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Abstract

Despite efforts from scientists and regulators, biodiversity is declining at an alarming rate.
Unless we find transformative solutions to preserve biodiversity, future generations may not
be able to enjoy nature’s services.

We have developed a conceptual framework that establishes the links between biodiversity
dynamics and abiotic change through time and space using artificial intelligence. Here, we
apply this framework to a freshwater ecosystem with a known history of human impact and
study 100 years of community-level biodiversity, climate change and chemical pollution
trends. We apply explainable network models with multimodal learning to community-level
functional biodiversity measured with multilocus metabarcoding, to establish correlations
with biocides and climate change records. We observed that the freshwater community
assemblage and functionality changed over time without returning to its original state, even
if the lake partially recovered in recent times. Insecticides and fungicides, combined with
extreme temperature events and precipitations, explained up to 90% of the functional
biodiversity changes. Community-level biodiversity reliably explained freshwater ecosystem
shifts whereas traditional quality indices (e.g. Trophic Diatom Index) and physicochemical
parameters proved to be poor metrics for these shifts.

Our study advocates the advantage of high throughput systemic approaches on long-term
trends over species-focused ecological surveys to identify the environmental factors that
cause loss of biodiversity and disrupt ecosystem functions.
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eLife assessment

This important study advances our understanding of how historical human
activities have driven changes in freshwater biodiversity and ecosystem functioning.
The authors highlight the value of including not only spatiotemporal scales in
biodiversity assessments but also some of the possible drivers of biodiversity loss.
Analyzing their joint contribution as environmental stressors, the authors provide
compelling evidence that ecosystem assessment methods currently used by
environmental regulators throughout Europe are not fit-for-purpose, and they
identify several alternatives, more robust indicators of freshwater ecosystem health.
The work will be of broad interest to anyone studying changes in biodiversity and
their drivers.

Introduction

Biodiversity is the foundation of provisioning, regulating, supporting, and cultural
ecosystem services1, which underpin economic prosperity, social well-being and quality of
life2. Global biodiversity has been lost at an alarming rate in the past century, leading to
what some have called the 6th mass extinction - biodiversity loss caused by human
population growth and activities3. Biodiversity is threatened by agricultural land use,
climate change, invasive species, pollution and unsustainable production and consumption4.
Freshwater ecosystems have suffered the greatest biodiversity loss because of these
anthropogenic drivers5. Experimental manipulation of biodiversity has demonstrated the
causal links between biodiversity loss and loss of ecosystem functions6. However, studies on
multi trophic changes over time in natural ecosystems are only recently emerging.
Moreover, they focus on terrestrial and marine ecosystems, while freshwater ecosystems are
not well represented, especially lakes and ponds7. These holistic studies are critical to
understand the context-dependency of biodiversity-ecosystem functions relationships and to
implement management measures to conserve biodiversity. However, a better
understanding of the environmental factors with the largest impact on biodiversity, and
their cumulative effect over time is urgently needed8.

Biodiversity action plans have been devised since the 1990s. However, most strategies have
failed to stop or even reduce biodiversity decline9. This is because:

1. Biodiversity loss occurs at different spatial and temporal scales, and dynamic changes
in community composition are the result of long-term ecological processes10,11. State-
of-the-art environmental and biological monitoring typically captures single
snapshots in time of long-term ecological dynamics, failing to identify biodiversity
shifts that may arise from cumulative impacts over time10,11. Recent initiatives like
BioTIME started collating databases with species presence and abundance recorded
from time series across different ecosystems7). However, the majority of these studies
encompass the last 10-25 years and includes a minority of freshwater ecosystems12.
Whereas the large geographic breath of these studies is good to understand overall
trends of biodiversity change, they are inadequate to identify drivers of biodiversity
dynamics8,12 Moreover, the taxonomic species assignment in these databases is
oftentimes derived from traditional observational methods (e.g. microscopy), which
cannot resolve cryptic diversity12. High cryptic diversity is common in freshwater
invertebrates and primary producers, potentially impacting the assessment of

https://elifesciences.org/
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biodiversity in these ecosystems more severely than in terrestrial or marine
ecosystems13. More recently, sedaDNA (environmental DNA extracted from sediment)
has emerged as a promising tool to study decade-long biological dynamics14

However, these studies focus on specific taxonomic groups e.g. microbes15; ciliates16,
failing to capture the community-level changes in any given ecosystem.

2. Biodiversity is threatened by multiple factors. Only by quantifying trajectories of
abiotic, biotic, and functional systemic change over time, can we begin to identify the
causes of biodiversity and ecosystem function loss17 Studies are emerging that
investigate the impact of chemicals18 or climate change19 on biodiversity. Yet,
understanding the combined effect of these abiotic factors on biodiversity is still
challenging.

3. The lack of paired biological and abiotic long-term monitoring data is a limiting
factor in establishing meaningful and achievable conservation goals. Even well-
monitored species have time series spanning a few decades at best8,17 Moreover,
conservation efforts have historically focused on ecological surveys of few indicator
species, the identification of which require specialist skills (e.g., light microscopy and
taxonomy) and are low throughput20. High throughput system-level approaches
providing biological, abiotic and functional changes over multiple decades are
needed to understand links between biodiversity loss, drivers of changes and
potential consequences on ecosystem functionality {Eastwood, 2022 #43.

Recently, we have developed a framework that helps establish the links between biodiversity
dynamics and abiotic environmental changes and examines emergent impacts on ecosystem
functions {Eastwood, 2022 #43}. Here, we illustrate this framework in a freshwater
ecosystem (Lake Ring, Denmark) with a well-documented human-impact over 100 years21 by
quantifying the interrelations between community-level functional biodiversity, biocides
and climate (Fig. 1). Historical records, supported by empirical evidence show that Lake Ring
experienced semi-pristine conditions until the early 1940s22. In the late 1950s, sewage inflow
caused severe eutrophication. When the sewage inflow was diverted at the end of the 1970s,
agricultural land use intensified, leading to substantial biocides leaching21. The lake
partially recovered from eutrophication and land use in modern times (>1999s) but, as with
every lake ecosystem in Europe, it experienced an increase in average temperature23,24. We
apply multilocus metabarcoding and mass spectrometry analysis to a dated sedimentary
archive of Lake Ring. These data, complemented by biocides sale records and climate
records, were studied with explainable network models with multimodal learning to
identify drivers of functional biodiversity changes across major ecosystem shifts25 (Fig. 1).
Given the well-documented human-impact over time, Lake Ring represents an excellent
natural system to demonstrate the power of systemic approaches in biological and
functional monitoring.

https://elifesciences.org/
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Figure 1.

Conceptual framework.

A sedimentary archive spanning 100
years was sampled from Lake Ring,
Denmark and dated using radioiso-
topes. Both biotic and abiotic
changes were empirically quantified
through time: 1) community-level
biodiversity was reconstructed by ap-
plying multilocus metabarcoding to
environmental DNA isolated from
sediment layers (biological finger-
printing); 2) chemical signatures
were quantified from the same sedi-
ment layers using mass spectrome-
try analysis (chemical fingerprinting);

3) climate data were collected from publicly available databases. Explainable network models with multimodal learning
were applied to identify significant correlations between system-level biodiversity, chemical fingerprinting, and climate
variables. Taxonomic units (families) impacted by environmental factors were identified and environmental factors
ranked based on their effects on community biodiversity. This approach enables the prioritisation of conservation and
mitigation interventions.

Results

Freshwater community dynamics across 100 years
We quantified community-level biodiversity over a century (1916 - 2016) by applying high
throughput multilocus metabarcoding (18S, 16SV1, 16SV4, COI and rbcL barcodes) to bulk
environmental DNA (eDNA) extracted from layers of a dated sedimentary archive from Lake
Ring. The alpha diversity did not significantly vary across the lake phases for both
prokaryotes and eukaryotes (Supplementary Fig. 1) and was proportionally higher in the
prokaryotic (16S barcode) than in the eukaryotic community (18S barcode). Conversely, the
invertebrate community (COI barcode), and the diatom community (rbcL barcode), showed
significant changes over time across the lake phases, reflecting taxon-specific patterns over
time (Supplementary Fig. 1). Even though the alpha diversity varied over time, it was not
consistently lower in historical than modern communities across the barcodes, allowing us
to exclude bias in the preservation state of environmental DNA.

The community composition (beta diversity) changed significantly in the transition between
lake phases (Table 1; Fig. 2A; Supplementary Fig. 2). The overall eukaryotic community
composition changed over time across all lake phases (Table 1; Fig. 2A; 18S). However, the
primary producer’s composition (e.g. rbcL) changed significantly only in the transition
between the pesticide and the eutrophic phases, whereas the invertebrate’s community (e.g.
COI) changed significantly only between the pesticide and the recovery phases (Table 1; Fig.
2A; rbcL, COI). The significant changes in community composition identified by the
PERMANOVA analysis were driven by two families of primary producers [Chlorophyceae
(green algae), Mediophyceae (diatoms)] and seven families of invertebrates, [Monhysterida

https://elifesciences.org/
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(worms), Oligohymenophorea (ciliates), Calanoida (zooplankton), Ploimida (rotifers),
Chaetonotida (gastrotrichs), Thoracosphaeraceae (dinoflagellates) and Calanoida (copepods)]
(Fig. 2B; 18S). In the transition from the semi-pristine to the eutrophic phase, the relative
abundance of rotifers and green algae declined in favour of calanoids and diatoms (Fig. 2B;
18S). The proportion of diatoms, worms and nematodes increased in the transition from the
eutrophic to the pesticide phase, while the proportion of calanoids and gastrotricha declined
(Fig. 2B; 18S). The taxonomic composition of the recovery phase showed a relative increase
in ciliates and gastrotricha as compared to the pesticide environment (Fig. 2B; 18S).
Vampirellidae (Vampire amoebae feeding on algae) were relatively more abundant in the
eutrophic phase, in which primary producers were also more abundant (Fig. 2B, 18S). The
composition of the recovery and semi-pristine phases differed significantly, suggesting an
incomplete recovery of the lake over time to this date (Table 1; Fig. 2A; 18S).

Figure 2.

Biodiversity compositional
changes.

(A) Weighted unifrac beta diversity heatmaps be-
tween each pair of sediment layers spanning a
century (1916-2016) for the five barcodes used in
this study (18S, rbcL, COI, 16SV1 and 16SV4). The
PERMANOVA statistics in Table 1 support these
plots. The scale used may be different among
the heatmaps. (B) Taxonomic bar plots including
the top 10 most abundant families identified
across five barcodes (18S, rbcL, COI, 16SV1 and
16SV4). shown per lake phase: SP - semi-pristine;
E - eutrophic; P - pesticides; R - recovery.

https://elifesciences.org/
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Table 1.

PERMANOVA on beta diversity.

Permutational Multivariate Analysis of Variance using weighted Unifrac distances ASV matri-
ces testing for pairwise differences between lake phases across the five barcodes used in the
study (16SV1, 16SV4, 18S, COI, rbcL) with 999 permutations. Significant terms (p-values <0.05
after applying Benjamini & Hochberg correction for multiple testing) are in bold. The lake
phases are as follows: SP - semi-pristine; E - Eutrophic; P - pesticides; R - recovery.

The prokaryotic community significantly changed at each major transition between lake
phases, consistently across the two barcodes (Table 1; 16SV1 and 16SV4). We observed two
patterns in the prokaryotic community composition over time: some taxonomic groups
changed with the redox status of the sediment [e.g. acidophilus archaea (Thermoplasmata)
and methanogenic archaea (Methanomassiliicoccaceae), which declined from the semi-
pristine to the recovery phase (Fig. 2B, 16SV4)]; others changed over time consistently with
the nutrient levels of the ecosystem [e.g. Nitrospiraceae (nitrite oxidizers) were more
abundant in high nutrient environments (eutrophic and pesticides) than in lower nutrient
environments (semi-pristine and recovery) (Fig. 2B; 16SV1)].

Changes in the invertebrate community were driven by Brachionideae (rotifers) that were
most abundant in the semi-pristine phase and declined over time; Chironomidae (lake flies)
that were proportionally more abundant in the eutrophic and recovery phases and showed
the lowest abundance in the pesticides phase; Chaoboridae (phantom midge larvae) that
were only present in the semi-pristine and recovery phases; and Daphniidae (waterfleas)
that were most abundant in the pesticide phase, but present throughout the 100 years of
sampling (Fig. 2B; COI). The diatom composition was stable over time, with only the semi-
pristine phase having a more distinctive diatom assemblage profile dominated by
Bacillariophyta (Fig. 2B; rbcL). Diatoms are commonly used by regulators to derive the status
of freshwater within the Water Framework Directive both for lakes and rivers26. We used
our rbcL data to derive a Lake Trophic Diatom Index (LTDI2) for Lake Ring following27. This
result confirmed our beta diversity analysis of non-significant changes over time of the
diatom community (Supplementary Fig. 3).

https://elifesciences.org/
https://doi.org/10.7554/eLife.86576.1
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Functional changes linked to community compositional
shifts
Changes in freshwater community composition corresponded to significant shifts in the
predicted functional biodiversity of the prokaryotic community (Fig 3). We predicted a total
of 6,257 Kegg Orthologs (KO) terms from the 16SV1 and 6,828 from the 16Sv4 barcode across
the lake phases. Of the total number of KO terms, 1,418 were significantly differentially
abundant across the lake phases in the 16SV1 and 1,064 terms in the 16SV4 dataset,
respectively. The functional KEGG pathways enriched within these KO terms and
significantly differentially enriched between lake phases (Fisher’s exact test, p-adj < 0.05)
were 19 (17 for the 16SV4 and 2 for the 16SV1) (Fig. 3). Seven differentially enriched
pathways were found between the semi-pristine and recovery phases and seven were found
between the eutrophic and recovery phases (Fig. 3; 16SV4). These pathways were linked to
catabolic functions (purine and pyrimidine metabolism), RNA transport and biogenesis,
fundamental for gene expression and protein folding. Six functional pathways were
differentially enriched between the semi-pristine and the eutrophic phases that were linked
to metabolism (including methane metabolism), degradation and biosynthesis (Fig. 3; 16SV4).
Three functional pathways that underpin carbohydrates metabolism, lysine biosynthesis
and degradation were differentially enriched between the pesticide and recovery phases.
The latter two functions are critical for mitochondrial function. A single pathway was
differentially enriched between the semi-pristine and the pesticide phases, linked to lipid
metabolism (glycosphingolipid biosynthesis; Fig. 3; 16SV4). Two differentially enriched
pathways were identified between the eutrophic and the recovery phases and underpin
infection response and photosynthesis (Fig. 3; 16SV1).

Figure 3.

Functional analysis.

Functional pathways that are signifi-
cantly differentially enriched be-
tween lake phases are shown for the
16SV1 and the 16SV4 barcodes. The
lake phases are as in Figure 2: SP -
semi-pristine; E - eutrophic; P - pesti-
cides; R - recovery. Odds ratios indi-
cate the representation of each path-
way in the pairwise comparisons.

https://elifesciences.org/
https://doi.org/10.7554/eLife.86576.1
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Drivers of biodiversity change
Using sparse canonical correlation analysis (sCCA), we discovered that insecticides and
fungicides best explained changes in overall biodiversity, possessing the highest CCA
loadings across the barcodes, followed by pesticides and herbicides (Supplementary Table
1A). Among the climate variables, yearly minimum temperature explained the largest
biodiversity changes, whereas other climate variables had a variable impact across the
barcodes and hence taxonomic groups (Supplementary Table 1B).

Having ranked biocides and climate variables that best explained changes in overall
biodiversity, we identified correlations between taxonomic groups (assigned at family level
where possible) and individual abiotic variables. Correlations were identified between a
total of 36 eukaryotic families and abiotic variables; of these correlations, 28 were with
biocides and 25 with climate variables (some correlations involved the same taxonomic
group correalting with multiple environmental factors). Of the 28 families negatively
correlated with biocides, the largest proportion co-varied significantly with insecticides (21
families - 75%) and fungicides (14 families - 50%), followed by herbicides (7 families - 25%)
and pesticides (2 families - 7.1%) (Supplementary Table 2). Of the 25 families correlated with
climate variables, the largest proportion co-varied with summer precipitations (12 families -
37%); of these, 8 families were positively correlated and 4 were negatively correlated with
summer precipitations. An equal number of families (8 families - 32%) co-varied with mean
minimum temperature (6 positive and 2 negative correlations), highest recorded
temperature (7 positive and 1 negative correlations), and summer atmospheric pressure (6
positive and 2 negative correlations) (Supplementary Table 2).

The number of unique prokaryote families significantly negatively correlated with biocides
was 99, 19 of which identified by both 16S barcodes. Following from the sCCA analysis,
significant negative correlations were observed between 60 (60.6%) families and
insecticides, followed by 59 families and fungicides (59.6%), 40 families and herbicides
(40.4%), and 25 families and pesticides (25.3%) (Supplementary Table 2; overall). A total of
105 non-redundant correlations were identified between prokaryotic families and climate
variables, 6 of which were found in both 16S barcodes. Of the total families correlating with
climate variables, 69 (65.7%) significantly correlated with mean minimum temperature. Of
these, 38 were positive and 31 were negative correlations. Thirty-five families (33.3%)
significantly correlated with summer precipitations; of these, 11 were positively and 23 were
negatively correlated. Twenty-nine families (27.6%) significantly correlated with the lowest
recorded temperature; of these 20 were positive and 9 were negative correlations. Twenty-
six families (24.8%) significantly correlated with mean summer temperature; of these 13
were positively and 13 negatively correlated. Twenty-three families (21.9%) significantly
correlated with maximum daily precipitations; of these, 3 were positively and 20 were
negatively correlated. Eleven families (10.4%) significantly correlated with highest recorded
temperature; of these 3 were positively and 8 were negatively correlated (Supplementary
Table 2).

We applied sCCA to identify families that correlated both with climate variables and biocides
(Fig. 4). As biocides were introduced only in 1960, only the most recent three lake phases
were included in this analysis. The eukaryotic biodiversity compositional change was
prominently explained by biocides (Fig. 4; 18S; Biocides: 44%), followed by climate variables
(Fig. 4; 18S; climate variables: 22%). Up to 22% of the diatom’s compositional change was
explained by biocides (44%) and climate variables (36%). However, the abiotic variables only
separated the recovery from the other two lake phases (Fig. 4), supporting significant
biodiversity compositional shifts observed in the beta diversity analysis (Fig. 2A; Table 1).
Similarly, the invertebrate community compositional changes were explained prevalently by
biocides (47%), followed by climate variables (30%), which only separated the recovery

https://elifesciences.org/
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phase from the other two lake phases. Climate and biocides almost equally explained up to
36% of the prokaryote biodiversity compositional change across the lake phases (16SV1 -
biocides: 44%, climate variables 47%; 16SV4 - biocides 45%, climate variable 38%). Following
from this analysis, additive effects of biocides and climate variables were observed for 23
prokaryote (16S) and two eukaryote (18S) families (Fig. 5A), whereas no additive effects were
identified on the diatom (rbcL) and the invertebrate (COI) communities (Fig 5A;
Supplementary Table 3). The most frequent additive effects on prokaryotes involved
insecticides and mean minimum temperature (Fig. 5A; Supplementary Table 3). Additive
effects between herbicides and precipitation/lowest recorded temperature were rare (Fig.
5A; Supplementary Table 3). The most frequent additive effects on the eukaryotic
community were observed between insecticides and precipitations (Fig. 5A; Supplementary
Table 3).

Figure 4.

sCCA 3D plots.

Sparse canonical correlation analysis
3D plots for the five barcodes used
(18S, rbcL, COI, 16SV1 and 16SV4),
showing the proportion of biodiversi-
ty variance explained by the biocides
and climate variables. As biocides
were introduced around the 1960s,
this analysis spans the most recent
three lake phases (eutrophic, pesti-
cides and recovery).

Figure 5.

Additive effects on
biodiversity.

A) heatmap showing the frequency
of additivity between biocides and
climate variables in eukaryotes (data
from the 18S barcode) and prokary-
otes (combined data from 16Sv1 and
16Sv4 barcodes). The biocides are
ranked based on their correlation co-
efficient with taxonomic units and cli-
mate variables. Ranking of biocide
types is provided in Table S3; B) tem-
poral correlation between the family
Isochrysidales, summer precipitation
and insecticides. The additive effect

of summer precipitation and insecticides is also shown; C) temporal correlation between Pleosporales, insecticides and

https://elifesciences.org/
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mean minimum temperature. The additive effect of insecticides and mean minimum temperature is also shown. The fam-
ilies’ relative abundance over time in plots B and C are standardized values.

The biocide types showing additive effects with environmental variables were ranked based
on their correlation coefficient over time (Supplementary Table 3). The top ranked
insecticides most frequently showing additive effects with climate variables and an adverse
effect on both prokaryotes and eukaryotes were: oxydemeton-methyl (organothiophosphate
insecticide, primarily used to control aphids, mites, and thrips), mevinphos
(organophosphate insecticide used to control insects in a wide range of crops) and dicofol
(organochlorine miticide pesticide chemically related to DDT). Additionally, parathion
(organophosphate insecticide and acaricide), carbaryl (1-naphthyl methylcarbamate used
chiefly as an insecticide), dieldrin (organochlorine insecticide, developed in alternative to
DDT) and thiometon (organic thiophosphate insecticide) showed adverse additive effects
with only the prokaryotic community. Examples of additive effects on specific families are
shown in Figure 5B and 5C. The temporal dynamics of Isochrysidales, a coccolith-producing
microalgae, was affected by the additive effect of summer precipitation and insecticides (Fig.
5B), whereas the temporal dynamics of the PeM15 group of Actinobacteria was affected by
the additive effect of insecticides and mean minimum temperature (Fig. 5C).

Discussion

Continuous long-term biomonitoring from a pristine
baseline
State-of-the-art paleoecological monitoring typically uses direct observations (light
microscopy) of species remains to assess the ecological status of freshwater ecosystems.
These approaches are low throughput and require specialist skills28. Direct observations are
inherently biased towards species that leave fossil remains; species identification is strongly
reliant on well-preserved remains in environmental matrices; and cryptic species diversity
cannot be resolved13. Recently, automated acquisition of microfossil data using artificial
intelligence has been proposed as an alternative to human inspection for reconstructing
longterm biological changes29. However, this approach relies on the completeness of
reference databases and of the fossil remains, suffering from the same limitations of direct
observations minus the low throughput aspects. Efforts to catalogue temporal changes in
biodiversity have recently started to understand changes in species richness and
assemblages in different geographic regions of the globe12. These efforts are important to
understand the extent of overall biodiversity loss. However, there are only a handful of
existing datasets that span more than 50 years and many of the multidecal biodiversity time
series are limited to terrestrial and marine ecosystem, with freshwater ecosystems being
marginally represented12. Moreover, long-term freshwater studies tend to focus on indicator
species or specific taxonomic groups (e.g. invertebrates), rather than capturing community-
level patterns7. Developments in the field of sedaDNA have addressed the limitations of
direct observations, utilising the properties of eDNA15. However, sedaDNA studies have
predominantly focused on microorganisms as proxies for ecosystems’ health (e.g.
cyanobacteria30; ciliates16; parasitic taxa31), with other taxonomic groups less well
represented. Our study addresses some of the challenges of direct observations as it is not
reliant on fossil remains. However, the completeness of the community taxonomic
assignment depends on the completeness of reference databases. We acknowledge that our
taxonomic classification may be incomplete.

https://elifesciences.org/
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Studies of temporal dynamics typically start from an already shifted baseline and rely on
discrete observations16. Our study alleviates these limitations by providing a continuous
community-level analysis of biological changes over recent evolutionary times and starting
from a relatively undisturbed environment. However, eDNA-based studies suffer from
limitations linked to the level of preservation of nucleotides in environmental matrices.
Although it has been shown that DNA can be recovered from lacustrine and marine
sediments as far back as the Holocene32, biases might still exist due to the degradation of
eDNA, especially over geological times33 and in warmer climates34. In addition, physio-
chemical changes in sediment and soil may affect the assemblage and composition of
prokaryotic communities that can survive in extreme conditions, including anoxic
environments. However, it has been shown that slightly alkaline water (pH 7–9) facilitates
DNA preservation33. Whereas we cannot exclude that the eDNA in our study suffers from
some of the mentioned biases, we expect DNA degradation not to have affected our study
significantly. This is because we observed non-significant difference in species richness over
time in both the prokaryotic (16S barcode) and eukaryotic (18S barcode) communities. DNA
degradation would have resulted in lower alpha diversity with increasing age of the
sediment. Preservation of DNA in our study is also favoured by the time frame studied (100
years as opposed to millennia), the stable pH since the 1960s (data prior to 1960s were not
recorded), and the latitude of Lake Ring associated with average yearly temperatures below
15°C. All these factors are known to reduce microbial activity, allowing a better preservation
of DNA in sediment35.

Whereas the overall species richness did not change significantly over time, species
assemblages significantly did. Small changes in alpha diversity coupled with significant
changes in beta diversity over time have been reported for existing time series biodiversity
data in marine and terrestrial environment, even if the length of the time series rarely
exceeded four decades12.

Insecticides and extreme temperatures drive changes in
functional biodiversity
Threats to biodiversity pose a significant challenge because they change over time and may
result in additive adverse effects4 Long-term continuous observations are preferable to
short-term observations because they can reveal correlations and possible causation
between biological changes and abiotic drivers of change20. Using eDNA-based data on
multitrophic biodiversity over the past 100 years, we identified the taxonomic groups within
the prokaryotic and eukaryotic communities that significantly contributed to community
assemblages shifts. Whereas the prokaryotic community was overall changing at each major
transition between lake phases, changes in the eukaryotic community were driven by
different taxonomic groups in the transition between lake phases. The diatom community,
typically used by regulators as indicator of freshwater ecological status, was not changing
significantly over time, as the beta diversity and the LTDI2 index revealed. These results
strongly suggest that a system-level approach, like the one proposed here, may be more
appropriate than species or taxon-specific approaches to identify ecosystem shifts.

Even if Lake Ring partially recovered from eutrophication and biocides pollution in modern
times, both the contemporary eukaryotic and prokaryotic communities are significantly
different from the semi-pristine historical community, as the PERMANOVA on beta diversity
demonstrates. Our findings align with other studies using sedaDNA on decennial timeframes
focusing on prokaryotes (e.g. cyanobacteria36), whereas studies on eukaryotic compositional
changes are just emerging to enable quantitative comparative assessments37 Studies on
prokaryotic and eukaryotic assemblages based on short experimental manipulations suggest
that natural communities can return to their original state before a perturbation occurs38.

https://elifesciences.org/
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However, longer-term experimental manipulations show a different perspective with
irreversible changes in biodiversity composition and function39. These long(er)-term
experimental manipulations and our study suggest that empirical observation of multi
trophic changes over time in natural systems are critical to understand the context-
dependency of biodiversity-environmental impact relationships and assess the resilience of
natural ecosystems.

Changes in community assemblages are important because they can be associated with
changes in functional biodiversity. Although biodiversity variables include taxonomic,
phylogenetic, and functional attributes, most studies have focused on generic taxonomic
diversity measures - usually measured as species richness or abundance, ignoring functional
biodiversity40. Biomass and changes in biomass only capture productivity, while
disregarding other metrics, such as decomposition or resource turnover41. A complete
assessment of biodiversity should include functionality6. In particular, enzyme activities are
relevant because they exhibit the functions encoded in genes and reflect the role of
microbiota in the transfer of matter and energy from low to high trophic levels in
ecosystems. Changes in biological assemblages over time and across lake phases in our study
resulted in significant changes in functional biodiversity, observable through changes in
metabolic, biosynthesis and degradation functions of the prokaryotic community
demonstrated by differentially abundant KEGG pathways between lake phases. Catabolic
functions, metabolism (including methane metabolism), degradation and biosynthesis were
differentially enriched between the recovery and other lake phases.

Predicting the functional profiles of prokaryotic communities based on their taxonomic
composition has its limitations. Predictions of functions linked to human gut microbes tend
to be more accurate than predictions on other communities because reference databases are
developed on currently available genomes, which are biased towards microorganisms
associated with human health and biotechnology42. Because of the bias in reference
databases, functional predictions may be more accurate for basic metabolic and
housekeeping functions, which are more commonly annotated43. Therefore, it is possible
that we underestimated the predicted changes in functional biodiversity driven by
environmental change in our study. Yet, we were able to detect important functional
changes in correspondence of major ecosystem shifts.

In recent years, an increasing number of studies have documented impacts on biodiversity
driven by climate change19, whereas chemicals are thought to pose a negligible threat to
biodiversity because living organisms can adapt and evolve18. Adaptation to environmental
change can happen, but it comes at a cost that can reduce resilience of natural populations
to multiple stressors or novel stress44. Our study showed that chemicals and climate
variables each explain up to 47% of biodiversity compositional changes and that the additive
effect of insecticides/fungicides and yearly extreme temperature/precipitations best
explained changes in overall biodiversity. The additive effects of insecticides and extreme
temperature events affected prokaryotes by altering their functionality and changing their
metabolic, biosynthesis and degradation functions. The additive effect of insecticides and
precipitation best explained changes in primary producers and grazers. This result aligns
with previous studies showing that the effect of chemicals on freshwater can be exacerbated
by temperature/precipitations, because of changes in the bioavailability, adsorption,
elimination and relative toxicity of chemicals by water organisms45. Higher temperatures
increase diffusion of chemical molecules, resulting in faster uptake by living organisms and
hence toxicity46. In some cases, higher temperatures result in effects on the organism’s
metabolic ability to reduce a chemical’s toxicity. Our study hints at examples of both
mechanisms, distinguishing between families that are negatively and positively correlated
with climate variables.

https://elifesciences.org/
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The resolution and reliability of our data-driven systemic approach goes beyond current
state-of-the-art, enabling us to identify the specific abiotic factors, down to the commercial
name of biocides, that in isolation or combined with climate variables affected specific
families of prokaryotes and eukaryotes. Our algorithm provides a high degree of confidence
that reliability surpass state-of-the-art analysis of patterns of co-occurrence of taxa within
communities47. A step in the right direction to capture complex interactions between biotic
and abiotic variables is the network analysis of co-occurrence patterns among
physicochemical and biological parameters using random forest machine learning
algorithms (e.g.48). This approach is hypothesis-free and allows to identify synchronicity
between various environmental variables and sedaDNA sequence variation. However, even
when applied to temporal trends, it does not quantify additive effects of environmental
factors on biodiversity. So far, random forest machine learning algorithms have only been
applied to prokaryotic communities, disregarding other taxonomic groups and providing a
partial understanding of community-level patterns and responses48.

A potential limitation of our approach is that correlations identified in field surveys do not
demonstrate causation. However, they generate testable hypotheses that can be proven
experimentally in controlled mesocosm experiments as explained in10, providing a
potentially transformative approach.

Implications for conservation and management of
biodiversity
Some of the greatest challenges in biodiversity conservation faced by water resource
managers is the limited information available on a time scale sufficient to assess long-term
changes of aquatic ecosystems. Large scale models that link environmental drivers to
biological indicators are lacking49, even if some countries have tried to introduce semi-
quantitative indices to assess the ecological status of freshwater50. Regulators must rely on
approaches ingrained into environmental law, even though they have been proven
inadequate (e.g. TDI), as the continuous decline in biodiversity demonstrates19. Even when
direct links between biological indicators and abiotic drivers can be established, these rely
on indicator species (e.g. a fish, an alga and an invertebrate) used as proxies for ecosystem
health51. Our data-driven approach provides a novel way to address regulatory needs.
However, the use of data-driven, systemic approaches requires critical changes in current
environmental practice and a shift to whole-system evidence-based approaches. The
transition to the novel methodologies proposed here will require changes in regulatory
frameworks, following a test and acceptance phase, as well as a buy-in from regulators. Our
study is a proof of concept that the drivers of biodiversity loss can be identified with higher
accuracy than currently possible, generating hypotheses that can be tested experimentally.
Our data-driven approach enabled us to identify insecticides and temperature as strong
drivers of biodiversity loss, both in prokaryotes and eukaryotes. The confirmation of these
findings across multiple freshwater ecosystems has the potential to inform conservation and
mitigation interventions, leading to an improved preservation of functional biodiversity.

Materials and Methods

Environmental and paleoecological profile of Lake Ring
Lake Ring is a shallow mixed lake in Jutland, Denmark (55°57’51.83’’ N, 9°35’46.87’’ E) with a
well-known history of human impact21. A sedimentary archive was collected from Lake Ring

https://elifesciences.org/
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in November 2016 with an HTH-type gravity corer; the core was sliced in 34 layers of 0.5 cm
and stored in dark and cold (−20 °C) conditions. To reduce potential contamination when
handling older sediment layers each layer of sediment was handled in a PCR-free and DNA-
free environment. A radiometric chronology of this sediment was completed in 2018 by
Goldsmith Ecology Ltd following standard protocols52, and provided an accurate dating of
the sediment to the year 1916. Dating of sediment was conducted by direct gamma assay,
using ORTEC HPGe GWL series well-type coaxial low background intrinsic germanium
detector. Sediment samples with known radionuclide profiles were used for calibration
following52. We used, historical records, direct chemical analysis of sediment, and
physicochemical records to reconstruct the paleoecological environment of Lake Ring.
According to historical records, the lake was semi-pristine until the 1940s. In the late 1950s,
sewage inflow from a nearby town increased nutrient levels resulting in eutrophication. The
sewage inflow was diverted at the end of the 1970s, but this period coincided with
agricultural land-use intensification (>1980), causing biocides leaching into the lake. The lake
partially recovered in modern times (>1999), experiencing a partial return to its original
trophic state and reduced impact from biocides21.

Physico-chemical parameters were measured in the lake between 1970 and 2016, even
though data are sparse and discontinuous, limiting their use in a machine learning or
statistical framework (Supplementary Fig. 4A). To complement the historical records, we
obtained climate data from the Danish Meteorological Institute (Supplementary Table 4). The
climate data were collected from a weather station 80 km from Lake Ring. Air and water
surface temperature typically have a positive correlation for shallow streams and lakes53,54

Hence, we used the data from the weather station as an estimate of the lake water
temperature. We also observed a tight correlation between the recorded water temperature
in Lake Ring and the summer air temperature recorded by the weather station
(Supplementary Fig. 4A). In addition, we procured sales records of biocides in Denmark
between 1955 and 2015 from the Danish national archives (Supplementary Fig. 4B;
Supplementary Table 4). To assess whether the biocide sales records were a good
representation of persistent chemicals in the lake sediment, we quantified the persistent
halogenated pesticide DDT in the sliced sedimentary archive of Lake Ring, applying gas
chromatography with mass spectrometry analysis (Supplementary Fig. 4C). Sediment
samples were lyophilized and freeze dried in a lyophilizator using a Christ Beta 1-8 LSCplus
freeze-dryer, (Martin Christ GmbH, Osterode am Harz, Germany), to avoid analyte loss
during water removal. Following lyophilization, the sediment samples were sieved through
0.4 mm meshes and homogenised. Approximately 1g of dry sediment was weighed into pre-
cleaned glass tubes and spiked with 100 ng of deuterated [2H8-4,4’- DDT], used as an internal
(surrogate) standard, followed by 1 g of copper powder (Merck, Dorset, UK)] for sulphur
removal. The sediment samples were extracted using 5ml of hexane: acetone (3:1 v/v),
vortexed for 5 min, followed by ultrasonication for 15 min and centrifugation for 3 min at
5000 rpm. The supernatant was transferred to a clean, dry tube and the process was
repeated twice for each sample. The combined extract was then evaporated to dryness
under a gentle stream of N2 and reconstituted in 2 mL of hexane. Sulphuric acid (3 ml) was
used to wash the reconstituted crude extract. The organic phase was allowed to separate on
top of the acid layer then transferred to another clean dry test tube. The remaining acid
layer was washed twice, each with 2 ml of Hexane. The combined clean extract and washes
was evaporated under a gentle stream of Nitrogen, reconstituted into 150 μl of iso-octane
containing 100 pg/μl of PCB 131 used as syringe (recovery) standard. Quantification of target
DDTs was conducted on a TRACE 1310™ GC coupled to an ISQ™ single quadrupole mass
spectrometer (Thermo Fisher Scientific, Austin, TX, USA) operated in electron ionization (EI)
mode according to a previously reported method55.

https://elifesciences.org/
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Biodiversity fingerprinting across 100 years
We applied multilocus metabarcoding or marker gene sequencing to environmental DNA
(eDNA) extracted from the 34 layers of sediment from the biological archive of Lake Ring
using a laminar flow hood in a PCR-free environment to obtain a fine-grained temporal
quantification of taxonomic diversity and relative abundance of taxonomic groups. eDNA
was extracted from the dated sediment layers - sedaDNA - using the DNeasy PowerSoil kit
(Qiagen), following the manufacturer’s instructions. Negative aerial and PCR controls were
used; in addition, positive controls for PCR consisting of duplicates of three random samples
from the sedimentary archive, were used. The duplicated samples were very similar,
providing confidence in the approach used (Supplementary Fig. 2). Triplicates of each
sedaDNA sample were amplified with a suite of five nuclear and mitochondrial PCR primers
(barcodes) to capture presence and relative abundance of eukaryotes (18S)56,
macroinvertebrates (COI)57, primary producers (focus on diatoms; rbcL)58, and prokaryotes
(16SV1 and 16SV4)59 using Q5 HS High-Fidelity Master Mix (New England Biolabs) and
following the manufacturer’s instructions. A negative control in triplicate per plate was
used. Paired end 250 bp amplicon libraries were obtained using a 2 step PCR protocol with
96×96 dual tag barcoding to facilitate multiplexing and to reduce crosstalk between samples
in downstream analyses60 by EnviSion, BioSequencing and BioComputing at the University
of Birmingham (https://www.envision-service.com/). PCR1 and PCR2 primers, as well as
annealing temperatures per primer pair in PCR1 are in Supplementary Table 5. Excess
primer dimers and dinucleotides from PCR1 were removed using Thermostable alkaline
phosphatase (Promega) and Exonuclease I (New England Biolabs). PCR2 amplicons were
purified using High Prep PCR magnetic beads (Auto Q Biosciences) and quantitated using a
200 pro plate reader (TECAN) using qubit dsDNA HS solution (Invitrogen). A standard curve
was created by running standards of known concentration on each plate against which
sample concentration was determined. PCR2 amplicons were mixed in equimolar quantities
(at a final concentration of 12 pmol) using a biomek FXp liquid handling robot (Beckman
Coulter). The final molarity of the pools was confirmed using a HS D1000 tapestation
screentape (Agilent) prior to 250 bp paired-end sequencing on an Illumina MiSeq platform
aiming for 100,000 reads per sample and amplicon. The reads were demultiplexed using the
forward PCR1 primer sequence using cutadapt 3.7.4 with an error rate of 0.07, equating to
one allowed mismatch. The quality of sequences was assessed with FASTQC61 and multiqc62.
Sequences were then imported into QIIME2 v 2021.263, trimmed, filtered, merged and
denoised using the QIIME2 DADA2 module64 using default parameters and trimming low
quality sections and reverse primer [forward read 0-10 trimmed front, 214-225 truncation;
reverse read 17-26 trimmed front, 223-247 truncation]. After denoising, the following
samples had zero reads remaining: 16SV1, 16SV4, rbcL and COI negative PCR controls; COI
aerial negatives A and B; 16SV1 sampleID 8. The taxonomic assignment was completed at
family level with the naive-bayes taxonomic classifiers trained using different reference
databases, depending on the barcode: the SILVA v138 database was used for the assignment
of the 16SV1, 16SV4 and 18S reads65; the diat.barcode v9.2 was used for the assignment of
rbcL reads66; and the Barcode of Life Database was used for the COI reads67 The taxonomy
was assigned using qiime feature-classifier classify-sklearn at family level where possible68.
When classification was not possible at family level, the lowest classification possible was
used. The taxonomic barplots were plotted per barcode using ggplot2 v3.3.569 in R v4.0.270

and including the top ten most abundant families. All other taxa were collapsed in the plots
under ‘other taxa’.

All samples were rarefied (16SV1 at 10,250 reads; 16SV4 at 10,400 reads; 18S at 9,070 reads;
COI at 3,580 reads; rbcL at 4,650 reads) to achieve normalisation for calculating Alpha and
Beta diversity metrics with QIIME263. The following samples did not meet the rarefaction
cutoff: 16SV1: aerial negatives A, B, C; 16SV4: aerial negatives A, B, C and sampleID 62
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sample;18S: aerial negatives A,B,C, negative PCR control, sampleID 18, positive control
replicate 62; rbcL: aerial negative A, B, and sampleIDs 50, 54, 60; COI sampleIDs 40, 64. Alpha
diversity differences among lake phases, using shannon entropy, were tested with Kruskal-
Wallis test and beta diversity differences among lake phases, calculated as weighted unifrac
distances, were established with a PERMANOVA test71. Alpha diversity was plotted using
ggplot2 v3.3.5 with R v4.0.2. Heatmaps of weighted unifrac Beta diversity between each pair
of sediment layers were plotted with the pheatmap v1.0.12 in R v4.0.272.

The function of the microbial communities across the four lake phases were predicted with
PICRUST273 plugin in QIIME263, using the rarefied reads. Differentially abundant KEGG
Orthology (KO) terms between pairs of lake phases were identified using the ANCOM
plugin74 in QIIME263 and were mapped onto KEGG pathways with enriched pathways
identified using a Fisher Exact test.

Drivers of biodiversity change
To identify correlations between biological assemblages (families identified through the
sedaDNA sequencing) and drivers of change, we focused on biocides and climate variables,
using sparse Canonical Correlation Analysis (sCCA; it can be thought of as consensus PCA on
multiple data matrices) followed by Sliding Window (Pearson) Correlation (SWC) analysis
(Supplementary Fig. 5). Physico-chemicals variables were not used in this analysis because of
their sparsity (data rarely met the Sliding Window correlation criteria of 5 continuous
values) and low variation over time (Supplementary Figure 6). sCCA is a tool for integrating
and discovering complex, group-wise patterns among high-dimensional datasets75. While
most forms of machine learning require large sample sizes, sCCA uses fewer observations to
identify the most correlated components among data matrices and captures the multivariate
variability of the most important features76.

Matrices consisting of rarefied ASV reads per barcode, climate data and biocide types were
used as input in the analytical pipeline summarised in Supplementary Fig 4. After the sCCA
analysis the ASVs were assigned to family level where possible or at the next lowest
classifier. The first step of the pipeline is preparing input matrices for ASVs, climate
variables and biocides (Supplementary Fig. 5; Step 1). The following step is a matrix-on-
matrix regression, applied to correlate families called from the ASVs with either biocide type
or climate variables (Supplementary Fig. 5; Step 2). The top five components of the
correlations, based on loading values, that explained the largest covariance between
matrices were extracted from the sCCA, and the abiotic factors (climate variable and biocide
type, separately) ranked according to their contribution to the overall covariance. A Sliding
Window (Pearson) Correlation (SWC) analysis followed this step and was applied to each
pair of vectors represented by the top ranked abiotic factor and the families. This approach
was used to identify abiotic factors (either climate variables or biocide types) that
significantly correlated with families over time, using the criterion that their Pearson
correlation coefficient should be larger than 0.5 (i.e., large effect size77) with an FDR
adjusted p-value (padj) < 0.05 following 10,000 permutations (Supplementary Fig. 5; Step 3).
The minimum sliding window size was set to 5 time points, corresponding to 15% of the total
time window for which families, biocides and climate data were available (the 34 sediment
layers from the sedimentary archive span 100 years). Time intervals with more than 50%
zero values in either the biotic or the abiotic data were discarded from downstream
analyses to reduce false positives. A recall rate was used to quantify the number of ASVs
within a family that were individually significantly correlated with the abiotic variables
over all ASVs in a given family78. The families that co-varied with either biocide types or
climate variables over time were retained if they showed a Pearson correlation coefficient >
0.5, a padj < 0.05 and a recall rate > 0.5 (90% quantile of the recall rates of all families)
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(Supplementary Fig. 5; Step 4). This conservative approach enabled us to reduce noise from
spurious correlations and improve accuracy.

The combined effect of environmental factors may have an augmented impact on
biodiversity. To identify the combined effect of climate variables and biocides on the lake
community biodiversity, we applied again sCCA analysis (Supplementary Fig. 5; Step 5). For
this analysis, we selected the climate variables and biocide types contributing the largest
covariances in the correlation analysis in Step 4. Their combined effect on a family was
considered to be significant if the biocide type and the climate variable were each
significantly correlated with the family over the same time window, and their average
Pearson correlation was > 0.5 with padj < 0.05 (SWC analysis with 10,000 permutations)
(Supplementary Fig. 5; Step 6). The biocide type and the climate variable were interpreted to
have an additive effect on a given family if the linear combination of the biocide type and
the climate variable had a larger Pearson correlation coefficient than each of the
correlations between the family and the biocide type and the family and the climate variable
individually, in the same time interval with padj < 0.05 (with 10,000 permutations in the SWC
analysis).

Within each biocide type that significantly correlated with a family, we established their
ranking based on the correlation coefficient (Supplementary Fig. 5; Step 6). Significant
Pearson correlations that identified the additive effect of climate variables and individual
biocides on a given family were identified with the same criteria outlined above (Pearson
correlation > 0.5; padj < 0.05; SWC with 10,000 permutations). Chemicals with more than 50%
null values or Pearson correlation coefficients < 0.5 were discarded.

Data availability

The metabarcoding sequences generated for this project are available at Biosample ID
SAMN22315717-SAMN22315798.

Code availability

Code used to process and analyse the data in this study are available at https://github.com
/Environmental-Omics-Group/Biodiversity_Monitoring
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Supplementary Figures and Tables

Supplementary Figure 1.

Alpha diversity.

Alpha diversity, measured as
Shannon entropy, is shown for the
five barcodes used in this study
(16SV1, 16SV4, 18S, COI and rbcl) be-
tween 1916-2016. The four lake phas-
es are colour-coded as follows: Black
- Semi-pristine; green - Pesticides;
blue - Eutrophic; red - Recovery.
Kruskal-Wallis test across all phases:
18S: h 4.199, Pval = 0.241; rbcL: h
21.677, Pval<0.000; COI: h 16.958,
Pval = 0.001; 16SV1: h 7.001, Pval =
0.072; 16SV4: h 2.220, Pval = 0.528.
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Supplementary Figure 2.

Principal Coordinate
Analysis.

PCoA visualization of weighted
unifrac distance between samples.
Positive controls for PCR consist of
duplicates of up to three samples
from the sedimentary archive for
each of the five barcodes used in the
study (16SV1, 16SV4, 18S, rbcL and
COI). Replicated samples are circled.

Supplementary Figure 3.

Trophic Diatom Index.

LTDI2 calculated using the diatom species identified in our
study between 1915 and 2015 with the rbcL barcode and the
“DARLEQ3” (Diatoms for Assessing River and Lake Ecological
Quality) tool. Mean value of 67.59, standard deviation 6.31
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Supplementary Figure 4.

Biocides records.

A) Records of physico-chemical parameters mea-
sured in Lake Ring. Dotted lines indicate missing
data points. Summer and annual mean tempera-
ture were recorded at a weather station 80km
from Lake Ring. B) Record of biocides sales in
Denmark (Million Tons/Year) between 1950 and
2016, downloaded from the Danish national
archives; C) empirical record of DDT measured
from the sediment layers of Lake Ring using mass
spectrometry analysis (ng/g; blue) and plotted
against the sales record in Denmark (Million
Tons/year; orange). DDT was banned in Denmark
in 1986.

Supplementary Figure 5.

AI pipeline.

The analytical pipeline consists of six
main steps: Step 1 is the preparation
of input data matrices (ASVs, bio-
cides and climate variables) to be
used in the sCCA analysis. The type
of environmental data may vary with
the study; Step 2 is the matrix-on-
matrix regression between the ASVs
and another environmental data ma-
trix, biocides or climate in this study.
Following the sCCA analysis, the ASVs
are assigned to family level (or other
relevant taxonomic order); Step 3
consists of a Sliding Window (Pear-
son) Correlation (SWC) analysis, used
to identify significant temporal corre-
lations between families and envi-

ronmental variables from the sCCA analysis; Step 4 identifies the families that co-vary with either biocides or climate vari-
ables independently; Step 5 is used to perform an intersection analysis among multiple matrices (families, biodices and
climate variables); Step 6 applies a Sliding Window (Pearson) Correlation (SWC) analysis to identify families, whose rela-
tive abundance changes both with biocides and climate variables over time. The pipeline enables the ranking of environ-
mental variables or their combination thereof that is inversely correlated to the relative abundance of families over time.
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Supplementary Table 1

sCCA analysis.

CCA loadings calculated with sparse canonical correlation analysis for biocides (A) and climate
variables (B). The categories of biocides are insecticides, fungicides, pesticides and herbicides.
The environmental variables are mean minimum temperature, maximum daily precipitations,
highest recorded temperature, mean summer temperature, summer precipitations, annual
total precipitations, summer atmospheric pressure and lowest recorded temperature.
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Supplementary Table 2. Correlations between biodiversity and environmental
variables. Summary of correlations between taxonomic units identified through the five
barcodes (18S, 16SV1, 16SV4, rbcl and COI) and environmental variables, including biocides
and climate factors. The taxonomic name and the number of significant correlations
between a taxonomic unit and environmental variables, is followed by a correlation value,
associated p-adjusted value and recall rate for each variable. The taxonomic units are
reported at the lowest taxonomic assignment possible (f – family; o – order; c-class; p –
phylum; null - unassigned). Results are collated per barcode, each in a separate tab. The last
tab lists only taxonomic units that significantly correlated with the environmental variables
based on the combined criteria of Pearson correlation value greater than 0.5, adjusted P-
value smaller than 0.05 and recall rate greater than 0.5 along with the direction of the
correlation.

See Eastwood_etal_Supplementary Table 2

Supplementary Table 3. Additive effects between biocides and climate variable. The
biocides showing significant additive effect with climate variables are ranked based on their
correlation coefficient. The barcode and identified families that are affected by the joint
effect of a climate variable and biocides type are shown. The order in which the biocide
types are ranked is the same used to plot Figure 5.

See Eastwood_etal_Supplementary Table 3

Supplementary Table 4. Lake Ring metadata. Dating record for Lake Ring, climate data
collected from a weather station adjacent to the lake, and sales records for biocides are
shown. The year of sampling (year), the sample ID, the depth of the sediment layer measured
in centimetres (Depth), climate variables (annual mean temperature °C, summer mean
temperature °C, mean minimum temperature °C, mean maximum temperature °C, highest
recorded temperature °C, lowest recorded temperature °C, mean atmospheric pressure hPa,
summer mean atmospheric presure hPa, annual total precipitation mm, summer
precipitation mm, maximum daily precipitation mm, No. of days with snow cover, annual
mean cloud cover, and summer mean cloud cover) and record of biocides sales between the
1950s and 2016 in tonnes/year and separated per class (insecticides, herbicides, fungicides
and pesticides).

See Eastwood_etal_Supplementary Table 4

Supplementary Table 5. PCR primers. Tab1) PCR1 primers with bibliographic references,
expected fragment size (bp), annealing temperature (°C) and primer sequences (in black)
with overhang to prime the sequencing flow cell; Tab2) PCR2 primers consisting of Nextera
adapters, universal tail and overhang sequence.

See Eastwood_etal_Supplementary Table 5
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Reviewer #1 (Public Review):
This study presents a conceptual and analytical framework for tracking the impacts of
human activities on freshwater ecosystems over time. It demonstrates the application of the
framework to a 100-year record of community-level biodiversity, climate change, and
chemical pollution from sediments cores of Lake Ring, Denmark. By reconstructing
biodiversity using environmental DNA (eDNA) and pollutant inputs using mass
spectrometry, the authors identify the taxonomic groups responding positively and
negatively in different phases of the lake's environmental history. Furthermore, they
identify the independent and additive effects of climate variables and pollutants on
biodiversity throughout the 100-year record.

Strengths:

The advances in paired molecular and machine learning analyses are an important step
towards a better understanding of 20th/21st century trajectories of biodiversity and
pollution.
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The finding that taxonomic groups so central to ecosystem assessment in Europe (i.e.,
diatoms) do not appear to respond to degradation or amelioration - providing at least a
partial explanation as to why "ecological status" (as defined under the EU Water Framework
Directive) has proved so difficult to improve.

The framework shows how both taxonomic and functional indicators can be used to better
understand ecological degradation and recovery.

The identification of individual biocides and climate variables driving observed changes is a
particular strength.

Limitations:

The analytical framework is not sufficiently explained in the main text.

The significance of findings in relation to functional changes is not clear. What are the
consequences of enrichment of RNA transport or ribosome biogenesis pathways between
pesticides and recovery stages, for example?

The impact of individual biocides and climate variables, and their additive effects, are
assessed but there is no information offered on non-additive interactions (e.g., synergistic,
antagonistic).

The level of confidence associated with results is not made explicit. The reader is given no
information on the amount of variability involved in the observations, or the level of
uncertainty associated with model estimates.

The major implications of the findings for regulatory ecological assessment are missed.
Regulators may not be primarily interested in identifying past "ecosystem shifts". What they
need are approaches which give greater confidence in monitoring outcomes by better
reflecting the ecological impact of contemporary environmental change and ecosystem
management. The real value of the work in this regard is that: (1) it shows that current
approaches are inappropriate due to the relatively stable nature of the indicators used by
regulators, despite large changes in pollutant inputs; (2) it presents some better alternatives,
including both taxonomic and functional indicators; and (3) it provides a new reference (or
baseline) for regulators by characterizing "semi-pristine" conditions.

Reviewer #2 (Public Review):
This study highlights the importance of including not only spatio-termporal scales to
biodiversity assessments, but also to include some of the possible drivers of biodiversity loss
and to study their joint contribution as environmental stressors.

Introduction - Well written and placed within the current trends of unprecedented
biodiversity loss, with an emphasis on freshwater ecosystems. The authors identify three
important points as to why biodiversity action plans have failed. Namely, community
changes occur over large spatio-temporal scales and monitoring programs capture a fraction
of these long-term dynamics (e.g. few decades) which although good at capturing trends in
biodiversity change, they often fail at identifying the drivers of these changes. Additionally,
most of these rely on manual sorting of samples, overlooking cryptic diversity, or state-of-
the-art techniques such as sedimentary DNA (sedaDNA) which allow studying decade-long
dynamics, usually focus on specific taxonomic groups unable to represent community-level
changes. Secondly, the authors identify that biodiversity is threatened by multiple factors
and are rarely studied in tandem. Finally, the authors stress the need for high-throughput
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approaches to study biodiversity changes since historically, most conservation efforts rely on
highly specialized skills for biodiversity monitoring, and even well-studied species have
relatively short time series data. The authors identify a model freshwater lake (Lake Ring,
Denmark) - suitable due to its well-documented history over the last 100 years - to present a
comprehensive framework using metabarcoding, chemical analysis and climatic records for
identifying past and current impacts on this ecosystem arising from multiple abiotic
environmental stressors.

Results - They are brief and should expand some more. Particularly, there are no results
regarding metabarcoding data (number of reads, filtering etc.). These details are important
to know the quality of the data which represents the bulk of the analyses. Even the
supplementary material gives little information on the metabarcoding results (e.g. number
of ASVs - whether every ASV of each family were pooled etc.). The drivers of biodiversity
change section could be restructured and include main text tables showing the families
positively or negatively correlated with the different variables (akin to table S2 but
simplified).

Discussion
The discussion is well written, identifying first some of the possible caveats of this study,
particularly regarding the classification of metabarcoding data, its biases and the possible
DNA degradation of ancient sediment DNA. The authors discuss how their results fit to
general trends showing how agricultural runoff and temperature drive changes in
freshwater functional biodiversity primarily due to their synergistic effects on
bioavailability, adsorption, etc. The authors highlight the advantage of using a system-level
approach rather than focusing on taxa-specific studies due to their indicator status.
Similarly, the authors justify the importance of studying community composition as far back
as possible since it reveals unexpected patterns of ecosystem resilience. Lake Ring, despite
its partially recovered status, has not returned to its semi-pristine levels of biodiversity and
community assemblage. Additionally, including enzyme activity allows to assess the
functional diversity of the studied environment, although reference databases of these
pathways are still lacking. Finally, the authors discuss the implications of their findings
under a conservation and land management framework suggesting that by combining these
different approaches, drivers of biodiversity stressors can be derived with high accuracy
allowing for better-informed mitigation and conservation efforts.
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