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Introduction: Landslide is one of the most widespread geohazards around the
world. Therefore, it is necessary and meaningful to map regional landslide
susceptibility for landslide mitigation. In this research, landslide susceptibility
maps were produced by four models, namely, certainty factors (CF), naive
Bayes (NB), J48 decision tree (J48), and multilayer perceptron (MLP) models.

Methods: In the first step, 328 landslides were identified via historical data,
interpretation of remote sensing images, and field investigation, and they were
divided into two subsets that were assigned different uses: 70% subset for training
and 30% subset for validating. Then, twelve conditioning factors were employed,
namely, altitude, slope angle, slope aspect, plan curvature, profile curvature, TWI,
NDVI, distance to rivers, distance to roads, land use, soil, and lithology. Later, the
importance of each conditioning factor was analyzed by average merit (AM) values,
and the relationship between landslide occurrence and various factors was evaluated
using the certainty factor (CF) approach. In the next step, the landslide susceptibility
maps were produced based on four models, and the effect of the four models were
quantitatively compared by receiver operating characteristic (ROC) curves, area under
curve (AUC) values, and non-parametric tests.

Results: The results demonstrated that all the four models can reasonably assess
landslide susceptibility. Of these fourmodels, the CFmodel has the best predictive
performance for the training (AUC=0.901) and validating data (AUC=0.892).

Discussion: Theproposed approach is an innovativemethod thatmay also help other
scientists to develop landslide susceptibility maps in other areas and that could be
used for geo-environmental problems besides natural hazard assessments.
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1 Introduction

Landslide is one of the most common geohazards around mountainous regions
(Moayedi et al., 2019; Sharma and Mahajan, 2019; Xiong et al., 2019). Generally, the
disaster-causing capacity of landslide hazards is particularly significant, causing enormous
losses to houses, infrastructure, land resources, and human life (Corominas et al., 2014;
Pourghasemi and Rahmati, 2018). China stands as one of the nations with a relatively high
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frequency of geological hazards. In the year 2021, a total of
4,772 geological disasters occurred in China, resulting in the
unfortunate loss of 80 lives, with 11 individuals reported missing,
and inflicting direct economic losses of 3.2 billion dollars.
Landslides, as a perilous geological hazard, prevail as the primary
disaster type across China, predominantly afflicting the northwest
and southwest regions of the country. Hence, the study and
implementation of measures for geological hazard prevention and
mitigation hold tremendous significance. Furthermore, the matter of
geological hazard prediction demands urgent attention and
resolutions.

In view of the severe consequences, the tasks of landslide
control and prevention have attracted the attention of
government organizations and scholars (An et al., 2016; Pham
et al., 2016a; Wu et al., 2017). In this respect, landslide
susceptibility assessment (LSA) is the research focus, and the
results can guide landslide prevention engineering (Polykretis
et al., 2015). Essentially, LSA is the work that is performed to
find out whether landslide occurrence is intrinsically associated
with conditioning factors, which can be used to predict the future
spatial development of landslide hazards (Magliulo et al., 2008;
Jaafari et al., 2014).

Currently, statistical models and machine learning (ML) models
are the most popular approaches to build landslide susceptibility
models (Huang and Zhao, 2018; Pourghasemi et al., 2018;
Arabameri et al., 2019a). For the former, the probability and
frequency of landslide occurrence are analyzed by conventional
statistical approaches, such as the landslide susceptibility index
model (Jamal and Mandal, 2016), frequency ratio model (Aditian
et al., 2018), and weight of evidence model (Xu et al., 2012).
However, when using conventional statistical methods, we have
to first subjectively determine the statistical model, and it is hard to
measure the relative importance among various conditioning factors
(Elith et al., 2008). For the latter, a vast variety of landslide
susceptibility models have been constructed by widely using ML
approaches in recent years, and sequences of novel ML and
ensemble learning algorithms have been proposed, for instance,
random forest (Sun et al., 2021), alternating decision tree (Wu et al.,
2020), kernel logistic regression (Chen and Chen, 2021), random
subspace (Pham et al., 2018a), rotation forest, and decision tree
(Hong et al., 2018; Pham et al., 2018b). It is considered that machine
learning approaches are more suitable for large databases and can
reveal the non-linear and complex linkage between landslide
occurrence and each conditioning factor (Zare et al., 2013).
Moreover, to acquire results with higher accuracy and a model
with better generalization ability, numerous comparative studies of
machine learning algorithms have been conducted (Akgun, 2012;
Zhu et al., 2018; Juliev et al., 2019; Lei et al., 2020a; Li et al., 2021).

As known, landslides are a very complex natural phenomenon
that cause severe loss of human lives and properties worldwide. An
accurate assessment of the occurrence of these extreme events is
needed in order to understand their spatial correlations with the
landslides. An effective method is to map the areas that are
susceptible to landslide occurrence. In recent years, various
machine learning techniques have been applied for landslide
susceptibility mapping. However, we cannot conclude which
model is the best universally. Moreover, even a small increment
of the prediction accuracy may control the resulting landslide

susceptibility zones. Therefore, many more case studies must be
performed to reach a reasonable conclusion.

In this paper, we employed the naive Bayes, J48 decision tree,
and multilayer perceptron models to predict landslide occurrence in
Xiaojin County, Sichuan Province, China. The contents of this paper
are as follows: 1) The contribution of conditioning factors to three
used ML models are investigated; 2) the CF bivariate model is
integrated with ML methods for the spatial prediction of landslides;
3) CF illuminates a superior reliable model that is far ahead of the
state-of-the-art ML in landslide susceptibility assessment; 4) the
model performance is considered based on their discrimination
capacity and reliability. The primary difference here between this
study and the literature mentioned is that the approaches in this
paper are seldom used and compared in landslide susceptibility
assessment. Another point is that four models were first applied in

FIGURE 1
Study area.
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Xiaojin County, and statistical models and machine learning models
possess superior interpretability compared to deep learning models,
and they can be trained using smaller datasets, which aim to improve
the accuracy of the results in the study area. The performance of the
models was quantitatively evaluated and comprehensively
compared, and the proposed approach is an innovative method
that may also help other scientists to develop landslide susceptibility
maps in other areas and that could be used for geo-environmental
problems other than natural hazard assessments.

2 The study area

Xiaojin County is located in Sichuan Province, China (Figure 1).
The study area is between longitude 102°01′E and 102°59′E and
latitude 30°35′N and 31°43′N. The area is dominated by a
subtropical monsoon climate. However, the climate vertical
differentiation is extremely distinct due to the dramatic changes
of altitudes. Generally, the annual average temperature is 12.2°C, and
the average annual rainfall is 613.9 mm (http://www.xiaojin.gov.cn/
). Hydrologically, the Fubian River and Xiaojin River are the main
rivers in this area. The length of these two rivers are 83 km and
150 km, respectively (Xie et al., 2021).

Xiaojin County presents a distinctive topography, with higher
elevations in the northwest and lower ones in the southeast,
characterized by a modest mountainous terrain. Historical
landslides in Xiaojin County encompass both rockslides and soil
slides, with rockslides constituting the majority and soil slides being
relatively scarce. In terms of magnitude, the study area primarily
exhibits small to medium-sized landslides, with a lesser occurrence
of large-scale landslides. Due to its location within a high
mountainous and hilly terrain, situated along the Circum-Pacific
Mediterranean Fault Zone, Xiaojin County experiences frequent and
intense tectonic movements. It represents a typical high-risk zone
for geological hazards in southwestern China, particularly
noteworthy for its proximity of a mere 100 km to Wenchuan
City in Sichuan Province. On 12 May 2008, Wenchuan City was
struck by a severe earthquake measuring over a magnitude of 8,
which severely impacted Xiaojin County as well. This event triggered
numerous slope instability incidents. Compounded by the
concentrated population and the predominant construction of
buildings and public facilities in mountainous areas, the potential
landslide risks pose a significant threat to the social security of
Xiaojin County. Furthermore, up until now, there has been a dearth
of research on landslide susceptibility specific to Xiaojin County,
which serves as the rationale for selecting it as the study area.

3 Data preparation

Through collection of historical data, satellite image
interpretation, and field investigation, 328 landslides in total were
extracted from this area. The average dimension of a landslide is
about 6.9×103 m2, and the average volume is 4.3×104 m3,
respectively. Due to the relatively diminutive size of landslide
areas within the study area, the centroid method was employed
to generate landslide points. Additionally, an equivalent number of
non-landslide points was randomly generated within regions where

the slope angle is non-zero. For establishing a landslide susceptibility
model, these landslides and non-landslides were randomly divided
into two datasets, the training dataset (accounting for 70%) and
validating dataset (accounting for 30%) (Figure 1).

Afterwards, slope angle, slope aspect, altitude, plan curvature,
profile curvature, topographic wetness index (TWI), distance to
rivers, distance to roads, normalized difference vegetation index
(NDVI), land use, soil, and lithology were selected as conditioning
factors for landslide susceptibility mapping according to the existing
literature (Althuwaynee et al., 2012; Felicísimo et al., 2013; Conforti
et al., 2014; Ada and San, 2018), and the corresponding thematic
maps were acquired (Figure 2). In the process of producing thematic
maps, the DEM image, obtained from the website http://www.
gscloud.cn/, was adopted to extract regional values of the slope
angle, slope aspect, altitude, plan curvature, profile curvature, and
TWI. The buffer zones of rivers and roads can be generated by
regional water system and traffic maps. The NDVI was obtained by
Landsat 8 OLI images (http://www.gscloud.cn/). Land use, soil, and
lithology were extracted from land use, soil, and geological maps
with scales of 1:100000, 1:1000000, and 1:500000, respectively. All
the thematic maps were rasterized with a resolution of 20 m × 20 m.
The data source is shown in Table 1.

The slope angle is a necessary conditioning factor in this task
(Eiras et al., 2021). The slope stability and failure modes usually vary
with slope angle values (Dai et al., 2001). Here, the slope angle values
were reclassified into nine categories with an interval of 10°, <10°,
10°–20°, 20°–30°, 30°–40°, 40°–50°, 50°–60°, 60°–70°, 70°–80°, and >80°.

The slope aspect has a prominent influence on temperature and
humidity around slopes (Ercanoglu and Gokceoglu, 2002).
Therefore, the slope aspect is related to the slope stability. In this
paper, the slope aspects were divided into nine directions, namely,
flat, north, northeast, east, southeast, south, southwest, west, and
northwest.

It is clear that the degree of vegetation coverage, freezing,
thawing, and moisture changes dramatically with the variety of
altitude (Ding et al., 2017). With an interval of 500 m, nine groups
were generated, namely, <2000 m, 2000–2500 m, 2500–3000 m,
3000–3500 m, 3500–4000 m, 4000–4500 m, 4500–5000 m,
5000–5500 m, and >5500 m.

Plan curvature and profile curvature are two indexes that are
employed to measure slope shapes, which always affect the stress
distribution of slopes (Aghdam et al., 2016). Moreover, the curvature
values have impacts on surface runoff (Chen et al., 2017). In this
study, curvature values were derived from DEM using the ArcGIS
toolbox (ESRI, 2014). The plan curvature values were reclassified as
(−32.95)-(−1.70) (−1.70)-(-0.65) (−0.65)-0.14, 0.14-1.19, and1.19-
34.02, while the profile curvature values were (−44.22)-(-2.24)
(−2.24)-(-0.80), (−0.80)-0.28, 0.28-1.73, and 1.73-48.04.

The topographic wetness index (TWI) is employed to
quantitatively evaluate the control function of topography on
hydrological characteristics (Moore et al., 1991). In this way, five
categories of TWI values were formed by the natural break method:
0.14-1.55, 1.55-2.26, 2.26-3.20, 3.20-4.78, and 4.78-15.12.

Rivers can affect the hydrogeology characteristics of slopes and
usually corrode the toe of a slope, which may decrease the anti-slide
force (Nsengiyumva et al., 2018). By analyzing buffer zones, eight
buffer zones of rivers were produced, namely, <200 m, 200–400 m,
400–600 m, 600–800 m, and >800 m.
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In mountainous areas, it is common that numerous
landslide hazards are triggered by road construction (Vuillez
et al., 2018). Hence, the distance to roads was regarded as a

conditioning factor in this study and reclassified into five buffer
zones: <300 m, 300–600 m, 600–900 m, 900–1200 m,
and >1200 m.

FIGURE 2
Thematic maps. (A) slope angle; (B) slope aspect; (C) altitude; (D) plan curvature; (E) profile curvature; (F) TWI; (G) distance to rivers; (H) distance to
roads; (I) NDVI; (J) land use; (K) soil; (L) lithology.
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The normalized difference vegetation index (NDVI) is used to
reflect the degree of vegetation coverage on a slope surface (Han
et al., 2019). Thus, the NDVI values of the study area were arranged
into five classes (−1.00)-(−0.16) (−0.16)-(-0.01), (−0.01)-0.01, 0.01-
0.16, and 0.16-1.00.

It has been proved that landslide occurrence is indeed
connected with land-use type (Leventhal and Kotze, 2008). In
the study area, a total of six land-use types were identified,
namely, farmland, forestland, grassland, water, construction
land, and unused land.

Soil type and lithology, which affect the physical and
mechanical texture of soil and rock mass, determine slope
stability (Yalcin et al., 2011). Based on the soil map of the
study area, thirteen soil types were classified. The outcrops in
the study area formed in several geological ages, which include
the Sinian period, Ordovician period, Silurian period, Devonian
period, Carboniferous period, Permian period, Triassic period,
and Quaternary period. The main lithologies are marble,
quartzite, phyllite, limestone, sandstone, and soil.
Correspondingly, nine lithology groups were reclassified.

4 Modeling approach

4.1 Selection of landslide conditioning
factors

It is usually considered that the selection of conditioning
factors has significant effects on the certainty and outcome of
landslide predictive models (Lei et al., 2020a). These important
instructions point to the need to take the optimal combination of
conditioning factors into consideration as part of the criteria of
raising the accuracy of landslide susceptibility models. In this
case, we compared the relative importance of various
conditioning factors by a chi-square test based on the Weka
workbench (Frank et al., 2016).

4.2 Certainty factors

The certainty factors method, which was proposed by Buchanan
and Shortliffe in 1984 (Buchanan and Shortliffe, 1984), has been
extensively represented in tasks of LSA (Kanungo et al., 2011;
Devkota et al., 2013). In this process, each conditioning factors
can generate a corresponding data layer. Then, the weights of all the
pixels in different data layers can be figured out by Eq. 1:

CF �
HHa −HHs

HHa 1 −HHs( ), HHa ≥HHs

HHa −HHs

HHs 1 −HHa( ), HHs <HHa

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1)

where HHa is the conditional probability of landslide occurrence in a
class, and HHs is the prior probability of landslide events in the
whole study area (Devkota et al., 2013).

4.3 Naive bayes

The naive Bayes classifier is based on the Bayes theorem and
independence assumption, and it has been popular in various domains
in recent decades (Lee, 2018; Sun et al., 2018; Berrar et al., 2019; He et al.,
2019). In terms of the naive Bayes algorithm, the training data are used
to calculate the prior probability of various classifications. Then, the
classification results can be determined by the posteriori probability and
conditional probability density function. Assuming that X is the vector
of new observation data, and xi denotes the ith observation value, for a
certain class cj, the conditional probability p (X|cj) can then be figured
out through the following equation:

p X
∣∣∣∣cj( ) � ∏

i�1
p

xi

cj
( ) (2)

In the tasks of landslide susceptibility, assuming that yj (i =
landslide, non-landslide) represents the classification results, the

TABLE 1 Data source.

Conditioning factors Source Resolution/scale

Slope angle Extracting from DEM image 20 m × 20 m

Slope aspect Extracting from DEM image 20 m × 20 m

Altitude Extracting from DEM image 20 m × 20 m

Plan curvature Extracting from DEM image 20 m × 20 m

Profile curvature Extracting from DEM image 20 m × 20 m

Topographic wetness index (TWI) Extracting from DEM image 20 m × 20 m

Distance to rivers Generating from regional water system maps Vector

Distance to roads Generating from regional traffic maps Vector

Normalized difference vegetation index (NDVI) Generating from Landsat 8 OLI images Vector

Land use Extracting from landuse maps 1:100000

Soil Extracting from soil maps 1:1000000

Lithology Extracting from lithology maps 1:500000

Frontiers in Earth Science frontiersin.org05

Xia et al. 10.3389/feart.2023.1187384

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1187384


final prediction results can be identified through the following
equation:

yj � argmaxp yj( )∏
i�1

p
xi

yj
( ) (3)

4.4 J48 decision tree

The J48 decision tree (C4.5) is a type of decision tree algorithm,
and it presents an improvement on the ID3 decision tree (Hong
et al., 2018). In terms of the J48 decision tree, the information gain
ratio is introduced to select splitting attributions, and the
information gain ratio can be calculated by Eq. 4:

Information Gain Ratio � Information Gain

−∑m
i�1

ni
N□log

ni
N( ) (4)

where the information gain is calculated by entropy or the Gini
value, m is the number of sub-nodes, and N represents the data
quantity of a parent node when ni denotes that of the ith sub-node.

When constructing a decision tree, overfitting may occur under
the effects of noisy data (Sathyadevan et al., 2015). Therefore, tree
pruning techniques are employed to avoid overfitting occurrence
and simplify the construction of a decision tree. Generally, there are
two pruning approaches, namely, prepruning and postpruning. The
postpruning approaches can be further divided into reduced error
pruning, pessimistic error pruning, cost-complexity pruning, and
error-based pruning (Sathyadevan et al., 2015).

4.5 Multilayer perceptron

Multilayer perceptron (MLP) is a typical perceptron learning
algorithm. Compared with traditional neural networks, MLP
consists of one input layer, one output layer, and multiple
hidden layers. The training data are input into MLP through the
input layer, and the mapping between the input data and output data
is established by hidden layers. Because there is no restriction on the
hidden function types and number of neurons of the output layer,
MLP is more suitable for non-linear data multi-classification
problems (Manaswi and Manaswi, 2018). In the process of MLP
training, according to the back-propagation regulation, the weights
of various hidden layers are optimized by the following loss function:

E � 1
2
∑
j?Lk

t j( ) − y
j( )

k( )2

(5)

where E is the loss, Lk represents all the neurons of the output layer,
y(j) k means the output of the jth node of Lk, and t(j) is the
corresponding label of the input data.

4.6 Receiver operating characteristic (ROC)
curve

The receiver operating characteristic (ROC) curve has been
understood as the standard method for measuring classifier

performance (Amiri et al., 2019; Arabameri et al., 2019b; Lei
et al., 2020b). Taking the “1-specificity” as the transverse axis
and the “sensitivity” as the longitudinal axis, the ROC curve can
be obtained by connecting the coordinate points, which are drawn
under various classification threshold values (Chen W. et al., 2021;
Chen et al., 2021b). Based on the ROC curve, the optimal
classification threshold value can be easily found, and the model
performance is obviously reflected by the shape of curve.
Furthermore, to quantitatively assess model performance with the
ROC curve, a higher value of area under the ROC curve (AUC)
embodies a better classification performance (Chen et al., 2021c).

5 Results and analysis

This section reports the results from an interpretative
framework of both predictors’ effects and model performance in
terms of different perspectives.

5.1 Selection of landslide conditioning
factors

The average merit (AM) values of the twelve conditioning factors
were figured out and are shown in Figure 3. Among these factors,
altitude has the highest AM value (NB and J48 of 0.329; MLP of 0.322).
The second highest AMvalue (NB of 0.307; J48 andMLP of 0.305) is for
soil type, which is followed by distance to roads (NB, J48, MLP AM =
0.272, 0.275, 0.265) and distance to rivers (NB, J48, MLP AM = 0.233,
0.232, 0.231). For the NB model, the AM values are lithology = 0.098,
slope angle = 0.091, TWI = 0.087, profile curvature = 0.07, land use =
0.066, plan curvature = 0.061, NDVI = 0.044, and slope aspect = 0.043.
For the J48 model, the AM values are lithology = 0.095, TWI = 0.084,
slope angle = 0.083, land use = 0.064, plan curvature = 0.05, profile
curvature = 0.048, NDVI = 0.036, and slope aspect = 0.031. For theMLP
model, the AM values are lithology = 0.088, slope angle = 0.082, TWI =
0.081, profile curvature = 0.063, land use = 0.055, plan curvature =
0.045, slope aspect = 0.035, and NDVI = 0.032. Moreover, it is observed
that the NB model has the greatest contribution. Therefore, the NB
model should be considered as better than the other models.

Moreover, there may exist a multicollinearity problem among the
conditioning factors, and severemulticollinearity can have an impact on
the model by increasing the variance of regression coefficients and
rendering them unstable. To assess the potential multicollinearity
problem among the conditioning factors, we verified it by
calculating the variance inflation factor (VIF) and tolerance (TOL)
of the conditioning factors. From Table 2, it can be observed that the
VIF values of all the conditioning factors are less than 10, and the TOL
values are greater than 0.1, indicating the absence of multicollinearity
among the conditioning factors. Hence, all the conditioning factors
were retained in the subsequent modeling process.

5.2 Correlation analysis using CF model

In this study, the different response relationship between the
fitting models and each conditioning factor was analyzed by the CF
model (Figure 4). In terms of the slope angle, the highest CF value
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(0.717) belongs to the class of <10°, which indicates that most
landslides occur in regions with lower slope angles. For altitude,
the regions in which altitudes are less than 3500 m have promoting
effects on landslide occurrence, and the CF value is the highest
(0.961) when altitudes are 2000 m–2500 m. For plan curvature, there
are only two positive CF values of .117 and 0.187, which belong to
the classes of (−0.65)-0.14 and 0.14-1.19, respectively. For profile
curvature, the class of 0.28–1.73 has the highest CF value of 0.190,
followed by the class of (−0.80)-0.28 (0.125). It can be observed that
the CF values significantly rise with the increase of the TWI values,
and the CF value is the highest for the class of 4.78–15.12 (0.859).
For the distance to rivers, the highest CF value is the only positive

value, which is observed for <200 m. As obvious from the results of
distance to roads, landslide occurrence density decreases with the
lengthening of the distance to roads. Thus, there is no doubt that
rivers and road construction generally trigger landslide hazards. For
NDVI, the CF value is the highest (0.350) for the class of (−0.16)-
(−0.01), followed by the class of (−0.01)-0.01 (0.263). The results
show that vegetation on a slope surface can prevent landslide
occurrence. For the influence situation of land use, construction
land, farmland, and unused land have higher CF values of 0.984,
0.810, and 0.027, respectively, indicating that human activities play a
critical role in landslide distribution. In terms of soil type, the highest
CF value of 0.866 is found in group 8, followed by group 10 (0.861).
Moreover, for lithology, group C and group I have the positive CF
values of 0.232 and 0.416, respectively.

5.3 Application of models

After determining the most effective conditioning factors, based
on the CF analysis result of correlation, LSI analyses were performed
following the formula below (Eq. 5). The factors first had to be
reclassified to calculate the landslide distribution for each class
shown in pixel amount. The final LSM was determined by the
superposition of the results of the twelve factor maps using the
Raster Calculator Module. The output values were reclassified into
five categories, namely, very low, low, moderate, high, and very high,
according to geometrical interval method (Pham et al., 2016b)
(Figure 5A).

LSICF�AltitudeCF+Slope angleCF+Slope aspectCF+Plan curvatureCF
+Profile curvatureCF+TWICF+NDVICF+Distance to riversCF
+Distance to roadsCF+LanduseCF+SoilCF+LithologyCF

(6)

It is evident that a large drawback of bivariate models, such
as the CF mode, is that they only consider a single factor, that is,

FIGURE 3
Importance of conditioning factors.

TABLE 2 Verification result of potential multicollinearity problem among the
conditioning factors.

Conditioning factors VIF Tolerances (TOL)

Altitude 1.493 0.670

Soil 1.232 0.812

Distance to roads 1.261 0.793

Distance to rivers 1.474 0.678

Lithology 1.003 0.997

Slope angle 1.525 0.656

TWI 1.178 0.849

Profile curvature 1.319 0.758

Land use 1.233 0.811

Plan curvature 1.409 0.710

NDVI 1.175 0.851

Slope aspect 1.226 0.816
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sub-factors weights. A CF and ML model coupling pattern that can
augment the result of the ML models can thus be envisaged. We
denoted landslide (328) and non-landslide (328) pixels by value 1 or

value 0 in this study using 656 input variables. Input variables must
be split into two parts: 70% training and 30% validation. After the CF
model was successfully established, these data were pretreated with

FIGURE 4
Correlation between landslides and factors by CF.
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the CF value as the input of the NB model. The NB model was
implemented in the Weka software to output the LSI value of each
pixel in the full study area. The range of output values was from 0 to
1, which reflects the probability of landslide occurrence of this pixel
position. Along these lines, all the LSI values were converted to
ArcGIS, and the spatial mapping process was performed. Similarly
to the CF classification, the NB classification model was established,
in which each category area indicates the different intensity of the
landslide. Then, the validating data were input into the trained
model to test the accuracy of the trained network. The final LSMwas
presented by the machine learning NB model (Figure 5B).

In the present study, Weka software was employed to form
landslide susceptibility with the J48 model. When running the
J48 program, we chose the confidence factor as 0.25, which is the
threshold to determine whether there shall be pruning or not. The
minimum number of objects of each leave is 2, and the number of
folds is 3. The pruning scheme is a reduced error pruning approach.
Finally, the landslide susceptibility index (LSI) values were
calculated, and the corresponding landslide susceptibility map
(Figure 5C) was generated using ArcGIS software. Similarly, the
LSI values were arranged into five classes.

For the MLP algorithm, the BP learning approach and auto
hidden layer were adopted to model highly non-linear functions.
Every layer consists of a number of neurons, which independently
process information, and these neurons connect with the other
layers of neurons by the weight. Then, the output values were
imported into ArcGIS software to produce a landslide
susceptibility map (Figure 5D). Through reclassification based on
the geometrical interval method, five different susceptibility classes
were obtained.

As suggested from the four visual inspections of Figures 5A–D,
there is a similar pattern of susceptibility distribution, which exhibit
an obvious rule. All the very high categories are distributed along
national road G350 and provincial road S210 and the river and
valley. In addition, very high categories are also located in the
calcareous cinnamon soil-type area, which is the cause of highly
weathered soil damage slope stability. Different susceptibility maps
have the same total number of pixels, but the pixels for each category

of susceptibility are different. The comparison of area pixels for each
category of the four maps is shown in Figure 6, and the accuracy of
these maps shown in Figures 7, 8. Although the four models yield
high accuracy, the four LSMs highlight significant differences. CF
and NB depict reasonable patterns, whereas the very high area only
has a few pixels, and the categories of “low and very low” have the
majority of pixels. By contrast, J48 and MLP encounter an
unreasonable problem. As the very high category occupies more
pixels, some of them appear in flat areas.

5.4 Validation and comparison of models

In this section, the performance study of various models with
training data and validating data would make great progress by the
evaluation and comparison of the ROC curves, AUC values, and
non-parametric testing approaches.

In this study, the general performance of a bivariate model and
three MLmodels has been assessed by the ROC curves andAUCvalues.
For the training data (Table 3), the CF bivariate model has the best fit
quality, and the AUC value is as high as 0.901 with a correspondingly
perfect confidence interval of 0.872–0.931. In the three MLmodels, NB
is the highest reached (0.893), and the 95% confidence interval is from
0.863 to 0.923. The AUC value of the MLP model is 0.835 with a
confidence interval of 0.797–0.872. The performance of the J48model is
inferior to the other models, and the AUC value of the MLP model is
0.798 with a confidence interval of 0.754–0.843.

In the more important case of validating data (Table 4), the CF
model remains stable at first place in model performance in terms of
AUC with a value of 0.892, and NB model remains stable at first
place in the three ML models, thus presenting the best AUC with a
value of 0.887. The MLP and J48 models also exhibit good predictive
ability with AUC values of 0.831 and 0.804. In addition, the CF and
NB models possess the lowest standard errors and confidence
intervals, with standard error values of 0.023 and 0.024 and 95%
confidence intervals of 0.847–0.937 and 0.84 to 0.935, respectively.
The predictive performance of the J48 and MLP models seems poor
compared that of the other models.

FIGURE 5
Landslide susceptibility map: (A) CF model, (B) NB model, (C) J48 model, (D) MLP model.
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FIGURE 6
Percentages of landslide susceptibility classes.

FIGURE 7
ROC curves of the models using training dataset.

FIGURE 8
ROC curves of the models using validation dataset.
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Determining the effective identify among the models, whether
or not there exist significant differences, has been a critical step in
the LSA tasks. In the session, the chi-square was adopted, and the
results are listed in Table 5. It can be seen that the p values (0.481 and
0.367) exceed the significant level (0.05). Hence, it can be inferred
that the performance of CF is similar to NB statistically, and J48 is
similar to the MLP model statistically. Furthermore, in terms of the
quantitative difference of the models, it is clear seen from the
calculated chi-square values that there is no significant difference
between the CF and NB models and the MLP and J48 models as the
value does not exceed 3.841. The two sets of models have no
significant difference compared to other model sets, because both
of these values are below the threshold, and the other model sets only
have a low significance level because these values are slightly higher
than the threshold.

6 Discussion

Based on the field survey information, the CF, J48, MLP, and NB
models were implemented to produce landslide susceptibility maps
of the study area. The AUC values and a series of statistical indexes

were used to measure the accuracy of four maps. The results
obviously demonstrate that four models have excellent
performance in landslide susceptibility mapping, and a similar
outcome appears both for the training and validation subsets.
Among them, the CF and NB models have a superior effect,
while the performance of the other two models has no significant
difference. In terms of the present study, the initial data best accord
with the pre-assumptions of the CFmodels, and this model naturally
has a solid mathematical foundation. Thus, the landslide
susceptibility map generated by the CF and NB models exhibits
better accuracy and rationality. It seems preferable to select CF and
NB as the susceptibility model over the study area. It is striking that
the actual validation subset of J48 received better performance than
the training set, especially for decision trees. It is very rare that it
produces an overfit for within-sample models and loses much
predictive power when predicting an out-of-sample situation
(Schaffer, 1993), as is well known. This uncommon result may be
explained due to the randomness of the sampling. This relationship
shows that the original landslide data exhibit low internal variability,
regardless of the sampling scheme. In turn, this allows us to consider
the resulting susceptibility maps as a reliable tool to predict
landslides in Xiaojin County. In addition, the parameters of the
classifiers and the correlation among the conditioning factors
determine the classification results to some degree. It can be
believed that the comprehensive performance of the MLP and
J48 models may be further improved by parameter optimization
and conditioning factor selection. Therefore, due to the uncertainties
in landslide susceptibility modeling, there is more than one
approach to generate satisfying results, and the optimized
approach is hard to determine.

For the twelve conditioning factors mentioned above, the
importance of altitude is the highest, followed by soil type,
distance to roads, and distance to rivers. Generally, lower altitude
areas have a higher probability of landslide occurrence (Polykretis
et al., 2015; Hong et al., 2019). Landslide susceptibility delineation
depends on the selected conditioning factors and the weight of each

TABLE 3 Parameters of ROC curves using training dataset.

Models AUC Standard error 95% confidence interval P

CF 0.901 0.015 0.872 To 0.931 <0.0001

NB 0.893 0.015 0.863 To 0.923 <0.0001

J48 0.798 0.023 0.754 To 0.843 <0.0001

MLP 0.835 0.019 0.797 To 0.872 <0.0001

TABLE 4 Parameters of ROC curves using validation dataset.

Models AUC Standard error 95% confidence interval P

CF 0.892 0.023 0.847 To 0.937 <0.0001

NB 0.887 0.024 0.840 To 0.935 <0.0001

J48 0.804 0.034 0.737 To 0.870 <0.0001

MLP 0.831 0.030 0.773 To 0.890 <0.0001

TABLE 5 Pairwise comparison for the four models using the validation dataset
based on chi-square.

Pairwise comparison Chi-square p-Value Significance

CF vs. NB 0.496 0.481 No

CF vs. J48 11.670 0.000 Yes

CF vs. MLP 8.945 0.003 Yes

NB vs. J48 10.450 0.001 Yes

NB vs. MLP 7.625 0.006 Yes

J48 vs. MLP 0.816 0.367 No
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variable. If the modeling’s objective is to improve the process
performance measures rather than just surveillance and
prediction, the thorough understanding of the causes leading to
this result is of great value. Being able to show the relative
importance of the variables using different models may pique the
interest of the model utility. In the present analysis, the J48, NB,
MLP, and three ML models were used to calculate the relative
contribution of each variable to the three models themselves. A total
of 12 selected conditioning factors were tested (Figure 3), and
according to results, we can confirm that the top four
conditioning factors are the most significant in all the models.
This result is consistent with the visual inspection of the LSM
analyzed in Section 5.3. The LSM and the four most significant
factor maps obey a similar spatial pattern. Even if all four factor
maps have this feature, as can be intuitively seen, the contribution
percentage to models (in descending order) was: altitude, soil,
distance to roads, and distance to river. For the remaining eight
non-significant conditioning factors, the contribution of slope
aspect occupies the lowest percentages for the NB and
J48 models, while for the MLP model, NDVI reveals the lowest
percentages; moreover, the profile curvature factor importance value
is lower than that of land use and plan curvature for the J48 model
but not for NB and MLP. All in all, different factors have different
importance values due to different evaluation models (Tien Bui
et al., 2016). Finally, we provide a hypothesis that there may be factor
overestimation and underestimation presence.

In this study area, most landslides spread in areas in which
altitudes are less than 3000 m. The main reason is that human
activities are always more severe in lower altitude areas, which is
one of the most critical landslide-triggering factors in Xiaojin County.
Normally, areas covered by loose deposits are prone to cause
landslides (Cui et al., 2019; Huang et al., 2019; Zhang et al., 2019),
which has been proved by this study as well. Moreover, the results
showed that the density of landslide points basically decreases as the
distance to rivers and roads increases. This is because the incidence of
river erosion and road construction disturbance is usually finite (Dang
et al., 2019). In the case of the slope angle, areas with low slope angles
have a higher possibility of landslide occurrence, which does not
conform to conventional cognition. The basic reason is that areas with
gentle terrain are generally suitable for land development activities
such as farming, irrigation, and construction. The land use–landslide
susceptibility relationship also indicates that farmland and
construction land have positive effects on landslide occurrence.
Therefore, it can be inferred that landslide occurrence in Xiaojin
County has firm connections with human activities. Meanwhile, the
slope aspect is regarded as a useless conditioning factor, indicating
that the influence of this factor can be neglected to raise the computing
efficiency of classifiers. For the other conditioning factors, the
correlation between them and landslide occurrence is relatively
reasonable according to the relevant literature (Hong et al., 2017a;
Hong et al., 2017b). Considering the model construction and overall
performance, the conclusion obtained in this paper is that the CF
bivariate model proved best because it performed excellently and with
stable classification ability in predicting landslides in Xiaojin County.
This is a unique conclusion of the predictive studies: traditional
statistical computing models are far ahead of intelligent ML
models. Moreover, CF could greatly improve time efficiency as it
eliminates the lengthy modeling process of ML. Therefore, future

studies should not only pursue state-of-the-art algorithms. The final
recommendation is centered on combining data analysis with GIS
applications as framework templates so that this could become more
widely used.

7 Conclusion

In this study, the CF, NB, J48, and MLP models were applied to
evaluate landslide susceptibility in Xiaojin County, China. The
information of regional geology and landslide points was
obtained by a field survey and aerial photographs interpretation.
To establish the set of conditioning factors regarding landslide
occurrence, a total of twelve initial conditioning factors were
determined. Furthermore, the importance of various conditioning
factors was assessed using AM values, and slope aspect was removed
from the landslide susceptibility modeling process. Moreover, the
interaction between landslide occurrence and each conditioning
factor was analyzed by the CF method. As a result, it was found
that the negative synergy that forms high landslide susceptibility
consists of 0°–10° slopes, 2000–2500 m altitude, 0.14–1.19 interval in
plan curvature, 0.28–1.73 interval in profile curvature, 4.78 <
TWI <15.12, distance <200 m from rivers, distance <300 m from
roads, −0.16 <NDVI < −0.01, construction land in land use, group 8 of
soil types, and group I of lithology types. Additionally, the
comprehensive performance of the four models in landslide
susceptibility mapping was compared by statistic indexes, ROC
curves, and AUC values. It can be concluded that the CF bivariate
model has the best predictive capacity with anAUC value of 0.892 AUC,
and the NB model also has a better predictive capacity with an AUC
value of 0.887, followed by theMLPmodel (AUC=0.831) and J48model
(AUC=0.804). Based on the results of the Wilcoxon signed-rank test
(two-tailed), it is clear that the performance of NBmodel is significantly
similar to the CF model and likewise for the J48 and MLP models.
Finally, four landslide susceptibility maps were reclassified into five
categories, and all the produced landslide susceptibilitymapswere found
to have profound applicability and practical significance on landslide
prevention in Xiaojin County. The obtained landslide susceptibility map
can inform local authorities in their endeavors to undertake disaster
prevention and mitigation measures, effectively reducing the scope of
landslide investigations. In the event of a landslide occurrence, it enables
the judicious selection of appropriate refuge sites.
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