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ABSTRACT
Human activity recognition (HAR) models suffer significant per-
formance degradation when faced with data heterogeneity (device,
users, environments) at test time. Current approaches to this prob-
lem using domain adaptation or transfer learning attempt to im-
prove performance in one specific target domain, often using data
from said domain. Requiring access to data from the target domain
is limiting and cannot be generally assumed. In addition, there
is often no single target domain, but rather multiple ones arising
from different sources of data heterogeneity. One way to achieve
good performance in this setting would be to gather data from all
potential domains the model may encounter at deployment - this
is generally infeasible.

Thiswork presents the case for trainingmodels which are domain-
agnostic, i.e., that generalise to unseen test domains. This requires
a new way to evaluate models; we discuss a regime called leave-
datasets-out, and present a starting benchmark for HAR using bi-
nary classification. Two state-of-the-art deep models in the litera-
ture are tested; they significantly under-perform in unseen domains
when compared to their performance on seen domains. It is shown
that under this new evaluation regime, a simple model with an
appropriate inductive bias performs at least as well as two current
deep models on the benchmark, with a p-value of 5.75x10−4 and
0.13 when testing for a difference in mean accuracy, whilst being at
least 10 times faster to train. Additionally, we provide evidence that
domain diversity under certain conditions improves performance
on both seen and unseen domains. We hope this work provides use-
ful insights to further develop HAR models suitable for real world
deployment.

CCS CONCEPTS
• Computing methodologies → Cross-validation; Neural net-
works; Supervised learning by classification.
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1 INTRODUCTION
Human Activity Recognition (HAR) using accelerometer sensors
have been researched since at least 2004 [3]. The models have
moved from hand-crafted features [20, 23], to end-to-end deep
models using convolutional and long-short-term memory neural
architectures [16, 17]. In contrast, the evaluation setup has not
significantly evolved. The models are often tested on the same
dataset used for training [10, 12, 13, 19, 27].

This evaluation setup does not accurately reflect the perfor-
mance of real deployments where training and testing data may be
significantly different. This issue has been observed in computer vi-
sion where performance degrades with variations in object pose [1],
light [8] andweather [25]. In the HAR context, it is acknowledged in
literature that models suffer with changes in users [22], sensors [16]
and environments [14]. Testing on the same dataset assumes that
these aspects of the training data remain constant during deploy-
ment.

Current approaches related to test-time heterogeneity in HAR
uses transfer learning or domain adaptation techniques. There have
been studies for transferring between users, sensor location, sensor
modalities and datasets [5, 9, 16, 18, 28]. In general these approaches
use a source dataset D𝑠 in combination with a small subset, either
labelled or unlabelled, from the target (test) domain D𝑡 for train-
ing. A common motivation for these transfer studies is to reuse
knowledge gained from a model trained on the source domain, due
to limited access to labelled data from the target domain.

The main assumption, inherent in these approaches, is that the
researcher has access to data from the target domain. This im-
plies that models are domain specific; for each new target domain,
retraining is required. However, it is likely that models will face
unseen domains during real deployment, as collecting data for all
potential domains is infeasible. Instead, we should strive for models
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to be domain-agnostic, i.e., perform well on seen domains but also
generalise to unseen domains, under appropriate conditions. Being
able to measure this performance will help researchers build better
domain-agnostic models.

This work proposes using a different evaluation setup that may
better reflect performance on real deployments, an extension of the
leave-one-subject-out regime to the dataset level - leave-datasets-
out. An instance of this evaluation method for the task of HAR is
given as a binary classification task between two common activities
across three openly available HAR datasets. Using this benchmark it
is shown that two current state-of-the-art (SotA) deepmodels [7, 17]
face significant performance degradation in unseen domains, even
after correcting for factors such as sensor location, sampling rate,e
and measurement units.

We show that under this benchmark, a simple model using an
appropriate inductive bias based on our understanding of the data
generating mechanism performs at least as well (p=5.75x10−4 and
0.13), compared to SotA end-to-end deep learning models, whilst
requiring significantly less resources to train. This unexpected
result raises questions about using deep end-to-end models as a
one-size-fits-all solution in applications with small labelled datasets
such as HAR when unseen domain performance is key.

The workmakes two further observations, one related to domain-
agnostic models, and another about existing transfer techniques.
First, it is shown that achieving consistent gains across both seen
and unseen domains, across all testedmodels, is possible when train-
ing with data from multiple domains under similar conditions. This
observation can be useful not only in improving domain-agnostic
performance, but also in our understanding of negative transfer [26].
Additionally, a domain’s performance improves without complex
transfer or adaptation techniques when a small subset of data is
available from said domain, across all tested models. This raises
questions about our understanding of existing transfer techniques:
do the gains come from the method or from the additional data?

Contributions. In summary, the contributions of this work are
the following:

(1) A starting benchmark based on a simple binary classifica-
tion which measures HAR models’ performance on unseen
domains corresponding to the leave-datasets-out evaluation
regime. This serves as a better proxy to performance in real
deployment.

(2) Demonstrate that a model with a simple inductive bias can
perform at least as well as current deep models on this new
benchmark. This raises further questions about our under-
standing of deep models in HAR.

(3) Two observations. 1. That performance on both seen and
unseen domains improves with multiple domain training
under certain conditions (where the additional domain is not
included in the seen or unseen set). 2. That if the additional
domain is already seen, as in the transfer learning setup,
this improves the performance without any complex trans-
fer technique, raising questions about our understanding of
gains from these methods.

2 DOMAIN-AGNOSTIC PERFORMANCE
Problem Setup. We are interested in the case where we have
accelerometer data for a particular participant x ∈ X and activity
labels 𝑦 ∈ Y. We assume to have access to 𝑛 datasets D1,D2, ...D𝑛

each corresponding to the same activities but in a different domain
(corresponding to a different distribution). Each dataset consists of
𝑚𝑘 pairs D𝑘 = {(x𝑖 , 𝑦𝑖 )𝑚𝑘

𝑖=1}, where each pair corresponds to data
from participant 𝑖 , which in turn is assumed to be independently
and identically distributed samples from the corresponding domain.
The feature space X and label space Y are the same across all
datasets. In our experiments, there are three datasets (𝑛 = 3) with
7, 10 and 9 participants respectively (𝑚1 = 7,𝑚2 = 10 and𝑚3 = 9).

In this work, we often refer to datasets used for training and
testing in the following way. Let D𝒕𝒓 denote the set of training
dataset(s), and likewise D𝒕𝒆 for the testing dataset(s)1. For instance
the 𝑛 datasets can be partitioned into two groups, D𝒕𝒓 and D𝒕𝒆 .
The goal is to only use D𝒕𝒓 to train a model that will perform well
on D𝒕𝒆 . i.e., we want to minimise Ex,𝑦∼D𝒕𝒆L(𝑀, (x, 𝑦)) whilst
only having access to D𝒕𝒓 , where L is some loss function, 𝑀 is
the trained model, and x, 𝑦 is the data.

Difference to domain adaptation. We note the difference
between the setup just described to the typical domain adaptation
or transfer leaning setup where there is a designated sourceD𝑠 and
target D𝑡 domain, usually corresponding to two different datasets.
A model is trained on D𝑠 and then adapted to work on the target
using a subset of data from D𝑡 [5, 9, 16, 18, 28] i.e., D𝑡𝑟 = {D𝑠 }
and D𝑡𝑒 = {D𝑡 }. The main difference here being that we are not
interested in the performance of any one particular domainD𝑡 , but
rather the performance in domains where the model has not seen
any data (i.e., not D𝑡 or D𝑠 ), in addition to the domains where it
has already seen data. Related benchmarks have been studied in
computer vision under domain generalisation [11]. We also note
that a similar setup has been studied previously [24], but not using
end-to-end deep learning models, which have become the dominant
model paradigm today, and using only single dataset training.

Throughout the discussion in this paper, it is often useful to refer
to a hypothesised data generating mechanism for HAR data, this is
shown in Figure 1. Let x denote the observed data for a particular
domain, a node represents a variable, or a group thereof, and an
arrow from node A to be B signifies that A influences the value of
𝐵 in the data.

User
CharacteristicsActivity

Sensor
Characteristics

Environment 
Characteristics

XLabel (Y)

Figure 1: A possible data generating mechanism for HAR
data.

1A bold font is used to denote a set of datasets whereas a normal font is used when
referring to single datasets.
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2.1 Measuring domain-agnostic performance
In traditional learning, k-fold cross validation (CV) is often used
to estimate the true error of the model (defined as the loss over
the unknown distribution the data was drawn from) by taking the
average of the loss of each fold. Denote the partitions 1, 2, ..., 𝑘 of
a training dataset D as D1,D2, ...D3. The model in the 𝑖th fold is
trained using all partitions except D𝑖 , i.e., D𝒕𝒓 = {⋃

𝑗≠𝑖
D 𝑗 }, and

tested on partition 𝑖 , D𝒕𝒆 = {D𝑖 }. Denote by 𝑀 (D𝒕𝒓 ) a model
trained with datasets in D𝒕𝒓 . Let L(𝑀 (D𝒕𝒓 ),D𝒕𝒆)) denote the
loss of a model trained on D𝒕𝒓 and tested on D𝒕𝒆 for some loss
function L. The overall error in k-fold CV of a model 𝑀 is then
approximated by:

Error(𝑀) = 1
𝑘

∑︁
𝑖∈1,...,𝑘

L(𝑀 (
⋃
𝑗≠𝑖

D 𝑗 ),D𝑖 )

using a single dataset D. In the context of timeseries analysis,
especially in HAR, a variant called leave-one-subject-out CV is often
used. This is to avoid the same portion of data appearing in both
the training and testing sets, due to the way the timeseries from
each participant is split into samples using overlapping windows.

Leave-datasets-out (LDO) cross-validation. In this work, we
use a natural extension of this idea to measure domain-agnostic
performance, called leave-datasets-out CV. In the simplest setting,
given 𝑛 datasets D1,D2, ...,D𝑛 , the domain-agnostic error is ap-
proximated by:

Error(𝑀) = 1
𝑛

∑︁
𝑖∈1,...,𝑛

∑︁
𝑗∈1,...,𝑛

L(𝑀 (D𝑖 ),D𝑗 ) (1)

where if 𝑖 = 𝑗 then leave-one-subject-out CV is used, and when
𝑖 ≠ 𝑗 the model is trained on D𝑖 and tested on the full dataset D𝑗 .
In a later section of this work we will consider the case where we
train on multiple datasets instead of a single 𝐷𝑖 . This captures the
idea that we are interested in the performance of the model on
the collection of datasets which could have resulted from the same
mechanism, such as the one shown previously.

A starter LDO benchmark for HAR. As there are many pos-
sible variations in the user, sensor and environment characteristics
in the real-world [6], starting simple before moving on to more
complex scenarios will help us understand model failures and hence
how to improve them. In this work we use three datasets with as
many similar characteristics in the generating mechanism as possi-
ble, and two activities which are common across all datasets. This
can tell us whether current models are able to deal with a smaller
subset of heterogeneity in data.

In particular, we use three open HAR datasets which share the
walking and stair climbing activities, where the data was collected
under controlled environments, and where the sensor was worn on
the same body position. This leaves heterogeneity in the user, which
is expected in real-world deployments, and any other heterogeneity
in the sensors that are not related to its placement. If we are unable
to perform well with these more restrictive heterogeneity, then it
is worthwhile to understand why before moving on to tackle more
complex scenarios, such as location independent models [5] and
scenarios with several activities.

Datasets. There are three datasets, MHEALTH [2], PAMAP2
[21], and WHARF [4], which contain data from sensors located on
the right wrist of the participants. There are only two overlapping
activities across all datasets: walking, and ascending stairs.

Preprocessing. For each dataset, samples were filtered for the
two common activities (walking, stairs), and only for readings cap-
tured from a sensor on the right-wrist of the participant. Invalid
values and anomalies were removed. The time-series for each partic-
ipantwas normalised to a common sampling rate of 50Hz, amplitude
normalised, and values converted to a common unit (𝑚𝑠2). Any par-
ticipants with corrupted data is discarded. The subject-timeseries
is then segmented into 5 second windows (250 samples at 50Hz)
with an overlap of 2.5 seconds (125 samples at 50Hz).

Currentmodel performance.We test two state-of-the-art deep
neural networkmodels from the literature. One is attributed to [7], a
convolutional model, which has shown to consistently outperform
in a standardised test [15]. Another is the DeepConvLSTM model
which uses both convolutional and LSTM layers [17]. Since current
models in the literature are multiclass classifiers, i.e., they are able
to distinguish between many different activites, it is expected that
they should perform well on a binary classification task.

The model was evaluated according to equation 1. The loss func-
tion used is the average binary classification accuracy with a 0.5
threshold. The performance of the two SotA deep models are shown
in the first two left violin plots, labelled DeepConvLSTM and Deep-
Conv, in Figure 2a. Each datapoint in the plot is the average accuracy
of training the model on dataset 𝑖 and testing the model on dataset
𝑗 . Given the three datasets used, there are a total of 9 combinations.
If 𝑖 = 𝑗 then normal leave-one-subject-out CV is used. If 𝑖 ≠ 𝑗 then
the full dataset 𝑗 is used for testing and this is repeated 10 times.

3 IMPROVING DOMAIN-AGNOSTIC
PERFORMANCE

Revisiting fundamentals. By considering the data generating
mechanism (Figure 1) we can see that the observed data can be
influenced by a number of different factors other than the activity
performed by the user. This raises an important point: models can
easily be fooled by confounding factors which may be predictive of
the activity label.

Let us take a concrete example. It may be the case that in one
particular dataset, data collection for the walking activity was per-
formed only on the elderly, whereas in more strenuous activities,
such as running, data was collected on younger participants. This
would suggest that a model would, in theory, be able learn to dis-
criminate the walking activity by only using user characteristics
that are present in elderly participants. When using this model on a
different dataset where walking may also be performed by younger
participants, the model would face performance degradation.

The two simplest ways to reduce the likelihood that a model is
fooled by confounding factors is to reduce the size of the hypothesis
class, and by incorporating the researcher’s knowledge about the
problem in the form of an inductive bias. In this particular case,
based on our understanding of human activity, we know that mo-
tions associated with an activity is performed at a relatively low
frequency i.e., at most a couple of times per second. We further
know that we are not so interested in features that do not affect
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the general shape of the motion, such as the amplitude, since the
general shape is what determines the activity rather than the range
in which they are performed.

As the simplest implementation of this idea, the discrete fourier
transform (DFT) power spectrum of low frequencies was used as
features through a multi-layer perceptron (MLP) network. Albeit its
simplicity, it fulfils the two criteria: reducing the hypothesis class,
and incorporating an inductive bias.

Simple model LDO results. This simplified model was com-
pared with the deep models using the LDO benchmark; results are
shown in the rightmost plot of Figure 2a, labelled DFT_MLP, and a
comparison of (log) training time is shown in Figure 2b, using com-
modity hardware on an Intel Core i7-8650. A two-sided statistical
test to detect whether the average performance of the DFT-MLP
model is different to the DeepConvLSTM and DeepConv model
yields a p-value of 5.75x10−4 and 0.131 respectively. The difference
in training time across all models are statistically significant at a
0.01 threshold level.

(a)

(b)

Figure 2: (a) Average accuracy on the benchmark of each
model. Each datapoint in the plot is the average accuracy
of training the model on dataset 𝑖 and testing the model on
dataset 𝑗 - a total of 9 combinations. If 𝑖 = 𝑗 then normal
leave-one-subject-out CV is used. If 𝑖 ≠ 𝑗 then the full dataset
𝑗 is used for testing and this is repeated 10 times. (b) Training
time for each model on commodity hardware, note y-axis is
a log scale.

Using more than one domain. If our assumption that the
domains are connected by the same data generating mechanism is
true, we should in theory improve domain-agnostic performance by
training on more than one domain. This section briefly investigates
this idea.

Setup. The models were trained and evaluated according to Eq. 1
as before. However, instead of using only one training dataset D𝑖 ,

two were used, and we are interested only in the performance on
the unseen dataset. i.e., D𝒕𝒓 = {D𝑡𝑟,1,D𝑡𝑟,2}. For the first training
dataset 𝐷𝑡𝑟,1, the full dataset is used, then a small random sample
of 128 windows is selected from three random participants in the
second dataset 𝐷𝑡𝑟,2 and included into the training data halfway
through training time. Performance is then measured on the re-
maining (third) unseen dataset. The reason for such a small sample
of the second training domain is to see the effect of performance
based on data diversity rather than the effect of data quantity.

The results comparing single domain to two domain training
is shown in the top portion of Figure 3. The left violin in each
plot shows average accuracy from training with a single domain,
similar to the previous setup, but where performance is shown only
on the unseen dataset. The right violin shows average accuracy
by training with two domains, 𝐷𝑡𝑟,1 and 𝐷𝑡𝑟,2, and testing on the
remaining unseen dataset. A similar statistical test is performed
across all models to test whether the average performance using
one or two domains are different with p-values of 0.139, 5.75x10−4
and 6.75x10−2 for DeepConvLstm, DeepConv and the DFT-MLP
model respectively.

Additionally, it is interesting to note that when the small sample
from the second domain (D𝑡𝑟,2) is introduced we see a noticeable
drop in validation loss in the original training domain,D𝑡𝑟,1. This is
shown in the bottom portion of Figure 3. This suggests that the addi-
tional data diversity provided by the second domain also increases
performance not only in unseen domains, but also in seen domains
(excluding itself). We additionally observe that performance in its
own domain also improve (as expected), but without using any
transfer technique.

4 CONCLUSION
Limitations. The proposed benchmark is constrained under a num-
ber of dimensions. A more realistic version of the task would be
multiclass over as many datasets as possible. Few publicly available
HAR datasets have overlapping classes with the same sensor place-
ment. This paper is nonetheless a start, as models which perform
well on multiclass should also do well in the simpler binary classifi-
cation setting. In the future we hope that this benchmark can be
extended when more data is available to the community.

The aim of this work was to present the case for training models
which are domain-agnostic i.e generalise to unseen domains of
the same activity. This will bring us closer to robust real-world
deployment of HAR models. To do so we have presented three
main points.

First, we proposed using the leave-datasets-out cross-validation
regime, which we argue is a better way to measure domain-agnostic
performance than current evaluation methods. We present a start-
ing point of this in the HAR context using a binary classification
across three publicly open HAR datasets. We evaluate current state-
of-the-art deep models for HAR, and find that they face significant
performance degradation when tested against this new benchmark.
We show that by using a simple inductive bias from our knowledge
of the problem, we can instead use a model that achieves similar,
if not better performance than current deep models (p=5.75x10−4
and 0.131) and that is 10-100 times faster to train. Finally, we show
that training with even a small amount of data from an additional
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(a) DeepConvLSTM (b) DeepConv (c) DFT-MLP

Figure 3: Top: Overall performance on the unseen dataset based on training with one or two domains across all considered
models. Bottom: All models see a noticeable drop in validation loss (orange) on the original training domain D𝑡𝑟,1, when a
small sample of data from an additional domain D𝑡𝑟,2 is introduced. Training loss is shown in blue. The training and validation
loss is based only on data from D𝑡𝑟,1.

domain improves performance on unseen, seen (excluding the same
domain), and in the same domain without complex transfer or adap-
tation techniques, across all models considered.

These results suggest that end-to-end deep models may not
always be a one-size-fits-all solution in HAR applications where
large-scale training data is hard to come by, when deployment
is likely to be on resource constrained devices, and where real
deployed models face multiple sources of heterogeneity.
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