEFS ensemble members as

input features, respectively. Additionally, each of the batches used

for the 5 or 31 GEFS ensemble members started at a slightly

different hidden and cell state representing uncertainty in model

initial conditions. Collectively, the ∼1,000-ensemble prediction

distribution represents our total forecast uncertainty when

considering driver uncertainty, DL model parameter uncertainty,

and initial condition uncertainty.

All model training and forecast generation was conducted

on USGS Advance Research Computing resources using a

combination of central processing units (CPUs) and graphics

processing units (GPUs) (Falgout et al., 2019). Model training

and forecasting took about 12 hours for all cross-validation and

testing models.

Model evaluation

We evaluated model forecast performance as described in

Zwart et al. (2022) using bias, RMSE, and continuous ranked

probability score [CRPS; Thomas et al. (2020)] calculated from

predictions and observations of maximum water temperature.

CRPS measures both the accuracy and precision of the full

distribution of ensemble predictions (interpreted as a probabilistic

forecast), where lower values indicate a better model performance.

Each of these metrics was computed for each of the reaches with

observations in a validation or test dataset and then averaged across

reaches. We averaged metrics for each model across the 5 spatial

cross-validation folds and 5 different starting seeds in the validation

period; thus, the validation results are a mean of 25 model runs for

each model type. Using the results from the validation period, we

chose a single model and starting seed with which to run in the

test period after re-training the model on all available training data;

thus, the testing results are a mean of only one model run.

We evaluated how well the model characterized forecast

uncertainty using reliability plots where we calculated the

proportion of observations that fell within confidence intervals

calculated from the ensemble predictions. A wellcalibrated

forecasting model would have 10% of observations within the

10% forecast confidence interval (i.e., the 45–55th quantiles of the

forecast probability distribution), 20% of observations in the 20%

forecast confidence interval (the 40–60th quantiles), and so on.

If a higher or lower percentage of the observations fall within a

given forecast confidence interval, then the model is considered

underconfident or overconfident, respectively.

Thermal exceedances of 23.89◦C (75◦F) are of decision-making

relevance in the upper Delaware River Basin, so we evaluated

our models’ performance from a classification perspective using

confusion matrices. We determined when the 0.95 quantile (i.e.,

the upper bound of the 90% CI) did and did not exceed

this thermal threshold and compared that to observed (non-

)exceedances. Confusion matrices were then calculated, capturing

true positives, false positives, true negatives, and false negatives.

Here, a true positive was defined as when the 0.95 quantile and

observed water temperature were both above the thermal threshold,

whereas a false negative was when the 0.95 quantile was below

the thermal threshold, but the observed temperature exceeded

this threshold. Ideally true positives and negatives are maximized

(i.e., 1 proportion of observed) while false positives and negatives

are minimized (i.e., 0 proportion of observed). These confusion

matrices were considered for 1-day ahead forecasts as these are the

most crucial decision-relevant time horizon for reservoir releases.

Model code used to create pretraining process-based datasets,

train the DL models, and forecast with the trained DL models can

be found at Oliver et al. (2023). All model drivers, observations, and

predictions are publicly available Oliver et al. (2022, 2023).

Results

Model validation

Our DL models predicted maximum daily stream temperature

for 70 segments with a mean RMSE across all spatial cross-

validation folds of 2.03–2.11◦C depending on model type for 1-

day lead times in the validation period (Figure 2). All DL models

performed substantially better at gaged locations compared to

ungaged locations as mean RMSE ranged from 1.45 to 1.52◦C

for gaged sites and 3.18 to 3.27◦C for ungaged sites at 1-day lead

times (Figure 2). Model accuracy worsened with longer lead times:

RMSE ranged from 1.89 to 1.99◦C for gaged sites and from 3.26

to 3.39◦C for ungaged sites 7 days in the future. Our DL models

performed better than the baseline persistence model across all

temperatures for 1–7 day lead times, but the persistence model

had better performance metrics for RMSE and bias when only

considering high temperatures (>18◦C).

Of the DL models, the LSTM model was generally the best

performing model when considering all temperature observations,

as the LSTM model had the lowest RMSE, second lowest bias, and

second lowest CRPS for gaged and ungaged locations at 1- and 7-

day lead times (Figure 2). For the higher temperature observation

subset (>18◦C), the RGCN and RGCN-DA models were best
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FIGURE 3

The top 16 panels are reliability plots showing the percentage of observations occurring in each of nine forecast confidence intervals (10% to 90%),

for all uncertainty-estimating model types for gaged and ungaged locations and all-temperature and high-temperature observation subsets (>18◦C)

for the validation period from 2019-01-03 to 2019-12-23. Model types include long short-term memory neural network (LSTM) and recurrent graph

convolutional neural network (RGCN) both with and without data assimilation (DA). A model that perfectly characterizes forecast uncertainty would

fall along the diagonal dashed 1:1 line. The deviations from the diagonal dashed 1:1 line for the 1-day lead time forecasts across all model types are

shown in the bottom panels.

performing at gaged locations with nearly identical performance for

RMSE, bias, and CRPS at 1- and 7-day lead times. The RGCN-DA

was superior for ungaged locations across all metrics and lead times

except for RMSE at 5–7 day lead times where the LSTM model

was the best performing model (Figure 2). Model performance at

freezing or near freezing water temperatures (−1 to 1◦C) also

showed superior performance for the RGCNmodel structure as the

RGCN had the lowest RMSE averaged across all lead times (gaged

= 1.42◦C, ungaged = 1.57◦C) followed by RGCN-DA (gaged =

1.45◦C, ungaged = 1.65◦C), LSTM (gaged = 1.64◦C, ungaged =

2.41◦C), and LSTM-DA (gaged= 1.72◦C, ungaged= 2.43◦C).

All DL models characterized forecast uncertainty well for

gaged locations across all temperature observations and for

when only considering high temperature observation subset, with

near perfect uncertainty characterization for 1-day lead times

(Figure 3); however, all models characterized uncertainty much
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more poorly at ungaged locations. All model types became

more overconfident at longer lead times for gaged locations

while ungaged location uncertainty characterization remained

roughly the same across all lead times. For gaged locations, the

RGCN model characterized uncertainty best when considering all

temperature observations while the RGCN-DA model was best for

the higher temperature observation subset. For ungaged locations,

all models were overconfident, but the RGCN and RGCN-DA

were less overconfident compared to the LSTM and LSTM-DA,

especially at the higher forecast confidence intervals (Figure 3).

Compared to other DL models, the RGCN-DA was best at

forecasting maximum temperature at ungaged locations that were

along the mainstem river reaches, especially for higher temperature

observation subset (Figure 4). These mainstem river reaches show

among-stream variation in annual stream temperature dynamics

mostly driven by proximity to upstream reservoirs, and the RGCN-

DA model was best at capturing these dynamics, especially during

summertime periods (Figure 4). Additionally, the RGCN-DA and

RGCN models both performed best at predicting management-

relevant thermal exceedance events (>23.89◦C) for gaged and

ungaged reaches, as the upper bound of the RGCN-DA’s 90%

confidence interval captured thermal exceedance events 94% of the

time for gaged sites and 23% of the time for ungaged sites (Figure 5).

This was substantially better performance for the RGCN-DA at

ungaged locations compared to the other DL models.

Considering all validation results, we concluded that the

RGCN-DA model was the best performing model for our study

location given its superior performance at ungaged locations and

higher temperature observation subset along with comparable

results at gaged locations and all other temperature observations.

The main water temperature concern in the Delaware River

Basin is anticipating when water temperatures will exceed thermal

tolerances of aquatic organisms, thus we consider the validation

results related to high temperature prediction accuracy more

strongly. For model testing, we only tested the RGCN-DA model

with the test dataset that included 6 ungaged test sites and all other

gaged sites from the period of 2021-04-18 to 2022-09-22 and we

detail the test results below.

Model test

The RGCN-DA performed well during the test period and in

some cases, showed improved results compared to the validation

period (Figure 6). For example, RMSE and CRPS at ungaged

locations for all temperature and high temperature observation

subsets improved compared to the validation period. Additionally,

the RGCN-DA had better RMSE compared to the persistence

model for 1–7 day lead times during the test period for all

temperature and high temperature observation subsets, which was

not the case during the validation period. However, RGCN-DA

model bias was of higher magnitude for gaged sites and high

temperatures compared to the validation period for both the

RGCN-DA and the persistence forecast, which generally indicates

more difficult forecasting conditions. Although RGCN-DA RMSE

was better compared to the persistence model RMSE in the

test period, RMSE for both RGCN-DA and persistence model

were worse relative to the validation period for all temperature

observations and high temperature observation subsets, again

indicating more difficult forecasting conditions.

The RGCN-DA characterization of forecast uncertainty at

gaged sites was consistent between the validation and testing

periods with 0-day lead times being slightly underconfident, 1-

day lead times being well calibrated, and longer forecast horizons

being more overconfident (Figure 6). For ungaged locations, the

RGCN-DA model was consistently overconfident with 90% CIs

containing the observation ∼60% of the time for all temperature

observations and 64% of the time for high temperature observation

subset. This is an improvement compared to the validation period

for high temperature observation subset as the RGCN-DA’s 90%CIs

contained observations only 46% of the time.

We examined prediction time series for representative

headwater, mainstem, and near reservoir gaged and ungaged

locations during the test period, which are shown in Figures 7,

8. For gaged locations, the RGCN-DA was generally accurate for

mainstem and headwater river reaches, while RGCN-DA forecasts

were worse for locations directly downstream from reservoirs

(Figure 7). Across all representative gaged locations, the 90% CIs

were very reliable with occasional strings of failures that tended to

occur in late fall or winter. For ungaged locations, the RGCN-DA

forecasts were generally worse across all representative reaches, and

observations falling outside the 90% CI were both more common

and clustered (Figure 8). The RGCN-DA model performed best

for the ungaged mainstem reaches but tended to underpredict

summertime temperatures for the headwater reaches and tended

to overpredict for the reservoir reaches.

Discussion

Recent work has shownDLmodels to perform better than other

modeling methods when faced with the challenge of predicting

aquatic variables in ungaged locations (Kratzert et al., 2019;

Rahmani et al., 2021; Feng et al., 2022;Weierbach et al., 2022; Zhang

et al., 2022). Given the better performance of DL models, focus

on improving DL methods would be beneficial for this prediction

challenge. In this paper, we evaluated the performance of four

DL models for forecasting daily maximum stream temperature

at both gaged and ungaged locations, which included two DL

model architectures both with and without data assimilation (i.e.,

ensemble Kalman filter). To the best of our knowledge, this is

the first evaluation of DL models at ungaged locations for stream

network water temperature forecasts. Below we discuss the forecast

performance of these DL models for this prediction challenge and

future research opportunities.

All DL models performed well when forecasting maximum

daily stream temperature for 70 segments in the Delaware River

Basin with a mean RMSE of 1.49◦C and CRPS of 0.83◦C for day-

ahead forecasts across gaged locations and performedmodestly well

for ungaged locations with a mean RMSE of 3.24◦C and CRPS

of 2.02◦C for day-ahead forecasts. The gaged location accuracy

is similar in performance to previous temperature forecasting

approaches (e.g., Cole et al., 2014; Zwart et al., 2022), and we are

unaware of other studies that have evaluated forecasts of daily

maximum stream temperature for ungaged locations. Although all
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FIGURE 4

Ungaged, validation set examples of sites along the mainstem highlighting the performance of the recurrent graph convolutional neural network

with data assimilation (RGCN-DA) model across four streams. For each stream segment, the top panels consist of maximum water temperature

observations and RGCN-DA predictions at 1-day lead time for the validation period from 2019-01-03 to 2019-12-23 where the gray band is a 90%

confidence interval (CI), the white line is the mean of all ensemble and sample predictions, observations within the 90% CI are purple, and

observations outside the 90% CI are orange. The bottom panels show the deviation of other DL models relative to the RGCN-DA during the

validation period and the marginal plots on these panels show distribution and mean of these relative absolute errors. Positive values indicate higher

absolute error than the RGCN-DA, whereas negative values indicate lower absolute error than the RGCN-DA.

70 sites were within 1 degree latitude and longitude of each other,

daily maximum stream temperature varied a lot due to reservoir

effects and natural variability (e.g., groundwater inflow). For

example, the month with the warmest mean stream temperature

(July) ranged from 25.2◦C at the warmest stream segment to

7.4◦C at the coolest segment. Despite this >17◦C difference among

stream segments in water temperature during the warmest months,

our DLmodels were able to capture inter-segment variability in this

highly thermally altered stream network.

DL model architecture had the largest effect on forecast

performance for the highest and lowest temperature observation

subsets as the RGCN-DA and RGCN consistently outperformed

other models when making forecasts for temperatures greater

than 18◦C. The RGCN-DA had the lowest CRPS and RMSE for

forecasting temperatures above 18◦C at ungaged locations. Model

performance at higher temperatures is important in the Delaware

River Basin because water resource managers make decisions

about when and how much water to release from reservoirs to

cool downstream segments. Additionally, accurate network-wide

forecasts of stream temperature at higher temperature regimes

could inform the public on when and where catch and release

fishing may be most suitable to avoid thermal stress on fishes.
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FIGURE 5

Model comparison of confusion matrices, displaying the ability of 90% confidence intervals to accurately capture thermal exceedances in the

Delaware River Basin for long short-term memory neural network (LSTM) and recurrent graph convolutional neural network (RGCN) both with and

without data assimilation (DA). Within each confusion matrix, columns are scaled by the number of observed (non-)exceedances. Perfect

performance would display 1 in the top left and lower right quadrants with the remaining quadrants equal to 0. For gaged and ungaged sites, the

highest proportion of true positives is highlighted by a red, dashed outline.

Of note, the value of DA was only examined with regards to the

EnKF method, and alternative approaches that are more integrated

with model training process may be superior to this more general

method (e.g., Nearing et al., 2021a).

The RGCN architecture, with and without DA, performed

best around freezing temperatures (−1 to 1◦C) and may have an

advantage over the LSTM at these temperature regimes because

external drivers are typically decoupled from water temperature

dynamics near freezing temperatures (Letcher et al., 2016); thus,

added network structure may help maintain accurate predictions

despite this decoupling. Accurate predictions of water temperature

near freezing can be important for predicting the location,

magnitude, and timing of river ice cover and thaw. Similar to

high temperature regimes, these freezing temperatures can affect

recreation, tourism, and wildlife. Under some conditions ice in

a river network can jam, forming a dam and impounding water,

which introduces a risk of flooding (Beltaos, 1995). For hydropower

dams, river ice can block or damage pipes and turbines and

pose additional operational constraints and reductions in power

production (Gebre et al., 2013). Although streams in the Delaware

River Basin are not highly prone to freezing, the improved RGCN

forecasts at near freezing temperatures may be useful if model

performance is similar in other basins.

Model results indicated that the RGCN and DA may leverage

nearby information to improve predictions for ungaged locations.

Of the 16 segments that were used in the spatial cross-validation,

the RGCN was the best performing DL model structure for 11

of the segments when they were ungaged, and 5 of these 11

segments had the LSTM as the best performing model when the

segments were gaged (Figure 9). This contrasts with only five

segments that had an LSTM model as the best performing model

when the segments were ungaged. Additionally, DA improved

predictions for two of the segments that had the LSTM as the

best performing model when ungaged. Topp et al. (2023) show

that non-local information accounts for greater than two-thirds of

prediction influence for RGCNmodels in the Delaware River Basin.

Indeed, this non-local information may help improve forecasts

of stream temperature at ungaged sites by leveraging information

from nearby sites. Despite improved predictions for the RGCN

compared to LSTM at many ungaged locations, overall forecast

performance at ungaged locations was much lower than gaged

locations. DL forecasts at ungaged locations might be improved

with larger training datasets over the 70 segments we used in this

study, segment characteristics that distinguish unique aspects of

segments in this basin (e.g., groundwater influence), or potentially

different network architecture models that may better reflect real-

world river network (e.g., Graph WaveNet; Wu et al., 2019; Topp

et al., 2023). Improvements to input data might also interact with

differences among model architectures; for example, a wider range

of segment characteristics could improve LSTM performance and

thus narrow the accuracy difference between LSTM and RGCN

or Graph WaveNet models. Also, past work has shown that

pretraining is more powerful for conditions and locations for which

data are sparse (Read et al., 2019; Jia et al., 2021) and that a
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FIGURE 6

Model forecast accuracy and reliability in the Delaware River Basin during the test period from 2021-04-18 to 2022-09-22 for the recurrent graph

convolutional neural network with data assimilation (RGCN-DA) and persistence model. The top twelve panels show model forecast test accuracy as

a function of forecast lead time for gaged and ungaged sites and the bottom four panels show model reliability. Accuracy metrics include bias, root

mean squared error (RMSE), and continuous ranked probability score (CRPS), and the reliability panels show the percentage of observations

occurring in each of nine forecast confidence intervals. A model that perfectly characterizes forecast uncertainty model would fall along the diagonal

dashed 1:1 line. High temperatures are observations equal to or above 18◦C. Gaged segments were any segment that had observations during

training whereas ungaged were those that did not have any observations during training.

mediocre source of pretraining data (e.g., a process-based model

that omits key features such as reservoirs) could introduce errors

that are not unlearned by few true observations. However, we are

unaware of a robust analysis on the value of different pretraining

datasets on DL model performance under various data sparsity

conditions. In the context of machine learning literature, this 70-

site study area is relatively small; and although the Delaware River

Basin is wellmonitored, many of its sites have sparse or inconsistent

water temperature records. Both model architectures likely would

benefit from increased data availability, and we hypothesize that

the RGCN-DA would exhibit the greatest improvements due to

its additional spatial data integration. Conversely, we expect that

reduced data availability and diversity would decrease ungaged

prediction performance.
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FIGURE 7

Maximum water temperature observations and recurrent graph convolutional neural network with data assimilation (RGCN-DA) predictions for

gaged segments at 1-day lead time for select sites during the test period from 2021-04-18 to 2022-09-22. The gray bands are 90% confidence

intervals (CIs) and the white line is the mean of all ensemble and sample predictions. Observations that fall within the 90% CIs are purple, and

observations that fall outside of the 90% CI are orange. Stream segments 1,575 and 1,641 were deemed mainstem gages, 1,575 and 1,634 were

deemed headwater gages, and 1,449 and 1,638 were deemed reservoir-impacted gages.

FIGURE 8

Maximum water temperature observations and recurrent graph convolutional neural network with data assimilation (RGCN-DA) predictions for all

ungaged segments at 1-day lead time during the test period from 2021-04-18 to 2022-09-22. The gray bands are 90% CIs (confidence intervals) and

the white line is the mean of all ensemble and sample predictions. Observations that fall within the 90% CIs are purple, and observations that fall

outside of the 90% CI are orange. Stream segments 1,462 and 1,574 were deemed mainstem gages, 1,455 and 1,642 were deemed headwater gages,

and 1,450 and 1,565 were deemed reservoir-impacted gages.

Our DL models characterized uncertainty well at gaged

locations with 88–90% of observations included in the

90% CIs at 1-day lead time. However, our DL models were

overconfident at ungaged locations as 65–67% of observations

were contained in the 90% CIs. Although ungaged performance

was worse, this was not specific to uncertainty or CIs, and

this likely indicates that additional work would be helpful

to characterize ungaged streams with better input features.

The unimodal Gaussian approach for characterizing target

uncertainty is a convenient extension of mean squared error

optimization, which allows the model to explicitly learn and

provide a bound of uncertainty with little additional burden.

Our gaged uncertainty results are good, adding support

to the MDN approach inspired from Klotz et al. (2022);
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FIGURE 9

Map showing all the stream segments used as ungaged locations in one of the spatial cross-validation folds. Segments are colored based on what

deep learning (DL) model structure was most accurate when the segment was ungaged. Darker colors indicate that the segment’s most accurate DL

model structure changed when switching from gaged to ungaged where +LSTM indicates that the long short-term memory neural network (LSTM)

was more accurate when the segment was ungaged, whereas the recurrent graph convolutional neural network (RGCN) was more accurate when

gaged. Segment line style indicates whether data assimilation (DA) accompanied the DL model structure as the most accurate model for ungaged

predictions where +DA means that DA was more accurate when the segment was ungaged, whereas no DA was more accurate when the segment

was gaged. The gray segments indicate all other forecast segments used in this study.

however, initial explorations indicated very equal performance

between Gaussian and Laplacian approaches for our stream

temperature task (which is less tail-heavy than rainfall and runoff),

and we saw additional benefit when combining MCD with

Gaussian uncertainty.

Although our models characterized uncertainty well, gaged

uncertainty quantification tended to be worst at either the

highest forecast CI (90% CI, downward deviation curve, Figure 3)

or moderate forecast CI (40–60%, u- or n-shaped deviation

curves) for cross-validation results. Using the Gaussian distribution

approximation of our MDN predictions, overconfidence at

high confidence intervals likely indicates a limitation in the

predicted standard deviation, which may not accurately represent

some of the less common stream temperature values. Under-

or overconfidence at intermediate confidence intervals likely

indicates a shortcoming in the predicted mean. For gaged

sites, low forecast CIs were relatively reliable; but for ungaged

sites, the low forecast CIs were relatively unreliable and

displayed worsening reliability at higher forecast CIs. This

was likely representative of the broader problem of difficult

spatial generalization for both predicted mean and standard

deviation parameters.

As forecast lead times increased, the DL models became more

overconfident. This can be due to higher error at greater lead

times or may represent a loss of uncertainty introduced by taking

sample means from earlier days as the current day’s autoregressive

input. A brief, initial exploration of using all predicted samples

(rather than sample means) indicated improved CI reliability,

but with prohibitively increased computational and memory

burdens, which we want to avoid to show clear computational

benefits over full Markov chain Monte Carlo approaches. Another

option for improving uncertainty characterization at longer lead

times would be to train separate models for making predictions

at longer lead times; DL model distribution predictions are

expected to adjust variance appropriately to maximize the

likelihood loss function at these longer lead times and we might

expect our models to become less overconfident. Although not

demonstrated here, having distribution parameters as outputs
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is highly appealing for interrogating what is contributing most

to model forecast uncertainty. Explainable artificial intelligence

(XAI) methods such as expected gradients (Erion et al., 2021)

could be used to assign attribution of increased or decreased

uncertainty parameters to inputs (e.g., precipitation contributes

most to the predicted variance of stream temperature). This would

be analogous other forecast uncertainty partitioning (Heilman

et al., 2022), which can help improve forecasts by focusing efforts

on the most important contributors to uncertainty (Bauer et al.,

2015).
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