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Abstract

The reduction in agricultural production due to the negative impact of insects and weeds, as well as the health and economic
burden associated with vector-borne diseases, has promoted the wide use of chemicals that control these “enemies.” However,
the use of these synthetic chemicals has been recognized to elicit negative impacts on the environment as well as the health
and wellbeing of man. In this study, we presented an overview of recent updates on the environmental and health impacts of
synthetic pesticides against agro-pest and disease vectors while exhaustive reviewing the potentials of natural plant products
from Zanthoxylum species (Rutaceae) as sustainable alternatives. This study is expected to spur further research on exploiting
these plants and their chemicals as safe and effective pesticide entities to minimize the impact of their chemical and synthetic

counterparts on health and the environment.
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Introduction

The growing trends in urbanization and industrialization in the
past few years, with a corresponding ever-growing population,
have greatly affected the ecosystem. This global population
increase has cast tremendous pressure on existing agricultural
practices. Most countries aim to increase food production to
meet their growing population demands, predicted to reach
nearly 10 billion by 2050 (Yadav et al. 2020). Different agro-
chemicals, such as pesticides to combat pests and diseases, have
recently been very popular. However, it is necessary to ascertain
any adopted agricultural practice’s sustainability and its tanta-
mount effects on human health and the environment. With the
increased crop production, natural products must be developed
and utilized as sustainable alternatives to synthetic herbicides,
insecticides, and other pesticides (Anaduaka et al. 2023).
Synthetic insecticides and herbicides fall under the gen-
eral class of chemical pesticides. While insecticide specifi-
cally kills disease vectors or insects that infest cultivated
plants, herbicide kills weeds and unwanted plants compet-
ing with cultivated crops for nutrients, sunlight, and water.
Insecticides and herbicides can be specific to human enemies
or exhibit a broad-spectrum nature, annihilating harmful
and beneficial insects and shrub plants (Smith et al. 2021)
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(Fig. 3). The mode of action differs from one insecticide
or herbicide to another. Some insecticides are classified as
stomach poison—which elicits their actions upon ingestion
by the insect. In contrast, others are contact poisons or fumi-
gants. Contact poisons elicit their action when in contact
with the external surface of insects, while fumigants kill
insects when inhaled (Campos et al. 2019).

Similarly, most weeds have narrow leaves, which exhibit
a wide range of contrasting biochemical properties to their
broadleaf counterparts, which are most-time our cultivated
shrubs or plants. These biochemical differences form the
basis for many herbicides’ selective killing of weeds (Wang
et al. 2018). The Weed Science Society of America (WSSA)
summarized the biochemical mode of action (MOASs) of
generally known herbicides in their publication on http://
www.wssa.net/ Weeds/Resistance/ WSSA-Mechanism-of-
Action.pdf. Many known herbicides work with the inhibition
of one of the following enzymes or biochemical pathways;
acetyl CoA carboxylase (ACCase), acetolactate synthase
(ALS), photosystem I and II, fatty acid and lipid biosynthe-
sis, enolpyruvyl shikimate-3-phosphate synthase (EPSPS),
glutamine synthetase, carotenoid biosynthesis, protopor-
phyrinogen oxidase, and mitosis and meiosis (Westwood
et al. 2018). Hence, farmers must adopt a suitable herbicide
based on their MOAss that best selectively kills weeds with-
out harming the valuable plants. The toxicity of synthetic
pesticides and their metabolite on the ecosystem and human
health have raised serious global concerns (Wojciechowska
et al. 2016).

Alternative pest and weed management methods are the
physical and biological methods (Baker et al. 2020). The
physical method refers to using physical means to kill or
deter pests, insects, rodents, and weeds from adversely
affecting humans and their activities. Traps, predators,
fires, temperature control, and barriers are the standard
physical pest control methods (Vincent et al. 2009). Physi-
cal methods generally have minimal adverse health effects,
although many results in serious environmental concerns.
For instance, burning weeds fosters global warming, and
killing birds and rodents may distort ecological balance and
favor species extinction (Gerhards and Schappert 2020).

A viable alternative is the adoption of biological con-
trols, which implies using living organisms to control
human enemies. Specifically, introducing a predator, par-
asite, or causative disease agent to a pest may eliminate
or distort the viability of that pest without compromising
human health and the environment (Stenberg et al. 2021).
Recent studies have discovered that plants such as the Zan-
thoxylum species exudate non-human toxic and environ-
mentally-friendly metabolites, potent toxicants to insect
pests and weeds (Hikal et al. 2017). This review presents
an overview of the health and environmental implica-
tions of chemical pesticides while exposing metabolites of
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Zanthoxylum species as a recommended alternative source
of natural insecticides and herbicides.

Methodology

This study comprises two parts—the first part (Sections 3 and
4) provides an overview of the ecological and health impacts/
consequences of adopting synthetic and chemical pesticides to
control agricultural pests and disease vectors. The second part
(Section 5) presented an exhaustive review of studies adopting
or discovering different natural products or metabolites from
Zanthoxylum species as pesticides (insecticides, fungicides,
and herbicides). This study adopted the classical or tradi-
tional review pattern for literature search, using the following
keywords—herbicide, insecticides, non-target species, birds,
amphibians, fishes, soil ecosystem, agroecosystem, aquatic
ecosystem, atmosphere, air, acute toxicity, chronic toxicity,
ocular, nasal, dermal, and oral route. Using Boolean connec-
tors such as “AND” or “OR” where necessary, studies specific
to the different subsections were retrieved, emphasizing recent
studies (2015 —2022).

In the second section on Zanthoxylum’s metabolites, this
study adopted the systematic review pattern for retrieving rel-
evant studies. Works of literature reviewed in this section were
retrieved from PubMed, Scopus, and ScienceDirect. Moreo-
ver, we searched Google Scholar as a secondary source, using
essential keywords and Boolean connectors. After synthesiz-
ing the retrieved documents from the primary databases, only
81 non-redundant documents were obtained. The systematic
search performed on those primary databases adopted key-
words such as (Zanthoxylum) AND [(herbicide) OR (fungi-
cide) OR (insecticide) OR (pesticides)] in their title, abstract,
and keywords. We excluded all non-Zanthoxylum literature,
works of literature on Zanthoxylum as antibiotics, non-English
language literature, and literature not specific to pesticide or
vector-killing activities. Moreover, our inclusion criteria com-
prise all studies on products majorly from Zanthoxylum, such
as extracts, characterized compounds, and grounded plant
parts, showing pesticide activities. After applying our exclu-
sion and inclusion criteria, 29 studies were reviewed in the
second part of this paper.

Ecotoxicological impacts of synthetic
pesticides

Synthetic pesticides have been reported to impact the envi-
ronment negatively, affecting the food web and ecosystems
in diverse ways. This section discussed the ecotoxicological
and health impact of adopting these synthetic pesticides in
agriculture pests and disease vector control.
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Impact on non-target species

Despite the ever-growing need and beneficial roles of pesti-
cides, their adverse effect on non-target organisms has been
a global concern for decades. Predators act as a biologi-
cal control measure in controlling the population of pests
that are essentially their prey, making them beneficial to the
environment. A growing body of evidence from available
literature documents the adverse effects of pesticides on the
predator population. A plot treated with chlorpyrifos caused
a significant reduction in the population of spiders, rich-
ness, evenness, and species diversity of collembola relative
to the control in a study conducted on grassland in the UK
(Fountain et al. 2007; Sanchez-Bayo 2021). Furthermore,
foliar application of systemic pesticides of neonicotinoids
family such as clothianidin, imidacloprid, admire, acetami-
prid, and thiamethoxam resulted in a highly toxic effect on
natural enemies when compared to fipronil, buprofezin, and
spirotetramat (Kumar et al. 2012; Zhang et al. 2016). Simi-
larly, the spraying of imidacloprid and cypermethrin on the
brinjal (also known as nightshades) ecosystem resulted in
increased mortality of braconids, predator spiders, and coc-
cinellids when compared to biopesticides and Azadirachta
indica (neem) as insecticides (Ghananand T, Prasad CS
2011; Zaller and Briihl 2019).

Furthermore, it has been shown that pesticides can cause
a change in predator behavior as well as other developmental
parameters such as growth rate, development, and reproduc-
tive parameters, for instance, a significant decrease in body
size, reduction in morphometric parameters, and hemocyte
count in Pterostichus melas italics (carabid beetle) (Giglio
et al. 2011; Benitez et al. 2018). Similarly, glyphosate-based
herbicides caused a change in behavior and survival rate of
ground beetles and spiders as well as the effect on the arthro-
pod community, thereby influencing ecosystem biological
control (Evans et al. 2010; Schmidt-Jeffris et al. 2022).

Pollinators play vital roles in the agricultural process dur-
ing pollination. Various species of bees (including Bombus
spp. and Apis spp.) and birds and beetles are essential pol-
linators and serve as bioindicators in the ecosystem. Con-
tinuous and indiscriminate use of synthetic insecticides and
pesticides could result in low yield/loss of crops by reducing
the population of pollinators (Fishel 2014; Ara, 2021). Simi-
larly, other activities of pollinators are disrupted by pesticide
(an insecticide) application, ranging from the efficiency of
pollen collection, colony mortality, and foraging behavior
(Straub et al. 2022).

Neonicotinoid-based insecticides (such as dinotefuran,
thiamethoxam, thiacloprid, and clothianidin) caused lethal
and sub-lethal effects on learning, foraging behavior, and
memory of the bees (Blacquiere et al. 2012; Buszewski et al.
2019). Furthermore, exposure of honey bees to a non-lethal
dose of thiamethoxam resulted in substantial mortality due

to homing failure, thus putting the colony in danger of col-
lapse (Henry et al. 2012; Giri et al. 2018). Case of high
mortality, poor efficiency in pollen collection, and colony
collapse as a result of exposure of worker bees to pyrethroid
and neonicotinoid insecticides has also been reported (Gill
et al. 2012; Wood and Goulson 2017). Several recent review
articles report other studies on the effects of pesticides on
pollinators (Sponsler et al. 2019; Serrdo et al. 2022; Straub
et al. 2022). In conclusion, synthetic pesticides harm func-
tional and ecologically beneficial non-target species such
as pollinators, biological recalcitrant waste degraders, and
bees.

Impact on the soil ecosystem

The continuous use of pesticides in agriculture results in
high retention and accumulation of considerable fractions
in the soil. The fate of these pesticides is determined by
microflora and the properties of the soil, where they undergo
various processes such as transport, degradation, adsorption,
and desorption (Rasool et al. 2022; Okeke et al. 2022a).
After degradation, there is excellent interaction between
the pesticides and the soil environment and soil microor-
ganisms, leading to alteration in enzymatic activities, bio-
chemical reactions, and microbial activities (Ahmed and
Al-Mutairi 2022; Okeke et al. 2022b). Adversely, certain
microbes utilize applied pesticides as an energy source to
support their population growth and concomitant soil eco-
system disturbance (Fig. 1). Specifically, chlorpyrifos was
found to act as a carbon source, increasing the growth of a
bacterial isolate from agricultural soil irrigated with waste-
water (Farhan et al. 2021). Several biochemical reactions in
the soil, such as ammonification, nitrification, and nitrogen
fixation, are adversely affected by herbicides and insecticides
via the deactivation/activation of specific soil enzymes and
impacting the efficiency and population of soil microorgan-
isms. Whether soil biochemical reaction will be increased or
decreased is a function of the synergistic interaction between
microorganisms, pesticides, and soil properties (Alenge-
bawy et al. 2021). Within a pesticide concentration of 2.5
kg/ha-5.0 kg/ha, the population of Azospirillum spp. was
found to be significantly increased, as well as its ammoni-
fication rate in vertisol and laterite soils on which Arachis
hypogaea L. was planted but showed reverse effect at higher
concentrations (Srinivasulu et al. 2012).

The rhizosphere microbial community improves soil
quality by participating in nutrient and biogeochemical
cycles, improving crop yield (Li et al. 2022a). A recent
study shows that glyphosate caused a perturbation in the
rhizosphere microbial community (Newman et al. 2016;
Lu et al. 2017). More so, pesticide applications have also
been reported to kill or inhibit some microorganisms and
outnumber another group, thereby affecting competition
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Fig. 1 Impact of herbicide/
insecticides on soil ecosystem

Sources of
Herbicides/insecticides

among them. Notably, endosulfan application resulted in a
76% increase in bacterial biomass and a 47% reduction in
fungal biomass (Xie et al. 2011; Arora and Sahni 2016).
Mineralization of soil organic matter has also been reported
to be significantly affected by pesticide application. This
crucial soil property influences productivity and soil quality.
For instance, soil organic matter was significantly reduced,
followed by applying four different herbicides (prime extra,
atrazine, glyphosate, and paraquat) (Sebiomo et al. 2011;
Athiappan et al. 2022).

Synthetic pesticides have been reported to adversely
affect microbial biomass growth, metabolic activities, and
colonization (Mandl et al. 2018; Zaller et al. 2018). Also,
their negative impacts on valuable soil enzymes, essential in
agriculture, decomposition of organic matter, and nutrient
cycling cannot be overemphasized (Pattanayak et al. 2022).
Other recent findings on the effects of synthetic pesticides on

Fig.2 Impact of herbicide/
insecticides in aquatic ecosys-
tem

@ Springer

soil and agroecosystems are summarized in recent reviews
(Galhardi et al. 2021; Mehdizadeh et al. 2021). We conclude
that synthetic pesticides affect the soil and agroecosystems
by distorting regular nutrient cycling, soil biomass, miner-
alization, and agro-productivity.

Impact on aquatic and air ecosystems

There is uncontrollable downward movement or leach-
ing of pesticides from agricultural fields into water bodies
where non-target species, including fishes and other aquatic
organisms, are affected, thereby causing a threat to biodi-
versity and an imbalance in ecosystem equilibrium (Ahmad
Dar 2016) (Fig. 2). Pesticides can find their way into the
aquatic environment through various routes such as indus-
trial effluent, accidental spillage, washing of spray equip-
ment after spraying, surface runoff, and movement from
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Fig. 3 Human health impacts of synthetic pesticides

pesticides-treated agricultural fields (Dhawan et al. 2017).
The bioaccumulation of pesticides in the tissues and organs
of aquatic organisms has also been reported (Yadav et al.,
2018). The continuous deposition of pesticides in the aquatic
environment has erupted enormous public health concerns.
They pose a significant risk to the aquatic ecosystem and
consequent long-term effects on humans throughout the food
chain (Kumar et al. 2021).

Similar to the aquatic environment, pesticides in the air
can arise through volatilization from applied agricultural
fields or surfaces, aerial application, and spray drift. Wind
speed and droplet size are key factors determining the drift’s
extent. In contrast, the volatilization rate is determined by
ambient temperature, wind speed, humidity, the vapor
pressure of the pesticide constituents, the surfaces where
the pesticides settle, and the time after pesticide treatment
(Kaur and Garg 2014). The volatile nature of pesticides
poses a significant risk to the atmosphere, making them
prone to pollution (Rajmohan et al. 2020). In a study con-
ducted in Washington and California in the United States,
organophosphorus pesticides were detected from environ-
mental samples from surfaces and air after spraying agri-
cultural fields (Armstrong et al. 2013; Sharma et al. 2019;
Okeke et al. 2022d).

Amphibians are found in various terrestrial, arbo-
real, and aquatic ecosystems. There are increasing global

environmental concerns over the declining population of
amphibians worldwide; while most are almost to extinc-
tion, a considerable number are already endangered species
(Ockleford et al. 2018). Although numerous problems are
responsible for such population drop, herbicides and insecti-
cides are significant contributors. Climate change and global
warming have caused temperatures to become warmer,
thereby increasing the impact of pesticides on the popula-
tion of amphibians (Johnson et al. 2013; Prasad and Prasad
2022). Other factors include the permeable nature of the
skin, the rudimentary immune system, and the terrestrial-
aquatic cycle of amphibians (Varga et al. 2018).

Birds are not spared from the hazardous effects of pes-
ticides; they are exposed to these toxic chemicals through
ingestion of treated seeds, the spray, treated crops, contami-
nated water, and contaminated baits (Richard et al. 2021).
Certain insecticides, such as organophosphates and carba-
mates, have been shown to cause bird mortality (Jayaraj
et al., 2016). Ground-nesting birds, such as grassland birds
in America, were reduced in population due to pesticide tox-
icity (Mineau and Whiteside, 2013; Gunstone et al. 2021).
Various insecticides (such as carbofuran, cholinesterase
inhibitors-fenthion, phorate, and carbofuran) and herbicides
applied to rice fields have been reported to be highly toxic
to birds causing a wide range of mortality and reproductive
toxicity (Mladenovi¢ et al. 2018) Mladenovié, Milan 2018.
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The synergistic interaction of fish with the chemical,
biological, and physical environment makes them a vital
component of the aquatic ecosystem. They are an essential
part of the marine food web as they are a food source for
other ecosystem members like marine mammals and sea
birds. Pesticides have generally been reported to affect fish
populations in the aquatic ecosystem, as they have been
reported to contribute to the mortality of fish globally. The
presence of pesticides in the aquatic environment, even at
low concentrations, could still pose a harmful effect on
marine organisms (Mladenovic et al. 2018). The ability
of fishes to bioaccumulate toxic chemicals makes them
susceptible to pesticides. Alterations in the biochemical
parameters of aquatic organisms could serve as a bioin-
dicator for evaluating the health of aquatic organisms
(Poopal et al. 2017). A recent study reported a change in
biochemical and histological parameters of Cirrhinus mri-
gala (freshwater fish) after exposure to certain pesticides
(Ghayyur et al. 2021). Exposure to pesticides caused severe
damage to various fish organs such as the alimentary canal,
brain, liver, and gill, suggesting that such concentration
of pesticide could cause harm to consumers (Nwani et al.
2021). Another independent study shows that organophos-
phate pesticides could cause an alteration to vitellogenesis
in catfish, thereby hindering catfish farming (Shahjahan
et al. 2017). Other toxic effects of pesticides on fishes are
the distortion of their olfactory senses, which aids them
in locating food, avoiding predators, and mating. Some of
these effects and many more are summary in a few recent
reviews (Kasumyan 2019). We conclude by asserting from
abovementioned studies that synthetic pesticides to greater
extent detrimentally affect the aquatic ecosystem and a
lesser extent the air ecosystem.

Impacts of synthetic pesticides on human
health

Regardless of the ease of eliminating weeds and insects
with herbicides and insecticides, there are countless
reports on their adverse effects on human health (Nicolo-
poulou-Stamati et al. 2016). The predisposing factors that
determine the severity of the harmful effects caused by
exposure to these toxicants are the nature of the chemical
toxicant, length of time of exposure, the quantity taken
by the cells, age of the individual, immune status, and
presence of underlying ailment or other comorbidities
(Alengebawy et al. 2021). These chemicals, on exposure,
gain entry through the skin (dermal contact), inhalation
into the lungs, orally ingested from the mouth, or making
contact with the eyes. In the human or animal body, these
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herbicides or insecticides could be metabolized, excreted,
or bioaccumulated in the body’s adipose (Thapa et al.
2021).

The health implications of insecticides and herbicides
range from acute to chronic conditions depending on the
severity of the impact (Hassaan and EI Nemr 2020) (see
Tables 1 and 2). Acute health conditions are short-term
and are experienced immediately after a single exposure,
whereas chronic conditions are long-term and occur many
months and years after exposure. Acute effects or symp-
toms are immediately felt or experienced on these organs
through their entry point. Acute effects include rashes,
blisters, coughing, nausea, dizziness, diarrhea, stinging
eyes, and even death from extreme toxicity or extended
exposure to acute toxicants (Nicolopoulou-Stamati et al.
2016). Chronic conditions are primarily due to the accu-
mulation of toxicants that may seem harmless in the
body’s cells over a long period. Chronic conditions are
debilitating and range from cancers, tumors, infertility,
and reproductive problems to damage to the liver, kid-
neys, lungs, and other body organs. Summarily, synthetic
chemical herbicides and pesticides may cause dermato-
logical, gastrointestinal, cognitive impairment and neuro-
degeneration, carcinogenic, respiratory, reproductive, and
hormonal/endocrine imbalances (Hu et al. 2015; Sarailoo
et al. 2022). The health impact of synthetic insecticides
and herbicides varies among the different types and
classes of the pesticide. The U.S. Environmental Protec-
tion Agency (EPA) has classified pesticides based on their
toxicity into four categories (I-IV): oral LD, inhalation
LCsq, dermal LDs, time-span eye effects, and time-span
skin effects. Category I pesticides are regarded as the
most toxic pesticide, while category IV is the least toxic
(EPA 2014).

Apart from the exposure to toxic chemicals from her-
bicides and insecticides as a result of man’s occupational,
accidental, or intentional activities, many individuals still
come in constant with residues from everyday foods and
beverages (Kumar et al. 2020). These chemical residues
are recalcitrant and are difficult to wash off from agro-
produces thoroughly. Hence, they are consumed as long
as their concentration may be lower than the legislatively
determined safe concentration. However, certain toxic-
ity levels can still be experienced due to the synergistic
effects of several minute residues that may be ascertained
to be safe (or have a lower concentration than the leg-
islatively acceptable dose) (Yigit and Velioglu 2020).
Although synthetic insecticides and herbicides are clas-
sified into several groups based on their mode of action
and the class of their active chemicals, their impact on
health may vary among synthetic pesticides in the same
class.
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Table 1 (continued)

&

References

Acute and chronic health impact

U.S. EPA
toxicity
category

Active ingredient Mode of actions

Insecticide class

Springer

(Petroski and Stanley 2009)

Skin and upper respiratory tract allergy,

I and IV
asthma, breathing difficulty

Naturally contain six refined natural

Pyrethrins

Natural origin (flowers

esters from the flower extract that alters

of the chrysanthemum

family)

the activities of the Na ion channels of

the nerves, resulting in nerve firing and

death.
Contains single synthetic esters that alter

(Bradberry et al. 2005; Chrustek et al.

Facial burn, burning, and tingling of the

I

Pyrethroids

Synthetic pyrethrin

2018; Salako et al. 2020)

skin, headache, dizziness, lack of coor-
dination, irritability to cracky noise

the activities of the Na ion channels of

the nerves, resulting in nerve firing and

death.

or touch, diarrhea, vomiting, tremor,

convulsion, nervous coordination loss,

and numbness.

Sustainable alternative to toxic synthetic
pesticides—natural metabolites
from Zanthoxylum species

Malaria, leishmaniasis, and other diseases whose causa-
tive organisms are transmitted by vectors are increasingly
causing significant problems for humans, leading to many
sicknesses and death (Eder et al. 2018). Moreover, agri-
cultural activities for food production are threatened by
disease-carrying pests and destructive insect pests (Chanda
et al. 2017). This situation is aggravated by the growing
resistance of these vectors to available insecticides and
synthetic pesticides, making the vectors thrive and pro-
moting the spreading of disease-causing organisms (Wil-
son et al., 2020). These synthetic chemicals also constitute
acute and chronic toxicity to humans because of their poor
selectivity. Moreover, their persistent nature fosters their
accumulation in the environment, causing significant harm
to living organisms in soil and water bodies (Nwani et al.
2013, 2021). Hence, the need for a more sustainable alter-
native for disease prevention, vector control, and agricul-
tural purposes, with adverse effects on human health, our
environment, and the ecosystem.

In recent years, research efforts have been directed into
seeking and applying secondary metabolites or natural
products from plants, microbes, or animals for sustain-
able management of human disease vectors and agricul-
tural pests (Okeke et al. 2021; Ezeorba et al. 2022; Okagu
et al. 2022; Enechi et al. 2022). These natural products are
usually environmentally friendly and non-toxic to humans
and effectively repel or kill these harmful pests. We shall
review recent findings on interesting metabolites from
Zanthoxylum species as a potential source of sustainable
natural pesticides.

The Zanthoxylum genus is an exciting member of the
Rutaceae family containing over 250 species of deciduous
and evergreen trees, shrubs, and climbers, which are native
to the subtropical regions of the world. Members of the
Zanthoxylum species have reported interesting metabolites
and volatile organic chemicals with tremendous pesticide
activities. Although some studies have reported these phy-
tochemicals of agricultural and pest-control interest to be
present in polar fractions (ethanoic, methanolic, and aque-
ous fractions) of different Zanthoxylum plant parts (fruits,
leaves, and bark), the majority of studies have identified
these phytochemicals in the fractions of the essential oil
obtained either by hydro or steam distillation. In more
detail, we shall discuss some of these Zanthoxylum metab-
olites based on their application as (a) animals and human
disease vector control, (b) plant foliage insect pest control,
(c) stored grain pest control, (d) phytogenic fungi control,
and (e) weed control.
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Zanthoxylum species for animals and human
disease vector control

Vectors are carriers of disease pathogens for transmission to
the host, majorly humans and animals (Wilson et al. 2017).
Several studies have identified some Zanthoxylum species’
plant extracts, fractions, and metabolites with insecticidal,
larvicidal, pupicidal, or repellency of animal and human dis-
ease vectors. Common examples of these vectors (Table 3)
are Aedes aegypti and Aedes albopictus (mosquito variants
that are a carrier of yellow fever, zika fever, dengue fever,
and chikungunya viruses), Culex pipiens pallens (mosquito
variants and carrier of bancroftian filariasis and West Nile
virus), Anopheles gambiae (carrier of Plasmodium falcipa-
rum), and Stomoxys calcitrans (stable flies, vector of many
blood-borne zoonotic diseases) (Wilson et al. 2020; Chala
and Hamde 2021).

A recent study by Soonwera et al. (2022) identified
limonene as the major component of the essential oil of
Zanthoxylum limonella dried fruits having larvicidal and
pupicidal activities against Aedes aegypti and Aedes albop-
ictus with an LCs, range of 2.5-3.7 % and LT, range of
0.1-0.3 h). An earlier study from the same lab reported that
the essential oil fraction of the Z. limonella dried fruits was
potent against Aedes aegypti and Culex quinquefasciatus,
expressing adulticidal, larvicidal, pupicidal, and oviposition
deterrence activities (Soonwera and Phasomkusolsil 2017).
In detail, well-developed adult insects expressed lethality
(LCs, of 5.7-6%) after 24 h of exposure to 10% oil in etha-
nol. In contrast, a 100% mortality of larva and pupae was
reported after the same time. Finally, it was discovered that
the EO of Z. limonella caused a negative oviposition index
(ranging from —0.89 to —1.00) in both insect vectors, imply-
ing a deterrence in their egg-producing activities and repro-
duction (Soonwera and Phasomkusolsil 2017).

Zanthoxylum piperitum is another exciting source of
insecticidal and vector-controlling metabolites extensively
explored in recent studies. Different studies have isolated
valuable metabolites from the plant's barks, fruits, and
seeds (Kamsuk et al. 2007a; Hieu et al. 2012a; Kim and
Ahn 2017). Important and bioactive lignans and alkaloids
extracted from the bark of Z. piperitum were reported with
insecticidal and larvicidal activities against the wild Culex
pipiens pallens and Aedes aegypti (Kim and Ahn 2017). The
spectrometric analysis identified (—)-asarinin, sesamin, and
(+)-xanthophyll-y,y-dimethylallylether (XDA) as the major
lignins, while pellitorine was the most abundant alkaloid in
the fraction. Purified XDA gave a reasonable LCs; of 0.27
and 0.24 mg/l against C. pipiens pallens and Ae. Aegypti,
respectively, although lower than synthetic temephos (LD50
of 0.006 and 0.009 mg/1, respectively) (Kim and Ahn 2017).
Older studies on the same plants (as summarized in Table 3)
have reported the potencies of the essential oils extracted

@ Springer

from their fruits and seeds as insect fumigant and repel-
lent against the zoonotic vectors (Stomoxys calcitrans and
Mansonia uniformis) and numerous insect vectors of human
diseases (Kamsuk et al. 2007a; Hieu et al. 2012a).

In another study, essential oils from Z. acanthopodium
aerial parts were shown to be cytotoxic to malaria vectors,
A. anthropophagus and A. Sinensis, with LCsy and LCy,
values of 36.00 and 101.49 mg/L and 49.02 and 125.18
mg/L, respectively, supporting its traditional use in killing
insects in China and some other Asian countries (He et al.
2018). The authors further showed that estragole, eucalyp-
tol, B-caryophyllene, cis-linalool oxide, and cis-limonene
oxide were the major constituents of the essential oils, with
estragole and eucalyptol suggested to be responsible for the
cytotoxicity of the essential oils against the two vectors.
Estragole was cytotoxic against An. Anthropophagus and
An. Sinensis with LCy; and LCy values of 38.56 and 95.90
mg/L and 41.67 and 107.89 mg/L against An. Anthropopha-
gus and An. Sinensis, respectively. Similarly, eucalyptol was
cytotoxic with LCsy and LCy values of 42.41 and 114.45
mg/L and 45.49 and 124.95 mg/L against An. Anthropopha-
gus and An. Sinensis, respectively.

Essential oil from Z. bungeanum fruits was shown to
have repellant effects against the malaria vector (the malaria
parasite-carrying insect), Aedes aegypti, supporting the tra-
ditional use of the plant in Thailand and other countries
(Chaithong U, Kamsuk K, ChoochoteW, Jitpakdi A, Tip-
pawangkosol P, Tuetun B, Champakaew D 2006). In addi-
tion, the repellency of the essential oil was compared with
a synthetic repellant, N, N-diethyl-3-methyl benzamide,
against selected mosquitoes; A. Gardner, A. barbirostris,
Armigeres subalbatus, C. tritaeniorhynchus, C. gelidus, C.
vishnui group, and Mansonia uniformis. The essential oil
was shown to effectively repel all the insects (100% repel-
lency) compared to the synthetic repellant, which repelled
only 99.7% of the insects in the field; however, the synthetic
insecticide had slightly higher repellant action in the labora-
tory (Kamsuk et al. 2007b). Further investigation into the
mechanism of this repellency and the specific contents of
the essential oil responsible for the activity is recommended.
In another study, essential oil from Z. armatum seeds gave
good cytotoxic activity when exposed to the larva of Aedes
aegypti, Culex quinquefasciatus, and Anopheles stephensi
with LCjs, values of 49, 54, and 58 ppm, respectively, sup-
porting the traditional use of the plant in vector control for
malaria prevention in India (Tiwary et al. 2007). Further
study on the insecticidal activities of Z. armatum showed
that extracts of the stem bark strongly repelled A. gambiae
(Mikolo et al. 2009), showing that the plant has promising
applications in controlling Anopheles species and preventing
malaria as well as minimizing the environmental concerns
associated with synthetic insecticides that are used as vector
control strategies.
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Table 3 (continued)

&

Ref.

Animal/human insect

vectors

Isolated and characterized  Biological activities

compounds

N/A

Extract

Plant part

Zanthoxylum sp.

Springer

(Kamsuk et al. 2007a)

Insecticidal repellent better Female Aedes aegypti,

Essential oils

Fruit

Zanthoxylum piperitum

Aedes gardnerii, Anoph-

than synthetic N,N-die-

eles barbirostris, Armig-
eres subalbatus, Culex

thyl-3-methylbenzamide

(DEET)—protection

tritaeniorhynchus, Culex
gelidus, Culex vishnui
group, and Mansonia

uniformis

time of 1.5-2.5 h (EO)
vs. 3.5-5.5 h (DEET).

100% bite protection by

EO vs. 99.7% bite pro-
tection by DEET.

Additionally, Samita et al. (Samita et al. 2013) pre-
pared different solvent extracts of the stem bark of Z.
pyracantha, a medicinal plant used in killing mosquitoes
in Kenya, and tested their activities against the larva of A.
gambiae. The extracts elicited larvicidal activities, with
dichloromethane extract being the most active. Bioactiv-
ity-directed fractionation of the dichloromethane extract
yielded zanthoxoaporphines A, B, C, and sesamin. These
isolates also gave potent larva-killing activities with
sesamin and zanthoxoaporphine A, showing excellent
larvicidal potentials with LCs, values of 10.3 and 11.1
pg/ml after 72 h exposure. Similarly, Hieu et al. (Hieu
et al. 2012b) evaluated the potential application of two Z.
species, viz. Z. bungeanum, and Z. armatum, as natural
insecticides. Solvent extracts and essential oils from the
species and their secondary metabolites (cumin aldehyde,
thymol, (15)-(-)-verbenone, (-)-myrtenal, carvacrol, (S)-
(Z)-verbenol, and cuminyl alcohol from Z. bungeanum,
and piperitone, (-)-(Z)-myrtanol and citronellal from Z.
armatum) demonstrated moderate toxicity against Sto-
moxys calcitrans (with LCs, values of 0.075-0.456 pg/
ml). However, the insecticidal activities of the plants and
their compounds were lower than those of two synthetic
organophosphorus insecticides, chlorpyrifos, and dichlo-
rvos. Some of the isolated compounds, citronellyl acetate,
a-pinene, thymol, carvacrol, and a-terpineol, inhibited
acetylcholinesterase activities in the insect. However,
the acetylcholinesterase-inhibitory effect was not directly
linked with the insecticidal activities.

The activities of Z. heitzii against many types of insects
have been reported (Mikolo et al. 2009; Overgaard et al.
2014a), supporting the traditional application of the root
bark decoctions in controlling vectors of many human dis-
eases. Secondary metabolites isolated from Z. heitzii stem
bark (dihydronitidine, caryophyllene oxide, pellitorine, and
sesamin) showed insecticidal activities against the adult and
larvae stages of A. gambiae. Specifically, pellitorine inhib-
ited both stages (with LDs, values of 50 ng/mg and 13 pg/
ml against insects and larvae, respectively), while caryo-
phyllene oxide and sesamin inhibited only the larval stage
with LDy, > 150 pg/ml. When combined, these compounds
were also synergistic, exhibiting higher toxicity to both
insect stages than their individual effects when used alone
(Moussavi et al. 2015). This report has positioned phyto-
chemicals from Z. heitzii stem bark, especially pellitorine,
as natural insecticides that can target both adult and larvae
stages of A. gambiae. It is worth mentioning that the above
study has some limitations in not using standard insecti-
cides to compare the activity of the herbal compounds. To
strengthen the study’s designs, researchers working on bio-
logical activities of bioactive compounds, whether synthetic
or natural products, are hereby recommended to ensure they
include a group treated with standard drugs to make room
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for comparison of the efficacy of the test compound(s) with
a reference standard(s).

Future studies should delve into the search for more potent
metabolites from other Zanthoxylum species as well as other
plants. Moreover, further characterization of these metabolites
and their nanoformulations for their controlled release and
delivery may improve their bioactivities (Okeke et al. 2022c).

Zanthoxylum species and its metabolites
for agricultural field insect pest control

Agricultural and food crop production is greatly affected
by the infestation of field insect pests, which results in their
overall decrease in viability and productivity. These insects
are parasitic, feeding, and taking shelter from different parts
of the plants for their survival, regardless of the detrimen-
tal harm they inflict on the plants. Metabolites of several
Zanthoxylum species have been reported to play vital roles
in controlling the field of insect pests to boost agricultural
productivity and maintain the integrity of our environment
and ecosystem (Table 4).

Zanthoxylum rhoifolium has been reported as a rich
source of valuable metabolites for deterring and killing field
pests. A recent study has shown that the free essential oil of
Z. rhoifolium fruits, which contained majorly p-phellandrene
(76.8%), p-myrcene (9.6%), and germacrene D (8.3%), had
insecticidal activities (64.8 % mortality) against a bean plant
pathogen (Bemisia tabaci) in 1.5% EO suspension (Pereira
et al. 2022). Moreover, the nanoformulation of its essential
oils to generate a homogenous nanosphere by nano-precip-
itation improved the insecticidal activities to about 84.3%
mortality, 71% reduction in insect oviposition, and greater
than 64% mortality of second instar nymphs (Pereira et al.
2022). Finally, nanoformulation improves the EO’s insecti-
cidal activities, and the study showed improved photostabil-
ity and stability in adverse conditions (Pereira et al. 2022).
A previous study on the same plant, Z. rhoifolium (although
with the extract of leaves and branches), has shown its great
insecticidal activities against workers of Atta sexdens L.
(cutting ants) (Gomes et al. 2016). The cutting ant is a well-
known destructive plant pest that attacks the leaves and other
aerial parts of several plants at different stages of growth
(Mota Filho et al. 2021).

Zanthoxylum armatum is another species studied for
its insecticidal activities against agricultural field pests. It
was recently reported by (Kaleeswaran et al. 2018) that the
n-hexane, methanol, ethyl acetate, and aqueous extract of
Z. armatum fruit pericarp and leaves, though contact and
oral toxicity, fostered the mortality of oriental leaf worms
(Spodoptera litura), with an LCy, range of 0.179-5.97%.
This insect pest majorly attacks and destroys the leaves of
tobacco and cotton plants (Kaleeswaran et al. 2018). The
insecticidal activities of the n-hexane fraction (LCs5,—0.179)

were slightly better than a synthetic pesticide—azadirachtin,
with LCs; of 0.239 %, although both with comparable lethal
time (LT5,—60 h). Moreover, the plant extracts also showed
interesting antifeedant and ovicidal modes of action to cur-
tail the spread of the field pests (Kaleeswaran et al. 2018).
Another study adopted the use of spectrometry techniques
to identify compounds present in the n-hexane extracts of
Z. armatum leaves and discovered majorly two fatty acids
- 2-undecanone (19.75%) and 2-tridecanone (11.76%), with
impressive potencies against another field pest—diamond-
back moth (Plutella xylostella). In addition to the insecti-
cidal activities, the extract also showed larvicidal activities
with an LCy of 2988.6-16750.6 ppm (Kumar et al. 2015).
Finally, the essential oil of Z. armatum fruits was earlier
reported to be potent against the field pest—Aphis cracc-
civora, when in contact with the pest for about 48 h, and
LC4, between 55 and 60 ppm (Tewary et al. 2005)

Tringali et al. (2001) isolated sesamin, 1-hydroxy-3-meth-
oxy-N-methylacridone, arborinine, xanthoxoline, 1-hydroxy-
3-methoxyacridone, oblongine, tembetarine, magnoflorine,
and hesperidin from ethanol extract of Z. Clava-herculis
barks and examined their insecticidal activities against
the larva of Spodoptera littoralis and S. frugiperda. It was
reported that among these compounds, xanthoxoline showed
the highest antifeedant activity by suppressing feeding pat-
terns in S. littoralis and S. frugiperda larvae by 53% and
58%, respectively. This report positions xanthoxoline as a
potential entity that demands further investigation as a larva-
stage insecticide for S. frugiperda and S. littoralis. Other
Zanthoxylum species with extracts or metabolites against
field insect pests have been summarized in Table 4.

Zanthoxylum species and their metabolites
for the control of pests of agricultural stored
products

To ensure an all-year-round supply of food crops and other
agro products, there is a need to improve agro-storage sys-
tems to ensure that the viability and quality of agro-produce
are maintained. Some insect pests specifically attack stored
products fostering their spoilage (Kumar and Kalita 2017).
Zanthoxylum metabolites in many studies have proven to
be a sustainable alternative to synthetic pesticide to wage
against insect pests of stored products. Moreover, these
metabolites are non-toxic to humans even when consumed
alongside stored food crops (Ke et al. 2019).

The dried stem bark and roots of Zanthoxylum zanthoxy-
loides were processed into fine powder to prevent infesta-
tion of Callosobruchus maculatus, a well-known insect pest
that attacks Bambara nut, cowpea, and lentils. Ugwu et al.
(2022) reported that 10 g of fine powder of Z. zanthoxyloide
dried stem bark per 100 g of Bambara-nut caused about
80.67% mortality of Callosobruchus maculatus after about

@ Springer
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120 h contact time. More so, an observable deterrence in
oviposition and adult emergence was also reported as part
of the mechanism of action of Z. zanthoxyloide against the
pests (Ugwu et al. 2022). An earlier study obtained a similar
result, which prepared and adapted the root powder of Z.
zanthoxyloide to prevent the same insect pest—C. macu-
latus. Significant antifeedant activities were observed at
a concentration of 5% (wt/wt) of the powder, and a 100%
mortality was recorded after 3 days (Odeyemi et al. 2013).
Essential oils of Zanthoxylum monophyllum fresh fruits
prepared by hydrodistillation have been reported in two
studies to be potent against Tribolium castaneum (Red flour
beetle) and Sitophilus oryzae (Prieto et al. 2011; Oviedo-
Sarmiento et al. 2021). In the most recent study, Oviedo-
Sarmiento et al. (2021), using GC-MS analysis, identified
a-pinene (6.7%), p-pinene (35.3%), f-ocimeno (7.9%), and
linalool (10.8%) from the essential oil fraction. The essen-
tial oil showed significant insecticidal and fumigant toxicity
against the Red flour beetle, with an LCs;, of 18.5 pL/L air.
Moreover, the mechanism of insecticidal activities of the
essential oil fraction owes to the fostering >50% inhibition
of acetylcholinesterase (AChE), glutathione S-transferase
(GST), and catalase (CAT) in the insect pest (Oviedo-Sarm-
iento et al. 2021). Contrarily, Prieto et al. (2011) previously
reported the abundance of sabinene (25.71%), 1,8-cineole
(9.19%), and cis-4-thujanol (9.19%) in the essential oil
fractions of the same plant. Their studies showed the insec-
ticidal and fumigant activities of the essential oil against
Sitophilus oryzae (insect pests of stored rice products) with
an EC5;—222 pL L™ air. Many factors may have contributed
to the difference in phytochemical contents between the two
studies, such as differences in analytical protocol, different
plant growth conditions, and other salient processing (Pri-
eto et al. 2011). In another study, the botanical fine pow-
dered prepared by pulverizing dried fruits of Zanthoxylum
armatum Roxb has also shown insecticidal activities against
Sitophilus oryzae L (Rice weevils), causing about 70.67%
inhibition at a concentration of 10 g/kg (Khanal et al. 2021).
Stored products destructive insects (Tribolium cas-
taneum) have recently been deterred and killed by essential
oil fraction of Zanthoxylum limonella seed and Zanthoxy-
lum planispinum var. dintanensis leaves and fruit pericarps.
Wanna and Satongrod (2020) reported that the essential oil
fraction of Z. limonella seeds contained multiple phyto-
chemicals with more abundance of (19.65%), 9-octadecan-
one (18.80%), and D-limonene (9.76%). About 10% con-
centration of the essential oil results in a 100% mortality
of the insects’ eggs, larvae, and adults within 14 days,48 h,
and 120 h, respectively. Conversely, the essential oil of Z.
planispinum fruits and leaves had an abundance of oxygen-
ated monoterpenes (linalool, sylvestrene, and terpinen-4-ol)
from the fruits and 2-dodecanone from the leave extract. It
was reported that purified 2-dodecanone showed interesting

insecticidal activities against 7. castaneum adults (LDs, =
2.54-23.41 pg/adults) after 2—4 hr contact post-exposure
(Wang et al. 2019). Several other Zanthoxylum species have
been processed for their metabolites against pests of stored
agro-products, as summarized in Table 5.

Zanthoxylum species and their metabolites
for controlling phytopathogenic fungi

Several disease-causing fungi and bacteria tremendously
affect agriculture crops and animal production, leading to
the loss of their quality and quantity and even death. Syn-
thetic fungicides and bactericides have been popularized due
to their mode of quick response to salvage an agro-business
(Fausto et al. 2019). However, their impact on human and
the environment is enormous and should not be overlooked.
The use of natural products such as phyto-bio fungicides
is still considered a more sustainable alternative (Zubrod
et al. 2019). Recent studies have reported the application of
some metabolites and volatile organic chemicals from Zan-
thoxylum as potent against phytopathogenic fungi and even
bacteria (Table 6). Li et al. (2022b) recently reported the
isolation of a plant’s volatile organic chemicals (Linalool)
from the fruit pericarp of Zanthoxylum schinifolium. This
PVOC caused membrane disruption to Aspergillus flavus (a
post-harvest spoilage organism) when applied as a biofumi-
gant with a MIC and MFC of 0.571 pL/mL and 0.857 pL/
mL, respectively (Li et al. 2022b).

Fusarium graminearum is a devastating fungi-pathogen
of cereals and one of the causative agents for the Fusarium
head blight disease of wheat. The organism also produces
mycotoxin — deoxynivalenol, which fosters the progres-
sion of the disease in plants (Abbas and Yli-Mattila 2022).
Recently, the flavonoid-rich methanolic extract of Zanthoxy-
lum bungeanum fruit pericarp (containing quercetin, epicat-
echin, kaempferol-3-O-rhamnoside, and hyperoside majorly)
could help combat the progression and spread of Fusarium
head blight disease caused by Fusarium graminearum
(Abbas and Yli-Mattila 2022). The extract (100 pg/mL)
caused a decrease in F. graminearum growth by 48.5%, its
DNA level by 85.5%, and its mycotoxin production by 73.0%
in an in vitro bioassay (Abbas and Yli-Mattila 2022). Simi-
larly, according to Prieto et al. (2011), the essential oil of Z.
rhoifolium fruits, with p-myrcene (59.03%), p-phellandrene
(21.47%), and germacrene D (9.28%) as major components,
was effective as a fumigant against Fusarium oxysporum at
an ECs; of 140.1 pL L™ air.

Another study has reported the potential of the essential
oil and methanolic extracts of Zanthoxylum alatum leaves as
a fungicidal and bactericidal agent (Guleria et al. 2013). It
was shown that several fungi (such as Alternaria alternata,
Alternaria brassicae, and Curvularia lunata), as well as a few
bacteria (Bacillus subtilis, Micrococcus luteus, Staphylococcus

@ Springer
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aureus, and Escherichia coli), were significantly inhibited or
killed by the extracts with the major components of linalool
(30.58%), 2-decanone (20.85%), p-fenchol (9.43%), 2-tride-
canone (8.86%), p-phellandrene (5.99%), sabinene (4.82%),
and a-pinene (4.11%) (Guleria et al. 2013). It is worth men-
tioning that several other studies have discovered the antibac-
terial and antifungal potential of some other natural products
from Zanthoxylum, although not specific to plant pathogens,
but rather as an alternative to antibiotics (Okagu et al. 2021a,
b). Therefore, the need for future studies to put in a more con-
certed effort toward the discoveries, application, and scale-up
of novel natural products from Zanthoxylum and other plants
as alternatives to synthetic pesticides.

(Prieto et al. 2011)
(He et al. 2002)

Ref.

Possible mechanism

of actions

Zanthoxylum species as a potential source of natural
herbicides

The possible application of Z. bungeanum fruits as herbi-
cides has been evaluated. Volatile compounds, especially
. eucarvone from the plant’s fruits, moderately inhibited the
hypocotyl growth of lettuce seedlings (Sunohara et al. 2014).
Similarly, extracts of Z. bungeanum leaves have been shown
to suppress the germination and viability of Medicago
sativa, Lactuca sativa, and Raphanus sativa by up to 80%
(Li et al. 2009). Furthermore, xanthoxyline isolated from
Z. limonella fruits was reported to drastically suppress the
germination of Amaranthus tricolor and Echinochloa crus-
galli (Charoenying et al. 2010). In addition, extracts of Z.
schinifolium leaves and stems were reported to significantly
halt the germination and seedling of Triticum sativum (Wu
et al. 2012).

To further exploit Z. species as a source of herbicidal
compounds, Rios et al. (Rios et al. 2018) prepared different
solvent extracts of Z. fagara that showed varied herbicidal
activities against Lactuca sativa and Lolium perenne. Addi-
tionally, linarin, lupenone, tocopherol, and affineine were
isolated from the most active extract. Only linarin showed a
good phytotoxic effect by inhibiting energy production and
respiration. These reports demonstrate that Z. species are
potential sources of natural herbicides. Hence, further stud-
ies are recommended on screening other species and test-
ing their chemical constituents against many known weeds.
The herbicidal potentials of Z. species are summarized in
Table 7.

Pest/insect (plant
Colletotrichum acu-
tatum Simmonds

disease)

ECs, 153.9 uL L™!

Insecticidal/fumigant
air

Biological activities

(21.1%), elemol
a-cadinol (8.22%)
Canthin-6-one (fungi-

cide) and pellito-
rine (insecticide),
oxychelerythrine,
norchelerythrine,
(+)-sesamin, and
(+)-piperitol-3,3-di-
methylallyl ether

Isolated and charac-
terized compounds
(8.35%), and

Germacrene D-4-ol

Extract
Essential oils
Dichloromethane

Plant part
Fruits
Roots and bark

Limitations, future research directions,
and conclusion

There is an urgent need to minimize the negative impact of
human activities on the environment and prevent the health
outcome associated with it. Part of these strategies is to search
for alternative chemicals for controlling vectors and insects of

barense

Table 5 (continued)
Zanthoxylum sp.
Zanthoxylum usam-

Z. fagara
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Table 7 Summary of herbicidal effects of Zanthoxylum species

Plant species and parts used Test substance

Results

References

Z. bungeanum fruits Eucarvone isolated from it

Z. bungeanum leaves Crude extract

Z. limonella fruits Xanthoxyline isolated from the fruit

Z. schinifolium leaves and stems Crude extract

Z. fagara aerial parts Multiple solvent extracts

Moderately inhibited hypocotyl growth of

Suppressed the germination and viability

Drastically suppressed the germination of

Significantly stopped the germination and

Herbicidal activities against Lactuca sativa

(Sunohara et al. 2014)
lettuce seedlings

(Li et al. 2009)

of Medicago sativa, Lactuca sativa, and

Raphanus sativa up to 80%

(Charoenying et al., 2010)
Amaranthus tricolor and Echinochloa

crusgalli

(Wu et al. 2012)
seedling of Triticum sativum

(Rios et al. 2018)

and Lolium perenne

agricultural importance, especially from natural products that
are less toxic to humans and animals and eco-friendly. Scientists
are exploiting the understanding that plants synthesize some
chemicals to repel and kill insecticides that cause plant diseases
to evaluate the potential applications of extracts of these plants
and chemicals isolated from them as a source of natural insecti-
cides and herbicides. In the several studies reviewed, extracts of
different parts of Z. species and compounds isolated from them
were shown to have promising insecticidal activities to several
insect vectors, especially malaria parasite vectors.

Although the insecticidal activities of the plant extracts
and chemicals derived from them were lower than the syn-
thetic insecticides, efforts to minimize the environmen-
tal and health concerns of using synthetic insecticides
underscore the need for further development of these plant
secondary metabolites as natural insecticides. Similarly,
crude extracts of Z. species and compounds isolated from
them were shown to have potential application as natural
herbicides by strongly inhibiting the growth and devel-
opment of several weeds. Despite these exciting reports,
the mechanisms of insecticidal and herbicidal activities
recorded by some of the Z. species and their chemical con-
stituents need to be investigated. This will position them
as potential sources of natural insecticides and herbicides.

In addition, some studies failed to compare the insecti-
cidal and herbicidal activities of Z. species-derived entities
with synthetic insecticides and herbicides. Future research
should be designed to compare the potency of natural com-
pounds under evaluation for insecticidal and herbicidal
activities and known insecticides and herbicides to provide
a sound basis for making an informed decision on the ben-
efits of plant-based insecticides/herbicides over their syn-
thetic counterparts. Moreover, the advent of nanotechnology
development has opened new avenues for the development
of control release and precise targeting of these bioac-
tive components to the insect and pests for better efficient
results. In conclusion, there is a need for the transition from
bench-to-market (i.e., real-life application) of research

finding about natural products to lessen the impact of syn-
thetic pesticide toxicities and promote healthier alternatives.
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