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Abstract
Background and Objectives: We sought to summarize the study design, modelling strategies, and performance measures reported in
studies on clinical prediction models developed using machine learning techniques.

Methods: We search PubMed for articles published between 01/01/2018 and 31/12/2019, describing the development or the develop-
ment with external validation of a multivariable prediction model using any supervised machine learning technique. No restrictions were
made based on study design, data source, or predicted patient-related health outcomes.

Results: We included 152 studies, 58 (38.2% [95% CI 30.8e46.1]) were diagnostic and 94 (61.8% [95% CI 53.9e69.2]) prognostic
studies. Most studies reported only the development of prediction models (n 5 133, 87.5% [95% CI 81.3e91.8]), focused on binary out-
comes (n5 131, 86.2% [95% CI 79.8e90.8), and did not report a sample size calculation (n5 125, 82.2% [95% CI 75.4e87.5]). The most
common algorithms used were support vector machine (n 5 86/522, 16.5% [95% CI 13.5e19.9]) and random forest (n 5 73/522, 14%
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[95% CI 11.3e17.2]). Values for area under the Receiver Operating Characteristic curve ranged from 0.45 to 1.00. Calibration metrics were
often missed (n 5 494/522, 94.6% [95% CI 92.4e96.3]).

Conclusion: Our review revealed that focus is required on handling of missing values, methods for internal validation, and reporting of
calibration to improve the methodological conduct of studies on machine learningebased prediction models.

Systematic review registration: PROSPERO, CRD42019161764. � 2022 The Author(s). Published by Elsevier Inc. This is an open
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Keywords: Predictive algorithm; Risk prediction; Diagnosis; Prognosis; Development; Validation
1. Introduction

Clinical prediction models aim to improve healthcare by
providing timely information for shared decision-making
between clinician and their patients, risk stratification,
changes in behaviour, and to counsel patients and their rel-
atives [1]. A prediction model can be defined as the
(weighted) combination of several predictors to estimate
the likelihood or probability of the presence or absence of
a certain disease (diagnostic model), or the occurrence of
an outcome over a time period (prognostic model) [2].
Traditionally, prediction models were developed using
regression techniques, such as logistic or time-to-event
regression. However, in the past decade, the attention and
use of machine learning approaches to developing clinical
prediction models has rapidly grown.

Machine learning can be broadly defined as the use of
computer systems that fit mathematical models that assume
nonlinear associations and complex interactions. Machine
learning has a wide range of potential applications in different
pathways of healthcare. For example, machine learning is
applied in stratified medicine, triage tools, image-driven diag-
nosis, online consultations, medication management, and to
mine electronic medical records [3]. Most of these applica-
tions make use of supervised machine learning whereby a
model is fitted to learn the conditional distribution of the
outcome given a set of predictors with little assumption on
data distributions, nonlinear associations, and interactions.
This model can be later applied in other but related individ-
uals to predict their (yet unknown) outcome. Support vector
machines (SVMs), random forests (RFs), and neural networks
(NNs) are some examples of these techniques [4].

The number of studies on prediction models published in
the biomedical literature increases every year [5,6]. With
more healthcare data being collected and increasing
computational power, we expect studies on clinical predic-
tion models based on (supervised) machine learning tech-
niques to become even more popular. Although numerous
models are being developed and validated for various out-
comes, patients’ populations, and healthcare settings, only
a minority of these published models are successfully im-
plemented in clinical practice [7,8].

The use of appropriate study designs and prediction model
strategies to develop or validate a prediction model could
improve their transportability into clinical settings [9].
However, currently there is a dearth of information aboutwhich
study designs, what modelling strategies, and which perfor-
mancemeasures do studies on clinical predictionmodels report
when choosing machine learning as modelling approach
[10e12]. Therefore, our aim was to systematically review
and summarize the characteristics on study design, modelling
steps, and performance measures reported in studies of predic-
tion models using supervised machine learning.
2. Methods

We followed the PRISMA 2020 statement to report this
systematic review [13].

2.1. Eligibility criteria

We searched via PubMed (search date 19 December
2019) for articles published between 1 January 2018 and
31 December 2019 (Supplemental File 1). We focused on
primary studies that described the development or valida-
tion of at least one multivariable diagnostic or prognostic
prediction model(s) using any supervised machine learning
technique. A multivariable prediction model was defined as
a model aiming to predict a health outcome by using two or
more predictors (features). We considered a study to be an
instance of supervised machine learning when reporting a
nonregression approach to model development. If a study
reported machine learning models alongside regression-
based models, this was included. We excluded studies
reporting only regression-based approaches such as unpen-
alized regression (for example, ordinary least squares or
maximum likelihood logistic regression), or penalized
regression (for example, lasso, ridge, elastic net, or Firth’s
regression), regardless of whether they referred to them as
machine learning. Any study design, data source, study
population, predictor type or patient-related health outcome
was considered.

We excluded studies investigating a single predictor,
test, or biomarker. Similarly, studies using machine
learning or AI to enhance the reading of images or signals,
rather than predicting health outcomes in individuals, or
studies that used only genetic traits or molecular (‘‘omics’’)
markers as predictors, were excluded. Furthermore, we also
excluded reviews, meta-analyses, conference abstracts, and

http://creativecommons.org/licenses/by/4.0/
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What is new?

Key findings
� Design and methodological conduct of studies on

clinical prediction models based on machine
learning vary substantially.

What this adds to what was known?
� Studies on clinical prediction models based on ma-

chine learning suffered from poor methodology
and reporting similar to studies using regression
approaches.

What is the implication and what should change
now?
� Methodologies for model development and valida-

tion should be more carefully designed and re-
ported to avoid research waste.

� More attention is needed to missing data, internal
validation procedures, and calibration.

� Methodological guidance for studies on prediction
models based on machine learning techniques is
urgently needed.

articles for which no full text was available via our institu-
tion. The selection was restricted to humans and English-
language studies. Further details about eligibility criteria
can be found in our protocol [14].

2.2. Screening and selection process

Titles and abstracts were screened to identify potentially
eligible studies by two independent reviewers from a group
of seven (CLAN, TT, SWJN, PD, JM, RB, JAAD). After se-
lection of potentially eligible studies, full-text articles were
retrieved and two independent researchers reviewed them
for eligibility; one researcher (CLAN) screened all articles
and six researchers (TT, SWJN, PD, JM, RB, JAAD) collec-
tively screened the same articles for agreement. In case of any
disagreement during screening and selection, a third reviewer
was asked to read the article in question and resolve.

2.3. Extraction of data items

We selected several items from existing methodological
guidelines for reporting and critical appraisal of prediction
model studies to build our data extraction form (CHARMS,
TRIPOD, PROBAST) [15e18]. Per study, we extracted the
following items: characteristics of study design (for
example, cohort, case-control, randomized trial) and data
source (for example, routinely collected data, registries,
administrative databases), study population, outcome,
setting, prediction horizon, country, patient characteristics,
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sample size (before and after exclusion of participants),
number of events, number of candidate and final predictors,
handling of missing data, hyperparameter optimization, da-
taset splitting (for example, train-validation-test), method
for internal validation (for example., bootstrapping, cross-
validation), number of models developed and/or validated,
and availability of code, data, and model. We defined coun-
try as the location of the first author’s affiliation. Per model,
we extracted information regarding the following items:
type of algorithm used, selection of predictors, reporting
of variable importance, penalization techniques, reporting
of hyperparameters, and metrics of performance (for
example, discrimination and calibration).

Items were recorded by two independent reviewers. One
reviewer (CLAN) recorded all items, while the other re-
viewers collectively assessed all articles (CLAN, TT,
SWJN, PD, JM, RB, JAAD). Articles were assigned to re-
viewers in a random manner. To accomplish consistent data
extraction, the standardized data extraction form was pi-
loted by all reviewers on five articles. Discrepancies in data
extraction were discussed and solved between the pair of
reviewers. The full list of extracted items is available in
our published protocol [14].

We extracted information on a maximum number of 10
models per article. We selected the first 10 models reported
in the methods section of articles and extracted items
accordingly in the results section. For articles describing
external validation or updating, we carried out a separate
data extraction with similar items. If studies referred to
the supplemental file for detailed descriptions, the items
were checked in those files. Reviewers could also score
an item as not applicable, not reported, or unclear.
2.4. Summary measures and synthesis of results

Results were summarized as percentages (with confi-
dence intervals calculated using the Wilson score interval
and the Wilson score continuity-corrected interval, when
appropriated), medians, and interquartile range (IQR),
alongside a narrative synthesis. The reported number of
events was combined with the reported number of candi-
date predictors to calculate the number of events per vari-
able (EPV). Data on a model’s predictive performance
were summarized for the apparent performance, corrected
performance, and externally validated performance. We
defined ‘‘apparent performance’’ when studies reported
model performance assessed in the same dataset or sample
in which the model was developed and in case no resam-
pling methods were used; ‘‘corrected performance’’ when
studies reported model performance assessed in test dataset
and/or using resampling methods; and ‘‘externally vali-
dated performance’’ when studies reported model perfor-
mance assessed in another sample than the one use for
model development. As we wanted to identify the method-
ological conduct of studies on prediction models developed
using machine learning, we did not evaluate the nuances of
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Fig. 1. Flowchart of included studies.
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each modelling approach or its performance, instead we
kept our evaluations at study level. We did not perform a
quantitative synthesis of the model’ performance (that is,
meta-analysis), as this was beyond the scope of our review.
Analysis and synthesis of data was presented overall. Ana-
lyses were performed using R (version 4.1.0, R Core Team,
Vienna, Austria).
3. Results

Among the 24,814 articles retrieved, we drew a random
sample of 2,482 articles. After title and abstract screening,
312 references potentially met the eligibility criteria. After
full-text screening, 152 articles were included in this re-
view: 94 (61.8% [95% confidence interval (CI)
53.9e69.2]) prognostic and 58 (38.2% [95% CI
30.8e46.1]) diagnostic prediction model studies (Fig. 1).
Detailed description of the included articles is provided in
Supplemental File 2.

In 152 articles, 132 (86.8% [95% CI 80.5e91.3]) studies
developed prediction models and evaluated their perfor-
mance using an internal validation technique, 19 (12.5%
[95% CI 8.2e18.7]) studies developed and externally vali-
dated the same ML-based prediction model, and 1 (0.6%)
study included model development with external validation



Table 1. General characteristics of included studies

Key characteristics

Total (n [ 152)

n (%) [95% CI]

Study aim

Diagnosis 58 (38.2) [30.8e46.1]

Prognosis 94 (61.8) [53.9e69.2]

Study type

Model development only 133 (87.5) [81.3e91.8]

Model development with external
validation

19 (12.5) [8.2e18.7]

Outcome aim

Classification 120 (78.9) [71.8e84.7]

Risk probabilities 32 (21.0) [80.5e91.3]

Settinga

General population 17 (11.2) [7.1e17.2]

Primary care 15 (9.9) [6.1e15.6]

Secondary care 32 (21.1) [15.3e28.2]

Tertiary care 78 (51.3) [43.4e59.1]

Unclear 13 (8.6) [5.1e14.1]

Outcome format

Continuous 7 (4.6) [2.2e9.2]

Binary 131 (86.2) [79.8e90.8]

Multinomial 7 (4.6) [2.2e9.2]

Ordinal 2 (1.3) [0.4e4.7]

Time-to-event 3 (2.0) [0.7e5.6]

Count 2 (1.3) [0.4e4.7]

Type of outcome

Death 21 (13.8) [9.2e20.2]

Complications 65 (42.8) [35.2e50.7]

Disease detection 30 (19.7) [14.2e26.8]

Disease recurrence 9 (5.9) [3.1e10.9]

Survival 3 (2.0) [0.7e5.6]

Readmission 4 (2.6) [1e6.6]

Otherb 20 (13.2) [8.7e19.5]

Mentioning of reporting guidelinesa

TRIPOD 8 (5.3) [2.7e10]

STROBE 3 (2.0) [0.7e5.6]

Otherc 5 (3.3) [1.4e7.5]

None 139 (91.4) [85.9e94.9]

Model availabilitya

Repository for data 18 (11.8) [7.6e17.9]

Repository for code 13 (8.6) [5.1e14.1]

Model presentationd 31 (20.4) [14.8e27.5]

None 121 (79.6) [72.5e85.2]

a Counts are absolute numbers with column percentages in paren-
theses. The percentages sometimes do not add up to 100% because
studies reported more than one option.

b This includes length of stay, medication dose, patient’s disposi-
tion, order type, lesion extension, laboratory results, cancer stage,
treatment option, attendance, equipment usage, operative time.

c Guidelines for developing and reporting machine learning
models in biomedical research (n 5 2), STARD (n 5 2), BRISQ
(n 5 1).

d This includes simplified scoring rule, chart, nomogram, online
calculator, or worked examples.

Table 2. Modelling algorithms for all extracted models

Modelling algorithm

All extracted models
(n [ 522)

n (%) [95% CI]

Unpenalized regression models 101 (19.3) [16.1e23.1]

Ordinary least squares regressiona 27 (5.2) [3.5e7.5]

Maximum likelihood logistic
regression

74 (14.2) [11.4e17.5]

Penalized regression models 29 (5.6) [3.8e8]

Elastic Net 9 (1.7) [0.8e3.4]

LASSO 13 (2.5) [1.4e4.3]

Ridge 7 (1.3) [0.6e2.9]

Tree-based models 166 (31.8) [28e36]

Decision trees (for example, CART)b 46 (8.8) [6.6e11.7]

Random forestc 73 (14) [11.2e17.3]

Extremely randomized trees 1 (0.2) [0.01e1.2]

Regularized Greedy Forest 1 (0.2) [0.01e1.2]

Gradient boosting machined 34 (6.5) [4.6e9.1]

XGBoost 11 (2.1) [1.1e3.9]

Neural Network (incl. deep learning)e 75 (14.4) [11.5e17.7]

Support Vector Machine 86 (16.5) [13.5e20]

Na€ıve Bayes 22 (4.2) [2.7e6.4]

K-nearest neighbor 15 (2.9) [1.7e4.8]

Superlearner ensembles 14 (2.7) [1.5e4.6]

Otherf 10 (1.9) [1-3e6]

Unclear 4 (0.8) [0.2e2.1]

Abbreviations: CART, classification and regression tree; LASSO,
least absolute shrinkage and selection operator; XGBoost, extreme
gradient boosting; CI, confidence interval.

a Discriminant analysis, generalized additive models (GAM), par-
tial least squares were extracted as OLS regression.

b This includes conditional inference tree (n 5 3), optimal tree
(n 5 1).

c This includes Random Survival Forest (n 5 2).
d This includes lightGBM (n 5 1), adaBoost (n 5 8), catBoost

(n5 1), logitboost (n5 1), RUSBoost (n5 1), and stochastic (n5 1).
e Multilayer perceptron, denseNet, convolutional, recurrent, and

Bayesian neural networks were extracted as neural networks.
f This includes bayesian network (n 5 3), rule-based classifier

(n 5 1), highly predictive signatures (n 5 1), Kalman filtering
(n 5 1), fuzzy soft set (n 5 1), adaptive neuro-fuzzy inference system
(n 5 1), stochastic gradient descent (n 5 1), fully corrective binning
(n 5 1).
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of another comparative model (eventually included as
development with internal validation). Eighty-seven studies
(57% [95% CI 49.3e64.8]) were published in 2019 and 65/
152 studies (42.8% [95% CI 35.2e50.7]) in 2018. The
three clinical fields with the most articles were oncology
(n 5 21/152, 13.8% [95% CI 9.2e20.2), surgery
(n 5 20/152, 13.5% [95% CI 8.7e19.5), and neurology
(n 5 20/152, 13.5% [95% CI 8.7e19.5]). Most articles
originated from North America (n 5 59/152, 38.8% [95%
CI 31.4e46.7]), followed by Asia (n 5 46/152, 30.3%
[95% CI 23.5e38]) and Europe (n 5 37/152, 24.3%
[95% CI 18.2e31.7]). Half of the studies had a first author



Table 3. Study design of included studies, stratified by type of prediction model study

Key items

Total (n [ 152) Development only (n [ 133)
Development with external validation

(n [ 19)

n (%) [95% CI] n (%) [95% CI] n (%) [95% CI]

Data sourcesa,c

Prospective cohort 50 (32.9) [25.9e40.7] 43 (32.3) [25e40.7] 7 (36.8) [19.1e59]

Retrospective cohort 48 (31.6) [24.7e39.3] 45 (33.8) [26.3e42.2] 4 (21.1) [8.5e43.3]

Randomized Controlled Trial 3 (2.0) [0.7e5.6] 2 (1.5) [0.4e5.3] 1 (5.3) [0.3e24.6]

EMR 30 (19.7) [14.2e26.8] 28 (21.1) [15e28.7] 0

Registry 18 (11.8) [7.6e17.9] 15 (11.3) [7e17.8] 4 (21.1) [8.5e43.3]

Administrative claims 4 (2.6) [1e6.6] 4 (3.0) [1.2e7.5] 0

Case-control 18 (11.8) [7.6e17.9] 15 (11.3) [7e17.8] 3 (15.8) [5.5e37.6]

Number of centers 110 (72.4) 98 (73.7) 12 (63.2)

Median [IQR] (range) 1 [1e3], 1 to 51,920 1 [1e3], 1 to 712 1 [1e10], 1 to 51,920

Follow-up (mo)b 47 (30.9) 39 (29.2) 8 (42.1)

Median [IQR] (range) 41.9 [3e60], 0.3 to 307 43.6 [4.5e60], 0.3 to 307 33.5 [1.75e42], 1 to 144

Predictor horizon (mo)b 49 (32.2) [25.3e40] 61 (45.9) [37.6e54.3] 7 (36.8)

Median [IQR] (range) 8.5 [1e36], 0.03 to 120 6 [1e33.5], 0.03 to 120 36 [6.5e60], 1 to 60

Sample size justification 27 (17.8) [12.5e24.6] 24 (18.0) [12.4e25.4] 3 (15.8)

Power 5 (18.5) [8.2e36.7] 5 (20.8) [9.2e40.5] 0

Justified time interval 5 (18.5) [8.2e36.7] 3 (12.5) [4.3e31] 2 (66.7)

Size of existing/available data 16 (59.3) [40.7e75.5] 15 (62.5) [42.7e78.8] 1 (33.3)

Events per variable 1 (3.7) [0.2e18.3] 1 (4.2) [0.2e20.2] 0

Internal validationa

Split sample with test set 86 (56.6) [48.6e64.2] NA NA

(Random) split 49 (57) [46.4e66.9]

(Nonrandom) split 9 (10.5) [5.6e18.7]

Splitd 28 (32.6) [23.6e43]

Bootstrapping 5 (3.3) [1.4e7.5] NA NA

With test set 3 (60.0) [23.1e88.2]

With cross-validation 1 (20) [1e62.4]

Cross-validation 70 (46.1) [38.3e54] NA NA

Non-nested (single) 32 (45.7) [34.6]

Nested 10 (14.3) [7.9e24.3]

With test set 24 (34.3) [24.2e46]

External validationa

Chronological NA NA 5 (26.3) [11.8-48.8]

Geographical NA NA 3 (15.8) [5.5-37.6]

Independent dataset NA NA 11 (57.9) [36.3-76.9]

Fully independent dataset NA NA 8 (42.1) [23.1-63.7]

a Counts are absolute numbers, with column percentages in parentheses. The percentages sometimes do not add up to 100% because studies
reported more than one measure. We report then the raw percentages. NA, not applicable.

b We collected the longest follow-up and longest prediction horizon, both in months.
c Data sources also included surveys (n 5 2), cross-sectional studies (n 5 2).
d Unclear whether split sample was performed random or nonrandom.
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with a clinical affiliation (n 5 85/152, 56% [95% CI
48e63.6]). Other characteristics are shown in Table 1.

Overall, 1,429 prediction models were developed (Me-
dian: 9.4 models per study, IQR: 2e8, Range: 1e156).
As we set a limit on data extraction to 10 models per article,
we evaluated 522 models. The most common applied
modeling techniques were support vector machine
(n 5 86/522, 16.5% [95% CI 13.5e20]), logistic regression
(n 5 74/522, 14.2% [95% CI 11.4e17.5]), and random for-
est ([n 5 73/522, 14% [95% CI 11.2e17.3]). Further
modelling algorithms are described in Table 2. In 120/
152 (78.9% [95% CI 71.8e84.7]) articles, authors recom-
mended at least one model usually based on model perfor-
mance (that is, AUC).



Table 4. Predictors in included studies

Key items

Total (n [ 152)

n (%) [95% CI]

Type of candidate predictorsa

Demography 120 (78.9) [71.8e84.7]

Clinical history 111 (73.0) [65.5e79.4]

Physical examination 0

Blood or Urine parameters 63 (41.4) [33.9e49.4]

Imaging 49 (32.2) [52.3e40]

Genetic risk score 7 (4.6) [2.2e9.2]

Pathology 16 (10.5) [6.6e16.4]

Scale score 31 (20.4) [14.8e27.5]

Questionnaires 0

Treatment as candidate predictor

Yes 36 (23.7) [17.6e31]

No 80 (52.6) [44.7e60.4]

Not applicable 36 (23.7) [17.6e31]

Continuous variables as candidate
predictors

Yes 131 (86.2) [79.8e90.8]

Unclear 17 (11.2) [7.1e17.2]

A-priori selection of candidate predictorsb

Yes 63 (41.4) [33.9e49.4]

No 47 (30.9) [24.1e38.7]

Unclear 42 (27.6) [21.1e35.2]

Methods to handle continuous
predictorsa,b

Linear (no change) 13 (8.6) [5.1e14.1]

Nonlinear (planned) 2 (1.3) [0.4e4.7]

Nonlinear (unplanned) 4 (2.6) [1e6.6]

Categorized (some) 16 (10.5) [6.6e16.4]

Categorized (all) 18 (11.8) [7.6e17.9]

Unclear 104 (68.4) [60.7e75.3]

Categorization of continuous predictorsb

Data dependent 4 (2.6) [1e6.6]

No rationale 17 (11.2) [7.1e17.2]

Based on previous literature or
standardization

13 (8.6) [5.1e14.1]

Not reported 118 (77.6) [70.4e83.5]

a Counts are absolute numbers, with column percentages in pa-
rentheses. The percentages sometimes do not add up to 100%
because studies can report more than one measure.

b As data preparation.
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3.1. Participants

Participants included in the reviewed studies were
mostly recruited from secondary (n 5 32/152, 21.1%
[95% CI 15.3e28.2]) and tertiary care (n 5 78/152,
51.3% [95% CI 43.4e59.1]) settings (Table 1). Approxi-
mately half of the studies involved data from one center
(n 5 73/152, 48% [95% CI 40.2e55.9]) (Table 3).

3.2. Data sources

The prediction models were most frequently developed
using cohort data, either prospective (n 5 50/152, 32.9%
[95% CI 25.9e40.7]) or retrospective (n 5 48/152, 31.6%
[95% CI 24.7e39.3]). Electronic medical records were used
in 30/152 studies (19.7% [95% CI 14.2e26.8]). Data collec-
tion was conducted on average for 41.9 months (IQR 3 to
60 months) when used to develop models, while for exter-
nally validation this was 44.4 months (IQR 1.75 to
42 months). In 101 out of 152 studies (66.4% [95% CI
58.6e73.5]), the time horizon for the predictions was mostly
unspecified. However, when reported (n 5 51/152, 33.6%
[95% CI 26.5e41.4]), the time horizon of prediction ranged
from 24 hours to 8 years (Table 3).

3.3. Outcome

Most models were developed to predict a binary
outcome (n 5 131/152, 86.2% [95% CI 79.8e90.8]). The
most frequent predicted outcome was complications after
a certain treatment (n 5 66/152, 43.4% [95% CI
35.8e51.4]). Mortality was also a common endpoint
(n 5 21/152, 13.8% [95% CI 9.2e20.2]) (Table 1).

3.4. Candidate predictors

Candidate predictors frequently involved demographics,
such as age and sex (n 5 120/152, 78.9% [95% CI
71.8e84.7]), clinical history (n 5 111/152, 73% [95% CI
65.5e79.4]), and blood and urine parameters (n 5 63/152,
41.4% [95%CI 33.9e49.4]).When applicable, treatmentmo-
dalitieswere also considered as predictors (n5 36/116, 31.0%
[95% CI 17.6e31]). Studies included a median of 24 candi-
date predictors (IQR 13e112). Most studies included contin-
uous variables as candidate predictors (n 5 131/152, 86.2%
[95% CI 79.8e90.8]). Whether continuous predictors were
categorized during data preparation was often unclear
(n5 104/152, 68.4% [95% CI 60.7e75.3]) (Table 4).

3.5. Sample size

Studies had a median sample size of 587 participants
(IQR 172e6,328). The number of events across the studies
had a median of 106 (IQR 50e364). Based on studies with
available information (n 5 28/152, 18.4% [95% CI
13.1e25.3]), a median of 12.5 events per candidate predic-
tors were used for model development (IQR 5.7e27.7)
(Table 5). Most studies did not report a sample size
calculation or justification for sample size (n 5 125/152,
82.2% [95% CI 75.4e87.5]). When sample size justifica-
tion was provided, the most frequent rationale given was
based on the size of existing/available data used (n 5 16/
27, 59.3% [95% CI 40.7e75.5]) (Table 3).

3.6. Missing values

Missing values were an explicit exclusion criterion of
participants in 56 studies (n 5 56/152, 36.8% [95% CI



Table 5. Sample size of included studies (n 5 152)

Key items

Total (n [ 152)

n (%) Median [IQR], range

Initial sample size 93 (61.2) 999 [272e24,522], 8 to 1,093,177

External validationa 13 (68.4) 318 [90e682], 19 to 1,113,656

Final sample size 151 (99.3) 587 [172e6,328], 8 to 594,751

Model development 83 (54.6) 641 [226e10,512], 5 to 392,536

Internal validationb 83 (54.6) 230 [75e2,892], 2 to 202,215

External validationa 18 (94.7) 293 [71e1,688], 19 to 59,738

Initial number of events 10 (6.6) 66 [15e207], 15 to 4,370

External validationa 1 (5.3) 107

Final number of events 37 (24.3) 106 [5e-364], 15 to 7,543

Model development 19 (13.2) 156 [47e353], 10 to 5,054

Internal validationb 19 (13.2) 35 [26e109], 4 to 2,489

External validationa 4 (21.1) 250 [121e990], 107 to 2,834

Number of candidate predictors 119 (78.3) 24 [13e112], 2 to 39,212

Number of included predictors 90 (59.2) 12 [7e23], 2 to 570

Events per candidate predictorc 28 (18.4) 12.5 [5.7e27.7], 1.2 to 754.3

a External validation was performed in 19 studies.
b Combines all internal validation methods, for example, split sample, cross-validation, bootstrapping.
c For model development.
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29.6e44.7]). To handle missing values, complete-case anal-
ysis was the most common method (n 5 30/152, 19.7%
[95% CI 14.2e26.8]). Other methods were median imputa-
tion (n 5 10/152, 6.6% [95% CI 3.6e11.7), multiple impu-
tation (n 5 6/152, 3.9% [95% CI 1.9e8.3]) and k-nearest
neighbor imputation (n 5 5/152, 3.3% [95% CI
1.4e7.5]). Further methods to handle missing values are
presented in Table 6.

3.7. Class imbalance

In our sample, 27/152 (17.8% [95% CI 12.5e24.6])
studies applied at least one method to purportedly address
class imbalance, that isewhen one class of the outcome
outnumbers the other class (Table 7). The most applied
technique was Synthetic Minority Over-sampling Tech-
nique (SMOTE), a method that combines oversampling
the minority class with undersampling the majority class
[19,20].

3.8. Modelling algorithms

Tree-based methods were applied in 166/522 (31.8%
[95% CI 27.9e36]) models with random forest being the
most popular (n 5 73/522, 14% [95% CI 11.2e17.3]).
Alongside machine learning algorithm, unpenalized regres-
sion methods (n 5 101/522, 19.3% [95% CI 16.1e23.1]),
and particularly logistic regression (n 5 74/522, 14.2
[95% CI 11.4e17.5]) were often applied. Few studies re-
ported models built with penalized regression (n 5 29/
522, 5.6% [95% CI 3.8e8]). NNs (n 5 74/522, 14.2%
[95% CI 11.4e17.5]) and Na€ıve Bayes (n 5 22/522,
4.2% [95% CI 2.7e6.4]) were also applied in our sample
of articles.

3.9. Selection of predictors

The strategy to build models was unclear in 168 out of
522 models (32.2% [95% CI 28.2e36.4]). Most models re-
ported a data-driven approach for model building (n 5 192/
522, 36.8% [95% CI 32.7e41.1]). One study reported the
use of recursive feature elimination for model building
(n 5 3/522, 0.6% [95% CI 0.1e1.8]). Selection of candi-
date predictors based on univariable predictoreoutcome as-
sociations was used in 27/522 (5.2% [95% CI 3.5e7.5]) of
the models. Further details on modelling strategies are pre-
sented in Table 8. Of the three studies that reported time-to-
event outcomes none reported how they dealt with
censoring.

3.10. Variable importance and hyperparameters

Variable importance scores show insight into how much
each variable contributed to the prediction model [21]. For
316/522 (60.5% [95% CI 56.2e64.7]) models, authors did
not provide these scores, while in 115/522 (22% [95% CI
18.6e25.9]) models these scores were reported without
specifying the methods applied to obtain such calculations
(Table 8). When reported, the mean decrease in node impu-
rity was the most popular method (n 5 31/522, 5.9% [95%
CI 4.1e8.4]). Hyperparameters (including default settings)
were reported in 160/552 (30.7% [95% CI 26.8e34.8])
models. Strategies for hyperparameter optimization were
described in 44/152 studies (28.9% [95% CI 22.3e36.3]).



Table 6. Handling of missing values, stratified by study type

Key items

Total (n [ 152) Development only (n [ 133)
Development with external validation

(n [ 19)

n (%) [95% CI] n (%) [95% CI] n (%) [95% CI]

Missingness as exclusion criteria for
participants

Yes 56 (36.8) [29.6e44.7] 51 (38.3) [30.5e46.8] 2 (10.5) [2.9e31.4]

Unclear 36 (23.7) [17.6e31] 33 (24.8) [18.2e32.8] 6 (31.6) [15.4e54]

Number of patients excluded 36 (23.7) [17.6e31] 34 (25.6) [18.9e33.6] 0

Median [IQR] (range) 191 [19e4,209], (1 to
627,180)

224 [16e4,699], (1 to
627,180)

0

Methods of handling missing dataa

No missing data 4 (2.6) [1e6.6] 3 (2.3) [0.8e6.4] 1 (5.3) [0.3e24.6]

No imputation 4 (2.6) [1e6.6] 4 (3) [1.2e7.5] 0

Complete case-analysis 30 (19.7) [14.2e26.8] 28 (21.1) [15e28.7] 2 (10.5) [2.9e31.4]

Mean imputation 4 (2.6) [1e6.6] 3 (2.3) [0.8e6.4] 1 (5.3) [0.3e24.6]

Median imputation 10 (6.6) [3.6e11.7] 10 (7.5) [4.1e13.3] 0

Multiple imputation 6 (3.9) [1.8e8.3] 6 (4.5) [2.1e9.5] 0

K-nearest neighbor imputation 5 (3.3) [1.4e7.5] 5 (3.8) [1.6e8.5] 0

Replacement with null value 3 (2.0) [0.7e5.6] 1 (0.8) [0e4.1] 2 (10.5) [2.9e31.4]

Last value carried forward 4 (2.6) [1e6.6] 4 (3) [1.2e7.5] 0

Surrogate variable 1 (0.7) [0e3.6] 1 (0.8) [0e4.1] 0

Random forest imputation 4 (2.6) [1e6.6] 3 (2.3) [0.8e6.4] 1 (5.3) [0.3e24.6]

Categorization 3 (2) [0.7e5.6] 2 (1.5) [0.4e5.3] 1 (5.3) [0.3e24.6]

Unclear 6 (3.9) [1.8e8.3] 5 (3.8) [1.6e8.5] 1 (5.3) [0.3e24.6]

Presentation of missing data

Not summarized 129 (84.9) [78.3e89.7] 114 (85.7) [78.8e90.7] 16 (84.2) [62.4e94.5]

Overall 6 (3.9) [1.8e8.3] 4 (3) [1.2e7.5] 2 (10.5) [2.9e31.4]

By all final model variables 3 (2) [0.7e5.6] 3 (2.3) [0.8e6.4] 0

By all candidate predictors 13 (8.6) [5.1e14.1] 11 (8.3) [4.7e14.2] 1 (5.3) [0.3e24.6]

By number of variables 1 (0.7) [0e3.6] 1 (0.8) [0e4.1] 0

a Counts are absolute numbers, with column percentages in parentheses. The percentages sometimes do not add up to 100% because studies
can report more than one technique.
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The most common method reported was cross-validation
(n 5 15/152) [9.9% [95% CI 6.1e15.6]. Nine studies
(n 5 9/152, 5.9% [95% CI 3.1-10.9]) split their dataset into
a validation set for hyperparameter tuning (Table 7).

3.11. Performance metrics

Most models used measures of the area under the
Receiver Operating Characteristic curve (AUC/ROC or
the concordance (c)-statistic) (n 5 358/522, 68.6% [95%
CI 64.4e72.5]) to describe the discriminative ability of
the model (Table 9). A variety of methods were used to
describe the agreement between predictions and observa-
tions (that is, calibration), the most frequent being a cali-
bration plot (n 5 23/522, 4.4% [95% CI 2.9e6.6]),
calibration slope (n 5 17/522, 3.3% [95% CI 2e5.3]),
and calibration intercept (n 5 16/522, 3.1% [95% CI
1.8e5]). However, for the large majority no calibration
metrics were reported (n 5 494/522, 94.6% [95% CI
92.2e96.3]). Decision curve analysis was reported for
two models (n 5 2/522, 0.4% [95% CI 0.1e1.5]) [22].
We also found overall metrics such as classification accu-
racy (n 5 324/522, 62.1% [95% CI 57.8e66.2]) and F1-
score (n 5 79/522, 15.1% [95% CI 12.2e18.6]).

3.12. Uncertainty quantification

In 53/152 (34.9% [95% CI 22.8e42.7]) studies, discrim-
ination was reported without precision estimates (that is,
confidence intervals or standard errors). Likewise, 7/152
(4.6% [95% CI 2.2e9.2]) studies reported model calibra-
tion without precision estimates.

3.13. Predictive performance

Most models achieved discriminative ability better than
chance (that is, AUC 0.5) with a median apparent AUC of
0.82 (IQR 0.75e0.90; range 0.45 to 1.00), while internally
validated AUC was also 0.82 (IQR: 0.74e0.89; range 0.46
to 0.99). For external validation, the median AUC was 0.73
(IQR: 0.70e0.78, range: 0.51-0.88). For calibration and
overall performance metrics, see Table 10.



Table 7. Machine learning aspects in the included studies

Key items

Total (n [ 152)

n (%) [95% CI]

Data preparationa 58 (38.2) [30.8e46.1]

Cleaning 21 (36.2) [25.1e49.1]

Aggregation 6 (10.3) [4.8e20.8]

Transformation 6 (10.3) [4.8e20.8]

Sampling 2 (3.4) [1e11.7]

Standardization/Scaling 11 (19) [10.9e30.9]

Normalization 22 (37.9) [26.6e50.8]

Integration 0

Reduction 12 (20.7) [12.3e32.8]

Otherb 9 (15.5) [8.4e26.9]

Data splitting 86 (56.6) [48.6e64.2]

Train-test set 77 (50.7) [42.8e58.5]

Train-validation-test set 9 (5.9) [3.1e10.9]

Dimensionality reduction techniques 9 (5.9) [3.1e10.9]

CART 1 (11.1) [0.6e43.5]

Principal component analysis 3 (33.3) [12.1e64.6]

Factor analysis 1 (11.1) [0.6e43.5]

Image decomposition 1 (11.1) [0.6e43.5]

Class imbalancea 27 (17.8) [12.5e24.6]

Random undersampling 4 (14.8) [5.9e32.5]

Random oversampling 5 (18.5) [8.2e36.7]

SMOTE 11 (40.7) [24.5e59.3]

RUSBoost 1 (3.7) [0.2e18.3]

Otherc 7 (25.9) [13.2e44.7]

Strategy for hyperparameter optimizationa 44 (28.9) [22.3e36.6]

Grid search (no further details) 5 (3.3) [1.4e7.5]

Cross-validated grid search 14 (9.2) [5.6e14.9]

Randomized grid search 1 (0.7) [0e3.6]

Cross-validation 15 (9.9) [6.1e15.6]

Manual search 1 (0.7) [0e3.6]

Predefined values/default 3 (2) [0.7e5.6]

Bayesian optimization 2 (1.3) [0.4e4.7]

Tree-structured parzen estimator
method

1 (0.7) [0e3.6]

Unclear 4 (2.6) [1e6.6]

Abbreviations: CART, classification and regression tree.
a Counts are absolute numbers, with column percentages in pa-

rentheses. The percentages sometimes do not add up to 100%
because studies can report more than one measure.

b This includes matching, augmentation, noise filtering, merging,
splitting, binning.

c This includes matching, resampling, class weighting, inverse
class probability.

Table 8. Model building of all included studies

Key items

Total (n [ 522)

n (%) [95% CI]

Selection of predictors

Stepwise 8 (1.5) [0.7e3.1]

Forward selection 31 (5.9) [4.1e8.4]

Backward selection 5 (1) [0.4e2.4]

All predictors 72 (13.8) [11e17.1]

All significant in univariable analysis 27 (5.2) [3.5e7.5]

Embedded in learning process 192 (36.8) [32.7e41.1]

Other 19 (3.6) [2.3e5.7]

Unclear 168 (32.2) [28.2e36.4]

Hyperparameter tunning reported

Yes 160 (30.7) [26.7e34.8]

No 283 (54.2) [49.8e58.5]

Not applicable/Unclear 79 (15.1) [12.2e18.6]

Variable importance reported

Mean decrease in accuracy 26 (5) [3.3e7.3]

Mean decrease in node impurity 31 (5.9) [4.1e8.4]

Weights/correlation 10 (1.9) [1e3.6]

Gain information 24 (4.6) [3e6.9]

Unclear method 115 (22) [18.6e25.9]

None 316 (60.5) [56.2e64.7]

Penalization methods used

None 481 (92.1) [89.4e94.2]

Uniform shrinkage 3 (0.6) [0.1e1.8]

Penalized estimation 27 (5.2) [3.5e7.5]

Other 11 (2.1) [1.1e3.9]

Counts are absolute numbers, with column percentages in paren-
theses. The percentages sometimes do not add up to 100% because
studies can report more than one measure.
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3.14. Internal validation

In total, 86/152 studies (56.6% [95% CI 48.6e64.2])
internally validated their models, most often splitting the
dataset into a training and test set. The train-test sets were
often split randomly (n5 49/86, 57% [95% CI 46.4e66.9])
and in a few studies a temporal (nonrandom) split was
applied (n 5 9/86, 10.5% [95% CI 5.6e18.7]). The
proportion of the data used for test sets ranged from 10%
to 50% of the total dataset. Seventy studies also performed
cross-validation (46.1% [95% CI 38.3e54]) with ten
studies reporting nested cross-validation (6.6% [95% CI
3.6e11.7]). Out of five studies performing bootstrapping
(n 5 5/152, 3.3% [95% CI 1.4e7.5]), one reported 250 it-
erations, three reported 1,000 iterations and one did not
report the number of iterations. For further details see
Table 3.
3.15. External validation

Few studies (n 5 19/152, 12.5% [95% CI 8.2e18.7])
performed an external validation. Eleven studies (n 5 11/
19, 57.9% [95% CI 36.3e76.9]) used data from indepen-
dent cohorts and eight (n 5 8/19, 42.1% [95% CI
23.1e63.7]) used subcohorts within the main cohort to vali-
date their developed models. From the independent cohorts,
three studies (n 5 3/19, 15.8% [95% CI 5.5e37.6]) used
data from a different country. Five studies (n 5 5/19,
26.3% [95% CI 11.8e48.8]) described an external



Table 9. Performance measures reported, stratified by model development and validation

Key items

All extracted models (n [ 522)

n (%) [95% CI]

DEV VAL

Calibrationa

Calibration plot 23 (4.4) [2.9e6.6] 1 (0.2) [0.01e1.2]

Calibration slope 17 (3.3) [2e5.3] 1 (0.2) [0.01e1.2]

Calibration intercept 16 (3.1) [1.8e5] 1 (0.2) [0.01e1.2]

Calibration in the large 1 (0.2) [0.01e1.2] 0

Calibration table 1 (0.2) [0.01e1.2] 0

Kappa 10 (1.9) [1e3.6] 0

Observed/expected ratio 1 (0.2) [0.01e1.2] 0

Homer-Lemeshow statistic 4 (0.8) [0.3e2.1] 0

None 494 (94.6) [92.3e96.3]

Discrimination

AUC/AUC-ROC 349 (66.9) [62.6e70.9] 46 (8.8) [6.6e11.7]

C-statistic 9 (1.7) [0.8e3.4] 0

None 164 (31.4) [27.5-\e35.6]

Classificationa

NRI 9 (1.7) [0.8e3.4] 0

Sensitivity/Recall 239 (45.8) [41.5e50.2] 30 (5.7) [4e8.2]

Specificity 193 (37) [32.8e41.3] 22 (4.2) [2.7e6.4]

Decision-analytica

Decision Curve Analysis 2 (0.4) [0.01e1.5] 0

IDI 1 (0.2) [0.01e1.2] 0

Overalla

R2 14 (2.7) [1.5e4.6] 0

Brier score 19 (3.6) [2.3e5.7] 6 (1.1) [0.5e2.6]

Predictive valuesb 160 (30.7) [26.8e34.8] 10 (1.9) [1e3.6]

AUC difference 2 (0.4) [0.01e1.5] 0

Accuracyc 234 (44.8) [40.5e49.2] 26 (5) [3.4e7.3]

F1-score 79 (15.1) [12.2e18.6] 0

Mean square error 21 (4) [2.6e6.2] 0

Misclassification rate 9 (1.7) [0.8e3.4] 0

Mathew’s correlation coefficient 5 (1) [0.4e2.4] 0

AUPR 21 (4) [2.6e6.2] 0

Abbreviations: DEV, developed model; VAL, validation; AUC-ROC, area under the receiver operation characteristic curve; NRI, net reclassifica-
tion index; IDI, integrated discrimination improvement; AUPR, area under the precision-recall curve; CI, confidence interval.

a Counts are absolute numbers, with column percentages in parentheses. The percentages sometimes do not add up to 100% because studies
can report more than one performance measure.

b This includes models reporting positive predictive value as precision.
c This includes models reporting balance accuracy.

18 C.L. Andaur Navarro et al. / Journal of Clinical Epidemiology 154 (2023) 8e22
validation based on temporal differences on the inclusion of
participants. Seven studies (36.8% [95% CI 19.1e59]) re-
ported differences and similarities in definitions between
the development and validation data.

3.16. Model availability

Some studies shared their prediction model either as a
web-calculator or worked example (n 5 31/152, 20.4%
[95% CI 14.8e27.5]). Furthermore, in a minority of studies
datasets and code were accessible through repositories,
which were shared as supplemental material (n 5 18/152,
11.8% [95% CI 7.6e17.9]; n 5 13/152, 8.6% [95% CI
5.1e14.1]). Details in Table 1.
4. Discussion

4.1. Principal findings

In this study, we evaluated the study design, data sour-
ces, modelling steps, and performance measures in studies



Table 10. Predictive performance of all extracted modelsa

Key items

All extracted models (n [ 522)

Reported,
n (%)

Apparent
performance Reported,

n (%)

Corrected
performanceb Reported,

n (%)

Externally validated
performance

Median [IQR], range Median [IQR], range Median [IQR], range

Calibration

Slope 11 (1.9) 1.05 [1.02e1.07],
0.53 to 1.46

15 (2.9) 1.3 [1e4],
0.52 to 17.6

4 (0.8) 9.9 [7.87e12.8],
5.7 to 17.6

Intercept 10 (1.9) 0.07 [0.05e0.12],
�0.08 to 2.32

15 (2.9) �0.01 [�1.85e0.15],
�8.3 to 2.74

4 (0.8) �4.5 [�5.7 to �3.8],
�8.3 to �3

Calibration-in-the-
large

1 (0.2) �0.008 0 0

Observed:expected
ratio

1 (0.2) 0.993 4 (0.8) 0.99 [0.98e1.01],
0.98 to 1.04

0

Homer-Lemeshow 2 (0.2) Not significant 0 0

Pearson chi-square 1 (0.2) Not significant 0 0

Mean Calibration
Error

4 (0.8) 0.81 [0.7e0.88],
0.51 to 0.99

0 0

Discrimination

AUC 249 (47.7) 0.82 [0.74e0.90],
0.45 to 1.00

154 (29.5) 0.82 [0.74e0.90],
0.46 to 0.99

46 (8.8) 0.82 [0.73e0.98],
0.52 to 0.97

Accuracy 128 (24.5) 79.8 [72.6e89.8],
44.2 to 100

117 (22.4) 81.4 [76e89.9],
17.8 to 97.5

9 (1.7) 70 [64e87],
55 to 90

Sensitivity 156 (29.9) 74 [58.6e87.8],
0 to 100

103 (19.7) 80 [66.3e89.7],
14.8 to 100

12 (2.3) 77.5 [63.9e83.5],
0.7 to 91

Specificity 122 (23.4) 82.2 [73.3e89.7],
17 to 100

80 (15.3) 83.2 [73.6e90.8],
46.6 to 100

10 (1.9) 74.4 [64.8e86.7],
42 to 90.5

a Counts are absolute numbers with column percentages in parentheses. The percentages sometimes do not add up to 100% because some
studies did not report performance measure for all models prespecified.

b We considered corrected performance only when authors stated results as such. Otherwise, performance measures were considered apparent
performance by default.
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on clinical prediction models using machine learning. The
methodology varied substantially between studies,
including modelling algorithms, sample size, and perfor-
mance measures reported. Unfortunately, longstanding defi-
ciencies in reporting and methodological conduct
previously seen in studies with a regression-based
approach, were also extensively found in our sample of
studies on machine learning models [9,23].

The spectrum of supervised machine learning techniques
is quite broad [24,25]. In this study, the most popular
modelling algorithms were tree-based methods (RF in
particular) and SVM. RF is an ensemble of random trees
trained on bootstrapped subsets of the dataset [26]. On
the other hand, SVM first map each data point into a feature
space to then identify the hyperplane that separates the data
items into two classes while maximizing the marginal dis-
tance for both classes and minimizing the classification er-
rors [27]. Several studies also applied regression-based
methods (LR in particular) as benchmark to compare
against the predictive performance of machine learning-
based models.

Various other well-known methodological issues in pre-
diction model research need to be further discussed. Our
reported estimate on EPV is likely to be overestimated
given than we were unable to calculate it based on number
of parameters, and instead we used only the number of
candidate predictors. A simulation study concluded that
modern modelling techniques such as SVM and RF might
even require 10 times more events [28]. Hence, the sample
size in most studies on prediction models using ML re-
mains relatively low. Furthermore, splitting datasets per-
sists as a method for internal validation (that is, testing),
reducing even more the actual sample size for model devel-
opment and increasing the risk of overfitting [29,30].
Whilst AUC was a frequently reported metric to assess pre-
dictive performance, calibration or prediction error was
often overlooked [31]. Moreover, a quarter of studies in
our sample corrected for class imbalance without reporting
recalibration, although recent research has shown that cor-
recting for class imbalance may lead to poor calibration and
thus, prediction errors [32]. Finally, therapeutic interven-
tions were rarely considered as predictors in the prognostic
models, although these can affect the accuracy and trans-
portability of models [33].

Variable importance scores, tuning of hyperparameters,
and data preparation (that is, data preprocessing) are items
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closely related to machine learning prediction models. We
found that most studies reporting variable importance
scores did not specify the calculation method. Data prepa-
ration steps (that is, data quality assessment, cleaning,
transformation, reduction) were often not described in
enough transparent detail. Complete-case analysis remains
a popular method to handle missing values in machine
learning based models. Detailed description and evaluation
on how missing values were handled in our included studies
has been provided elsewhere [34]. Last, only one-third of
models reported their hyperparameters settings, which is
needed for reproducibility purposes.
4.2. Comparison to previous studies

Although regression methods were not our focus (as we
did not define them to be machine learning methods), other
reviews including both approaches show similar issues with
methodological conduct and reporting [12,35e37]. Missing
data, sample size, calibration, and model availability
remain largely neglected aspects [7,12,37e40]. A review
looking at the trends of prediction models using electronic
health records (EHR) observed an increase in the use of
ensemble models from 6% to 19% [41]. Another detailed
review on prediction models for hospital readmission shows
that the use of algorithms such as SVM, RF, and NN
increased from none to 38% over the last 5 years [10].
Methods to correct for class imbalance in datasets concern-
ing EHR increased from 7% to 13% [41].
4.3. Strengths and limitations of this study

In this comprehensive review, we summarized the study
design, data sources, modelling strategies, and reported pre-
dictive performance in a large and diverse sample of studies
on clinical prediction model studies. We focused on all
types of studies on clinical prediction models rather than
on a specific type of outcome, population, clinical specialty,
or methodological aspect. We appraised studies published
almost 3 years ago and thus, it is possible that further im-
provements might have raised. However, improvements in
methodology and reporting are usually small and slow even
when longer periods are considered [42]. Hence, we believe
that the results presented in this comprehensive review still
largely apply to the current situation of studies on machine
learning-based prediction models. Given the limited sam-
ple, our findings can be considered a representative rather
than exhaustive description of studies on machine learning
models.

Our data extraction was restricted to what was reported
in articles. Unfortunately, few articles reported the mini-
mum information required by reporting guidelines, thereby
hampering data extraction [23]. Furthermore, terminology
differed between papers. For example, the term ‘‘valida-
tion’’ was often used to describe tuning, as well as testing
(that is, internal validation). An issue already observed by
a previous review of studies on deep learning models
[43]. This shows the need to harmonize the terminology
for critical appraisal of machine learning models [44].
Our data extraction form was based mainly on the items
and signaling questions from TRIPOD and PROBAST.
Although both tools were primarily developed for studies
on regression-based prediction models, most items and
signaling questions were largely applicable for studies on
ML-based models as well.
4.4. Implication for researchers, editorial offices, and
future research

In our sample, it is questionable whether studies ulti-
mately aimed to improve clinical care [45]. Aim, clinical
workflow, outcome format, prediction horizon, and clini-
cally relevant performance metrics received very little
attention. The importance of applying optimal methodol-
ogy and transparent reporting in studies on prediction
models has been intensively and extensively stressed by
guidelines and meta-epidemiological studies [46e48]. Re-
searchers can benefit from TRIPOD and PROBAST, as
these provide guidance on best practices for prediction
model study design, conduct and reporting regardless of
their modelling technique [16,17,46,47]. However, special
attention is required on extending the recommendations to
include areas such as data preparation, tunability, fairness,
and data leakage. In this review, we have provided evidence
on the use and reporting of methods to correct for class
imbalance, data preparation, data splitting, and hyperpara-
meter optimization. PROBAST-AI and TRIPOD-AI, both
extensions to artificial intelligence (AI) or machine learning
based prediction models are underway [44,49]. As machine
learning continues to emerge as a relevant player in health-
care, we recommend researchers and editors to reinforce a
minimum standard on methodological conduct and report-
ing to ensure further transportability [16,17,46,47].

We identified that studies covering the general popula-
tion (for example, for personalized screening), primary
care settings, and time-to-event outcomes are underrepre-
sented in current research. Similarly, only a relatively
small proportion of the studies evaluated (validated) their
prediction model on a different dataset (that is, external
validation) [50]. In addition, the poor availability of the
developed models hampers further independent valida-
tion, an important step before their implementation in
clinical practice. Sharing the code and ultimately the clin-
ical prediction model is a fundamental step to create trust-
worthiness on AI and machine learning for clinical
application [51].
5. Conclusions

Our study provides a comprehensive overview of the
applied study designs, data sources, modelling steps, and
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performance measures used. Special focus is required in
areas such as handling of missing values, methods for inter-
nal validation, and reporting of calibration to improve the
methodological conduct of studies on prediction models
developed using machine learning techniques.
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