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Abstract
High-dimensionality is a common hurdle in machine learning and pattern classification; mitigating its effects has attracted
extensive research efforts. It has been found in a recent NeurIPS paper that, when the data possesses a low effective dimension,
the predictive performance of a discriminative quadratic classifier with nuclear norm regularisation enjoys a reduced (loga-
rithmic) dependence on the ambient dimension and depends on the effective dimension instead, while other regularisers are
insensitive to the effective dimension. In this paper, we show that dependence on the effective dimension is also exhibited by
the Bayes error of the generative Quadratic Discriminant Analysis (QDA) classifier, without any explicit regularisation, under
three linear dimensionality reduction schemes. Specifically, we derive upper bounds on the Bayes error of QDA, which adapt
to the effective dimension, and entirely bypass any dependence on the ambient dimension. Our findings complement previous
results on compressive QDA that were obtained under compressive sensing type assumptions on the covariance structure. In
contrast, our bounds make no a-priori assumptions on the covariance structure, in turn they tighten in the presence of benign
traits of the covariance. We corroborate our findings with numerical experiments.

Keywords Dimensionality reduction · Quadratic discriminant analysis · High-dimensional classification · Bhattacharyya
bound

1 Introduction

Modern data sets often consist of large numbers of features.
When the data is high dimensional, the “curse of dimen-
sionality” typically degrades the performance of machine
learning algorithms, as learning in high dimensions requires
much larger training sample sizes and increased computa-
tional resources [1]. It has been observed however that many
real-life data sets do not fill their ambient spaces evenly [2,
3], in which case, learning form them is expected to be eas-
ier both statistically and computationally. To distinguish this
structural notionof inherent dimensionof data from the ambi-
ent dimension, we shall refer to it, in a general sense, as the
intrinsic dimension (ID). We thus refer to such data sources
as possessing a low-ID.
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A large volume of research has been dedicated to mitigat-
ing the ill effects of high dimensionality, including regular-
isation methods, and dimensionality reduction approaches.
There is also an increasing number of studies aimed at
elucidating whether some definition of ID allows learn-
ing algorithms to succeed with less resources [3–7], mostly
focusing on complex models.

At the confluence of regularisation-based approaches and
intrinsic dimension-based analyses, a recent study atNeurIPS
[8] examined homogeneous discriminative quadratic classi-
fiers, and proved that, whenever the data has a low effective
dimension (a notion of ID), a nuclear norm constraint of its
matrix parameter enables it to adapt to the effective dimen-
sion of the data, and have only logaritmic dependence on the
ambient dimension. In other words, the classifier obtained
needs less training data to achieve good generalisation when-
ever the data has a low effective dimension. The authors
also confirmed this effect experimentally, and demonstrated
that a number of other norm-constraint based regularisation
schemes lack such desirable property.

Motivated by these recent results, our goal in this paper is
to investigate the effect of intrinsic or effective dimension in
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QDA, without explicit regularisation, under dimensionality
reduction schemes.

Dimensionality reduction essentially means to extract or
to construct a smaller number of features than the number of
observed or measured ones. Its aim is to improve computa-
tional efficiency, while potentially sacrificing the accuracy a
little, or even enhancing accuracy by reducing noise. Some
methods examine the data set to find its key features, others
perform a general purpose compression. Linear projections
are popular approaches, whereby the original high dimen-
sional data is linearly projected into a lower dimensional
subspace before pursuing a learning task. Examples include
Random Projections (RP), and Principal Components Anal-
ysis (PCA).

Our interest in dimension-reducing projections stems
from the fact that, for some algorithms, they can reduce or
eliminate the ambient dimension dependence of their accu-
racy. For instance, for the popular classification algorithm
of Linear Discriminant Analysis (LDA), it has been found
that, under mild assumptions, the generalisation error of its
randomly projected version does not depend on the ambient
dimension [9, 10]. In addition, a significant advantage of RP
is that it can take advantage of low-ID without the need to
know or compute the ID of the data.

LDA is special in that its Bayes-error has a closed form.
It is natural to ask if a similar behaviour can be found in
the more general classification algorithm of Quadratic Dis-
criminant Analysis (QDA). This is what we set out to study
in this paper. The importance of our work stems from the
popularity of QDA as a classification algorithm, with many
applications throughout several decades, including genetics
[11, 12], medicine [13, 14] and image processing [15, 16].

The remainder of this paper is structured as follows: In
Sect. 2, we formally introduce the model of QDA. We then
review the related literature and state our contributions. In
Sect. 3, we present and discuss our results and findings.
Section4 is devoted to series of controlled experiments on
synthetic data, designed to verify whether the bounds we
derived reveal something real about the effect of a low-ID
on the generalisation error of QDA. Section5 concludes the
paper and outlines possible future research directions.

2 Background

Linear and Quadratic Discriminant Analysis (LDA and
QDA) were introduced by Fisher in 1936 [17] as classifica-
tion algorithms for two or more classes of instances. These
still represent popular methods in statistical pattern recogni-
tion due to their effectiveness, simplicity and interpretability
[18, 19]. Due to their success, they have been extensively
studied over the past decades. However, the bulk of analytic
work is focused on LDA, as its Bayes-error has a closed-form

expression. No closed form is available for the Bayes error
of QDA, its analysis is harder, and existing results are much
more scarce. In this work we focus on QDA.

2.1 The QDAmodel

Quadratic Discriminant Analysis (QDA) is a generative clas-
sifier. Let X×Y be the instance space, where X is the feature
space and Y = {0, 1} is the set of labels. We will write each
instance as a pair (x, y), where x ∈ X is the feature vec-
tor and y ∈ Y is its label. Let C0 and C1 denote the two
data classes. QDA assumes class-conditional Gaussian mod-
els on both classes. That is, the data instances are assumed
to be generated i.i.d. as follows.

1. First, one of the two classes is chosen randomly with
probabilities π0 for C0 and π1 for C1, where π0 and π1 are
class priors, and satisfy 0 < π0, π1 < 1 andπ0+π1 = 1;

2. For the chosen class, the datum instance is generated
from the class-specific Gaussian distribution, which is
N (μ0, �0) for C0 and N (μ1, �1) for C1.

Here, N (μ,�) denotes the multi-variate Gaussian distri-
bution with mean vector μ and covariance matrix �. LDA
assumes further that �0 = �1, while QDA does not make
this assumption. Thus, the parameters of QDA are the fol-
lowing:

π0, μ0, �0, π1, μ1, �1. (1)

In practice, the true parameters are not available, so we
usually compute estimates from a finite sample or training
set. However, this paper is concerned with the Bayes-error
of QDA, which is a theoretical quantity representing the
expected misclassification error as a function of the true
parameters. We will therefore assume that the true param-
eters in (1) are known.

For a given feature vector x ∈ X , and the true parameter
values, the prediction rule of QDA is a function f : X → Y
defined as

f (x) =
{
0 if π0 · p(x |μ0, �0) ≥ π1 · p(x |μ1, �1);
1 otherwise,

(2)

where p(x |μ,�) is the density ofN (μ,�) evaluated at the
point x . Expanding out the definition of the Gaussian density
it is easy to see that this prediction rule takes the form of a
quadratic decision boundary in general. The model reduces
to LDAwhen�0 = �1, in which case the decision boundary
is linear [20].
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The generalisation error of any classifier is the probability
of misclassification. For QDA, this is

Pr
(x,y)∼D

{ f (x) �= y} = E
(x,y)∼D

[I{ f (x) �= y}], (3)

where D := π0 · N (μ0, �0) + π1 · N (μ1, �1) is the data
generating distribution under theQDAmodel, I{·} is the indi-
cator function, which equals 1 if its argument is true, and 0
otherwise, and f is defined as in (2). This is the probability
that a future instance from either class is incorrectly classi-
fied. The ultimate goal of any machine learning algorithm to
minimize this quantity.

Under theQDAmodel, there is a well-known upper bound
on the Bayes error of QDA, the Bhattacharyya bound, which
will be our starting point in this paper. To simplify the setting,
we will consider the common case where the class priors π0

and π1 are equal.

Theorem 1 (Bhattacharyya bound [18]) Let μ0, μ1 ∈ R
d ,

�0, �1 ∈ S
d+. Then, an upper bound for the generalisation

error of (3) is given by exp(−δ(μ0, �0, μ1, �1)), where

δ(μ0, �0, μ1, �1) := 1

8
(μ0 − μ1)

T
(

�0 + �1

2

)−1

(μ0 − μ1) + 1

2
log

∣∣∣∣�0 + �1

2

∣∣∣∣
√|�0| |�1| . (4)

The expression (4) is called the Bhattacharyya distance
(hence the name of the bound), as it is a measure of statistical
distance between two Gaussian distributions, being zero if
and only if the two distributions have the same parameters
[21].

2.2 Related work

Ourwork is focused on the generalisation error ofQDAunder
projection based dimensionality reduction. We want to find
out whether it adapts to some notion of low-ID in the data.
This question was previously studied in the simpler setting of
LDA [9, 10], where the authors give high-probability upper
bounds on the error of LDA under Gaussian random pro-
jection. In the finite dimensional case, if the true covariance
matrix has a low rank, they find that the ambient dimension is
replacedwith this rank.Moreover, in the infinite-dimensional
case, if the covariance has a finite trace, the dimension is
replaced with another notion of ID known as the effective
dimension. This is the ratio of the trace of the covariance
matrix and its largest eigenvalue. Interestingly, the same
notion of ID appears in the analysis of nuclear-norm regu-
larised discriminative quadratic classifier in the recent study

of [8]. This particular notion of ID will also appear in our
results, so we will define it formally in Sect. 4.

As we already mentioned, similar results are sparse for
QDA. The recent study at Neurips [8] considered a specific
form of quadratic classifiers, namely homogeneous discrim-
inative quadratic classifiers of the form xT Ax ≷ 0, where A
can be an indefinite matrix parameter, and is subjected to a
nuclear norm regularisation constraint. Their results improve
on the then-best known bounds from [22] by reducing the
dependence on the ambient dimension to logarithmic, and
showing the ability of the nuclear norm regulariser to adapt to
the intrinsic dimension. They also demonstrate experimen-
tally that several other regularisers, such as the Frobenius
norm regulariser, lack this ability.

The main analytic tool used in [8] is the Rademacher
complexity, which has the advantage of distribution-freeness
(no class-conditional Gaussian assumption). However, they
do not consider the full generative QDA model, and do not
consider any dimensionality reduction method, but only the
discriminative classifier that operates in the full ambient
space. Moreover, their bound still has a logarithmic depen-
dence on the ambient dimension. It is therefore of interest
to us to consider the full generative QDA model, and con-
sider dimensionality reduction rather than regularisation. In
QDA, thematrix that appears in the decision boundary can be
positive- or negative-definite, and the quadratic expression in
the decision boundary is not necessarily homogeneous.

Another thread of work similar to ours appeared in [23],
where a multi-class Gaussian classifier very similar to QDA
is analysed under randomly projected measurement data.
However, the authors assume that the original high dimen-
sional covariances are low-rank, and have some Gaussian
noise added after being randomly projected. Furthermore,
the covariance matrices are assumed to be known and span
random subspaces of equal dimensions. These subspaces
are assumed to have been sampled randomly uniformly, in
order to guarantee that the average of two covariance matri-
ces has double the rank of the individual matrices almost
surely. These assumptions originate from the field of com-
pressed sensing, and help obtaining results though techniques
inspired from that field.

Among other results, they find that, under their assump-
tions, the minimum number of measurements to guarantee a
reliable classification performance depends on the rank of the
covariancematrices instead of the ambient dimension. This is
another step towards quantifying the dependence of classifi-
cation on the ID. However, the restrictions on the covariance
matrices being low-rank and also of equal ranks are rather
unrealistic, and most of their results degrade rapidly when
the matrices are of “almost” low-rank. The equal- and zero-
means case, in the ambient space is also quite restrictive for
real-world data.
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The imposition of such strong assumptions means that
the results only hold when the assumptions hold. Instead,
we aim to forego such a-priori structural assumptions where
possible, and let our bounds reveal benign structural traits
where the bounds tighten. Interestingly, we shall see good
agreement between the benign structures identified this way
from our bounds and those assumed a-priori in [23]; however
our bounds are still valid without those a-priori assumptions.

We consider three dimensionality-reducing projections
owing to their popularity, simplicity, and their diversity on
how they operate on the data. The first two are random
Gaussian and random orthogonal projections; these both are
oblivious to the parameters and data, while the third one is
principal component analysis (PCA), a deterministic func-
tion of the data parameters. To the best of our knowledge,
there are no results on the error of QDA under projections
that would completely eliminate dependence on the ambi-
ent dimension without a strong low-rank assumption. We are
also unaware of work quantifying the effect of PCA on the
error of QDA.

Furthermore, it is well known that QDA in a large ambient
space suffers from the curse of dimensionality. It is therefore
imperative to study its classification performance under sev-
eral different dimensionality reduction schemes, and unveil
its degree of dependence from the ambient dimension, at least
theoretically. This would shed light and improve our under-
standing of howwe can expect the algorithm to performwhen
faced with high-dimensional data sets, especially when they
possess a low-ID. Motivated by this goal, we revisit QDA
under projections, without imposing any assumptions other
than the QDA model itself.

2.3 Our contributions

We summarise our contributions as follows.

1. We upper bound theBayes error ofQDAunder three pop-
ular projection schemes: Gaussian random projection;
random orthogonal projection; and principal components
analysis.

• Our bounds eliminate the dependence on the ambient
dimension and replace it with a specific notion of ID,
i.e. the effective dimension.

• Our bounds highlight some benign structural traits of
the problem, including favourable covariance struc-
tures, without imposing any such structures a-priori.

2. We corroborate our theoretical findings with controlled
numerical experiments on synthetic data sets, to confirm
that our bounds reflect the behaviour of observed test
error of QDA under these projections.

3 Results

Notation 1 We denote scalars and vectors with lowercase
letters and matrices with uppercase letters. The notations
R
n and R

m×n for the set of n-dimensional real vectors and
the set of m×n real matrices respectively are standard. Also,
S
n+ denotes the set of symmetric positive-semidefinite n × n

matrices. For vectors, ‖ · ‖ denotes the Euclidean norm. For
matrices, | · | denotes the determinant. We let λi (·) denote the
i-th largest eigenvalue and tr(·) denote the trace of a matrix.
We also use λmax(·) and λmin(·) to denote the largest and
smallest eigenvalues of a matrix respectively.

Suppose the data distribution resides inRd where the ambient
dimension d is too large. To reduce dimension, consider a
linear projection mapping x 	→ Mx , where M ∈ R

k×d .
Classification is then performed in Rk , where k ≤ d. We are
interested in the effect of such dimensionality reduction on
the Bayes error of QDA.

Recall theBhattacharyya bound given in Theorem1. First,
the effect of dimensionality reduction on the parameters
(means and covariances) is as follows. The class means will
be mapped as

μ0 	→ Mμ0 and μ1 	→ Mμ1 (5)

and the class covariance matrices will be mapped as

�0 	→ M�0M
T and �1 	→ M�1M

T . (6)

Let us see what the Bhattacharyya bound becomes as a result
of these mappings. To simplify notation, from this point on,
let us write

� := �0 + �1

2
and δM

:= δ(Mμ0, M�0M
T , Mμ1, M�1M

T ), (7)

where δ is the Bhattacharyya distance, defined in (4). Then,
the bound of Theorem 1 becomes exp(−δM ), where

δM := 1

8
(μ0 − μ1)

T MT
(
M�MT

)−1
M(μ0 − μ1)︸ ︷︷ ︸

:=E1

+ 1

2
log |M�MT |︸ ︷︷ ︸

:=E2

− 1

4
log |M�0M

T |︸ ︷︷ ︸
:=E3

− 1

4
log |M�1M

T |︸ ︷︷ ︸
:=E4

. (8)

This projected form of the Bhattacharyya bound is the
object of our analysis. To upper bound exp(−δM ), we need to
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lower bound δM that appears in (8).We do so, under the three
projectionmethods we discussed, each of which corresponds
to a different choice for the matrix M . These are the three
main results of our paper, and we devote one subsection to
each.

In what follows, we denote the ambient dimension of the
original data space by d, and the projection dimension with
k, where k ≤ d. We only consider Euclidean vector spaces,
so all norms and distances will be taken to be Euclidean. For
completeness, we include in the appendix any supporting
lemmas used for obtaining our results.

3.1 QDA under Gaussian random projection

The first dimensionality reduction method we consider is
Gaussian random projection. Take a k × d matrix R filled
with i.i.d. randomly sampled elements from N (0, 1), where
k ≤ d, and pre-multiply the d-dimensional data source to
reduce dimension.While not a projection in a strict geometric
sense, its name of random projection (RP) is established, due
to the near-isometry property of such linear mappings. This
projection method has thoroughly been studied, including its
effects on LDA classification, as discussed in Sect. 2.

The Bhattacharyya bound under the mapping x 	→ Rx
becomes exp(−δR), where δR is given in (8). In this section,
we are therefore interested in upper bounding exp(−δR); we
do this in the following theorem.

Theorem 2 (Bhattacharyya bound under random projection)
Let R ∈ R

k×d be a matrix whose elements are sampled i.i.d.
from N (0, 1). Then, the following is an upper bound for
exp(−δR),

exp

(
− (1 − ε)k‖μ0 − μ1‖2
8(

√
tr(�) + √

kλmax(�) + ε)2

)
·

( √√
tr(�0) + √

kλmax(�0) + ε ·
√√

tr(�1) + √
kλmax(�1) + ε(√

tr(�) − √
kλmax(�) − ε

)
+

)k

(9)

with probability at least 1 − 2 exp(−ε2/2λmax(�))−
exp(−ε2/2λmax(�0)) − exp(−ε2/2λmax(�1)) − exp
(−kε2/4), where (·)+ = max{·, 0}.
FromTheorem 2we see that the error bound does not directly
depend on the ambient dimension d but only through the
traces of the covariance matrices relative to their largest
eigenvalues in conjunction with the projection dimension k.
This means that even though in the worst case the bound
grows with d, whenever the data distribution does not fill
the entire ambient space evenly, the error bound adapts to
structure, essentially through a notion of intrinsic dimension.
Indeed, the Bhattacharyya bound stays constant no matter
how large d is, as long as these quantities, along with the

distance between class centers stay the same. We will verify
this experimentally in Sect. 4.

Furthermore, from Theorem 2 we see that our bounds
tightens when traces of the individual class covariances
�0, �1 get small and the trace of the pooled covariance �

gets large. The trace of a covariance relative to its largest
eigenvalue quantifies to what extent the distribution fills the
ambient space (and termed as the effective rank [24])—hence
we see that one instance where our bound is tightest is when
the individual covariances have lowest rank while their sum
has highest rank—that is exactly the structural trait assumed
in [23]. However, in contrast to that approach, our bound
holds without this assumption while it highlights and lets us
read off such favourable traits.

Proof of Theorem 2 Sincewe need to upper bound exp(−δR),
we lower bound δR and take the exponential of the negative
of the boundwe derive. To this end, we have to lower or upper
bound each of the four terms in δR separately, depending on
their sign. For consistency of notations, we use the labels
introduced in (8) for these four terms.

We lower bound E1 with high probability as follows:

E1 = 1

8
(μ0 − μ1)

T RT (R�RT )−1R(μ0 − μ1) (10)

≥ 1

8
λmin((R�RT )−1)‖R(μ0 − μ1)‖2 (11)

= ‖R(μ0 − μ1)‖2
8λmax(R�RT )

(12)

≥ (1 − ε)k‖μ0 − μ1‖2
8λmax(R�RT )

(13)

≥ (1 − ε)k‖μ0 − μ1‖2
8(

√
tr(�) + √

kλmax(�) + ε)2
(14)

with probability at least 1− exp(−kε2/4)− exp(−ε2/2λmax

(�)). We used the lower bound of Theorem 1 to obtain (11),
Theorem 2 to obtain (13) and the upper bound of Theorem 4
to obtain (14).

Next, we lower bound E2 with high probability:

E2 = 1

2
log |R�RT | (15)

= 1

2
log

k∏
i=1

λi (R�RT ) (16)

= 1

2

k∑
i=1

log λi (R�RT ) (17)

≥ k

2
log λmin(R�RT ) (18)

≥ k

2
log(

√
tr(�) − √

kλmax(�) − ε)2+ (19)

= k log(
√
tr(�) − √

kλmax(�) − ε)+ (20)
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with probability at least 1 − exp(−ε2/2λmax(�)). Here we
used the lower bound given in Theorem 4 to obtain (19).

We upper bound E3 with high probability:

E3 = 1

4
log |R�0R

T | (21)

= 1

4
log

k∏
i=1

λi (R�0R
T ) (22)

= 1

4

k∑
i=1

log λi (R�0R
T ) (23)

≤ k

4
log λmax(R�0R

T ) (24)

≤ k

4
log(

√
tr(�0) + √

kλmax(�0) + ε)2 (25)

= k

2
log(

√
tr(�0) + √

kλmax(�0) + ε) (26)

with probability at least 1−exp(−ε2/2λmax(�0)). To obtain
(25), we used the upper bound in Theorem 4.

Finally, we can upper bound E4 in the same way as E3,
switching �0 to �1, which gives

E4 ≤ k

2
log(

√
tr(�1) + √

kλmax(�1) + ε) (27)

with probability at least 1 − exp(−ε2/2λmax(�1)).
Combining the bounds on E1, E2, E3 and E4 by using

the union bound, and plugging back into the exponential, we
obtain the result stated in Theorem 2.

3.2 QDA under random orthogonal projection

Next, we consider random orthogonal projection to reduce
dimensionality. This is similar to random projection but uses
a random matrix that is semi-orthogonal1 with a uniformly
random orientation. It is expected that this will perform very
similarly to the Gaussian random projection when d is large
due to a well-known measure concentration effect by which
the rows of R have nearly the same norms, and pairwise rows
are near-orthogonal when d is large. However, Ro allows us
to derive a slightly tighter bound.

To generate Ro, first we generate a k × d Gaussian RP
matrix R as in Sect. 3.1, and then take Ro := (RRT )−1/2R ∈
R
k×d ; this is indeed semi-orthogonal. Now, we are interested

in upper bounding exp(−δRo), which we do in the following
theorem.

Theorem 3 (Bhattacharyya bound under random orthogo-
nal projection) Let R ∈ R

k×d be a matrix whose elements

1 Recall that a matrix A ∈ R
m×n , with m ≤ n, is called semi-

orthogonal, if and only if AAT = Im , where Im is the m × m identity
matrix.

are sampled i.i.d. from N (0, 1) and define R
k×d � Ro :=

(RRT )−1/2R. Then, the following is an upper bound for
exp(−δRo),

exp

(
− (1 − ε)k‖μ0 − μ1‖2
8(

√
tr(�) + √

kλmax(�) + ε)2

)

·
k∏

i=1

⎛
⎝

√√
λi (�0)λi (�1)

λd−k+i (�)

⎞
⎠ (28)

with probability at least 1 − exp(−ε2/2λmax(�)) −
exp(−kε2/4).

Thebound inTheorem3 is tighter than theoneweobtained
in the case of Gaussian random projection, due to the random
projection being orthogonal and thus offering more control
over the eigenvalues of the projected covariancematrices, and
indeed three of the four terms are bounded with probability
1.

Most importantly, as before in the case of Theorem 2, the
ambient dimension d does not appear in the error bound of
Theorem 3. The error depends on it only through the traces of
the covariance matrices relative to their largest eigenvalues,
displaying adaptivity to intrinsic dimension without the user
needing to know its value.

Proof of Theorem 3 As in the proof of Theorem 2, we first
lower bound δRo , considering each term separately, and using
the labels in (8).

For the term E1, note that expanding out the definition of
Ro gives

RT
o (Ro�RT

o )−1Ro = RT (R�RT )−1R. (29)

Therefore, this term admits the same lower bound as we had
in Sect. 3.1, namely

E1 ≥ (1 − ε)k‖μ0 − μ1‖2
8(

√
tr(�) + √

kλmax(�) + ε)2
(30)

with probability at least 1 − exp(−kε2/4) − exp(−ε2/

2λmax(�)).
We lower bound E2 using the lower side of Poincaré’s

separation theorem given in Theorem 3 to obtain

E2 = 1

2
log |Ro�RT

o | (31)

= 1

2
log

k∏
i=1

λi (Ro�RT
o ) (32)

≥ 1

2
log

k∏
i=1

λd−k+i (�). (33)
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To bound E3, we use the upper side of Poincaré’s separa-
tion theorem (Theorem 3),

E3 = 1

4
log |Ro�0R

T
o | (34)

= 1

4
log

k∏
i=1

λi (Ro�0R
T
o ) (35)

≤ 1

4
log

k∏
i=1

λi (�0). (36)

Finally, we can upper bound E4 in the same way as E3,
by switching �0 to �1,

E4 ≤ 1

4
log

k∏
i=1

λi (�1). (37)

Plugging everything back into the exponential, and noting
that the bounds on E2, E3, E4 are deterministic, we obtain
the result of Theorem 3.

3.3 QDA under principal component analysis

The third dimensionality reduction method we consider is
PCA. We write the best rank-k approximation of � as

�̃k = UT
k �kUk, (38)

where Uk ∈ R
k×d is semi-orthogonal and �k ∈ S

k+ is diag-
onal. The matrix Uk is our projection matrix in this case, so
we have to upper bound exp(−δUk ). This is provided in the
following theorem.

Theorem 4 (Bhattacharyya bound under PCA) Let Uk ∈
R
k×d be a semi-orthogonal matrix whose rows consist of

the k principal eigenvectors of �, and �̃k be the best rank-k
approximation of �. Then, the following is an upper bound
for exp(−δUk ),

exp

(
−‖(�̃+

k )1/2(μ0 − μ1)‖2
8

)
·

k∏
i=1

⎛
⎝

√√
λi (�0)λi (�1)

λi (�)

⎞
⎠ .

(39)

where �̃+
k is the Moore-Penrose pseudoinverse of �̃k .

Proof Unlike previously, here the dimensionality reducing
transformationUk is a deterministic function of �; however,
as before, we aim to express the bound in terms of the param-
eters, so we work to eliminate isolated occurrences ofUk . As
in the proofs of Theorems 2 and 3, we lower bound δUk , con-
sidering each term separately and using the labels in (8).

The term E1 is can be written as follows:

E1 = 1

8
(μ0 − μ1)

TUT
k (Uk�UT

k )−1Uk(μ0 − μ1) (40)

= 1

8
(μ0 − μ1)

TUT
k �−1

k Uk(μ0 − μ1) (41)

= 1

8
‖�−1/2

k Uk(μ0 − μ1)‖2 (42)

= 1

8
‖�−1/2

k Uk(μ0 − μ1)‖2 (43)

= 1

8
‖UT

k �
−1/2
k Uk(μ0 − μ1)‖2 (44)

= 1

8
‖(�̃+

k )1/2(μ0 − μ1)‖2 (45)

where the semi-orthogonality ofUk was used to obtain (44).
The term E2 can also be computed exactly as

E2 = 1

2
log |Uk�UT

k | = 1

2
log

k∏
i=1

λi (Uk�UT
k )

= 1

2
log

k∏
i=1

λi (�). (46)

We upper bound E3 as follows:

E3 = 1

4
log |Uk�0U

T
k | (47)

= 1

4
log

k∏
i=1

λi (Uk�0U
T
k ) (48)

≤ 1

4
log

k∏
i=1

λi (�0). (49)

In the last line we used Theorem 3.
Swapping �0 and �1 in E3 gives an upper bound on E4:

E4 ≤ 1

4
log

k∏
i=1

λi (�1). (50)

Combining the bounds of E1, E2, E3 and E4 and plugging
back, we obtain the result of Theorem 4.

Note that, due to the deterministic nature of PCA (given
the parameters), Theorem 4 holds with probability 1—unlike
Theorems 2 and 3, which only hold with high probability.

As another observation, we note that the second term of
Theorem 4 is almost the same as the second term of Theo-
rem 3, the only difference being that the largest k eigenvalues
of � appear in place of the smallest ones. This makes the
bound for PCA strictly tighter than the bound for random
orthogonal projection when the true means are equal.
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Remark 1 PCA is classic, but there may be other viable
alternatives to finding the rank-k approximation of� in con-
junction with QDA. For instance, one could use the best
rank-k approximation of either �0 or �1, or some convex
combination thereof. Another natural choice would be to
find the projection that maximises the Bhattacharyya dis-
tance under the projected parameters, that is, find

argmax
U

δU , (51)

where U ∈ R
k×d is semi-orthogonal. To maximize δU , we

need to maximize E1 and E2 and minimize E3 and E4.
Ignoring the term E1 (assuming that it does not change
significantly, or that the means are equal) we are left with
maximizing the following three expressions

1

2
log |U�UT |, −1

4
log |U�0U

T |, and

−1

4
log |U�1U

T |. (52)

Apart from the constants and the signs, the only major dif-
ference is the matrix that appears in these three expressions.
This simultaneous optimisation problem appears to be not
straightforward though, apart from the equal-means case,
for which there exists a method using convex optimization
[25]. In this context, in the general case, maximising only the
first term from (52)—i.e. PCA—may then be interpreted or
viewed as a simplification of the simultaneous optimisation
problem (38).

Crucially, as in Theorems 2 and 3, again the ambient
dimension does not appear in the bound for the PCA-QDA
combination, which means that letting d grow indefinitely,
while keeping other parameters unchanged, will prevent the
bound from increasing. Interestingly, here the trace of covari-
ances does not appear either, so it is less clear whether the
error actually depends on a notion of ID.

4 Numerical experiments

We now proceed to testing experimentally the theoretical
results we obtained, in conjunction with the out-of-sample
test error. As in Sect. 3, we devote one subsection to each
projection method. For each method, we are interested in the
following questions:

1. How is the test error affected by the intrinsic dimension of
the data distribution compared to the ambient dimension?

2. Under what conditions on the true parameters does the
predictive performance withstand the arbitrary increase
of the ambient dimension?

One should reckon that it would be rather difficult to
design the appropriate experiments for studying these ques-
tions on apurely experimental basis.However, our theoretical
analysis gives us insights about these questions already,
which serves as a guide for gaining further insights from
experimentation. We would like to highlight this as a nice
example demonstrating the practical value of theoretical
analysis, and indeed a test of it. A second sense in which
we put our theoretical results to a test is by assessing to
what extent the variations of our upper bounds, when varying
certain parameters of the problem, agree with variations in
empirical estimates of the predictive error. An upper bound
only tells us that the error does not exceed a certain threshold
with high probability, but this still permits a lot of variation
below that threshold, which we assess through the forthcom-
ing experiments.

Regarding our two research questions above, we have
insights pertaining to the second question directly, while for
the first one we can only conjecture a monotonic relation
between the error and the ID prior to conducting the numer-
ical work.

4.1 Technical preliminaries

Part of our experimental setup involves increasing the ambi-
ent dimension of the data, while keeping all other quantities
that appear in the bounds fixed, most of which involve the
eigenvalues of the covariance matrices �0, �1 and �. In this
section we give the procedures necessary to achieve this.

The trace of a covariance relative to its largest eigenvalue
is known as the effective rank. This is actually a notion of ID
that reflects to what extent the distribution fills the ambient
space.

Definition 1 (Effective rank [24]) Let A ∈ S
d+. The effective

rank of A is defined as

r(A) := tr(A)

λmax(A)
. (53)

It is straightforward to show that 1 ≤ r(A) ≤ rank(A) ≤
d, for all A ∈ S

d+. One advantage of the effective rank is that it
ismore detailed than the rank, as it considers themagnitude of
all eigenvalues, rather than just counting the non-zero ones,
and can also take on non-integer values. As we will soon
see, controlling the parameters that appear in some of our
bounds amounts to controlling the effective rank of a covari-
ance matrix. Also, since it is a notion of ID, it makes sense to
vary the effective rank (apart from the rank) of covariances
to see its effects.

The second ingredient we need is the following result that
allows us to control the largest eigenvalues of a matrix sum.
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Theorem 5 Let A, B ∈ S
d+ with orthogonal eigenvalue

decompositions

A =
d∑

i=1

λi (A)uiu
T
i and B =

d∑
i=1

λi (B)viv
T
i , (54)

where ui , vi ∈ R
d , for all i ∈ {1, . . . , d}, and define Sd+ �

C := A + B. Assume further that for some m, such that
1 ≤ m < d, the following condition holds:

span{u1, . . . , um} = span{v1, . . . , vm}. (55)

Then, the m largest eigenvalues of C only depend on the m
largest eigenvalues of A and B.

Proof LetW be the subspace spannedby thefirstm eigenvec-
tors of A and B andW⊥ be its orthogonal complement. Note
that W⊥ = span{um+1, . . . , ud} = span{vm+1, . . . , vd}.
Thus, there exists an orthogonal matrix V ∈ R

d×d that “sep-
arates” these two complements, that is we have

A = V

[
A0 0T

0 A1

]
V T and B = V

[
B0 0T

0 B1

]
V T , (56)

where A0, B0 ∈ S
m+ contain the m largest eigenvalues of A

and B respectively, A1, B1 ∈ S
d−m+ contain the d −m small-

est eigenvalues of A and B respectively and 0 ∈ R
(d−m)×m

is the zero matrix. Note that neither of A0, A1, B0, B1 is nec-
essarily diagonal, although V can always be chosen to make
one pair diagonal (either A0 and A1, or B0 and B1). The
matrix C will therefore be

C = V

[
A0 + B0 0T

0 A1 + B1

]
V T . (57)

For the eigenvalues, we can ignore V and V T and only
consider the block matrix in this case. Since C ∈ S

d+, we
know that m of its eigenvalues lie in the upper-left block and
d −m lie in the lower-right block. To show that the largestm
eigenvalues ofC only depend on the largestm eigenvalues of
A and B, we just need to show that they lie in the upper-left
block. One way is to bound the quadratic forms of A0 + B0

and A1 + B1. To this end, it suffices to only consider vectors
inW or W⊥. Let x ∈ W be a unit vector. We have

xT (A0 + B0)x = xT A0x + xT B0x ≥ λm(A) + λm(B).

(58)

Now let y ∈ W⊥ be a unit vector. We have

yT (A1 + B1)y = yT A1y + yT B1y ≤ λm+1(A) + λm+1(B).

(59)

Since λm(A) + λm(B) ≥ λm+1(A) + λm+1(B), the m
largest eigenvalues of C lie in its upper-left block, whereas
its d − m smallest eigenvalues lie in its lower-right block.
Thus, its m largest eigenvalues only depend on the m largest
eigenvalues of A and B, as they lie in the block that contains
the block matrices A0 and B0. This completes the proof.

Theorem5basically tells us that ifwe increase d by adding
eigenvalues to A and B that are smaller than their respective
m-th largest eigenvalues, and the condition in (55) continues
to hold, then the m largest eigenvalues of their sum do not
change.Wewill later give more details on how this result can
be used in each experimental setup.

Remark 2 To obtain a matrix with a fixed rank or effective
rank, we need to control its eigenvalues.While for the rank of
a matrix this is straightforward, for the effective rank this is
not always the case. To obtain a matrix with a fixed effective
rank, we need control over both the sum of its eigenvalues
and also its largest eigenvalue. While there might be more
sophisticated methods of doing so, ours relies on a simple
algebraic trick.

To sample the eigenvalues so that the effective rank equals
r , we freely choose the largest eigenvalue λ1, and then we
sample λ2, . . . , λd such that the following two conditions are
satisfied:

d∑
i=2

λi = (r − 1)λ1, (60)

and

0 ≤ λi ≤ λ1 for all i ∈ {2, . . . , d}, (61)

where (60) ensures that the effective rank equals r , which can
be confirmed by comparing it with Definition 1 after doing a
little algebra, and (61) ensures that all eigenvalues are non-
negative and that none of them is greater than λ1. Clearly
we must have 1 ≤ r ≤ d for these two conditions to hold
simultaneously.

Sampling numbers such that they all fall in the same inter-
val (in this case [0, λ1]) and equal a fixed sum (in this case
(r − 1)λ1) is a well-studied problem and routines exist in
several programming languages to implement it (e.g. [26]).
If one later needs to change the largest eigenvalue, while
keeping the effective rank the same, they can just multiply
all eigenvalues by the same positive constant. This is why the
initial choice of λ1 can be arbitrary.

After sampling the eigenvalues, we let the matrix in ques-
tion take the following form

V diag(λ1, λ2, . . . , λd)V
T , (62)
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where V ∈ R
d×d is an orthogonal matrix which is sam-

pled randomly. The problem of sampling random orthogonal
matrices has also been well-studied (e.g. [27]), and several
routines exist in most programming languages. This setup
makes the covariance matrices as random as possible, apart
from a fixed effective rank. The form of (62) is also used
to obtain a matrix with a fixed rank, after determining its
eigenvalues.

4.2 Experimental setup

Each of the three projection methods we considered in the
earlier sections has its own characteristics. Part of our setup
is the same for all three, as we seek to answer our research
questions and observe similarities and differences between
the methods. We describe our setup here.

The first step is to fix the true parameters (means, covari-
ances) of the two Gaussian classes, as well as the projection
dimension. Then, we sample a test set in the ambient space
from one of these.We then choose the projectionmatrix (ran-
domly or deterministically, depending on the method) and
project the test set using this matrix. Finally, we run QDA on
the projected set using the projected means and covariances
and record the empirical test error fraction measured on the
test sample. Exploiting symmetry, we will use a test set sam-
pled from class C0, and count the proportion of this test set
that was classified to C1.

We repeat this strategy as we vary the values of the ambi-
ent and projection dimensions, and also repeat for different
choices of the covariance matrices. In one type of experi-
ments, we vary the rank or the effective rank of �0 and �1

together, that is, they will always have equal rank and effec-
tive rank. This reduces the number of experiments for each
experimental setup. In another type of experiments, we vary
the ambient dimension,while controlling the ranks and effec-
tive ranks of the covariance matrices. In both cases, we need
to fix the largest eigenvalues of �0 and �1. We will set both
of them to 1.

Equipped with these preliminaries and tools, we are now
ready to present results obtained for each projection scheme
separately. For completeness, we include the formal steps for
all experiment designs we used in Appendix 2.

4.3 Numerical results with QDA under Gaussian RP

We start our experiments with Gaussian random projection.
First we test how the empirical test error is affected by a
low ID. To this end, we consider a setting where d remains
fixed and the ID of �0 and �1 (measured by their rank and
effective rank) is varied.

For each choice of the value of the ID, we randomly gen-
erate and fix the class mean parametersμ0, μ1 such that they
have fixed distance of 1. We then generate and fix the class

covariances�0, �1 using the procedure described in Remark
2. We also generate an out-of-sample test set of 1000 points.

We vary k, ensuring that it is always no higher than the
rank (it can be higher than the effective rank). For each choice
of k, we compute the test error. We report the average and
standard deviation of the test errors from 100 independent
random draws of the random projection matrix.

The complete steps of this set of experiments are given
in Appendix 2 (Algorithm 1). The results are presented in
Fig. 1. We see that, the lower the ID, in comparison with d,
the lower the empirical test error. In addition, we also observe
that, when we vary the rank, the empirical test error drops
significantly faster than when we vary the effective rank.

In the next round of experiments we will vary the ambient
dimension d. Our theoretical bound indicates that the error
should not increase with d as long as other parameters in the
bound, notably the effective ranks of covariance matrices,
remain fixed. Our second set of experiments aims to test this
behaviour on the actual empirical test errors. Therefore, we
need to ensure that, as d increases, all other parameters that
appear in Theorem 2 stay the same. Apart from k and ε, these
are the following:

‖μ0 − μ1‖, tr(�), λmax(�), tr(�0), λmax(�0),

tr(�1), λmax(�1). (63)

The mean distance ‖μ0 − μ1‖ can be controlled by re-
sampling the means at a fixed distance for each d. To fix
λmax(�0) and λmax(�1), we just need to re-determine the
covariance matrices such that their largest eigenvalues stay
the same. After that, tr(�0) and tr(�1) can be fixed by keep-
ing the effective ranks r(�0) and r(�1) the same for all d,
according to its definition. We therefore re-sample the eigen-
values of �0 and �1 for each d, ensuring that they satisfy
this property. Recall that Remark 2 described our method of
how to do this.

The most difficult parameter to control is λmax(�). This
is because, unlike the trace, λmax is not a linear function
over Sd+. To control it, we use the result we established in
Theorem 5 applied to �0/2 and �1/2 in place of A and B,
and choosing m = 1. In this specific case, Theorem 5 says
that, as d increases (and thus more eigenvalues are added), as
long as the first principal eigenvectors of �0 and �1 remain
collinear, the largest eigenvalue of � stays the same.

Having ensured the conditions of Theorem 5, we will cre-
ate �0 and �1 to have the following form:

�0 =
[
λmax(�0) 0T

0 D0

]
and �1 =

[
λmax(�1) 0T

0 V D1V T

]
,

(64)

where D0 ∈ S
d−1+ is diagonal with all eigenvalues of �0

expect its largest, D1 ∈ S
d−1+ is diagonal with all eigenvalues
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Fig. 1 Empirical out-of-sample error of QDA under Gaussian random
projection when d is set to 100, and we vary the rank (left) or the effec-
tive rank (right) of both class covariance matrices while allowing them
to span different subspaces. For each choice of rank or r , the mean
vectors μ0 and μ1 have a fixed distance of 1 and �0, �1 are generated

using the methodology of Remark 2, and then fixed. We show the mean
empirical test error over 100 draws of the randommatrix R for different
values of k, each using a test set of size 1000 sampled i.i.d. from one
of the Gaussian classes. The error bars span 1 standard deviation. The
ambient dimension is set to 100

of �1 expect its largest, V ∈ R
(d−1)×(d−1) is orthogonal

and 0 ∈ R
d−1 is the zero vector. The setup ensures that the

eigenvectors corresponding to λmax(�0) and λmax(�1) both
lie along the direction of the first axis, thus satisfying the
condition of Theorem 5 for m = 1. The setup of (64) comes
without loss of generality, and applying the same rotation
to both �0 and �1 will result in the condition still holding,
albeit for another direction.

As d increases, we re-sample the eigenvalues of �0 and
�1, keeping both of their largest eigenvalues, as well as their
effective ranks the same. The covariance matrices are then
created anew using (64), which ensures that the conditions of
Theorem 5 are still satisfied for m = 1. That is, the matrices
D0, D1 and V grow in size but the first principal eigenvectors
of �0 and �1 remain collinear.

The steps of this set of experiments are summarised in
Appendix 2 (Algorithm 1). The results are given in Fig. 2.
For all values of k, we see that, as d increases, the mean
empirical test error fluctuates a little for small d, but then
it stabilises for larger d of around 750. Most importantly,
k = 5 which corresponds to an upper bound on the error
in comparison to all larger values of k, the empirical test
error stays almost constant for all values of d tested. This
corroborates our theoretical finding that the error does not
increase with d directly but only though the effective rank; in
other words, compressive QDA is suitable in arbitrary high-
dimensional problems as long as the effective rank is low.

The sudden drop of the empirical test error when d
increases from 50 to 100 can be attributed to the fact that,

since r(�0) and r(�1) remain fixed at 50, then at d = 50 the
matrices are isotropic. Therefore, all of their eigenvalues are
equal and the random projection results in a significant loss
of information, regardless of the resulting low-dimensional
subspace. When the dimension increases, however, some
eigenvalueswill have to decrease drastically to keep the effec-
tive rank fixed. Therefore, there are less directions of greatest
variance, thus resulting in a much lower information loss, if
the projection lands on a suitable subspace.

Finally, we remark that, intuitively, we would expect that
the empirical test error will be higher when k is smaller. Our
theoretical upper bound does not give us information on this,
and it is therefore interesting to see from the empirical results
in Fig. 2 that this is indeed the case in the examples tested.

We conclude from the results of this section that random
projection is a suitable dimensionality reduction method for
QDA when the underlying distribution has a low-ID covari-
ance. The boundwederived for the generalisation errormight
be not particularly tight, but it captures most of the behaviour
observed throughout our empirical investigations. In partic-
ular, the error does not grow with d but only through the
effective rank.

4.4 Numerical results with QDA under random
orthogonal projection

With random orthogonal projection-based dimensionality
reduction we expect very similar results as those observed
with Gaussian random projection. As argued in [9], and
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Fig. 2 Empirical test error of
QDA under Gaussian random
projection, when we vary d
while keeping all quantities that
appear in the bound of
Theorem 2 fixed. For all d,
‖μ0 − μ1‖ = 1,
λmax(�0) = λmax(�1) = 1, and
r(�0) = r(�1) = 50. We show
the average of the empirical test
errors over 100 independent
realizations of the random
projection matrix R for different
values of k, using a test set of
size 1000 sampled i.i.d. from
one of the Gaussian classes. The
error bars span one standard
deviation
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proved formally in [28], when d is large, the columns of R
with entries i.i.d. fromN (0, 1), are close to being orthonor-
mal.

The setup will be identical to the one used in random
projection; for full reproducibility all steps are summarised
in Appendix 2 (Algorithm 2). The first set of experiments
aims to find out whether the empirical test error adapts to a
low-ID, and the results are presented in Fig. 3.

As expected, the empirical test error is almost the same as
in Fig. 1 in both of their respective subfigures, for all choices
of ID and all values of k. This confirms experimentally
that random projection essentially plays the role of random
orthogonal projection, or equivalently, the matrix R used for
random projection, is close to being semi-orthogonal. There-
fore, not much difference is seen when orthonormalizing R.

For the second set of experiments, we test the extent to
which the empirical test error does not depend on d. As
before, we would like to create the class parameters in a
way to ensure that all quantities that appear in the bound of
Theorem 3 are fixed. While the first factor is the same as
in Theorem 2, and can thus be controlled in the same way,
for the second factor we would need to control the k largest
eigenvalues of �0 and �1 and the k smallest eigenvalues of
�. However, Theorem 5 only guarantees fixing the largest
eigenvalues of � and we have not found a way to control its
smallest.

Nevertheless, we expect randomprojection to behave very
similarly to orthogonal projection, therefore we instead opt
to use the same setup as we used there in Sect. 4.3, using the
steps of Algorithm 2. The results are presented in Fig. 4.

As expected, the results appear nearly identical to those in
Fig. 2. The conclusions are therefore the same as in Sect. 4.3,

namely, increasing d does not blow up the errors as long as
the quantities that appear in the bound stay unchanged.

As a final remark, we should mention that, despite the
seemingly different bounds in Theorems 2 and 3, the empiri-
cal performance is very similar. Of course for smaller d, this
might have not been the case, but the significance of our work
is in the high-dimensional settings.

4.5 Numerical results with QDA under principal
components analysis

Wefinally experimentwithPCA-baseddimensionality reduc-
tion for QDA. In this set of experiments, we again inspect the
dependence of the empirical test error on the ID. The setup
will be the same as in Sects. 4.3 and 4.4, except for the fact
that, since the projection is deterministic given the param-
eters, there is no need to sample random matrices. We will
therefore record the empirical test error directly for each pair
(k, d). This reduces the required computational resources,
albeit performing the eigen-decomposition is significantly
more costly than a random projection. For reproducibility,
all steps of this experiment are given in Algorithm 3, and the
results are presented in Fig. 5.

From Fig. 5, we observe a completely different picture
from the previously obtained Figs. 1 and 3. Here, when the
rank is lower, the empirical test error seems to be unaffected
by it. This is unlike random projection and random orthogo-
nal projection, where the test error shows a clear dependence
on the rankof the covariancematrices.However, for the effec-
tive rank, we see that a lower effective rank gives a lower
empirical test error.
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Fig. 3 Empirical out-of-sample error of QDA under random orthogo-
nal projection when d is set to 100, and we vary the rank (left) or the
effective rank (right) of both class covariance matrices while allowing
them to span different subspaces. For each choice of rank or r , the mean
vectors μ0 and μ1 have a fixed distance of 1 and �0, �1 are created

using the methodology of Remark 2, and fixed. We show the mean
empirical test error over 100 draws of the random orthonormal matrix
R, for different values of k, each using a test set of size 1000 sampled
i.i.d. from one of the Gaussian classes. The error bars span 1 standard
deviation. The ambient dimension is set to 100

Fig. 4 Empirical test error of
QDA under random orthogonal
projection when varying d while
we keep all quantities that
appear in the bound of
Theorem 3 fixed. For all d, we
have ‖μ0 − μ1‖ = 1,
λmax(�0) = λmax(�1) = 1, and
r(�0) = r(�1) = 50. The
condition of Theorem 5 is
satisfied with m = 1. The solid
lines show the average empirical
test error over 100 realizations
of the random matrix R for
different values of k, using a test
set of size 1000 sampled i.i.d.
from only one Gaussian. The
error bars span 1 standard
deviation
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For the second round, we need to fix all parameters in
Theorem 4 as d increases. Apart from k, we need to control
the following:

‖�−1/2
k Uk(μ0 − μ1)‖, {λi (�0)}ki=1, {λi (�1)}ki=1, {λi (�)}ki=1.

(65)

To control the k largest eigenvalues of�0,�1 and�, The-
orem 5 for m ≥ k provides a sufficient condition. Namely,
we determine �0 and �1 to be of the following form:

�0 =
[
D0 0T

0 F0

]
and �1 =

[
V D1V T 0T

0 WF1WT

]
, (66)

where D0 ∈ S
m+ and F0 ∈ S

d−m+ are diagonal with the m
largest and d−m smallest eigenvalues of�0 respectively, and
similarly D1 ∈ S

m+ and F1 ∈ S
d−m+ for �1, V ∈ R

m×m and
W ∈ R

(d−m)×(d−m) are orthogonal and 0 ∈ R
(d−m)×m is the

zero matrix. This is similar to the setting in (64), except that
for each k we need the condition of Theorem 5 to hold with
m ≥ k. This is to ensure that, as d increases, only specified
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Fig. 5 empirical test error of QDA under PCA projection whenwe vary
the rank (left) or the effective rank (right) of the covariance matrices.
For each choice of rank and r , the class means have a distance of 1 and
the covariance matrices were obtained using the methodology given in

Remark 2. We show the empirical test error for different values of k,
using a test set of size 10000 sampled i.i.d. from one of the Gaussian
classes. The ambient dimension is set to 100

eigenvalues of � are considered. To show that m ≥ k is
essential, we fix m = 30 in the experiments, so that we can
expect to see some fluctuations in the empirical test error
when k > 30.

Along with this condition, we need to fix the first k eigen-
values of the two covariance matrices. Therefore, we first
create 50 eigenvalues, and then progressively add more as d
increases, ensuring that all of them are smaller than the first
50. The covariance matrices are then created with (66). As d
increases, the matrix V must remain fixed, in order to keep
the upper-left block of � unchanged, whereas W grows in
size and has to be re-determined.

To control the norm in (65), we opt to fix the vector
appearing in the norm. To this end, we again require that
the condition of Theorem 5 holds for k ≤ m. This way,
as d increases �k remains the same and Uk obtains more
columns that consist of zeros. Therefore, we just require that
as d increases and more coordinates of μ0 − μ1 appear, its
existing coordinates do not change. In other words, we deter-
mine all 1000 coordinates of μ0 and μ1 from the start and
unveil d of them progressively as we increase d. Note that
the equal-means case is just a specific case of this.

The complete sequence of steps for running these exper-
iments is given in Algorithm 3. We present the results in
Fig. 6. From this figure we can clearly see that the empiri-
cal test error remains very similar for all d, but only when
k ≤ 30.When k > 30, the empirical test error increases with
d slightly, but it remains under an upper bound (e.g. that cor-
responds to k = 5). This is expected because the condition
of Theorem 5 is satisfied for m = 30.

Comparing Figs. 2, 4 and 6, we observe that PCA tends
to outperform both versions of random projection by about

15%, even when the means are closer to each other (since
truncating coordinates reduces their distance for smaller d).
The bound of PCA-QDA is also numerically tighter. These
results also show the some precise conditions on the data,
underwhichPCAoutperforms the other twoprojectionmeth-
ods, i.e. the conditions of Theorem 5.

5 Conclusions

We derived upper bounds for the generalisation error of
QDA when the data is subjected to three different alterna-
tive projection schemes. Specifically, we considered random
Gaussianprojection, randomorthogonal projection andPCA.
The first two make use of random matrices to reduce
dimensionality, whereas the third one is a deterministic
function of the model parameters. The bounds we derived
are analysing the effect of these projections on the well-
known Bhattacharyya bound. All three bounds turned out
to be independent of the ambient dimension and instead
depend on the effective rank – resembling an interesting
dimension-adaptive behaviour recently found in the case of
nuclear-norm regularised discriminative QDA [8]. We also
confirmed our findings by extensive empirical simulations
on synthetic data.

Future work can focus on deriving similar results for other
dimensionality reduction methods (stochastic or determinis-
tic) for QDA. The goal is to find the conditions under which
the empirical test error adapts to a low-ID and the extend on
which this is true.

Another possible research direction would be to examine
whether other classifiers, apart from LDA and QDA, also
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Fig. 6 Empirical test error of
QDA under PCA when varying
d while keeping all quantities
that appear in Theorem 4 fixed.
For all d,
λmax(�0) = λmax(�1) = 1. The
means were chosen such that
‖μ0 − μ1‖ = 1 when d = 1000
and are truncated for smaller d.
The remaining eigenvalues of
�0 and �1 were chosen such
that r(�0) = r(�1) = 50 when
d = 1000 and are truncated for
smaller d. The condition of
Theorem 5 is satisfied with
m = 30. The lines show the
empirical test error using a test
set of size 10000 sampled i.i.d.
from one of the Gaussian classes
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enjoy a lower classification error in the presence of some
low-ID assumption on the data generator, and to find out
which notions of ID appear to capture this behaviour.
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Appendix A: Supplementary Lemmas

We include here any important lemmas we used to derive our
new results in Sect. 3. Most of them are well-known inequal-
ities. The reader is referred to the corresponding citations to
find the proofs.

Lemma 1 (Rayleigh quotient [29])For any A ∈ S
d+ and non-

zero x ∈ R
d , we have

λmin(A) ≤ xT Ax

‖x‖2 ≤ λmax(A). (67)

Lemma 2 (Distributional Johnson-Lindenstrauss lemma [30])
Given 0 < ε < 1, a fixed vector x ∈ R

d and a randommatrix
R ∈ R

k×d whose elements are sampled i.i.d. from N (0, 1),
then, with probability at least 1 − exp(−kε2/4), we have

(1 − ε)k‖x‖2 ≤ ‖Rx‖2. (68)

Lemma 3 (Poincaré separation theorem [29]) Let A ∈ S
d+

and let B ∈ R
k×d be semi-orthogonal. Then, for all i ∈

{1, . . . , k}, the following inequality holds:

λd−k+i (A) ≤ λi (BABT ) ≤ λi (A). (69)

Lemma 4 (Eigenvalues of Gaussian random matrices [10])
Let R ∈ R

k×d be a random matrix whose elements are sam-
pled i.i.d. fromN (0, 1) and let � ∈ S

d+. Then, for all ε ≥ 0,
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with probability at least 1 − exp(−ε2/2λmax (�)), we have

(
√
tr(�) − √

kλmax(�) − ε)2+ ≤ λmin(R�RT ), (70)

provided that k ≤ 
 tr(�)
λmax(�)

�, and with probability at least

1 − exp(−ε2/2λmax (�)), we have

λmax(R�RT ) ≤ (
√
tr(�) + √

kλmax(�) + ε)2. (71)

Appendix B: Experimentation details

We include here all steps involved in our experiments
reported in Sect. 4.
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