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Abstract

This paper presents a version of the lower separation axioms and the principle of enriched continuous extension for quantale-
enriched topological spaces. As a remarkable result, among other things, we point out that in the case of commutative Girard 
quantales the principle of continuous extension holds for projective modules in Sup.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

Keywords: Unital quantale; Modules in Sup; Quantale-enriched topological space; Closed presheaves; Lower separation axioms; Convergence of 
quantale-enriched filters; Extension by quantale-enriched continuity

1. Introduction

Let Q be a unital quantale — i.e. a monoid in the symmetric and monoidal closed category Sup of complete lattices 
and join-preserving maps. The concept of Q-enriched topological spaces arises from the topologization of closed left 
(right) ideal lattices of not necessarily commutative C∗-algebras (cf. [11,12]). In this paper we introduce closed 
Q-enriched presheaves, lower separation axioms and regularity with the goal to formulate the principle of continuous 
extension for Q-enriched topological spaces. It is well known that the set-theoretical version of this principle goes back 
to Bourbaki and Dieudonné (cf. [4]). A frame-theoretical extension by continuity was provided by Banaschewski and 
Hong (cf. [1]), which is also a generalization of Bourbaki’s and Dieudonné’s result from 1939. Since in the quantale-
enriched setting there are in general more «open covers» than in the frame-theoretical one, the respective convergence 
theories involved in these principles are different, and consequently the convergence of a quantale-enriched filter 
cannot in general be characterized by the property that it meets every «open cover» (cf. Remark 6.3). In this sense the 
respective principles of continuous extension are unrelated to each other.

✩ The authors acknowledge support from the Basque Government (grant IT1483-22). The first named author also acknowledges support from a 
postdoctoral fellowship of the Basque Government (grant POS-2022-1-0015).
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After these general comments on convergence theory we continue our presentation with some more detailed infor-
mation on separation axioms. First we note that some lower separation axioms of quantale-enriched topology have 
their origin in many-valued topology — e.g. the Kolmogorov and Fréchet separation axiom (cf. [25,34,30,29]), while 
the Hausdorff separation axiom is an extension of the 1-Hausdorff axiom of probabilistic topological spaces to the 
general setting of Q-enriched topological spaces (cf. [16]).

The regularity axiom uses the cocompleteness of Q-enriched topologies viewed as Qop-enriched categories and 
requires the concept of closed Q-enriched presheaves. In contrast to various approaches in many-valued topology the 
concept of closedness is here based on the concept of Q-enriched adherence operator on a given set X, which is a 
coclosure operator on the right Q-module on the dual lattice of the free right Q-module on X in the sense of Sup (cf. 
Section 4). If the underlying quantale Q has a dualizing element, then Q-adherence operators and Q-interior operators 
are equivalent concepts. This equivalence extends to open and closed Q-presheaves (cf. Proposition 4.6).

With regard to the historical background, we point out that also the regularity axiom has its origin in many-valued 
topology. If Q is a commutative Girard quantale, then in the case of cotensored Q-enriched topologies the regularity 
axiom is equivalent to H-R-regularity — an axiom formulated by Hutton and Reilly in 1980 (cf. [19]). Moreover, in the 
general case of unital and commutative quantales the regularity of cotensored Q-enriched topologies is equivalent to 
probabilistic regularity. In this setting the regularity axiom has its origin in probabilistic topology (cf. [16, Def. 3.3]).

All the lower separation axioms for Q-enriched topological spaces (including regularity) are preserved and re-
flected by the change of base conveyed by the embedding 2 ↪−→Q.

Forced by the non-idempotency of the quantale multiplication (cf. Example 6.10) we introduce a completely new 
and weaker form of regularity. It is interesting to see that under the assumption of the weak regularity axiom the 
Kolmogoroff, Fréchet and Hausdorff separation axiom are all equivalent (cf. Lemma 6.19). Further, and more im-
portantly, weak regularity is sufficient for the formulation of the principle of continuous extension. As a remarkable 
result in this context we point out that in the case of commutative Girard quantales every projective Q-module in Sup
provided with the interval Q-topology is a Hausdorff separated and weakly regular Q-enriched topological space (cf. 
Example 6.21).

The paper is organized as follows. Starting from some preliminaries with a certain weight on quantales with a 
dualizing element we explain the interrelationship between Q-preorders (i.e. hom-object assignments with values in 
Q) and right Q-modules in Sup. This approach can be seen as a preparation of the module-theoretical properties of 
open and closed Q-presheaves and leads to a very natural concept of adherent point and density. Subsequently we 
develop the announced lower separation axioms, regularity and weak regularity for Q-enriched topological spaces 
and show that in the case of quantales with a dualizing element the principle of continuous extension holds for any 
weakly T3 space.

2. Preliminaries on quantales

First we recall that the usual tensor product ⊗ of complete lattices (cf. [7, Sect. 2.1.2]) gives rise to the monoidal 
structure on Sup (cf. [20]). A semigroup in Sup is called a quantale Q = (Q, ∗), and a monoid in Sup is called a 
unital quantale Q = (Q, ∗, e), where the unit is always denoted by e. Since Sup is a symmetric monoidal category, 
the opposite quantale of a unital quantale Q = (Q, ∗, e) is given by Qop = (Q, ∗op, e) with α ∗op β = β ∗ α for all 
α, β ∈ Q. A unital quantale is integral if e = �.

If α, β ∈ Q then the right and left implications are determined by:

α ↘ β = ∨{γ ∈ Q | α ∗ γ ≤ β } and β ↙ α = ∨{γ ∈ Q | γ ∗ α ≤ β }.
It is well known that the associativity of the quantale multiplication ∗ is equivalent to each of the following prop-

erties (cf. [7, (E) in the proof of Thm. 2.3.6]) for all α, β, γ ∈Q:

α ↘ (β ↘ γ ) = (β ∗ α) ↘ γ, (2.1)

(γ ↙ β) ↙ α = γ ↙ (α ∗ β), (2.2)

(α ↘ β) ↙ γ = α ↘ (β ↙ γ ). (2.3)

An element δ of a quantale Q is
2
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– dualizing if it satisfies the following condition for all α ∈Q:

(δ ↙ α) ↘ δ = α = δ ↙ (α ↘ δ). (2.4)

– cyclic if the equivalence α ∗ β ≤ δ ⇐⇒ β ∗ α ≤ δ holds for all α, β ∈ Q.

Every quantale with a dualizing element δ is unital, and the unit e is given by δ ↘ δ = e = δ ↙ δ. A quantale with 
a dualizing element δ is integral if and only if δ = ⊥, hence in this case the dualizing element is unique.

A Girard quantale is a quantale which has a cyclic and dualizing element δ. Hence in any Girard quantale Q the 
relation δ ↙ α = α ↘ δ holds for all α ∈ Q and consequently every cylic and dualizing element induces an order-
reversing involution on Q sending α to α ↘ δ.

Example 2.1. On the 3-chain C3 = { ⊥, a, � } with ⊥ < a < � there exist exactly two Girard quantales Q1 and Q2. 
Both are commutative. The quantale Q1 is integral and is the well known 3-valued MV -algebra, in which a ∗ a = ⊥
holds and ⊥ is necessarily the dualizing element. In contrast to Q1, the quantale Q2 is non-integral and idempotent, 
in which the unit and the dualizing element coincide and are given by a.

From a historical point of view, Q1 has its origin in the Łukasiewicz three-valued logic in 1920 (cf. [27, The 
principles of implication]), while the quantale multiplication of Q2 appears already as Peirce’s �-operator in context 
of triadic logic in 1909 (cf. [8, Plate 2 of Peirce’s Logic Notebook]).

Let now Q be a quantale with a dualizing element δ. With regard to (2.1), (2.4), (2.3) and (2.2) we observe:

((δ ↙ α) ∗ (δ ↙ β)) ↘ δ = (δ ↙ β) ↘ ((δ ↙ α) ↘ δ) = (δ ↙ β) ↘ α

= ((δ ↙ β) ↘ δ) ↙ (α ↘ δ) = β ↙ (α ↘ δ)

= (δ ↙ (β ↘ δ)) ↙ (α ↘ δ) = δ ↙ ((α ↘ δ) ∗ (β ↘ δ)).

Therefore we shall use the notation

α ∗δ β := ((δ ↙ α) ∗ (δ ↙ β)) ↘ δ = δ ↙ (
(α ↘ δ) ∗ (β ↘ δ)

)
. (2.5)

Remarks 2.2. (1) Let α, β ∈Q and δ ∈ Q be a dualizing element. If in

α ∗δ β = (δ ↙ β) ↘ α = β ↙ (α ↘ δ)

we replace β by β ↘ δ and α by δ ↙ α, then we also have:

β ↘ α = α ∗δ (β ↘ δ) and β ↙ α = (δ ↙ α) ∗δ β.

(2) For each dualizing element δ ∈Q the maps Q 
(·)↘δ−−−→Q and Q 

δ↙(·)−−−→ Q are order-reversing, bijective and inverse 
to each other. Then the following hold (cf. [7, Prop. 2.6.2 (iii) and (iv)]):(∧

i∈I

αi

) ↘ δ = ∨
i∈I

(αi ↘ δ) and δ ↙ (∧
i∈I

αi

) = ∨
i∈I

(δ ↙ αi), {αi}i∈I ⊆Q.

(3) It follows immediately from (1) or (2) that(∧
i∈I

αi

) ∗δ β = ∧
i∈I

(αi ∗δ β) and α ∗δ

(∧
i∈I

βi

) = ∧
i∈I

(α ∗δ βi).

Moreover, (α ∗δ β) ↘ δ = (α ↘ δ) ∗ (β ↘ δ) and δ ↙ (α ∗ β) = (δ ↙ α) ∗δ (δ ↙ β), and δ ↙ (α ∗δ β) = (δ ↙
α) ∗ (δ ↙ β) and (α ∗ β) ↘ δ = (α ↘ δ) ∗δ (β ↘ δ).

Hence, if Q† = (Q, ≤op) is the dual lattice of Q, then 
(
Q†, ∗δ

) (·)↘δ−−−→ (Q, ∗), 
(
Q†, ∗δ

) δ↙(·)−−−→ (Q, ∗), 

(Q, ∗) 
δ↙(·)−−−→ (

Q†, ∗δ

)
and (Q, ∗) 

(·)↘δ−−−→ (
Q†, ∗δ

)
are unital quantale isomorphisms. Note that δ is the unit 

in (Q†, ∗δ), while e is a dualizing element and � the zero element. We shall refer to this unital quantale as 
Qδ = (Q†, ∗δ, δ).
3
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There exists a large class of quantales with dualizing elements. Typical commutative and integral quantales with 
a dualizing element are given by the MacNeille completion of MV -algebras (cf. [7, Thm 2.6.8 and p. 183])), while 
non-commutative and non-integral quantales with a dualizing element arise frequently from the MacNeille completion 
of partially ordered groups. In particular, we have the following:

Example 2.3. Every group G can be considered as a partially ordered group with respect to the discrete order on G
(see [2, Exercise 1 on p. 291]) and its MacNeille completion QG = G ∪ {⊥, �} can be endowed with the extension of 
the group multiplication to a quantale multiplication ∗:

� ∗ α = α ∗ � = � ∗ � = �, α ∈ G.

The unit e of G is also the unit of QG, hence QG is a non-integral, unital quantale and it is commutative if and 
only if G is commutative. Moreover, every δ ∈ G is a dualizing element in QG (cf. [14, Example 5.2]). Consequently 
dualizing elements are in general not unique.

An element p of a complete lattice L is completely prime (cf. [6, Def. 10.26]) if p �= � and for all A ⊆ L such that ∧
A ≤ p there exists α ∈ A such that α ≤ p. We will need the following:

Lemma 2.4. If a dualizing element δ of a quantale Q is completely prime, then every dualizing element of Q is 
completely prime.

Proof. Let δ be a completely prime and dualizing element of Q. Further, let δ̃ be an arbitrary dualizing element and 
A ⊆Q such that 

∧
A ≤ δ̃. Then

e = δ ↘ δ ≤ ∨
α∈A

(
(δ ↙ δ̃) ∗ α

) ↘ δ = ∨
α∈A

(α ↘ δ̃),

which is equivalent to 
∧

α∈A(δ ↙ δ̃) ∗α ≤ δ. Since δ is completely prime, there exists α ∈ A such that (δ ↙ δ̃) ∗α ≤ δ. 
Hence α ≤ δ̃. �

The following notion of a quasi-magma on a unital quantale has been introduced in [13, Def. 1] and plays a crucial 
role in the «intersection axiom» of Q-enriched topologies.

Definition 2.5. Let Q be a unital quantale and � be an isotone binary operation on Q. Then (Q, �) is called a quasi-
magma on Q if it satisfies the following conditions for all α, β, γ ∈Q:

α ∗ (β � γ ) ≤ (α ∗ β) � γ and (α � β) ∗ γ ≤ α � (β ∗ γ ).

A quasi-magma (Q, �) is strict if there exist elements α1, α2, β1, β2 ∈ Q such that the condition (α1 �β1) ∨(α2 �β2) �=
(α1 ∨ α2) � (β1 ∨ β2) holds.

Remark 2.6. If (Q, �) is a quasi-magma, δ is a dualizing element of Q and Qδ = (Q†, ∗δ, δ) is the unital quantale 
constructed in Remarks 2.2, then we define a binary operation on Qδ by

α �δ β := δ ↙ (
(α ↘ δ) � (β ↘ δ)

)
, α,β ∈Q. (2.6)

Since the order on Q† is the dual order ≤op w.r.t. the given order on Q, we observe for α, β, γ ∈Q:

α ∗δ (β �δ γ ) = δ ↙ (
(α ↘ δ) ∗ (

(β ↘ δ) � (γ ↘ δ)
))

≤op δ ↙ ((
(α ↘ δ) ∗ (β ↘ δ)

) � (γ ↘ δ)
) = (α ∗δ β) �δ γ .

Analogously we prove (β �δ γ ) ∗δ α ≤op β �δ (γ ∗δ α). Hence (Q†, �δ) is a quasi-magma.
Moreover, if (Q, �) is strict and α1, α2, β1 and β2 are elements of Q witnessing its strictness, then so do (δ ↙ α1), 

(δ ↙ α2), (δ ↙ β1) and (δ ↙ β2) with respect to 
(
Q†, �δ

)
.

4
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Examples 2.7. (1) If Q coincides with the unique unital quantale 2 = { 0, 1 }, then 0 is the unique dualizing element, 
and every strict quasi-magma coincides with (2, ∧). Hence � coincides with the binary meet ∧ and �⊥ with the binary 
join ∨ on 2. In this sense the notion of strict quasi-magma covers also the algebraic and order-theoretic basis for 
traditional topology.
(2) More generally, let Q be a unital quantale with a dualizing element δ. If we choose � = ∗, then (Q, ∗) is a strict 
quasi-magma (cf. [13, Example 1 (b)] and [15, Rem. 2.3 (3)]). In this case �δ = ∗δ .
We anticipate here that this type of strict quasi-magma will play an important role for example in 4.2, 4.3, 5.9, 5.10 (2), 
5.12 (2) and (3a), 6.8, 6.9, 6.10, 6.18 — 6.23.
(3) Let Q be a unital quantale with a dualizing element δ. Then we refer to [15, Subsec. 2.2] and conclude that (Q, �)

is a strict quasi-magma with

α � β := (α ∗ �) ∧ (� ∗ β), α,β ∈Q.

The strictness follows from (⊥ � �) ∨ (� � ⊥) = ⊥ �= � = (⊥ ∨�) � (� ∨⊥). Moreover, the following special cases 
of Q are interesting:

(i) if Q is an integral quantale, then ⊥ is the unique dualizing element, � coincides with the binary meet ∧ and �⊥
with the binary join ∨ on Q (cf. [15, 2.2]);

(ii) if Q =QG is the MacNeille completion of a group G (cf. Example 2.3), then � and �δ have the following form:

α � β =
{

⊥, if α = ⊥ or β = ⊥,

�, otherwise,
α �δ β =

{
�, if α = � or β = �,

⊥, otherwise.

(4) Let Q = (Q, ∗) be a complete MV -algebra with square roots — i.e. an integral, divisible and commutative Girard 
quantale such that every element of Q is a square w.r.t. ∗ (cf. [7, Sec. 2.7]). The formation of square roots

α1/2 = ∨{β ∈ Q | β ∗ β ≤ α }, α ∈Q,

induces a further isotone and binary operation � on Q by α � β = α1/2 ∗ β1/2. Then (Q, �) is a strict quasi-magma 
(cf. [13, Example 1 (c)]). Now we refer to [7, Thm. 2.7.16 (i)] and observe

⊥1/2 → ⊥ = ((� → ⊥)1/2 ∗ (⊥ → ⊥)1/2) → ⊥ = ��⊥ ⊥.

Hence �⊥ =� if and only if ⊥1/2 = ⊥1/2 → ⊥ holds (cf. [17, Prop. 2.22 (2)]).

3. Modules in Sup

Let Q = (Q, ∗, e) be a unital quantale. A Q-preordered set (X, p) is a set X provided with a Q-preorder — i.e. a 

map X × X
p−→Q satisfying the following axioms:

e ≤ p(x, x) and p(x, y) ∗ p(y, z) ≤ p(x, z), x, y, z ∈ X.

Since Q-preorders coincide with Qop-valued hom-object assignments, Q-preordered sets are equivalent to Qop-enriched
categories (cf. [21]), where Qop is viewed as a biclosed monoidal category. In particular, every nonempty set is pro-
vided with the discrete Q-preorder and is consequently understood as a discrete Qop-enriched category.

Every Q-preorder p has an underlying preorder ≤p corresponding to the associated ordinary category of a 
Qop-enriched category (cf. [21]). In particular ≤p is given by:

≤p = { (x, y) ∈ X × X | e ≤ p(x, y) }.
Let (X, p) and (Y, q) be Q-preordered sets. A Qop-functor is a map X

ϕ−→ Y satisfying the condition p(x1, x2) ≤
q(ϕ(x1), ϕ(x2)) for all x1, x2 ∈ X. Sometimes Qop-functors are also called Q-homomorphisms (cf. [7]).

A right Q-module in Sup is a complete lattice M provided with a right action M ⊗Q 
�−→ M (cf. [28, p. 174] and 

[7, p. 204]). Due to the universal property of the tensor product ⊗ in Sup every right action on M can be identified 

with a map M ×Q 
�−→ M which is join-preserving in each variable separately and satisfies the following axioms:
5
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m� e = m and (m� α)� β = m� (α ∗ β), m ∈ M, α,β ∈Q.

Analogously, we can introduce left Q-modules in Sup as complete lattices M provided with a left action Q ⊗M
�−→ M

(cf. [7, p. 204]). Similarly to the previous arguments, every left action on M can be identified with a map Q × M
�−→

M , which is join-preserving in each variable separately and satisfies the following axioms:

e � m = m and β � (α � m) = (β ∗ α) � m, m ∈ M, α,β ∈ Q.

Every left Q-module is a right Qop-module and vice verse.
Right (resp. left) Q-module morphisms (cf. [28, p. 174]) are join-preserving maps, which also preserve the respec-

tive right (resp. left) actions. Obviously, right (resp. left) Q-modules and right (resp. left) Q-module morphisms form 
a category denoted by Modr (Q) (resp. Mod	(Q)).

Since the monoidal category Sup is symmetric and has a self-duality given by the construction of right adjoint 
maps, we can compute the right adjoints of left and right actions leading to the following situation:
(1) The right adjoint �� : M → M ⊗Q of a right action � has the form:

��(m) = ∨{n ⊗ α ∈ M ⊗Q | n� α ≤ m }, m ∈ M,

and the evaluation at n ∈ M determines a Q-preorder p on M as follows (cf. [7]):

p(n,m) = ∨{α ∈Q | n� α ≤ m }, n,m ∈ M. (3.1)

If we now compose the right action � again with the symmetry of Sup, then � induces a left action �op on the dual 
lattice of M as follows:

α �op m = ∨{n ∈ M | n� α ≤ m }, α ∈Q, m ∈ M.

Since the underlying preorder of p coincides with the order ≤ of the right Q-module M , p is a Q-enrichement of ≤
and is called the intrinsic Q-preorder associated with M . It is not difficult to show that the intrinsic Q-preorder of M
satisfies the following properties:

(i)
∧

m∈A p(m, n) = p
(∨

A, n
)

and 
∧

n∈A p(m, n) = p
(
m, 

∧
A

)
for all A ⊆ M and m, n ∈ M .

(ii) α ↘ p(m, n) = p((m � α), n) and p(m, n) ↙ α = p(m, (α �op n)) for all α ∈Q and m, n ∈ M .

It follows from (ii) that for every intrinsic Q-preorder p of a right Q-module M the Qop-enriched category (M, p)

is tensored and cotensored (cf. [3, Definition 6.5.1]). Moreover, (M, p) is cocomplete — i.e. all Q-joins sup(f ) of 
Q-presheaves f ∈ QM exist (cf. [32]):

sup(f ) = ∨
m∈M

m� f (m), f ∈QM. (3.2)

(2) The right adjoint �� : M →Q ⊗ M of a left action � has the form

��(m) = ∨{α ⊗ n ∈Q⊗ M | α � n ≤ m }, m ∈ M,

and the evaluation at α ∈Q determines a right action �op on the dual lattice of M as follows (cf. [7]):

m�op α = (��(m))(α) = ∨{n ∈ M | α � n ≤ m }, α ∈Q, m ∈ M. (3.3)

If we now compose the left action � with the symmetry of Sup, then � induces always a Q-preorder q on M as 
follows:

q(m,n) = ∨{α ∈Q | α � n ≤ m }, m,n ∈ M. (3.4)

Since the underlying preorder ≤q of q coincides with the dual order of the left Q-module M , q is consequently not a 
Q-enrichment of the order of M . With regard to (3.4) we note that in fact the Q-preorder q coincides with the intrinsic
Q-preorder of the right Q-module given by the dual lattice of M and the right action �op .

A Q-submodule of a right Q-module (M, �) is a subobject of (M, �) in the sense of Modr (Q) — i.e. we identify 
each Q-submodule with a subset of S of M such that the inclusion map S ↪−→ M is a right Q-module morphism, or, 
equivalently, if S is closed under arbitrary sups and m � α ∈ S for each α ∈Q and m ∈ S.
6
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Remark 3.1. For the convenience of the reader we recall that a Q-coclosure operator j on the Q-preordered set 

(M, p) is a Qop-functor (M, p) 
j−→ (M, p) and a traditional coclosure operator w.r.t. the underlying preorder ≤p. 

If we now associate the intrinsic Q-preorder with every right Q-module, then it can be shown that Q-coclosure 
operators and Q-submodules of right Q-modules are equivalent concepts (cf. [13, p. 986]). In fact, if p is the intrinsic 

Q-preorder of a right Q-module M , then an isotone map M
j−→ M w.r.t. ≤p (which coincides with the order in M) 

is a Qop-functor (M,p)
j−→ (M,p) if and only if j satisfies the property j (m) � α ≤ j (m � α) for all α ∈ Q and 

m ∈ M (cf. [7, Prop. 3.3.23]). Hence, if j is a Q-coclosure operator on the associated Q-preordered set (M, p) of a 
right Q-module M , then

S = {m ∈ M | m ≤ j (m) }
is a right Q-submodule of M , and vice verse, if S is a right Q-submodule of M , then M

j−→ M defined by

j (m) = ∨{n ∈ S | n ≤ m }, m ∈ M (3.5)

is a traditional coclosure operator. Since S is a right Q-submodule, the traditional coclosure operator j is also a 
Qop-functor, and in particular S is induced by j .

3.1. The free right Q-module

Let X be a set and P(X) be the power set of X — i.e. the free complete lattice on X in the sense of Sup. Further, 
let Q be a unital quantale and QX be provided with the pointwise order induced by the order on Q and with the right 
multiplication on QX as right action — i.e.

(f ∗ α)(x) = f (x) ∗ α, f ∈ QX, α ∈Q, x ∈ X.

Then there exists a right Q-module isomorphism QX 
−→ P(X) ⊗Q defined by:


(f ) = ∨
x∈X

{x} ⊗ f (x), f ∈QX.

In the following we will use the following notation for each A ∈ P(X):

1A(x) := (

−1(A ⊗ e)

)
(x) =

{
e, if x ∈ A,

⊥, if x /∈ A,
x ∈ X. (3.6)

Since P(X) ⊗Q is the free right Q-module on P(X) and the power set functor is left adjoint to the forgetful functor 
Sup → Set, we can also understand (QX, ∗) as the free right Q-module on X (cf. [20, p. 10]). The corresponding 
intrinsic Q-preorder d of 

(
QX, ∗)

(see (3.1)) attains the form:

d(f1, f2) = ∧
x∈X

f1(x) ↘ f2(x), f1, f2 ∈ QX.

Finally, an isotone map QX I−→ QX is a Qop-functor 
(
QX, d

) I−→ (
QX, d

)
if and only if I satisfies the following 

condition:

(I0) If f ∈ QX and α ∈Q, then I(f ) ∗ α ≤ I(f ∗ α).

3.2. A right Q-module on the dual lattice of QX

Since QX is also a left Q-module w.r.t. the left multiplication — i.e.

(α ∗ f )(x) = α ∗ f (x), f ∈QX, α ∈ Q, x ∈ X,

the right action �op on the dual lattice of QX (see (3.3)) is determined by:

(f �op α)(x) = α ↘ f (x), f ∈QX, α ∈ Q, x ∈ X.
7



JID:FSS AID:108633 /FLA [m3SC+; v1.362] P.8 (1-29)

I. Arrieta, J. Gutiérrez García and U. Höhle Fuzzy Sets and Systems ••• (••••) ••••••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52
Now let ≤op be the dual order of the pointwise order on QX . Then the intrinsic Q-preorder d† of ((QX, ≤op), �op)

(see (3.4)) attains the form:

d†(f1, f2) = ∧
x∈X

f1(x) ↙ f2(x), f1, f2 ∈ QX.

If Q has a dualizing element δ, then the right action �op can also be expressed as follows (cf. Remark 2.2)1

f �op α = α ↘ f = f ∗δ (α ↘ δ). (3.7)

Hence, if δ is a dualizing element of Q, a subset C of QX is a right Q-submodule of ((QX,≤op), �op) if it is closed 
w.r.t. arbitrary meets in the sense of QX and satisfies the following condition:

(C0) If f ∈QX and α ∈ Q, then f ∗δ α ∈ C.

Since for isotone maps QX A−→ QX with respect to the pointwise order on QX the equivalence α ↘A(f ) ≤op A(α ↘
f ) ⇐⇒ α ∗A(f ) ≤ A(α ∗f ) holds — here the right side refers to the left action on QX, an isotone map QX A−→QX

is a Qop-functor 
(
QX, d†

) A−→ (
QX, d†

)
if and only if A satisfies the following condition:

(A0) If f ∈ QX and α ∈Q, then α ∗A(f ) ≤ A(α ∗ f ).

We have now the following results:

Lemma 3.2. Every Qop-functor (QX, d) 
I−→ (QX, d) induces a Qop-functor (QX, d†) 

AI−−→ (QX, d†) by:

AI(f )(x) = ∧
g∈QX

(( ∨
y∈X

(f (y) ∗ g(y))
) ↙ I(g)(x)

)
, f ∈ QX, x ∈ X, (3.8)

and every Qop-functor 
(
QX, d†

) A−→ (
QX, d†

)
induces a Qop-functor (QX,d)

IA−−→ (QX,d) by:

IA(f )(x) = ∧
g∈QX

(
A(g)(x) ↘ ( ∨

y∈X

(g(y) ∗ f (y))
))

, f ∈ QX, x ∈ X. (3.9)

If I is a Q-coclosure operator, then AI is also a Q-coclosure operator.

Lemma 3.3. Let Q be a unital quantale with a dualizing element δ. Further, let (QX,d)
I−→ (QX,d) and (QX, d†) 

A−→
(QX, d†) be Qop-functors. Then:

(1) δ ↙ I(f ↘ δ)(x) = AI(f )(x) for each f ∈QX and x ∈ X.
(2) A(δ ↙ f )(x) ↘ δ = IA(f )(x) for each f ∈QX and x ∈ X.

Proof. Let δ be a dualizing element, x ∈ X and f ∈ QX . Since I is a Qop-functor, we obtain:

I(f ↘ δ)(x) = ∨
g∈QX

I(g)(x) ∗ d(g,f ↘ δ) = ∨
g∈QX

I(g)(x) ∗ ( ∧
y∈X

g(y) ↘ (f (y) ↘ δ)
)

= ∨
g∈QX

I(g)(x) ∗ (( ∨
y∈X

(f (y) ∗ g(y))
) ↘ δ

)
= ∨

g∈QX

((
δ ↙ (

I(g)(x) ∗ (( ∨
y∈X

(f (y) ∗ g(y))
) ↘ δ

))) ↘ δ
)

1 Since the unital quantales Q and Qδ are isomorphic (see Remark 2.2 (3)), the formula (3.7) reflects the isomorphism between Modr (Q) and 
Modr (Qδ). But here our intention is not to replace Modr (Q) by Modr (Qδ).
8
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= ∨
g∈QX

((
δ ↙ (( ∨

y∈X

(f (y) ∗ g(y))
) ↘ δ

)) ↙ I(g)(x)
)

↘ δ

= ∨
g∈QX

(( ∨
y∈X

(f (y) ∗ g(y))
) ↙ I(g)(x)

)
↘ δ =AI(f )(x) ↘ δ.

Hence the relation (1) follows. If A is a Qop-functor, then A(δ ↙ f )(x) = δ ↙ IA(f )(x) holds analogously, and so 
also the relation (2) is verified. �
Comment. Note that the expressions on the left sides are independent from the chosen dualizing element δ.

We can summarize the previous results as follows. If the quantale Q has a dualizing element, then we conclude 
from Lemma 3.3 that the correspondence I �−→ AI is bijective and its inverse correspondence is given by A �−→ IA. 
Moreover, the restriction of this bijection to the respective Q-coclosure operators on (QX, d) and 

(
QX, d†

)
remains 

a bijection. In particular, for any dualizing element δ of Q and for all f ∈ QX the following relations hold:

AI(f ) = δ ↙ I(f ↘ δ) and IA(f ) = A(δ ↙ f ) ↘ δ. (3.10)

4. Q-topological spaces and closed Q-presheaves

Notation. If α ∈Q, then α ∈QX is the constant map with value α.

Standing Assumption. In what follows Q = (Q, ∗, e) is a unital quantale and (Q, �) is always a strict quasi-magma.

Let X be a set and QX be the free right Q-module on X (cf. Subsection 3.1). Then a Q-topology on X is a right 
Q-submodule T of QX (i.e. a subset T of QX closed under arbitrary sups and such that f ∗α ∈ T for α ∈Q, f ∈ T ), 
which satisfies additionally the following topological axioms:

(T1) � is an element of T .
(T2) If f1, f2 ∈ T , then f1 � f2 ∈ T , (where f1 � f2 is defined pointwisely).

The pair (X, T ) is called a Q-topological space and a Q-presheaf f ∈QX is said to be open if f ∈ T .
A subset B of a Q-topology on X is called a base of T if each open Q-presheaf of T is a join of elements of B. 

Evidently the axioms of a Q-topology are preserved under arbitrary intersections. Hence a subset S of QX is called a 
subbase of a Q-topology T on X if the following relation holds:

T = ⋂{W | S ⊆W ⊆QX and W is a Q-topology on X }.
Let (X, TX) and (Y, TY ) be Q-topological spaces. A map X

ϕ−→ Y is Q-continuous if f ◦ ϕ ∈ TX for all f ∈
TY . Note that if S is a subbase of TY then ϕ is Q-continuous if and only if f ◦ ϕ ∈ TX for all f ∈ S . Obviously, 
Q-topological spaces and Q-continuous maps form a category Top(Q, �) being topological over Set. Thus, if (X, TX)

is a Q-topological space and Y
ϕ−→ X a map, then Tinitial = { f ◦ ϕ | f ∈ TX } is the initial Q-topology on Y induced 

by ϕ, and otherwise, if X
ϕ−→ Y , then Tfinal = { f ∈ QY | f ◦ ϕ ∈ TX } is the final Q-topology on Y induced by ϕ.

A Q-interior operator on a set X is a Q-coclosure operator I on (QX, d) satisfying the following additional 
properties:

(I1) I(�) = �,
(I2) If f1, f2 ∈QX , then I(f1) � I(f2) ≤ I(f1 � f2).

An element x ∈ X is an interior point of a Q-presheaf f on X (resp. f is a neighborhood of x), if e ≤ I(f )(x). The 
set of all neighborhoods of x is denoted by Ux . A subset Bx of Ux is called a neighborhood base of x if for all f ∈ Ux

the relation e ≤ ∨
b∈Bx

d(b, f ) holds. In particular the subset Bx = { b ∈ T | e ≤ b(x) } is always a neighborhood base 
of x.
9
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Since Q-coclosure operators on (QX, d) and right Q-submodules of (QX, ∗) are equivalent concepts (cf. Re-
mark 3.1), it is easily seen that every Q-interior operator I on X can be identified with a Q-topology T on X and vice 
verse. In this context the following relation holds (see (3.5)):

I(f ) = ∨{g ∈ T | g ≤ f }, f ∈QX. (4.1)

By Lemma 3.2, every Q-interior operator I on X induces a Q-coclosure operator AI (see (3.8)). We call AI the 
Q-adherence operator associated with I . Let T be the Q-topology on X given by a Q-interior operator I . Then for 
any base B of T the Q-adherence operator AI associated with I is already determined by:

AI(f )(x) = ∧
g∈B

(
(
∨

y∈X

(f (y) ∗ g(y))) ↙ g(x)
)
, x ∈ X, f ∈ QX. (4.2)

Since the underlying preorder of the Q-preorder d† is the dual order of QX , we introduce the following terminol-
ogy:

Definition 4.1. Let (X, T ) be a Q-topological space, and let AI be the Q-adherence operator associated with the 
Q-interior operator I . Further, let g ∈QX , x ∈ X and A ⊆ X (and we refer to (3.6) and identify A with the Q-presheaf 
1A on X). Then:

(1) g is a closed Q-presheaf on X if AI(g) ≤ g and x is an adherent point of g if e ≤ AI(g)(x).
(2) A is dense in (X, T ) if every x ∈ X is an adherent point of 1A — i.e. if e ≤ AI(1A).

If B is a base of T , then it follows immediately from (4.2) that a subset A of X is dense in (X, T ) if and only if the 
following relation holds:

f (x) ≤ ∨
a∈A

f (a), f ∈ B, x ∈ X. (4.3)

Hence in this context the concept of density of subsets has its origin in Lowen’s work on connectedness in many-
valued topological spaces (cf. [26]).

Example 4.2. Let Q be an integral quantale with the quasi-magma operation � = ∗. We consider the following 
Q-presheaves f1 and f2 on Q:

f1(α) = α and f2(α) = (⊥ ↙ α) ∧ (α ↘ ⊥), α ∈ Q.

Now let T be the Q-topology on Q generated by { f1, f2 }. Since Q is integral and f1 ∗f2 = f2 ∗f1 = ⊥, we conclude 
that the subset { ⊥, � } is dense in (Q, T ).

Lemma 4.3. Let (X, T ) be a Q-topological space and AI be the Q-adherence operator associated with the 
Q-interior operator I . If A is dense in (X, T ) and the quasi-magma operation is given by � = ∗, then AI(f ∗ 1A) =
AI(f ) for each f ∈ T .

Proof. The result follows immediately from (4.3) and (T2), since

AI(f ∗ 1A) = ∧
g∈T

(
(
∨

y∈A

(f (y) ∗ g(y))) ↙ g(x)
) = ∧

g∈T

(
(
∨

y∈X

(f (y) ∗ g(y))) ↙ g(x)
) =AI(f ). �

When the quantale has a dualizing element, a characterization of closed Q-presheaves can be given as follows.

Lemma 4.4. Let Q be a quantale with a dualizing element δ and (X, T ) be a Q-topological space. A Q-presheaf g
on X is closed if and only if g ↘ δ is open — i.e. g ↘ δ ∈ T .

Proof. (Necessity). Let g be a closed Q-presheaf on X. Then we conclude from (4.1) and (3.8) that g satisfies the 
following condition:
10
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g(x) = ∧
f ∈T

(( ∨
y∈X

(g(y) ∗ f (y))
) ↙ f (x)

)
, x ∈ X.

Now we apply a dualizing element δ of Q and obtain:

g(x) = ∧
f ∈T

(
δ ↙ (

f (x) ∗ ((
∨

y∈X

g(y) ∗ f (y)) ↘ δ)
))

.

Hence the relation g(x) ↘ δ = ∨
f ∈T

(
f (x) ∗ ((

∨
y∈X g(y) ∗ f (y)) ↘ δ)

)
follows. Since T is a right Q-submodule 

of (QX, ∗), g ↘ δ is open.
(b) (Sufficiency) If g ↘ δ open and x ∈ X, then we observe:

AI(g)(x) ≤ ( ∨
y∈X

g(y) ∗ (g(y) ↘ δ)
) ↙ (g(x) ↘ δ) ≤ δ ↙ (g(x) ↘ δ) = g(x).

Hence AI(g) ≤ g follows — i.e. g is closed. �
Proposition 4.5. Let Q be a unital quantale with a dualizing element and let (X, T ) be a Q-topological space. Then 
the Q-adherence operator AI associated with the Q-interior operator I satisfies the following conditions:

(A1) AI(⊥) = ⊥.
(A2) If g1, g2 ∈QX , then AI(g1 �δ g2) ≤ AI(g1) �δ AI(g2) for every dualizing element δ ∈Q.

Proof. The property (A1) is obvious. In order to verify (A2) we choose some dualizing element δ ∈ Q, refer to (3.10)
and obtain:

AI(g1 �δ g2) = δ ↙ I((g1 �δ g2) ↘ δ) = δ ↙ I((g1 ↘ δ) � (g2 ↘ δ))

≤ δ ↙ (
I(g1 ↘ δ) � I(g2 ↘ δ)

) = δ ↙ (
(AI(g1) ↘ δ) �AI(g2) ↘ δ)

) =AI(g1) �δ AI(g2). �
As an immediate corollary from (3.10) and Proposition 4.5 we point out that in the case of quantales with a 

dualizing element Q-interior operators and Q-adherence operators satisfying (A1) and (A2) are equivalent concepts. 
If we now make use of the right Q-module 

(
(QX, ≤op), �op

)
on the dual lattice of QX (cf. Subsection 3.2), then we 

can give a further characterization of closed Q-presheaves.

Proposition 4.6. Let Q be a unital quantale with a dualizing element. Then a right Q-submodule C of 
((
QX, ≤op

), �op
)

is a collection of closed Q-presheaves on a set X for some Q-topology T if and only if C satisfies the following 
conditions:

(C1) ⊥ is an element of C.
(C2) If f1, f2 ∈ C, then f1 �δ f2 ∈ C for every dualizing element δ ∈Q.

5. Lower separation axioms

Definition 5.1. A Q-topological space (X, T ) is said to be

– Kolmogorov separated (or T0), if for each x, y ∈ X with x �= y there exists some f ∈ T such that f (x) �≤ f (y) or 
f (y) �≤ f (x).

– Fréchet separated (or T1) if for each x, y ∈ X with x �= y there exist f1 ∈ T with f1(x) �≤ f1(y) and f2 ∈ T with 
f2(y) �≤ f2(x).

– Hausdorff separated (or T2) if for each x, y ∈ X with x �= y there exist f1, f2 ∈ T with

f1(x) � f2(y) �≤ ∨
z∈X

(f1(z) � f2(z)) or f2(y) � f1(x) �≤ ∨
z∈X

(f2(z) � f1(z)). (5.1)

Obviously, each Fréchet separated Q-topological space is also Kolmogorov separated, and it is easy to check that 
each Hausdorff separated Q-topological space is also Fréchet separated. Indeed, let (X, T ) be Hausdorff separated 
11
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and x, y ∈ X with x �= y. Then there exist open Q-presheaves f1, f2 such that f1(x) �f2(y) �≤ ∨
z∈X(f1(z) �f2(z)) or 

f2(y) �f1(x) �≤ ∨
z∈X(f2(z) �f1(z)). Since Q ×Q 

�−→Q is isotone, it follows that f1(x) �≤ f1(y) and f2(y) �≤ f2(x).

Remark 5.2. With regard to the categorical behavior, we point out that the full subcategories of Kolmogorov (resp. 
Fréchet, Hausdorff) separated Q-topological spaces are reflective in Top(Q, �). In particular, they are all closed under 
products.

Indeed, one can construct the reflectors as follows. If (X, TX) is a Q-topological space, we consider the equivalence 
relation on X given by x ∼ y if and only if ϕ(x) = ϕ(y) for any Q-continuous ϕ : (X, TX) → (Y, TY ) such that (Y, TY )

satisfies the Kolmogorov (resp. Fréchet, Hausdorff) separation axiom. Then we endow X/∼ with the final Q-topology 
induced by the quotient map pX : X → X/∼. Hence for every Q-continuous ϕ : (X, TX) → (Y, TY ) having a Kol-
mogorov (resp. Fréchet, Hausdorff) separated codomain there is a unique Q-continuous ϕ̂ : (X/∼, Tfinal) → (Y, TY )

such that ϕ = ϕ̂ ◦ pX . The only part remaining is to show that (X/∼, Tfinal) satisfies the Kolmogorov (resp. Fréchet, 
Hausdorff) axiom. We prove it for the Hausdorff case (the other cases follow similarly). In order to do so, as-
sume that pX(x) �= pX(y) in X/∼. Then there is a Q-continuous map ϕ : (X, TX) → (Y, TY ) with ϕ(x) �= ϕ(y). 
Since (Y, TY ) is Hausdorff separated, there are f1, f2 ∈ TY with f1(ϕ(x)) � f2(ϕ(y)) �

∨
z∈Y (f1(z) � f2(z)) or 

f2(ϕ(y)) � f1(ϕ(x)) �
∨

z∈Y (f2(z) � f1(z)). Assume that the former holds. Then, in particular, one has

(f1 ◦ ϕ̂)(pX(x)) � (f2 ◦ ϕ̂)(pX(y)) �
∨
z∈X

((f1 ◦ ϕ̂)(pX(z)) � (f2 ◦ ϕ̂)(pX(z)))

and since f1 ◦ ϕ̂, f2 ◦ ϕ̂ ∈ Tfinal, it follows that (X/∼, τfinal) is Hausdorff separated.

With regard to the next lemmas we refer to the notation introduced in (3.6) and (3.8).

Lemma 5.3. Let (X, T ) be a Q-topological space and AI be the corresponding adherence operator. If x, y ∈ X, then 
the following assertions are equivalent:

(i) f (x) ≤ f (y) for all f ∈ T ;
(ii) AI(α ∗ 1{x}) ≤ AI(α ∗ 1{y}) for all α ∈ Q;

(iii) α ∗ 1{x} ≤ AI(α ∗ 1{y}) for all α ∈Q;
(iv) 1{x} ≤ AI(1{y});
(v) AI(1{x}) ≤ AI(1{y}).

Proof. The assertion follows immediately from (3.8) and (4.1). �
Now we can give a characterization of the Kolmogorov and Fréchet separation axioms as follows.

Lemma 5.4. Let (X, T ) be a Q-topological space and AI be the corresponding adherence operator. Then the follow-
ing assertions are equivalent:

(i) (X, T ) is Kolmogorov separated.
(ii) AI(1{x}) �= AI(1{y}) for each x, y ∈ X with x �= y.

(iii) For each x, y ∈ X with x �= y there exists α ∈ Q such that α ∗ 1{x} �≤ AI(α ∗ 1{y}) or α ∗ 1{y} �≤ AI(α ∗ 1{x}).
(iv) For each x, y ∈ X with x �= y there exists α ∈ Q such that AI(α ∗ 1{x}) �= AI(α ∗ 1{y}).
(v) For each subbase S of T and for each x, y ∈ X with x �= y there exists f ∈ S such that f (x) �≤ f (y) or 

f (y) �≤ f (x).

Proof. (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) follows immediately from Lemma 5.3, and (v) ⇒ (i) is obvious.
(iv) ⇒ (v): Let S be a subbase of T and x, y ∈ X with x �= y. Now we consider the Q-topology on X given by

Wx,y = {f ∈ QX | f (x) = f (y) }.
If we assume S ⊆Wx,y , then the subbase property of S implies T ⊆Wx,y and so Lemma 5.3 implies AI(α ∗ 1{x}) =
AI(α ∗ 1{y}), contradicting (iv). Hence S ∩ (

�Wx,y

) �=∅ — i.e. there exists f ∈ S such that f (x) �= f (y). �

12
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Lemma 5.5. Let (X, T ) be a Q-topological space and AI be the corresponding adherence operator. Then the follow-
ing assertions are equivalent:

(i) (X, T ) is Fréchet separated.
(ii) 1{x} �≤ AI(1{y}) and 1{y} �≤AI(1{x}) for each x, y ∈ X with x �= y.

(iii) If x, y ∈ X with x �= y, then there exist α ∈ Q such that α ∗ 1{x} �≤ AI(α ∗ 1{y}) and β ∈ Q such that β ∗ 1{y} �≤
AI(β ∗ 1{x}).

(iv) For each subbase S of T and for each x, y ∈ X with x �= y there exist f1, f2 ∈ S such that f1(x) �≤ f1(y) and 
f2(y) �≤ f2(x).

Proof. (i) ⇒ (ii) ⇒ (iii) follows immediately from Lemma 5.3, and (iv) ⇒ (i) is obvious.
(iii) ⇒ (iv): Let S be a subbase of T and x, y ∈ X with x �= y. Now we consider the family

Tx,y = {f ∈QX | f (x) ≤ f (y) },
and conclude from the isotonicity of � that Tx,y is a Q-topology on X. If we assume S ⊆ Tx,y , then the subbase 
property of S implies T ⊆ Tx,y , and so by Lemma 5.3 we have α ∗ 1{x} ≤ AI(α ∗ 1{y}) for all α ∈ Q, contradicting 
(iii). Hence there exists f1 ∈ S such that f1(x) �≤ f1(y). Analogously we proceed with the Q-topology Ty,x and 
conclude that there exists f2 ∈ S such that f2(y) �≤ f2(x). �

In order to reveal the Q-enriched categorical background of the Kolmogorov and Fréchet separation axiom for 
Q-enriched topological spaces we briefly touch the specialization Q-preorder.

Let us recall that a quantale Q is said to be involutive if it is provided with an order-preserving involution ′ such 
that (α ∗ β)′ = β ′ ∗ α′ for all α, β ∈Q.

Remark 5.6. Every unital quantale Q can be embedded into an involutive unital quantale by means of the tensor 
product Q ⊗Qop (see the proof of [15, Cor. 2.13]). Hence the assumption of an involution on a unital quantale is not 
a restriction of generality.

Remark 5.7. Let Q = (Q, ∗, e, ′) be an involutive and unital quantale. The specialization Q-preorder ps of a 
Q-topological space (X, T ) is determined by

ps(x, y) =AI(1{y})(x)′ = ∧
f ∈T

(f ′(x) ↘ f ′(y)), x, y ∈ X.

Recall that a Q-preorder p is antisymmetric (i.e. the Qop-enriched category determined by p is skeletal) if the un-
derlying preorder ≤p of p is antisymmetric. Since x ≤ps y iff f (x) ≤ f (y) for all f ∈ T , we conclude from the 
Lemmas 5.3, 5.4 and 5.5:

(1) (X, T ) is Kolmogorov separated if and only if the specialization Q-preorder is antisymmetric.
(2) (X, T ) is Fréchet separated if and only if the underlying preorder ≤ps of the specialization Q-preorder ps is 

discrete.

Lemma 5.8. Let (X, T ) be a Q-topological space. If the operation of the quasi-magma (Q, �) is join-preserving in 
each variable separately, then the following assertions are equivalent:

(i) (X, T ) is Hausdorff separated.
(ii) For each base B of T and for each x, y ∈ X with x �= y there exist f1, f2 ∈ B such that

f1(x) � f2(y) �≤ ∨
z∈X

(f1(z) � f2(z)) or f2(y) � f1(x) �≤ ∨
z∈X

(f2(z) � f1(z)).

Proof. We only need to prove (i) ⇒ (ii). Let B be a base of T and x, y ∈ X with x �= y. By hypothesis there exist 
f1, f2 ∈ T such that, for example, f1(x) � f2(y) �≤ ∨

z∈X(f1(z) � f2(z)) holds. Now we consider {f 1}i∈I , {f 2}j∈J ⊆
i j

13
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B such that f1 = ∨
i∈I f 1

i and f2 = ∨
j∈J f 2

j . Then we obtain f1(x) � f2(y) = ∨
i∈I, j∈J (f 1

i (x) � f 2
j (y)) and con-

sequently there exist some i ∈ I and j ∈ J such that f 1
i (x) � f 2

j (y) �≤ ∨
z∈X(f 1

i (z) � f 2
j (z)). The other case, when 

f2(y) � f1(x) �≤ ∨
z∈X(f2(z) � f1(z)), can be treated analogously. Hence (ii) is verified. �

Lemma 5.9. Let Q be a quantale with a dualizing element δ and (X, T ) be a Q-topological space. If the quasi-magma 
operation is given by � = ∗, then the following assertions are equivalent:

(i) (X, T ) is Hausdorff separated.
(ii) For each x, y ∈ X with x �= y there exist f1, f2 ∈ T such that(

f1(x) ∗ f2(y) �≤ δ and
∨
z∈X

f1(z) ∗ f2(z) ≤ δ
)

or
(
f2(y) ∗ f1(x) �≤ δ and

∨
z∈X

f2(z) ∗ f1(z) ≤ δ
)
.

Proof. The implication (ii) ⇒ (i) is obvious. In order to verify the necessity of (ii) we assume f1(x) ∗ f2(y) �≤∨
z∈X f1(z) ∗f2(z) =: � , i.e. since δ is dualizing, f1(x) ∗f2(y) ∗(� ↘ δ) �≤ δ. Further, since T is a right Q-submodule 

of QX , f3 := f2 ∗ (� ↘ δ) ∈ T , and so we have

f1(x) ∗ f3(y) �≤ δ and
∨
z∈X

f1(z) ∗ f3(z) = ∨
z∈X

f1(z) ∗ f2(z) ∗ (� ↘ δ) ≤ δ.

Analogously we proceed in the case f2(y) ∗ f1(x) �≤ ∨
z∈X f2(z) ∗ f1(z). �

Remark 5.10. (1) The previous lemmas show that the Kolmogorov and Fréchet separation axiom are subbasic prop-
erties. Note also that this is not the case for the Hausdorff separation axiom. There exist simple examples of Hausdorff 
separated Q-topological spaces (e.g. the discrete Q-topological space) having subbases, which do not satisfy the 
Hausdorff separation axiom.
(2) Let Q be a Girard quantale with the quasi-magma operation � = ∗. Since every cyclic and dualizing element 
δ induces an order-reversing involution on Q, we conclude from Lemma 5.9 that the Hausdorff axiom T2 implies 
Kubiak’s Hausdorff axiom in [23, Def. 9.1], but not vice verse as the following counterexample shows.

On the 3-chain C3 = { ⊥, a, � } we consider the structure of the 3-valued MV -algebra Q1 = (C3, ∗) (cf. Exam-

ple 2.1). Now we consider the following maps C3
fj−→ C3 (j = 1, 2, 3):

f1(⊥) = a, f1(a) = f1(�) = ⊥, f2(a) = a, f2(⊥) = f2(�) = ⊥, f3(�) = a, f3(⊥) = f3(a) = ⊥.

Then S = { f1, f2, f3 } is a subbase of a Q1-topology T on C3. (C3, T ) is clearly Fréchet separated, but since f1 ∨
f2 ∨f3 = a and S ∪{ f1 ∨f2, f2 ∨f3, f1 ∨f3, a, �} is a base of T , we conclude from Lemma 5.9 that the Hausdorff 
axiom T2 does not hold, but Kubiak’s Hausdorff axiom is satisfied.

Before we proceed we briefly touch the effect created by the change of base (cf. [13, Sect. 6]) with regard to the 
lower separation axioms Ti (i = 0, 1, 2).

Remark 5.11. (a) Let Q1
ϕ−→ Q2 be a quantale homomorphism satisfying the condition ϕ(α) ≤ ϕ(β) ⇐⇒ α ≤ β

for all α, β ∈ Q1 — i.e. ϕ is an extremal monomorphism in the category of quantales. Further, we assume that h
preserves the respective quasi-magma operations. Then the lower separation axioms Ti (i = 0, 1, 2) are preserved 
under the change of base conveyed by ϕ.

(b) Now let us consider the special case given by the embedding 2
ϕ

↪−→ Q with ϕ(0) = ⊥ and ϕ(1) = � and a strict 
quasi-magma operation � on Q being directed join-preserving in each variable separately. Then the change of base 
of a traditional topological space (X, τ) conveyed by ϕ is Fϕ(X, τ) = (X, LSC(τ, L(Q))), where L(Q) is the sub-
quantale of all left-sided elements of Q and LSC(τ, L(Q)) is the right Q-submodule of (QX, ∗) consisting of all 

lower semicontinuous maps X
f−→ L(Q) — i.e. f satisfies the property f (x) ≤ ∨

U∈τ,x∈U

(∧
y∈U f (y)

)
for all x ∈ X. 

Further, we recall that we can identify every U ∈ τ with the elementary tensor U ⊗ � and consequently with the 
Q-presheaf 1U ∗ �. Moreover, if AI denotes the adherence operator w.r.t. (X, LSC(τ, L(Q))), then for each V ∈ τ

and α ∈ L(Q) the following relation holds:
14
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AI(1V ∗ α) = 1V ∗ α ∗ �, (5.2)

where V is the topological closure of V w.r.t. τ . Note also that every lower semicontinuous map f ∈ LSC(τ, L(Q))

can be represented by

f = ∨
i∈I

1Ui
∗ α, Ui ∈ τ, αi ∈ L(Q). (5.3)

In particular for each subset A of X the following equivalence holds:

1A ∗ � ∈ LSC(τ,L(Q)) ⇐⇒ A ∈ τ. (5.4)

We say that a property P of Q-topological spaces is a direct extension of its topological counterpart in Top if

(1) it coincides with the usual topological property when Q = 2 and
(2) a topological space (X, τ) satisfies property P if and only if (X, LSC(τ, L(Q))) does.

Now we have the following situation: Let � be a strict quasi-magma operation on Q being directed join-preserving 
in each variable separately. The lower separations axioms Ti (i = 0, 1, 2) coincide obviously with the usual topo-
logical properties when Q = 2. Since { 1U ∗ α | U ∈ τ , α ∈ L(Q) } is a base of LSC(τ, L(Q)) (cf. (5.3)), it follows 
immediately from the Lemmas 5.4 and 5.5 that the lower separations axioms T0 and T1 are direct extensions of their 
topological counterparts, and by Lemma 5.8 it also follows that the T2 axiom is a direct extension of its topological 
counterpart provided the quasi-magma operation � is join-preserving in each variable separately. With regard to (4.3)
it is easily seen that the density of subsets is also a direct extension of its topological counterpart.

Based on the previous remark it is easy to find examples of Q-topological spaces satisfying these lower separations 
axioms. However, it is more interesting to present some examples originating not from traditional topology via change 
of base.

Examples 5.12. (1) Let Q be an integral and involutive quantale viewed as right Q-module with respect to the right 
multiplication induced by ∗. Then the intrinsic Q-preorder p has the form

p(α,β) = α ↘ β, α,β ∈Q,

and the right Q-module P(Q, p) of all contravariant Q-presheaves on (Q, p) (cf. [7, p. 260]) is a Q-topology on Q
with respect to � = ∧. Then the specialization Q-preorder of 

(
Q, P(Q, p)

)
coincides with the dual Q-preorder pop

of p — i.e. pop(α, β) = p(β, α)′ for all α, β ∈ Q. Since p is antisymmetric, the Q-topological space 
(
Q, P(Q, p)

)
satisfies the Kolmogorov separation axiom, but since f (α) ≤ f (⊥) holds for all α ∈ Q and for all f ∈ P(Q, p), the 
Q-topological space (Q, P(Q, p)) is not Fréchet separated.
(2) Referring to Figure 5 in [12] we consider the unital quantale Q = R4 with the quasi-magma operation � = ∗. 
Obviously, R4 is involutive, where the involution ′ is determined by:

a′
	 = ar , a′

r = a	, ã	
′ = ãr , ãr

′ = ã	,

and the remaining 5 elements are hermitian. Let M2 be the C∗-algebra of all (2, 2)-matrices with complex coeffi-
cients. Then the quantale A of all left ideals of M2 is left-sided, idempotent and consequently semi-unital. Since the 
subquantale I(M2) of all two-sided ideals coincides with {⊥, �}, the ideal multiplication has the following form:

a ∗ b =
{

⊥, if a = ⊥,

b, if a �= ⊥,
a, b ∈A.

Further, every pure state is a vector state, and every non-trivial left ideal is maximal and consequently prime (cf. [7, 
Thm 2.3.21]). In particular, if C = { x ∈C2 | |x| = 1 } is the unit circle in C2, then the relationship between pure states 
x and maximal left ideals is given by:

ax = {α ∈M2 | 〈α∗α x , x〉 = 0 },
e.g. if x = (0, 1), then the corresponding (maximal) left ideal ax has the form:
15
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ax = {(
z1 0
z2 0

)
| z1, z2 ∈ C

}
Now with every non trivial left ideal a we associate a map C

Aa−−→R4 defined by:

Aa(x) =
{

�, if a �= ax,

a	, if a = ax,
x ∈ C.

In the case of the two-sided ideals ⊥ and � we put A⊥ = ⊥ and A� = �. Then the non-commutative Gelfand 
topology TM2 on the unit circle attains the following form:

TM2 = {a	 } ∪ {Aa | a ∈ A }.
Since a′

	 = ar , the corresponding specialization R4-preorder ps is given by

ps(x, y) =
{

ãr = ar ∨ e, if x = y,

� ↘ ar = ⊥, if x �= y,
x, y ∈ C.

Hence (C, TM2) is Fréchet separated, but not Hausdorff separated. It seems that this is the price for the non-
commutativity.

In fact the Hausdorff reflection of the R4-topological space (C, TM2) is a singleton space illustrating the fact that 
all pure states are unitary equivalent.
(3) Let Q be the complete MV -algebra ([0, 1], ∗Ł), where ∗Ł is the Łukasiewicz arithmetic conjunction — i.e. α ∗Ł
β = max (α + β − 1,0) for each α, β ∈ [0, 1]. Further, we consider the Q-topology T on [0, 1] generated by the 
subbase { id[0,1], 1 − id[0,1] }. Now we choose x, y ∈ [0, 1] with x �= y — e.g. x < y and consider the following three 
cases:
(3a) If the quasi-magma operation is given by the quantale multiplication — i.e. � = ∗Ł, then

id[0,1](y) ∗Ł (1 − id[0,1])(x) = y − x �≤ 0 = ∨
z∈[0,1]

(id[0,1](z) ∗Ł (1 − id[0,1])(z)).

(3b) If the quasi-magma operation is given by the binary meet — i.e. � = ∧, then we choose fα = id[0,1] ∗Ł α , gβ =
(1 − id[0,1]) ∗Ł ∗β ∈ T with α = 1 − x+y

2 and β = x+y
2 and observe that

fα(y) ∧ gβ(x) = y − x

2
�≤ 0 = ∨

z∈[0,1]
(fα(z) ∧ gβ(z)).

(3c) If the quasi-magma is given by the monoidal mean operator — i.e. � coincides with the binary arithmetic mean, 
then

id[0,1](y)� (1 − id[0,1])(x) = y−x+1
2 �≤ 1

2 = ∨
z∈[0,1]

(id[0,1](z)� (1 − id[0,1])(z)).

Hence in all these cases the Q-topological space ([0, 1], T ) is Hausdorff separated.
It is worthwhile to point out that the previous arguments in (3a) — (3c) remains valid for any complete MV -algebra 

with square roots such that ⊥1/2 → ⊥ = ⊥1/2 (cf. Example 2.7 (4)).

Under the assumption of the Hausdorff separation axiom the next theorem shows that Q-continuous maps are 
uniquely determined on dense subsets.

Theorem 5.13. Let (X, TX) and (Y, TY ) be Q-topological spaces and A be a dense subset in (X, TX). If (Y, TY ) is 

Hausdorff separated and the maps (X, TX) 
ψ,ϕ−−→ (Y, TY ) are Q-continuous such that their restrictions to A coincide, 

then ψ = ϕ.

Proof. Let x ∈ X and f1, f2 ∈ TY be arbitrary open Q-presheaves on Y . Then the Q-continuity implies f1◦ψ, f2 ◦ϕ ∈
TX , and hence (f1 ◦ ψ) � (f2 ◦ ϕ) and (f2 ◦ ϕ) � (f1 ◦ ψ) are open Q-presheaves on X. Now we invoke the density of 
A (see (4.3)) and conclude that
16
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f1(ψ(x)) � f2(ϕ(x)) ≤ ∨
a∈A

(f1(ψ(a)) � f2(ϕ(a))) ≤ ∨
y∈Y

(f1(y) � f2(y)) and

f2(ϕ(x)) � f1(ψ(x)) ≤ ∨
a∈A

(f2(ϕ(a)) � f1(ψ(a))) ≤ ∨
y∈Y

(f2(y) � f1(y))

and since (Y, TY ) is Hausdorff separated, we infer from (5.1) that ψ(x) = ϕ(x). �
Historical remark. Let Q be an integral quantale and (Q, ∧) be the quasi-magma on Q. On this background the 
history of the Kolmogoroff and Fréchet separation axiom in Definition 5.1 can be traced back in the literature and 
especially in the context of many-valued topology as follows.
(a) The Kolmogorov separation axiom in its full generality goes back to Rodabaugh in the period of time from 
1986 until 1995 ([29, Def. 2.5 and Disc. 3.1]), since Rodabaugh does not apply order-reversing involutions for the 
construction of closed Q-presheaves. Independently, Šostak invented the Kolmogorov separation axiom in 1989 under 
the name W0-axiom (cf. [30]). In the case of commutative Girard quantales, equivalent formulations appear in the 
work by Liu in 1983 (see the sub-T0 axiom in [25]) and in the work by Wuyts and Lowen in 1986 (see the 0∗-T0
axiom in [34]). The specialization Q-preorder in Remark 5.7 goes back to Lai and Zhang in 2006 in the case of 
Q = [0, 1] viewed as an integral and commutative quantale (cf. [24, p. 1877]).
(b) The Fréchet separation axiom goes back to Kubiak in 1995 (cf. [23, Def. 9.1]).
If Q is now a complete MV -algebra, then probabilistic topologies on X (cf. [16, p. 294]) are the same as cotensored 
Q-topologies on X. In this context the Hausdorff separation axiom goes back to Höhle in 1982 (cf. [16, Def. 3.3]).

6. Regularity and the continuous extension principle

We begin with a characterization of density in terms of Q-filters.

Definition 6.1. ([13, Sec. 5]) A Q-enriched filter (Q-filter for short) on a nonempty set X is a covariant Q-presheaf 
ω on (QX, d) satisfying the following properties for all f1, f2 ∈QX :

(F1) ω(�) = �,
(F2) ω(f ) � ω(g) ≤ ω(f � g),
(F3) ω(f ) ≤ ∨

f (X).

Comments 6.2 (Convergence of Q-filters (cf. [13, Sec. 4.2])).
(1) Let ω1 and ω2 be Q-filters on X such that there exists another Q-filter ω on X with ω1 ≤ ω and ω2 ≤ ω. Then the 
isotonicity of � and axioms (F2) and (F3) imply that the following holds:

ω1(f1) � ω2(f2) ≤ ∨
x∈X

(f1(x) � f2(x)), f1, f2 ∈QX.

(2) Given a Q-topological space (X, T ) and x ∈ X, the covariant Q-presheaf νx on (QX, d)

νx(f ) = I(f )(x), f ∈QX (6.1)

is a Q-filter, namely the Q-neighborhood filter at x (cf. [13, p. 986]). An element x ∈ X is called a limit point of a 
Q-filter ω in (X, T ) if νx(f ) ≤ ω(f ) for all f ∈ QX . We shall also say that ω converges to x in (X, T ).
(3) A Q-filter ω on X is called convergent if it has a limit point. Since every Q-topology on X viewed as Qop-category 
is cocomplete, every convergent Q-filter ω satisfies the following (cf. (3.2)):

d
(
e, sup(F )

) ≤ ∨
f ∈T

ω(f ) ∗ F(f ), F ∈ QT ,

— i.e. every convergent Q-filter on X meets every open cover of e.
(4) If x and y are limit points of a Q-filter ω, then for all f1, f2 ∈ T the following relations hold:

f1(x) � f2(y) = νx(f1) � νy(f2) ≤ ω(f1 � f2) ≤ ∨
z∈X

(f1(z) � f2(z)) and

f2(y) � f1(x) = νy(f2) � νx(f1) ≤ ω(f2 � f1) ≤ ∨
z∈X

(f2(z) � f1(z)).
17



JID:FSS AID:108633 /FLA [m3SC+; v1.362] P.18 (1-29)

I. Arrieta, J. Gutiérrez García and U. Höhle Fuzzy Sets and Systems ••• (••••) ••••••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52
Consequently, if (X, T ) is Hausdorff separated then every Q-filter has at most one limit point.

(5) A map (X, TX) 
ϕ−→ (Y, TY ) between Q-topological spaces is Q-continuous if and only if for each x ∈ X and each 

Q-filter ω on X converging to x the image Q-filter ϕ(ω) converges to ϕ(x), where(
ϕ(ω)

)
(g) = ω(g ◦ ϕ), g ∈ QY .

Before we proceed we make a small digression on convergence being related to a Q-enriched version of [1, Lemma 
1].

Remark 6.3. Let Q be a quantale having a completely prime and dualizing element δ and (X, T ) be a Q-topological 
space. If a Q-filter ω on X meets every open cover of e, then ω is convergent. Indeed, let F ∈ QT be given by 
F(f ) = ω(f ) ↘ δ for all f ∈ T , then

d(e, sup(F )) = ∧
x∈X

( ∨
f ∈T

f (x) ∗ (ω(f ) ↘ δ)
) ≤ ∨

f ∈T
ω(f ) ∗ (ω(f ) ↘ δ) ≤ δ

and since δ is completely prime, we conclude that there exists some x0 ∈ X such that∨
f ∈T

f (x0) ∗ (ω(f ) ↘ δ) ≤ δ,

hence f (x0) ≤ ω(f ) for all f ∈ T .
The assumption that Q has a completely prime and dualizing element cannot be dropped as the following coun-

terexample shows.
Let Q = { ⊥, a, b, � } be the Boolean algebra with 4 elements and ∗ = � = ∧. Then on X = { a, b, � } we introduce a 
Q-topology T as follows:

T = {�, idX ∨ a, idX ∨ b, a, b, idX, idX ∧ a, idX ∧ b, ⊥}.
Further, we consider the coarsest Q-filter on X given by ω(g) = ∧

x∈X g(x) for all g ∈ QX . Then:∨
f ∈T

(f (a) ∧ (ω(f ) → ⊥)) = a and
∨

f ∈T
(f (b) ∧ (ω(f ) → ⊥)) = b.

Since a ∧ b = ⊥, ω meets every open cover of �, but ω is not convergent:

ω(idX ∨ b) = b �≥ (idX ∨ b)(�) = �, ω(idX ∨ b) = b �≥ (idX ∨ b)(a) = �,

ω(idX ∨ a) = a �≥ (idX ∨ a)(b) = �.

Since our convergence theory is different of that one in [1], we continue our train of thought and consider a 
nonempty and proper subset A of X. Then every Q-presheaf f on A can be identified with the unique Q-presheaf f̂
on X extending f and the constant Q-presheaf � on �A — i.e. f̂ is determined by:

f̂ (x) =
{

f (x), if x ∈ A,

�, if x ∈ �A.

Further, let ω be a Q-filter on X. The trace of ω on A is the covariant Q-presheaf ωA on 
(
QA, d

)
defined by:

ωA(f ) := ω(f̂ ), f ∈ QA.

In fact, the relation ωA(f ) ∗ α ≤ ω(f̂ ∗ α) ≤ ω
(
f̂ ∗ α

) = ωA(f ∗ α) holds. Since �̂ = � and f̂1 � f̂2 ≤ f̂1 � f2 for 
all f1, f2 ∈ QA, ωA satisfies the filter axioms (F1) and (F2). But in general it is not clear whether ωA satisfies (F3). 
Hence ωA is not necessarily a Q-filter.

With regard to the Q-neighborhood filters of a Q-topology on X we have the following result.

Proposition 6.4. Let (X, T ) be a Q-topological space and A ⊆ X. Then:
18



JID:FSS AID:108633 /FLA [m3SC+; v1.362] P.19 (1-29)

I. Arrieta, J. Gutiérrez García and U. Höhle Fuzzy Sets and Systems ••• (••••) ••••••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52
(1) A is dense in (X, T ) if and only if for each x ∈ X the trace (νx)A of the Q-neighborhood filter νx on X is a 
Q-filter on A.

(2) Let A be provided with the initial Q-topology TA induced by the inclusion map A 
ι

↪−→ X. If x ∈ A, then the 
Q-neighborhood filter at x with respect to TA coincides with the trace (νx)A of νx on A.

Proof. (1) Let A be dense in (X, T ) and I be the Q-interior operator w.r.t. T . Since I (̂α) is an open Q-presheaf on 
X, we refer to (4.3) and obtain for each x ∈ X:

(νx)A(α) = νx (̂α) = I (̂α)(x) ≤ ∨
a∈A

I (̂α)(a) ≤ α.

Hence (νx)A is a Q-filter on A.
On the other hand, if for each x ∈ X the trace (νx)A is a Q-filter on A and f is an open Q-presheaf on X, then we 

put αf = ∨
a∈A f (a) and obtain:

f (x) = νx(f ) ≤ νx

(
α̂f

) = (νx)A
(
αf

) ≤ αf = ∨
a∈A

f (a).

Hence A is dense in (X, T ).
(2) Let x ∈ A and IA be the Q-interior operator with respect to the initial Q-topology TA. Since for each f ∈QA and 
for each g ∈ T the equivalence

g ◦ ι ≤ f ⇐⇒ g ≤ f̂

holds, we obtain IA(f )(x) = νx(f̂ ) = (νx)A(f ). �
After these preparations we are now ready for the following definition. We will make use of the cocomepleteness 

of Q-topologies viewed as Qop-enriched categories.

Definition 6.5. Let (X, T ) be a Q-topological space and AI the corresponding Q-adherence operator. Then (X, T )

is said to be:

– regular if f ≤ ∨
g∈T g∗d(AI(g), f ) for all f ∈ T , where d is the intrinsic Q-preorder of the free right Q-module 

QX .
– T3 if it is Hausdorff separated and regular.
– weakly regular if the set S = {

f ∈ T | f ≤ ∨
g∈T g ∗ d(AI(g), f ) 

}
is a subbase of T .

– weakly T3 if it is Hausdorff separated and weakly regular.

Comment. Regularity means that every open Q-presheaf f ∈ T is the Q-join of the Q-presheaf Ff ∈QT defined by 
Ff (g) = d(AI(g), f ) for all g ∈ T (cf. (3.2)).

It is easy to check that regularity (resp. weak regularity) coincides with (resp. is equivalent to) the usual regularity 
when Q = 2. Moreover, we have the following:

Proposition 6.6. Let (Q, �) be a strict quasi-magma such that � is directed join-preserving in each variable sepa-
rately. Then regularity is a direct extension of regularity in Top.

Proof. Let (X, τ) be a topological space. We only have to prove that (X, τ) is regular if and only if (X, LSC(τ, L(Q)))

is regular.
We assume the regularity of (X, τ) and choose f = ∨

i∈I 1Ui
∗ αi ∈ LSC(τ, L(Q)) with Ui ∈ τ and αi ∈ L(Q). 

Then for each i ∈ I and each V ∈ τ with V ⊂ Ui the relation αi = d(1V ∗ �, 1Ui
∗ αi) follows. Further, by (5.2) we 

have that 1V ∗ � =AI(1V ∗ �), and so we obtain:

1Ui
∗ αi = ∨

1V ∗ � ∗ αi = ∨
1V ∗ � ∗ d(1V ∗ �,1Ui

∗ αi)

V ∈τ,V ⊂Ui V ∈τ,V ⊂U

19



JID:FSS AID:108633 /FLA [m3SC+; v1.362] P.20 (1-29)

I. Arrieta, J. Gutiérrez García and U. Höhle Fuzzy Sets and Systems ••• (••••) ••••••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52
= ∨
V ∈τ,V ⊂Ui

1V ∗ � ∗ d(AI(1V ∗ �),1Ui
∗ αi) ≤ ∨

g∈LSC(τ,L(Q))

g ∗ d(AI(g),1Ui
∗ αi)

≤ ∨
g∈LSC(τ,L(Q))

g ∗ d(AI(g), f ).

Hence f ≤ ∨
g∈LSC(τ,L(Q) g ∗ d(AI(g), f ) and we conclude that (X, LSC(τ, L(Q))) is regular.

Conversely, let (X, LSC(τ, L(Q))) be regular, U ∈ τ and x ∈ U . We refer again to (5.2) and observe that

� = 1U(x) ∗ � = ∨
g∈LSC(τ,L(Q))

g(x) ∗ d(AI(g),1U ∗ �)

= ∨
V ∈τ,α∈L(Q)

(1V ∗ α)(x) ∗ d(AI(1V ∗ α),1U ∗ �) = ∨
V ∈τ, x∈V,α∈L(Q)

α ∗ d(1V ∗ α ∗ �,1U ∗ �).

If V � U , then α ∗ d(1V ∗ α ∗ �, 1U ∗ �) = α ∗ ((α ∗ �) ↘ ⊥) = ⊥ and so there exists V ∈ τ such that x ∈ V and 
V ⊆ U . Hence (X, τ) is regular. �

As an immediate corollary from Remark 5.11 and Proposition 6.6 we obtain the following result.

Corollary 6.7. Let (Q, �) be a strict quasi-magma such that � is directed join-preserving in each variable separately. 
Then the T3 axiom is a direct extension of the T3 axiom in Top.

The next examples shed some light on the concept of weak regularity.

Example 6.8. Let (X, τ) be a traditional T3 space and A be a dense subset in (X, τ) such that A /∈ τ — e.g. X = R

with the Euclidean topology and A = Q. Further, let τ∗ be the indiscrete extension of τ (see [31, Example 66]) — 
i.e. the topology on X generated by τ ∪ {A}. It is well known that (X, τ ∗) is T2 but not regular, and A is still dense 
in (X, τ ∗). Now we apply the change of base conveyed by the embedding 2 ↪−→ Q and consider the quasi-magma 
operation � = ∗ on Q. Then the Q-topological space (X, LSC(τ ∗, L(Q))) is also T2 but not regular and A is dense in 
it (cf. Remark 5.11 and Proposition 6.6). We show now that (X, LSC(τ ∗, L(Q))) is even not weakly regular. For this 
purpose let AI be the adherence operator of (X, LSC(τ ∗, L(Q))). Since LSC(τ ∗, L(Q)) = { f1 ∨ (f2 ∗ 1A) | f1, f2 ∈
LSC(τ, L(Q)) }, we refer to Lemma 4.3 and observe that for f1, f2 ∈ LSC(τ, L(Q)) the relation

AI((f1 ∨ f2) ∗ 1A) =AI(f1 ∨ (f2 ∗ 1A)) =AI(f1 ∨ f2)

holds. Hence we obtain∨
g∈LSC(τ∗,L(Q))

g ∗ d(AI(g), f ) = ∨
g∈LSC(τ,L(Q))

g ∗ d(AI(g), f ) ∈ LSC(τ,L(Q)).

Since 1A ∗ � /∈ LSC(τ, L(Q)) (cf. (5.4)), we conclude that{
f ∈ LSC(τ ∗,L(Q)) | f = ∨

g∈LSC(τ∗,L(Q))

g ∗ d(AI(g), f )
}

is not a subbase of LSC(τ ∗, L(Q)). Thus (X, LSC(τ ∗, L(Q))) is T2 but not weakly regular.

Since in the previous example both Q-topological spaces are induced by traditional topological spaces via change 
of base, we show that there exist also situations, in which this phenomenon does not occur. The next example is a 
modification of Example 5.12 (3a).

Example 6.9. Let Q be the complete MV -algebra ([0, 1], ∗Ł). We consider the quasi-magma operation � = ∗Ł and 
the Q-topology T on [0, 1] generated by the subbase { id[0,1], 1 − id[0,1] }. Obviously every element of T is lower semi-
continuous w.r.t. the usual topology on [0, 1]. Moreover, the subset A = { 0, 1 } is dense in ([0, 1], T ) (cf. Example 4.2) 
and since 1A is not lower semi-continuous, we have 1A /∈ T . Then the indiscrete extension of T , namely

T ∗ = {f1 ∨ (f2 ∗Ł 1A) | f1, f2 ∈ T }
20
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is another Q-topology on [0, 1] being strictly finer than T . Hence ([0, 1], T ∗) is again Hausdorff separated (cf. Ex-
ample 5.12 (3a)). Further, let AI∗ be the adherence operator w.r.t. ([0, 1], T ∗). Since A is still dense in ([0, 1], T ∗), 
by analogy with Example 6.8 the following holds for f1, f2 ∈ T :

AI∗((f1 ∨ f2) ∗Ł 1A) =AI∗(f1 ∨ (f2 ∗Ł 1A)) =AI∗(f1 ∨ f2),∨
g∈T ∗

g ∗Ł d(AI∗(g), f ) = ∨
g∈T

g ∗Ł d(AI∗(g), f ) ∈ T .

Now we use the fact 1A /∈ T and conclude that S := {
f ∈ T ∗ | f = ∨

g∈T ∗ g ∗ d(AI∗(g), f ) 
}

is not a subbase of 
T ∗. Thus ([0, 1], T ∗) is not weakly regular. Moreover, it is easily seen that ([0, 1], T ∗) is not induced by a traditional 
topological space via change of base by 2 ↪−→Q.

The next example presents a weakly regular Q-topological space being not regular.

Example 6.10. On the 3-chain C3 = { ⊥, a, � } we consider the structure of the 3-valued MV -algebra Q1 = (C3, ∗)

(cf. Example 2.1). Further, we consider the quasi-magma operation � = ∗ on Q1 and the Q1-topology T on C3
generated by the subbase S = { idC3 , idC3 → ⊥ }. An easy calculation shows that a Q1-presheaf ⊥ �= f �= � is open 
if and only if f (a) ≤ a, and hence it is closed if and only if f (a) ≥ a. Since idC3 and idC3 → ⊥ are closed in 
(C3, T ) by Lemma 4.4, it follows that (C3, T ) is weakly regular. However it is not regular. Indeed, if we select 

the open Q1-presheaf C3
f0−→ C3 given by f0(⊥) = f0(a) = ⊥ and f0(�) = �, then we have that d(AI(g), f0) ≤

AI(g)(a) → ⊥ ≤ a for all ⊥ �= g ∈ T and so∨
g∈T

g(�) ∗ d(AI(g), f0) ≤ � ∗ a = a < � = f0(�).

Moreover, the Q1-topological space (C3, T ) is not induced by a traditional topological space via change of base 

determined by 2
h

↪−→ Q1. But (C3, T ) is Kolmogoroff separated. Anticipating Lemma 6.19 and Example 6.20 we 
already state here that (C3, T ) is weakly T3 but not T3.

Since (Q1, ∗) is a projective right Q1-module, we will present an expansion of this situation in Example 6.21.

Remark 6.11. It follows now from Examples 6.8, 6.9 and 6.10 that in general the implications T3 ⇒ (weak T3) ⇒ T2
cannot be reversed.

As a next step we note that in the case of two particular types of quasi-magmas weak regularity and regularity are 
equivalent concepts.

Proposition 6.12. Let Q be a frame (i.e. ∗ = ∧) and (Q, ∧) be the quasi-magma on Q. Then weak regularity implies 
regularity.

Proof. We have to show that the family U = {
f ∈ QX | f ≤ ∨

g∈T g ∧ d(AI(g), f ) 
}

is a Q-topology. Obviously, 
U is a right Q-submodule of QX and (T1) is evident. In order to verify (T2) we conclude from the isotonicity of the 
Q-adherence operator AI that for f1, f2 ∈ U the following relation

f1 ∧ f2 ≤ ∨
g1,g2∈T

g1 ∧ g2 ∧ d(AI(g1), f1) ∧ d(AI(g2), f2)

≤ ∨
g1,g2∈T

g1 ∧ g2 ∧ d(AI(g1 ∧ g2), (f1 ∧ f2)).

holds. Since (T2) implies g1 ∧ g2 ∈ T , we obtain f1 ∧ f2 ∈ U . �
Proposition 6.13. Let Q be a complete MV -algebra with square roots and (Q, �) be the quasi-magma given by the 
monoidal mean operator on Q (cf. Example 2.7 (4)). If ⊥1/2 = ⊥1/2 → ⊥, then weak regularity implies regularity.
21
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Proof. The strategy of the proof is similar to that of Proposition 6.12, only the algebraic situation differs. We only 
have to show that the family U = {

f ∈ QX | f ≤ ∨
g∈T g ∗ d(AI(g), f ) 

}
satisfies (T2). We first recall the following 

properties of strict MV -algebras (cf. [17, Prop. 2.11 and 2.17]):

(α → β)1/2 = α1/2 → β1/2, (α ∗ β)1/2 = (α1/2 ∗ β1/2) ∨ ⊥1/2.

Further, the formation of square roots does not only preserve arbitrary meets as right adjoint of the formation of 
squares, but also nonempty joins in the case of strict MV -algebras. On this basis we obtain now for f1, f2 ∈ U :

f1 � f2 ≤ ( ∨
g∈T

g ∗ d(A(g), f1)
)1/2 ∗ ( ∨

g∈T
g ∗ d(A(g), f2)

)1/2

= ∨
g1,g2∈T

(
g1 ∗ d(A(g1), f1)

)1/2 ∗ (
g2 ∗ d(A(g2), f1)

)1/2

≤ ∨
g1,g2∈T

(
(g1 � g2) ∗ d

(
(A(g1)�A(g2)), f1 � f2

))∨
∨ (

(g1 �⊥) ∗ d
(
(A(g1)�⊥), f1 � f2)

) ∨ (
(⊥� g2) ∗ d

(
(⊥� (A(g2)), f1 � f2)

)
.

Since � =�⊥ (cf. Example 2.7 (4)), we conclude from (T2), (A1) and (A2) that f1 � f2 ∈ U . �
As an immediate corollary of Proposition 6.13 we obtain that the Q-topological space in Example 5.12 (3c) is not 

only weakly regular, but even regular and consequently a T3 space.
Since 2-topological spaces are cotensored, we first recall the concept of cotensored Q-topological spaces and 

review subsequently the regularity axiom in this context.

Remarks 6.14. (a) A Q-topological space (X, T ) is called cotensored if its Q-topology T is cotensored — i.e. f ∈ T
and α ∈ Q imply f ↙ α ∈ T . In tems of Q-interior operators (X, T ) is cotensored if and only if the associated 
Q-interior operator I satisfies the following condition:

I(f ) ↙ α ≤ I(f ↙ α), α ∈Q, f ∈QX.

Hence, if (X, T ) is cotensored, then for all f ∈ QX and x ∈ X the Q-presheaf f ↙ I(f )(x) is always a neighborhood 
of x. Now we observe that for any neighborhood base Bx of x (cf. Section 4) the Q-interior operator I and the 
Q-adherence operator AI of a cotensored Q-topology can be represented as follows:

I(f )(x) = ∨
b∈Bx

( ∧
y∈X

b(y) ↘ f (y)
) = ∨

b∈Bx

d(b, f ), (6.2)

AI(f )(x) = ∧
b∈Bx

( ∨
y∈X

f (y) ∗ b(y)
)
. (6.3)

(b) A cotensored Q-topological space is called probabilistic regular if for each x ∈ X the set of all closed neighbor-
hoods of x constitute a neighborhood base of x — i.e. if for all f ∈Ux the relation e ≤ ∨

k∈Ux
d(AI(k), f ) holds (cf. 

(6.3) and [16, Def, 3.3]). Now we refer to (6.2) and observe that in any probabilistic regular, cotensored Q-topological 
space (X, T ) with the associated Q-interior operator I the following relation holds:

f (x) = I(f )(x) = ∨
h∈Ux

d(h,f ) ≤ ∨
h∈Ux

∨
k∈Ux

d(AI(k), h) ∗ d(h,f )

≤ ∨
k∈Ux

d(AI(k), f ) ≤ ∨
k∈Ux

I(k)(x) ∗ d(AI(I(k)), f ) ≤ ∨
g∈T

g(x) ∗ d(AI(g), f ).

This means that probabilistic regularity implies regularity. If Q is commutative, then

g(x) ≤ d
(
g ↙ g(x), g

) ≤ d
(
AI(g ↙ g(x)),AI(g)

)
follows. Hence in the commutative case regularity is equivalent to probabilistic regularity.

Before we proceed we make a small digression in order to provide a significant generalization of Proposition 6.6.
22
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We start by introducing a special class of quasi-magmas: A quasi-magma (Q, �) is dominating (cf. [15]) if �
satisfies the following conditions:

α ≤ (α � e) ∧ (e � α), (α1 � β1) ∗ (α2 � β2) ≤ (α1 ∗ α2) � (β1 ∗ β2), α,α1, α2, β1β2 ∈Q.

Since α ∗ β ≤ (α � e) ∗ (e � β) ≤ α � β for each α, β ∈ Q, the terminology is justified. In particular, if (� � ⊥) ∨ (⊥ �
�) �= �, then a dominating quasi-magma (Q, �) is always strict.
Simple examples of dominating strict quasi-magma operations are commutative quantale multiplications or the binary 
meet on non-commutative and integral quantales.

The next result expresses the change of base for cotensored topologies.

Proposition 6.15. Let Q1 = (Q1, ∗1, e1) and Q2 = (Q2, ∗2, e2) be unital quantales with the respective quasi-magma 
operations �1 and �2 such that e1 ≤ e1 �1 e1 and �2 is dominating and non-empty join-preserving in each variable 
separately. Further, let Q1

ϕ−→Q2 be a quantale homomorphism satisfying the properties

(i) e2 ≤ ϕ(e1).
(ii) ϕ(α �1 β) = ϕ(α) �2 ϕ(β), α, β ∈Q1.

If (X, T ) is a cotensored Q1-topological space, then the Q2-interior operator Iϕ corresponding to the Q2-topology 
Tϕ generated by { ϕ ◦ f | f ∈ T } has the following form:

Iϕ(f )(x) = ∨
g∈T , e1≤g(x)

dQ2(ϕ ◦ g,f ), f ∈QX
2 , x ∈ X. (6.4)

Proof. First let us denote the respective Qi-preorders on QX
i (i = 1, 2) by:

dQi
(f, g) = ∧

x∈X

f (x) ↘ g(x), f, g ∈ QX
i .

Further, let Bx = { b ∈ T | e1 ≤ b(x) }. Since T is cotensored, the Q1-interior operator of T has the form (6.2):

I(f )(x) = ∨
b∈Bx

dQ1

(
b,f ), f ∈QX

1 , x ∈ X. (6.5)

Now we introduce a Qop

2 -functor QX
2

Iϕ−−→QX
2 defined by

Iϕ(g)(x) := ∨
b∈Bx

dQ2(ϕ ◦ b,g), g ∈QX
2 , x ∈ X. (6.6)

(a) We show that Iϕ is a Q2-interior operator. The property (I1) is evident and (I2) follows immediately from (T2), 
(ii) and the fact that �2 is dominating and non-empty join-preserving in each variable separately. Further, if g ∈ QX

2
and x ∈ X, then

Iϕ(g)(x) ≤ ∨
b∈Bx

ϕ(b(x)) ↘ g(x) ≤ ϕ(e1) ↘ g(x) ≤ e2 ↘ g(x) = g(x).

Hence we only have to prove the idempotency of Iϕ. We first note that if b ∈ Bx then

e1 ≤ b(x) = I(I(b))(x) = ∨
b̃∈Bx

dQ1

(
b̃,I(b)

) = ∨
b̃∈Bx

( ∧
y∈X

b̃(y) ↘ ( ∨
c∈By

dQ1(c, b)
))

.

Since ϕ is a quantale homomorphism satisfying e2 ≤ ϕ(e1), we obtain:

Iϕ(g)(x) = ∨
b∈Bx

e2 ∗2 dQ2(ϕ ◦ b,g)

≤ ∨
b∈Bx

( ∨
b̃∈Bx

( ∧
y∈X

(
ϕ ◦ b̃

)
(y) ↘ ( ∨

c∈By

dQ2(ϕ ◦ c,ϕ ◦ b)
))) ∗2 dQ2(ϕ ◦ b,g)

≤ ∨
b∈B

( ∨
˜

( ∧
y∈X

(
ϕ ◦ b̃

)
(y) ↘ ( ∨

c∈B
dQ2(ϕ ◦ c,ϕ ◦ b) ∗2 dQ2(ϕ ◦ b,g)

)))

x b∈Bx y

23
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≤ ∨
b̃∈Bx

( ∧
y∈X

(
ϕ ◦ b̃

)
(y) ↘ Iϕ(g)(y)

) = Iϕ(Iϕ(g))(x).

(b) As an immediate corollary from (6.6) and the idempotency of Iϕ we obtain:

Iϕ(g)(x) = ∨
b∈Bx

(ϕ ◦ b)(x) ∗2 dQ2(ϕ ◦ b,Iϕ(g)) = ∨
f ∈T

(ϕ ◦ f )(x) ∗2 dQ2(ϕ ◦ f,Iϕ(g))

for each g ∈ QX
2 and x ∈ X. Hence { Iϕ(g) | g ∈ QX

2 } ⊆ Tϕ follows. On the other hand, we conclude from the
idempotency of I and (6.5) that

ϕ ◦ I(f ) = Iϕ(ϕ ◦ I(f ))

for all f ∈QX
1 holds, and so the subbase { ϕ ◦ f | f ∈ T } of Tϕ is contained in { Iϕ(g) | f ∈QX

2 } — i.e. { Iϕ(g) | g ∈
QX

2 } = Tϕ . Thus Iϕ is the Q2-interior operator corresponding to Tϕ , and so (6.4) is verified. �
Finally we have the announced result extending Proposition 6.6.

Corollary 6.16. Let Q1 = (Q1, ∗1, e1) and Q2 = (Q2, ∗2, e2) be unital quantales with the respective quasi-magma 
operations �1 and �2 such that e1 ≤ e1 �1 e1 and �2 is dominating and non-empty join-preserving in each variable 
separately. Further, let Q1

ϕ−→Q2 be a quantale homomorphism satisfying the properties

(i) e2 ≤ ϕ(e1).
(ii) ϕ(α �1 β) = ϕ(α) �2 ϕ(β), α, β ∈Q1.

(iii) ϕ is nonempty meet-preserving.

If (X, T ) is a regular and cotensored Q1-topological space, then (X, Tϕ) is a regular Q2-topological space, where 
Tϕ is generated by { ϕ ◦ f | f ∈ T }.

Proof. Let x ∈ X and Bx = { b ∈ T | e1 ≤ b(x) }. If f ∈ QX
1 , since T is cotensored, we apply (6.3) and obtain that 

relation(
ϕ ◦AI(f )

)
(x) = ∧

b∈Bx

( ∨
y∈X

(ϕ ◦ f )(y) ∗2 (ϕ ◦ b)(y)
) ≥AIϕ

(ϕ ◦ f )(x). (6.7)

holds, since ϕ ◦ b is a neighborhood of x w.r.t. Tϕ for all b ∈ Bx . Now we fix g ∈ Tϕ . We conclude from Proposi-
tion 6.15 that the following relation holds:

g(x) = ∨
f ∈T , e1≤f (x)

(ϕ ◦ f )(x) ∗2 dQ2(ϕ ◦ f,g), x ∈ X. (6.8)

Since T is regular, for each f ∈ T one has

f (x) ≤ ∨
h∈T

h(x) ∗1 dQ1(AI(h), f ), x ∈ X.

Now we apply the quantale homomorphism ϕ and (6.7) and obtain for each f ∈ T and x ∈ X:

(ϕ ◦ f )(x) ≤ ∨
h∈T

(ϕ ◦ h)(x) ∗2 dQ2
((ϕ ◦AI)(h),ϕ ◦ f )

≤ ∨
h∈T

(ϕ ◦ h)(x) ∗2 dQ2
(AIϕ

(ϕ ◦ h),ϕ ◦ f ).

Combining this with (6.8) it follows that

g(x) ≤ ∨
f,h∈T , e1≤f (x)

(ϕ ◦ h)(x) ∗2 dQ2
(AIϕ

(ϕ ◦ h),ϕ ◦ f ) ∗2 dQ2(ϕ ◦ f,g)

≤ ∨
h∈T

(ϕ ◦ h)(x) ∗2 dQ2
(AIϕ

(ϕ ◦ h), g).

Hence (X, Tϕ) is regular. �
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We continue with a discuss on further concepts of regularity having appeared in the literature.

Remarks 6.17. (1) A Q-topological space (X, T ) is H-R-regular if f ≤ ∨{ g ∈ T | AI(g) ≤ f } for all f ∈ T (cf. 
[19, Def. (R,T3)]). Hence H-R-regularity implies regularity. If T is cotensored and Q is a commutative Girard quan-
tale, then AI(g) ∗α is a closed Q-presheaf for any α ∈Q, and consequently regularity is equivalent to H-R-regularity. 
If Q is not commutative, then H-R-regularity is strictly stronger than regularity as the next counterexample shows.
Let Q = [C3, C3] be the unital quantale of all join-preserving self-maps of the 3-chain (cf. [14, Subsec. 5.1]) and � be 
a directed join-preserving quasi-magma operation on Q in each variable separately. Obviously, Q is a non-integral, 
non-commutative Girard quantale, and the subquantale of all left-sided elements of Q is the left-sided, idempotent and 

non-commutative quantale C	
3 on the 3-chain. Since Q is finite, the change of base by 2

h
↪−→ Q leads to a cotensored 

Q-topological space (X, LSC(τ, C	
3)). Hence, if (X, τ) is regular, then (X, LSC(τ, C	

3)) is regular (cf. Proposition 6.6) 
but not H-R-regular, because there exists a left-sided element of Q = [C3, C3] being not right-sided.
(2) It is well known that the monadic framework for Q-topological spaces is given by the monad of Q-filters (cf. [13, 
Sec. 5]). On the other hand the regularity axiom can also be based on the closure operator derived from a partially 
ordered monad on Set (cf. [9] and [18, Sec. 3.4]). Unfortunately, the relationship between this concept of monadic 
regularity going back to Gähler (see [18, p. 73]) and regularity in the sense of our paper is an open question at the 
moment. One reason for this is the situation that we do not know much about Q-filter extension theorems and maximal 
Q-filters.

In the next example we present a regular Q-topological space, which is not H-R-regular and not induced via change 
of base conveyed by 2 ↪−→ Q.

Example 6.18. Let Q2 = (C3, ∗) be the commutative, idempotent and non-integral Girard quantale on C3 = { ⊥, a, � }
(cf. Example 2.1). Further, we consider the quasi-magma operation � = ∗ on Q and the Q2-topology T on C3 gener-
ated by the subbase S = { idC3, idC3 → a } — i.e.

T = {f1, f2, f3, f4, f1 ∗ �, f2 ∗ �, f3 ∗ �, f4 ∗ �} ∪ {⊥}
where f1 = idC3 , f2 = idC3 → a, f3 = idC3 ∗ (idC3 → a) and f4 = idC3 ∨ (idC3 → a). Since f1, f2, f3 and f4 are 
open and closed in (C3, T ) by Lemma 4.4, it follows that

fi = fi ∗ d(fi, fi) = fi ∗ d(AI(fi), fi) ≤ ∨
g∈T

g ∗ d(AI(g), fi) and

fi ∗ � = fi ∗ d(fi, fi ∗ �) = fi ∗ d(AI(fi), fi ∗ �) ≤ ∨
g∈T

g ∗ d(AI(g), fi ∗ �),

for each i = 1, 2, 3, 4, hence (C3, T ) is regular. However it is not H-R-regular. Indeed, since AI(fi ∗�) = � for each 
i = 1, 2, 3, 4, we have that f1 ∗ � �≤ f1 = ∨{ g ∈ T | AI(g) ≤ f1 ∗ � }.

Moreover, with regard to Remark 6.17 (1) we point out that (C3, T ) is not induced by a traditional topological 

space via change of base conveyed by 2
h

↪−→Q2.

The previous example and remarks show that in general regularity and a fortiori weak regularity are strictly weaker 
than well known regularity notions in the literature with the exception of monadic regularity. But now we will show 
that even weak regularity (more precisely the weak T3 axiom) will suffice to establish the principle of continuous 
extension for Q-topological spaces.

Standing Assumption. For the remaining part of this section we are working in the framework of the quasi-magma 
(Q, ∗) — i.e. � = ∗.
In this context we would like to emphasize that the expression of the intersection axiom by the quantale multiplication 
goes already back to Goguen in 1973 (cf. [10]).

It follows from Examples 5.12 (1) and (2) and Examples 6.8 and 6.9 that in general the implications (weak T3) ⇒
T2 ⇒ T1 ⇒ T0 cannot be reversed. But under the assumption of weak regularity the situation changes fundamentally 
as the next lemma shows.
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Lemma 6.19. Let Q be quantale with a dualizing element. Then any weakly regular and Kolmogorov separated 
Q-topological space is weakly T3.

Proof. Let δ be a dualizing element of Q, (X, T ) a regular and Kolmogorov separated Q-topological space and AI
the corresponding Q-adherence operator. In order to prove that (X, T ) is Hausdorff separated we fix x, y ∈ X with 
x �= y. Since the set

S = {
f ∈ T | f ≤ ∨

g∈T
g ∗ d(AI(g), f )

}
is a subbase of T , Lemma 5.4 implies that there exists f ∈ S such that f (x) �≤ f (y) or f (y) �≤ f (x). Let us assume, 
w.l.o.g., that f (x) �≤ f (y). For each g ∈ T the Q-presheaf AI(g) is closed, and consequently we have A(g) ↘ δ ∈ T
(cf. Lemma 4.4). Since

f (x) ≤ ∨
g∈T

g(x) ∗ d(AI(g), f ) and
∨

g∈T
AI(g)(y) ∗ d

(
AI(g), f

) ≤ f (y)

it follows that∨
g∈T

g(x) ∗ d(AI(g), f ) �≤ ∨
g∈T

AI(g)(y) ∗ d
(
AI(g), f

)
.

Hence there exists g ∈ T such that g(x) �≤AI(g)(y) = δ ↙ (AI(g)(y) ↘ δ) — this means g(x) ∗ (AI(g)(y) ↘ δ) �≤
δ. Since 

∨
y∈X g(y) ∗ (AI(g)(y) ↘ δ) ≤ δ, Lemma 5.9 implies that (X, T ) is Hausdorff separated. �

As an illustration of Lemma 6.19 we insert the following examples.

Example 6.20. Let Q be a Girard quantale. Then we choose a cyclic and dualizing element δ ∈ Q and consider the 
Q-topology T on Q generated by { idQ, (idQ ↘ δ) }. Since idQ and idQ ↘ δ are also closed in (Q, T ) by Lemma 4.4, 
it is easily seen that (Q, T ) is Kolmogorov separated and weakly regular. Hence (Q, T ) is weakly T3.

The next example describes a class of Q-topological spaces satisfying the weak T3 axiom.

Example 6.21. Let Q be a commutative Girard quantale and M be a projective Q-module in Sup with the right action 
�. We recall the intrinsic Q-preorder p (see (3.1)) and note that (M, p) is cocomplete (cf. (3.2)) and the totally below 
relation � is approximating (for more details see [14, Sec. 3] and [33]). Now we choose a dualizing element δ ∈ Q

and consider the interval Q-topology TI on M generated by the following subbase2:

{p( ,m) ↘ δ | m ∈ M } ∪ {p(n, ) ↘ δ | n ∈ M }.
Obviously, (M, TI ) is Kolmogorov separated (see Lemma 5.4). Further, for each n ∈ M we put sn := sup(p(n, ) ↘
δ). Since m �−→�( , m) is left adjoint to sup, we obtain:

p(m, sn) = d
(
�( ,m),p(n, ) ↘ δ

) = ∧
o∈M

(
�(o,m) ↘ (p(n, o) ↘ δ)

)
= ( ∨

o∈M

p(n,o) ∗�(o,m)
) ↘ δ = �(n,m) ↘ δ.

Hence p(m, sn) ↘ δ = �(n, m) — i.e. �(n, ) ∈ TI . Using again the left adjointness of m �−→ �( , m) to sup we 
note ∧

o∈M

�(o,m) ↘ p(o,n) = p(m,n),

and consequently we have p(n, m) ↘ δ = ∨
o∈M �(o, m) ∗ (p(o, n) ↘ δ) — this means:

2 If a unital quantale Q is viewed as a projective right Q- module with respect to its right multiplication, then it is easily seen that the Q- topologies 
in Examples 6.10 and 6.18 are necessarily interval Q- topologies.
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p(m,n) ↘ δ = ∨
o∈M

�(o,m) ∗ d
(
p(o, ),p( ,n) ↘ δ

)
. (6.9)

On the other hand, we conclude from [14, Thm. 4.1] that the dual Q-module Mop of M is also projective. Hence the 
totally below relation �op w.r.t. the dual Q-preorder pop (i.e. pop(x, y) = p(y, x)) is also approximating. By analogy 
to (6.9) we obtain:

p(n,m) ↘ δ = ∨
o∈M

�op(o,m) ∗ d
(
p( , o),p(n, ) ↘ δ

)
. (6.10)

Since �(o, ) ≤ p(o, ) and �op(o, ) ≤ pop(o, ) = p( , o) and the Q-presheaves p(o, ) and p(o, ) are closed 
w.r.t. the interval Q-topology, we conclude from (6.9) and (6.10) that (M, TI ) is weakly regular. To sum up M
provided with the interval Q-topology satisfies the weak T3 axiom, but is in general not regular (cf. Example 6.10).

In a next step we prepare the principle of Q-continuous extension.

Lemma 6.22. Let Q be quantale with a dualizing element, (X, TX) and (Y, TY ) be Q-topological spaces and A be a 

dense subset in (X, TX). Further, let (Y, TY ) be weakly regular and A 
ψ−→ Y be a map. If X

ϕ−→ Y is a map such that 
for all x ∈ X the point ϕ(x) is a limit point of the image Q-filter ψ((νx)A), then ϕ is Q-continuous.

Proof. (a) Let us fix x ∈ X and consider the Q-neighborhood filter νx at x w.r.t. TX and the Q-neighborhood filter 
νϕ(x) at ϕ(x) w.r.t. TY . Since A is dense, (νx)A is a Q-filter on A (cf. Proposition 6.4 (1)). Further, we choose a 
dualizing element δ ∈ Q. Since ϕ(x) is a limit point of the Q-filter ψ

(
(νx)A

)
, we obtain for all h ∈QY :

ψ
(
(νx)A

)
(h) ∗ νϕ(x)(h ↘ δ) ≤ ψ

(
(νx)A

)
(h) ∗ ψ

(
(νx)A

)
(h ↘ δ) ≤ ψ

(
(νx)A

)
(δ) ≤ δ.

Consequently, if AY is the Q-adherence operator of (Y, TY ), then by (6.1), (3.10) and the definition of the image 
Q-filter ψ

(
(νx)A

)
it follows that

IX(ĥ ◦ ψ)(x) = νx(ĥ ◦ ψ) = (νx)A(h ◦ ψ) = ψ
(
(νx)A

)
(h) ≤ δ ↙ (νϕ(x)(h ↘ δ)) = (

AY (h)
)
(ϕ(x)).

Consequently IX((h ◦ ψ)X) ≤ AY (h) ◦ ϕ. Since IX is idempotent, the relation

ψ
(
νx)A

)
(h) = IX(ĥ ◦ ψ) ≤ IX(AY (h) ◦ ϕ)

holds. Using again the fact that ϕ(x) is a limit point of ψ
(
(νx)A

)
we finally have:

νϕ(x)(h) ≤ ψ
(
(νx)A

)
(h) ≤ (

IX(AY (h) ◦ ϕ)
)
(x). (6.11)

(b) Now we distinguish between the respective intrinsic Q-preorders on QX and QY and denote them by dX and dY . 
Since (Y, TY ) is weakly regular, the set

S = {g ∈ TY | g ≤ ∨
h∈TY

h ∗ dY

(
AY (h), g) }

is a subbase of TY . Let g ∈ S and x ∈ X. We conclude from (6.11) and (I0):

(g ◦ ϕ)(x) ≤ ∨
h∈TY

h(ϕ(x)) ∗ dY (AY (h), g) = ∨
h∈TY

νϕ(x)(h) ∗ dY (AY (h), g)

≤ ∨
h∈TY

(
IX(AY (h) ◦ ϕ)

)
(x) ∗ dX(AY (h) ◦ ϕ,g ◦ ϕ) ≤ (

IX(g ◦ ϕ)
)
(x).

Hence g ◦ ϕ ∈ TX . Since S is a subbase, the Q-continuity of ϕ follows. �
The next theorem is the Q-enriched version of the principle of continuous extension whose set-theoretical version 

goes back to Bourbaki and Dieudonné in 1939 (see [4, p. 180], see also [5, Them. 1 on p. TG I.57]).

Theorem 6.23 (Principle of Q-continuous extension). Let Q be quantale with a dualizing element, (X, TX) and 
(Y, TY ) be Q-topological spaces, A be a dense subset in (X, TX) and A 

ι
↪−→ X be the inclusion map. Further, let 

(Y, TY ) satisfy the weak T3 axiom and A 
ψ−→ Y be a Q-continuous map w.r.t. the initial Q-topology on A induced by 

TX . Then the following assertions are equivalent:
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(1) ψ has a unique Q-continuous extension to X — i.e. there exists a unique Q-continuous map X
ϕ−→ Y making the 

following diagram commutative:

A X

Y

ι

ψ
ϕ

(2) There exists a map X
ϕ−→ Y such that for all x ∈ X the point ϕ(x) is a limit point of ψ

(
(νx)A

)
, where ψ

(
(νx)A

)
denotes the image of the trace of the Q-neighborhood filter νx on A under ψ .

Proof. (1) ⇒ (2): Let X
ϕ−→ Y be the Q-continuous extension of ψ . Since g ◦ ϕ ≤ ̂g ◦ ϕ ◦ ι, for each g ∈ QY and 

x ∈ X the Q-continuity of ϕ implies:

νϕ(x)(g) ≤ νx(g ◦ ϕ) ≤ νx

(
̂g ◦ ϕ ◦ ι

) = (νx)A(g ◦ ψ) = ψ
(
(νx)A

)
(g),

where νx and νϕ(x) are the respective Q-neighborhood filters. Hence ϕ(x) is a limit point of the image Q-filter 
ψ((νx)A).

(2) ⇒ (1): Let X
ϕ−→ Y be such that for all x ∈ X the point ϕ(x) is a limit point of ψ((νx)A). Since (Y, TY ) is 

Hausdorff separated, we infer from Proposition 6.4 (2) and Comments 6.2 (4) and (5) that ϕ(x) and ψ(x) coincide for 
each x ∈ A — i.e. the map ϕ is an extension of ψ . The Q-continuity of ϕ is guaranteed by Lemma 6.22. Finally the 
unicity follows from Proposition 5.13. �
Historical remark. If Q is a complete MV -algebra and the quasi-magma is given by the binary meet operation, then 
Theorem 6.23 has already been established for cotensored Q-topological (resp. probabilistic topological) spaces in 
1982 (cf. [16, Them. 3.5]).

Since Lemma 6.22 depends essentially on the assumption � = ∗ and the property that Q has a dualizing element, 
we ask therefore the following:

Open Question. Let Q be an non-commutative, integral quantale. Does the principle of Q-continuous extension hold 
in the case of the quasi-magma (Q, ∧)?
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