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Abstract

Due to the autonomous characteristic and heterogeneity of the individual agents in active distribution network
(ADN) with multi-microgrids (MMG), this paper proposes a fully decentralized adjustable robust operation
framework achieving the coordinated operation between ADN and MMG. The improved linear decision rules
(LDRs) based microgrid adjustable robust operation model is proposed to reduce the solution conservatism in
dealing with renewable energy uncertainty. The LDRs model is then reformulated as a computationally tractable
solution such that the proposed adjustable robust extension of decentralized operation can handle renewable
energy uncertainty while reducing the computation burden of decentralized optimization. Then, a tailored
fast alternating direction method of multipliers algorithm with a predictor-corrector type acceleration step is
developed to improve the convergence rate of decentralized optimization. The effectiveness of the proposed
model is validated on a modified IEEE 69-bus distribution system with four microgrids.

Keywords: Multi-microgrids (MMG), adjustable robust optimization, linear decision rules (LDRs),

decentralized optimization, fast alternating direction method of multipliers (ADMM)

1. Introduction

1.1. Background and motivation

To solve global environmental pollution and energy shortages, distributed renewable energy resources such as
wind and solar energy have been receiving much attention [1, 2, 3]. Microgrids (MGs), with their flexible and
efficient integration capabilities, have aroused great attention as an effective way to utilize distributed energy

resources as well as become an important part of the active distribution network (ADN) [4, 5]. In addition, MGs
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from different regions can be interconnected to form multi-microgrids (MMG), and each microgrid of MMG could
buy/sell power from/to ADN in grid-connected mode. By forming an MMG system, the operational stability
and economic efficiency of MGs can be greatly improved. However, it will need to optimize the operation of
individual MGs and manage the MMG system of ADN in an integrated manner [6, 7, 8, 9]. Therefore, how to
effectively coordinate the operation between ADN and MMG has become a hot research topic, which contains two
main challenges: (1) the interactive mechanism between ADN and MMG, in which the autonomy and privacy of
the distribution system operator and each MG operator needs to be considered; (2) the self-dispatching of MGs,
in which intelligent energy management is required to obtain an economical and reliable dispatching scheme

considering the uncertainties of renewable energy resources.

1.2. Literature review

Recently, many studies have been conducted on the coordinated operation problem for ADN with MMG.
In [10], a game-theory based method is proposed to simulate the potential cooperative behaviors of MMG to
achieve higher energy efficiency and operation economy. In [11], a model predictive control-based dispatching
model to maximize the global benefits of MMG is proposed. In [12], a two-stage collaborative operation model
for an MMG is constructed, and the interactive energy dispatching model between the distribution network and
MMG is addressed in [13]. The dynamic economic dispatch model for the grid-connected and islanded multi-
energy microgrids is proposed in [14] to increase the system operating efficiency. An optimal configuration with
respect to capacity sizes and types of distributed generators (DGs) for multi-energy microgrids is presented in
[15]. The optimal design of microgrids with combined heat and power units is investigated in [16] by coupling
environmental and economic sustainability in a multi-objective model. However, the above-mentioned researches
are in the way of centralized implementation. When the scale of the ADN or the number of MGs is larger,
more information must be collected. The calculation burden will also increase, which may lead to the curse of
dimensionality. For centralized implementation, it is also difficult to reflect the different interests of the MGs
and the ADN. Nor can the decentralized, autonomous characteristics of a microgrid be described by this kind of
model.

Due to the autonomous characteristic and heterogeneity of the individual agents in an active distribution
system with multi-microgrids, the distribution system operator and microgrid operator are respectively managed
by different entities. Centralized optimization will face technical and political challenges [17, 18, 19]. Consider-
ing their own benefits, a decentralized framework becomes favorable as it is not always efficient to pool all the
local information for centralized computation due to the large size of the problem dimension, a large amount of
local data, and privacy issues. In recent years, research on decentralized or distributed energy management for
active distribution systems with multi-microgrids has been carried out. The general distributed or decentralized
optimization algorithms mainly include alternating direction method of multipliers (ADMM) [20, 21, 22, 23, 24],
analytical target cascading (ATC) [25, 26], Benders decomposition (BD) algorithm [27], heterogeneous decompo-
sition (HD) algorithm [28], and optimality condition decomposition (OCD) [29] algorithm. However, when the
number of entities and uncertain renewable energy units is large, the communication burden of HD, OCD, and

BD algorithms will be heavy. Thus, the scalability of these methods is not satisfactory [20]. Among them, ADMM



has superiority in convergence properties that has been adopted to the integrated transmission-distribution dis-
patch [21], integrated electricity-gas system operation [22, 23], and peer-to-peer energy trading [24] problems.
Another challenge for the operation of a multi-microgrid distribution system is how to hedge uncertainties
pertaining to renewable energy. In [30], an energy management scheme based on information gap decision theory
is proposed for the energy hub, which can robustly handle uncertainties by defining the interval of objective func-
tions. Considering distribution characteristics for uncertainties, stochastic optimization (SO) has been widely
used in the operation of MMGs. A stochastic bi-level operation problem of MMG is presented in [31]. Assum-
ing the driving pattern of electric vehicles to follow chi-square distribution, a two-stage SO integrated energy
scheduling strategy for MMG is introduced in [32]. To solve SO problems, scenarios are usually generated based
on a probability distribution of uncertain parameters. However, the exact probability distribution in SO is hard
to obtain and SO may pose computational challenges. Differently, as a promising method, robust optimization
(RO) [33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43] characterize uncertainties through uncertainty sets and only
need their constrained perturbations to find a solution, which is optimal for the worst-case realization. In [41],
an adaptive RO with reference distributions is used to confine load demands in MGs. In [42], the risk-averse
generation maintenance dispatch for MMG is formulated as a two-stage RO problem. In [43], the RO method is
employed to address uncertainties from renewable generation and energy demand for MMG. However, the RO
approaches are a decomposition-based master-subproblem iteration algorithm, which may demand a considerable
computation time at each iteration. Contrary to the decomposition-based robust approach, the linear decision
rules (LDRs) [37, 38, 39, 40] model can provide a slightly conservative, yet single-tractable solution to the robust
problem. Since the robust counterpart of an LDRs-based adjustable robust approach is usually a tractable convex
problem, the LDRs model is more suitable for the application of distributed or decentralized optimization.

Based on the existing research, there are still research gaps that need to be studied.

1. When considering uncertainties in LDRs model for the operatin of active distribution system with multi-
microgrids, the existing works [37, 38] adopt the allowable output interval to describe uncertainties. How-
ever, the adjustable factors of LDRs model must be predefined, which is restrictive and leads to a conser-
vative solution. The other previous works [39, 40] adopt the nonadjustable bounded interval to describe
uncertainties, which is also quite conservative. Moreover, these LDRs models [37, 38, 39, 40] cannot deal
with the renewable energy curtailment. As a result, the potential of the LDRs-based adjustable robust
model in reducing solution conservatism has not been fully exploited, especially when we consider the
renewable energy curtailment and describe uncertainties in a controllable polyhedral uncertainty set.

2. Another alternate to consider uncertainties is the decomposition-based RO models [33, 34, 35], which have
two disadvantages when deploying distributed ADMM optimization. Firstly, the robust counterpart of the
second-stage max-min problem is a bilinear problem. The commonly used outer approximation method
or big-M method for this bilinear problem cannot guarantee the convergence of ADMM. Secondly, the
calculation burden will be enlarged as the inner master-subproblem iteration of the decomposition-based
RO algorithm is needed in each outer ADMM iteration. Therefore, the application of the decomposition-
based RO algorithm to the distributed or decentralized operation of active distribution system with multi-

microgrids faces many limitations.



3. The widely used distributed ADMM algorithm may converge slowly for solving a distributed convex
quadratic programming problem, which requires a large number of iterations to converge. This moti-
vates us to apply a fast ADMM variant to improve the convergence rate of distributed or decentralized
optimization. As a result, the applicability of the fast ADMM variant in the distributed operation problem

of active distribution system with multi-microgrids should be fully exploited.

1.8. Contribution and organization

To fill the research gap, this paper proposes a fast ADMM-based fully decentralized adjustable robust opera-
tion framework for the active distribution system with multi-microgrids, achieving the synergistic yet independent
operation of multiple entities. The LDRs-based two-stage adjustable robust approach is adopted to model the
highly volatile uncertainties of renewable energies overcoming the disadvantages of the decomposition-based ro-
bust approach when applied to decentralized optimization. The contributions of this paper are summarized as

follows:

1. A fully decentralized coordinated operation framework for the active distribution system with multi-
microgrids is proposed, achieving the synergistic yet independent operation of multiple entities. Then,
a tailored fast ADMM algorithm, which is an accelerated variant of standard ADMM with a predictor-
corrector type acceleration step, is proposed. Compared with the standard ADMM, the proposed fast
ADMM approach has one more restarting step, which can improve the convergence of decentralized opti-
mization.

2. An improved LDRs model is proposed for the robust operation of MMG. Compared to the works in [37, 38]
that regard the adjustable factors of the LDRs model as constants, we regard the adjustable factors as
variables. Compared to the works in [39, 40] that describe uncertainties in the LDRs model through non-
adjustable intervals, we adopt a controllable polyhedral uncertainty set to control the solution conservatism.
Meanwhile, renewable energy curtailment can be handled. As a result, the proposed LDRs model for the
robust operation of MMG can simultaneously consider the renewable energy curtailment, optimize the
adjustable factors, and utilize the budget of uncertainty in a polyhedral uncertainty set.

3. The LDRs-based adjustable robust extension of fast ADMM-based decentralized framework capable of
handling renewable uncertainties in active distribution system with multi-microgrids is proposed. LDRs
are utilized to recast the microgrid adjustable robust problem into a single tractable convex problem, which
can reduce the computation burden of each fast ADMM iteration and guarantee its convergence. Meanwhile,
by aggregating the uncertainties, only a one-dimensional random variable needs to be considered rather
than a high-dimensional random variable. Therefore, the computation burden of the LDRs model does not

increase with the number of uncertain sources.

The rest of this paper is organized as follows. The separable formulation of the deterministic operation model
is introduced in Section 2. The compact LDRs-based microgrid adjustable robust operation model is presented
in Section 3. The decentralized adjustable robust operation framework is summarized in Section 4. Section 5

presents the numerical results and conclusions are given in Section 6.



Nomenclature

g Subset of nodes with controllable DGs &/cs Buying/selling price from/to main grid at
M Set of MGs time ?
% Set of nodes Pift Load demand of node % at time ¢
T Set of periods i/ Line resistance/reactance between nodes i
and ¢+ 1

U Set of polyhedral uncertainty

RP/RY Ramp-up/down limit of controllable DG i
€ Maximum deviation of voltage

Vot Voltage of substation, normally 1 p.u.
n®/nP  Charging/discharging efficiency of ESS

B, Actual output of ESS at time ¢
K Uncertainty budget

PP/P?  Active power deficiency/surplus of ADN at
P~ /@em Exchanged active/reactive power limit be- time 1

tween main grid and ADN
PF /PP Charging/discharging power of ESS at time

Exchanged active power limit between ADN ¢
and MG at node @

—=DN

PE Actual output of ESS at time ¢
—C =D
P, /P, Maximum charging/discharging rate of ESS
e /Py ging/ sime PV /PF Actual output of WT/PV at time ¢

at time ¢
PMG/PEN Active power injected to MG/flowing

from ADN at node ¢ in time ¢

?ZV /Ff Predicted output of WT'/PV at time ¢

[%I

Transmission capacity limit from nodes ¢ to
' 1SSIOT Capacity Mt I ! Pi:/Q1,; Exchanged active/reactive power between

i+ 1

o main grid and ADN at time ¢

E/E Mimimum/maximum capacity of B39 P;+/Qi+ Active/reactive power from nodes i to ¢ + 1

V., /Vi Mimimum/maximum voltage magnitude of at time ¢

node i Piﬁ / th Active/reactive power of controllable DG at
a;/b;/c; Fuel cost coefficients of controllable DG i node 7 in time ¢
c®/cP  Charging/discharging cost of ESS Vit Voltage magnitude of node 7 at time ¢

Notation: The main symbols and notation used in the system model are listed here for quick reference. The
remaining are defined later when they first appear. Boldface lower case and upper case letters represent

vectors and matrices, respectively.

2. Separable Formulation of Deterministic Operation Model

This section introduces the affinely coupled separable formulation of the deterministic operation model for

the multi-microgrids distribution system amenable to decentralized optimization.



2.1. Topology of Distribution System with Multi-microgrids

Main grid |
Controllable DG

T T Load

DN | |
L ___________ 3 PV
ESS
MG | MG1 tr et MG N wT
MG i

Figure 1: Topology of distribution system with multi-microgrids

A typical topology of the multi-microgrids distribution system is shown in Fig.1. The microgrid organically
combines the photovoltaic (PV), wind turbine (WT), and energy storage system (ESS) to meet the local load
demand. When the MMG generation is excessive or insufficient, the MMG will exchange power flow with
ADN. Similarly, the ADN satisfies its own load demand with the controllable DGs and coordinates the power

transmission with the main grid.

2.2. Operation Problem of ADN

The optimization objective of ADN is to minimize the operation costs of controllable DGs as well as the power
transaction costs including electricity purchasing costs or selling benefits from the main grid. By considering a
buying price higher than the selling price, we can promote the self-consumption of ADN over exporting power

to the main grid. The corresponding optimization model is formulated as follows:

min Z Z {ai (Pf";)z + biPﬁ + cl} + Z (ci’Ptb — cfPtS) (1a)

teT i€G teT

subject to P14 =Piy+ P, — Phy, —PRY, ieN teT (1b)
Qir1p=Qit+ Q1 — Q1 iEN LtET (1c)
VZ-H’t:V,-’t—%ji%f,ieN,teT (1d)
P =P —P PP>0, PP>0,teT (le)
P <P, <P" teT (1f)
—Q << teT (1g)
P +Q2, <S5 ieN, teT (1h)
1-e<Vi <l4+e¢ieN,teT (1i)
PN < PN <P ieM teT (1j)
Pe<PS <P icG teT (1k)



~RP<PS-PS <RV, ieG teT (11)

Q°<Qf,<Q ieg. teT. (1m)

The objective (la) minimizes the total operation costs of ADN. Constraints (1b)—(1d) are the linearized
distribution load flow (Dist-Flow) equations. The Dist-Flow model is originally proposed in [44] and linearized
in [45]. The linearized DistFlow branch model is more appropriate than the DC power flow model by incorporating
reactive power and voltage magnitudes, as it can produce a solution, which is comparable with the classical
DistFlow branch model. Constraints (1e)-(1g) represent the relationship between the power flow from the main
grid to the ADN. It is noted that P?>0 means the ADN buys electricity from the main grid and P7>0 means
the ADN sells electricity to the main grid. Constraint (1h) denotes the branch capacity limit. Constraint (1i)
ensures the voltage magnitude of each node is kept within the allowed maximum deviation from the nominal
value. Constraint (1j) denotes the power flow limits transferred from ADN to MMG. Constraints (1k)-(1m) are
the generation limits on controllable DGs.

For the quadratic constraint (1h), we propose a number of linear constraints (2) to substitute it. Intuitively

speaking, this procedure is approximating the original circular feasible region using an octagon.
-Si <Py < S, (2a
—Si < Qi < S, (2b
—V28; < P+ Qi < V25, (2c
—V2S; < Py — Qi < V28S;. (2d

2.3. Operation Problem of MMG

The optimization objective of MMG aims for the minimum operation cost of ESS. The operation model of

the k-th MG (omitting the subscript & in further notation) is written as:

min Z (PP + P PP) (3a)
teT
subject to PY +PF 4+ PP —PC + PMY =PE teT (3b)
_P"N < pM6 < PN e (3¢)
0<PV¥ <P teT (3d)
0<PP <P, teT (3¢)
0<pPC <P’ teT (3f)
0<PP <P’ teT (3g)
E,=FE, 1+ n°PCAt — PPAt/nP, te T (3h)
E<E,<E,teT (3i)
Eo=ET. (3))

The objective function (3a) minimizes the total operation costs of each MG. Here, note that reactive power

transmission between the ADN and MMG is not considered in this paper. Constraint (3b) represents the



power balance of MG while constraint (3c) denotes the power flow limits transferred from the MG to the ADN.
Constraints (3d) and (3e) is the power production limit for WT and PV, respectively. Constraints (3f)-(3g)
denote the charging and discharging rate limits of ESS [46]. Constraint (3h) represents the energy balance of
ESS. Constraint (3i) keeps the energy of ESS within its capacity limits. Constraint (3j) specifies the initial and
final energy level of ESS. Note that the operation cost function of ESS in (3a) and the charging/discharging
efficiency will lead to extra energy loss and energy cost in the case of simultaneous charge/discharge, the case of

simultaneous charge/discharge will never happen in an optimal energy schedule for ESS.

Remark 1. Model (3) can avoid simultaneous charging and discharging of ESS without introducing binary

variables. To further explain this point, we simplify constraint (3b) as
PP —PF=APFP teT with APFP =Pl - PV - pF - pMC.

Then, we can simplify the objective (3a) as:

min Z ((c® +P)PE + PAPFP) with PP € [O,ﬁc] , (4a)
teT
or
min > ((¢¢+P)PP — PAPEP) with PP e [0,P"]. (4b)
teT

Due to c©,cP > 0, it is clear that the objective (4a) and objective (4b) monotonic increasing with respect to PX

and PP, respectively. Therefore, we have either the charging power PC = 0 or discharging PP = 0.

2.4. Coupling of ADN and MMG

Area coupling constraints tend to guarantee the agreement on tie-line power between ADN and MMG. While
implementing the decentralized optimization, it is necessary that the output power from the ADN should be

equal to the input power to the MMG. Hence, the area coupling constraint (5) should be established.
PON=PN° keM teT. (5)

The operation problem for each MG is an independent decision-making process that does not contain in-
formation about other neighboring MGs. Namely, there is no information exchange among MGs. Only tie-line
information is shared between ADN and MMG to ensure consistency in operation. Therefore, the coordinated
operation problem of a multi-microgrids distribution system can be solved in a fully decentralized way, preserving

the independent decision of each subsystem operator.

3. Compact LDRs-based Microgrid Adjustable Robust Operation Model

This section introduces the main idea of the LDRs-based adjustable operation model for MGs using a compact
form. The robust adjustable model includes two stages, i.e., “here-and-now” and “wait-and-see”. Each MG ne-
gotiates with the ADN to obtain their coordinated “here-and-now” decisions prior to the uncertainty realizations
at the first stage. Then, each MG takes local “wait-and-see” recourse decisions that compensate the forecast

deviations in real-time to keep the negotiated tie-line power constant at the second stage.



For the sake of presentation, we write the deterministic operation model of each MG into the following

compact epigraph form:

min ¢ (x,y) (6a)

zy
subjectto A-z+B-y+C-£+e=0, (6b)
D xz+E - y+F-£+f<0 (6¢)

with coefficient matrices A, B, C, D, E, and F in appropriate dimensions, e, f denote the requirement vectors,
x denotes the “here-and-now” variables made before the realization of uncertainty, variables y can take “wait-
and-see” recourse decisions, function ®(-,-) denotes the compact linear objective, é denotes a forecast value of
the uncertainty of renewable energy denoted by vector &.

In this paper, the uncertain parameter £ is restricted by being in a polyhedral uncertainty set given by
U={£=0,K-£—g<0}. (7

The robustness level can be controlled using a parameter denominated as the budget of uncertainty. The

robust form of (6¢) can be, thus, written as the following semi-infinite form:
VvEeU, D-z+E-y+F- £+ f<0, (8)

which ensures the robustness of the optimal solution against any realization of uncertain parameters.

The decision variable y is replaced by an LDR including two parts,
y=y" +y*-¢ (9)

where non-adjustable variable yN is the “here-and-now” part made before the realization of uncertainty. Ad-
justable variable y® is the “wait-and-see” part made after the uncertain parameters are revealed, which can be
regarded as the adjustable factors of controllable DGs.

Thus, (8) can be further rewritten as
VEcU, D-z+E- (yN+y* &)+ F £+ f<0. (10)

The constraint (10) is feasible for any realization of the uncertain parameters if it is feasible for the worst-case

realization of the uncertain parameters such that (10) is equivalent to

max {E-(y"+y* & +F-¢,+D z+f<o. (11)

The worst-case constraint (11) can be further simplified by using duality theory [47] to eliminate the max

operator such that the robust form of (6) is given by

i [ Nyt A 12
o (4" y% A) (12a)
subject to A-z+B-yN+C-€+e=0 (12b)

D z+E-yN+II" . g+ f<0 (12¢)



In'-K>E y*+F (12d)

A TI>0 (12e)

with associated dual variable A and II.

Here, the reformulation of the worst-case objective is the same as the reformulation of constraints (11) by
using the duality theory such that ® is also linear [48]. Accordingly, the resulting adjustable robust operation
model (12) is a tractable LP problem, which can be efficiently and directly solved by off-the-shelf optimization
packages, e.g., Gurobi. Moreover, the above LDRs-based adjustable robust model can simultaneously consider
the renewable energy curtailment, optimize the adjustable factors of controllable DGs, and utilize the budget
of uncertainty in a polyhedral uncertainty set to reduce the conservatism of robust solutions. The extended

formulation of the LDRs model can be seen in Appendix.

4. Fast ADMM-based Fully Decentralized Adjustable Robust Operation Framework

This section proposes a fast ADMM-based fully decentralized adjustable robust operation formulation for the
distribution system based multi-microgrids. To this end, we first stack by xo and x,, a € R the local decision
variables of the ADN and the a-th sub-MG. Here, R denotes the index of local systems including the ADN
and MMG. Following the star-topology described in Figure 1, i.e., all MGs are connected with ADN but not
connected with each other, we can now rewrite the adjustable robust operation model for ADN with MMG as

the following distributed convex quadratic form

min Wo(xo) + Y Ya(Xa) (13a)

& acR
subject to Toaxo =Ta0Xa, a €R (13b)
X0 € X0, Xa € Xa, aER (13¢)

with convex quadratic objective Wy, and decoupled linear objective W, for all a € R. Local constraint sets
Xy, Xu, a € R collects all decoupled constraints and their associated robust tractable reformulation introduced
in Section 2 and 3 for the ADN and each MG, respectively. Here, the coupled affine equality constraint (13b)
summarizes constraints (5) for all « € R with selection matrices I'y o and T'g q.

In order to solve (13) using ADMM in a fully decentralized manner, we introduce consensus variables ¢ with

the following affine equalities
I‘\O,aXO = CO,a ) Fa,OXa = CO,a , ac€ R (14)

where the auxiliary decision variables {p , introduces the indirect coupling between ADN and a-th MG.

As a result, the augmented Lagrangian is written as

T 2
Aoa To,ax0 — Co,a L'o,ax0 — Co
) ) ) p ,a ,a
L(X7 Cv A) = \IIO(XO) + Z \IIG(X(Z) + + 5
a€ER )\a,O Fa,OXa - CO,a Fa,OXa - CO,a 5
where Ao, and A, o denotes the Lagrangian multipliers of (14), p is the penalty parameter. The standard ADMM

iteration is thus outlined as follows.
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Algorithm 1: Standard ADMM for Solving (13)

Input: ((§,, AJ 4 Abg), a€ER, p>0

For ¢/ =0,1,2,3,...
. 2
X6 = argmin Wo(x0) + 3 ((Poaxo) Moo + & [Towxo — ¢h.ll3) (152)
Xo€Xo a€ER
' 2
Xt = argrr}Ym Va(Xa) + (Ta0Xa) ' Ao + g [Ta0xa — Cg,a”z ya€R (15b)
Xa€Xq
T 0+1 241 ’
£+1 . )‘é,a Lo.axo"™ — o, P Toaxo™ —Coa
0. = argmin Ty
Coa Ao LooXs™ = Coa LaoXa™ = Co.o 2
A@ 4 AZ T /41 T 41
_ a0 Oa P(To.axo " +TaoXa )7 aeR (15¢)
2 2
MG =X+ pToaxst = ¢6E) , ae R (154)
A= AL o+ p(Taoxi™ = ¢l aeRr (15e)

End for

Here, ¢ denotes a global iteration counter. The local primal update (15a) and (15b) can be deployed in
parallel. Then, the explicit update of ¢, and dual pair (X4, Aq,0) can be sequentially calculated in parallel
at the local MG’s computational unit. Algorithm 1 only requires one forward-backward communication round
between the ADN and MMG. However, as literature, e.g., [49], illustrated, in practice, the standard ADMM
converges slowly for solving a distributed convex quadratic programming. To improve its convergence speed, we

propose a fast ADMM approach to deal with (13) as follows.

Algorithm 2: Fast ADMM with Restart for Solving (13)

Input: ({, = é’éym Ao = )A\(l),a, Abo = 5\(1170), a€R, p>0,0°>0,€(0,1), =1

For ¢ =1,2,3, ...
~ N 2
Xé = argmin \I/()(Xo) aF Z ((I‘O,aXO)T)\éa + g HI‘O,aXO — C(l;,a ) (16&)
X0 €EXo wER 2
. N p 2
Xf; = argrr)l(ln \Ila(Xu) = (Fa,OXa)TAf;,O + 5 Hra,(]Xa - C(l;,aHQ , a€ R (16b)
Xa€Xa
h T 2
, | A6a| [Toax6—Coa| pll|Toaxs —Coa
Co,q = argmin | + 3
Coe )‘g,o Fa,OXﬁ —€Co,a 1-‘a,0X£ —€Co,a 9
Ao+ Ab To.uxb + LaoX,
— a,0 0,a + P( O,GXO + a,OXa,)7 a € R (16C)
2 2
Ag,a = 5‘6,(1 + p(FO,aXf) - Cg,a) , @€ R (16d)
Aﬁ,o = j\ﬁ,o + p(ra,0X§ - Cﬁ,O) , @€ R (168)
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2
I 4
)‘O,a - )‘O,a

. _ 2 _
if6 = p | T el — Chall, <80 (16)
acR Aa,O - Aa,,() 2
1 1+ 4(c?)2
2
AGEL = At 4 o -1 AL =A§ ), aeRrR (16h)
O,a — 0,a o_ngl 0,a 0,a/ »
5\’3+1—>\”1+Ue_1(>\"“—>\"’ ), a€R (161)
a,0 — a,0 O_g+1 a,0 a,0/ >
L
41 Z+1+U 71( f+1_c€ ) aeR (16)
0,a — S0,a O’Z+1 0,a 0,a/ > )
else
o =1, A =L A =L, (= aeR (16k)
End
End for

Compared to Algorithm 1, Algorithm 2 uses a predictor-corrector type acceleration strategy, i.e., steps (16g)—
(16j), to improve the convergence performance. The main idea is to deploy Nesterov’s acceleration [50] to update
CAo,a and (5\0,@,5\@,0) for all a € R. However, the acceleration step is stable only when the objectives Wy, ¥,
for all @ € R are strongly convex such that a restarting strategy has to be implemented for generic convergence
guarantee [51]. In Algorithm 2, the restating step (16f) implements the acceleration when the residual 6° is

decreased. Otherwise, the iterations of Algorithm 2 are equivalent to Algorithm 1.

Remark 2 (Convergence rate). When all ¥, and Wy are strongly convex, [51] has shown that Algorithm 2 without
the restarting can improve the convergence rate from the standard ADMM’s O(%) to O(e%). Unfortunately, our
problem (13) does not satisfy this assumption, which can only achieve convergence guarantee [52] by deploying
the restarting step but without a convergence rate. In practice, some heuristic reqularization tricks can be used
to enforce the strong convezity of the objective [53], but a suboptimal solution is obtained as one expects. For
our model, the improvement in the convergence of Algorithm 2 compared to Algorithm 1 can be numerically
demonstrated, while the regularization numerically does not show any improvement when the suboptimality is

acceptable.

Remark 3 (Communication overhead). Compared to the standard ADMM, the acceleration variant, as afore-
mentioned, requires the restarting step to ensure convergence for the generic convex problem. Fortunately, this
restarting only additionally communicates a scalar between the a-th MG and the ADN to determine whether the

acceleration operations (16g)—(16j) are activated.

5. Numerical Results

Numerical experiments were performed by applying the algorithm to the modified IEEE 69-bus distribution
system [54] with four MGs located at nodes 27, 46, 50, and 65. The voltage tolerance is set as [0.95 1.05] p.u. The
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day-ahead electricity price, the operating characteristics of controllable DGs and ESSs, the day-ahead output of
PVs and WTs, and other detailed parameters can be found at [55]. Variation ranges of renewable energy are
considered as 20%, which means that the positive/negative deviations of PV and WT power in all MGs are 20%
of their forecast values. The scheduling period is one day with an interval of 1 h. Thus there are 24 uncertain
WT power forecasts and 24 uncertain PV power forecasts, which means that the budget of uncertainty is between
0 and 48. The initial values of coupling variables and multipliers are all set to 0. To simplify the analysis, the
uncertainty budgets of each MG are assumed to be the same. The case study is implemented in Matlab R2016a
on an Intel Core i7-8700, 3.2 GHz, 16 GB RAM computer and solved by Gurobi 9.0.

5.1. Comparison of Different Variation Ranges

Three different robust cases with different variation ranges for PVs and WTs are considered here: Case
1 (10%), Case 2 (20%), and Case 3 (30%). To simplify the analysis, the uncertainty budgets of each MG
are assumed to be the same. Table 1 illustrates the total operation costs and computation time with varying
uncertainty budgets. Note that only the solver time is selected for comparison. The following observations can

be obtained:

Table 1: Comparison of different uncertainty budgets with 12 step size

Total operation cost ($)
K Computation time (s)

Case 1 Case 2 Case 3

0 1980.41 1980.41 1980.41 1.03
12 2085.74 2207.26 2340.33 1.62
24 2085.74 2207.26 2340.33 1.65
36 2085.74 2207.26 2340.33 1.97
48 2085.74 2207.26 2340.33 1.74

1) For k = 0, the operation costs of the three cases are identical. This is because when the uncertainty budget
is zero, no uncertainties can deviate from their forecasts. Thus, x = 0 is the traditional deterministic operation
model.

2) For a specific variation range, increasing s makes the solution more robust at the expense of higher
operation costs. Different from the decomposition-based robust model, the impact of x on the objective value
is not monotonic. This is because the second-stage problem in the decomposition-based robust model is a bi-
level max-min problem, and a single, worst-case scenario will be identified by the second-stage problem. In the
LDRs model, a worst-case scenario will be obtained for each constraint of the second-stage problem. Thus, by

increasing «, the robustness of the LDRs model increases and reaches its maximum value more rapidly than the
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decomposition-based robust model. Hence, after a specific k, the robustness level and operation costs remain
constant since all uncertainties have adopted their worst-case realizations.

3) To more accurately evaluate the previous observation, the numerical experiment of Table 1 has been
performed in Table 2 with a smaller x step, i.e., 0.05. As k increases, the total operation costs monotonically
increase until k = 0.25. In other words, k = 0.25 is the point with the maximum robustness level where all
uncertainties have adopted their worst-case realizations.

4) For a specific value of uncertainty budget, the operation costs increase by increasing the variation range.
This is because a greater variation range allows the uncertain renewable energies to deviate more from their
forecasts, which leads to a worse worst-case realization. That is, the proposed LDRs model becomes immunized
against higher variations of the uncertainties but at the expense of higher operation costs.

5) By aggregating the renewable energy uncertainties, only a one-dimensional random variable needs to be
considered rather than a high-dimensional random variable. Therefore, the computation burden does not increase
with the number of uncertain sources. Meanwhile, the proposed LDRs model can simultaneously consider the
renewable energy curtailment, optimize the adjustable factors of DGs, and utilize the uncertainty budget in a
polyhedral uncertainty set, leading to significantly less conservative solutions.

6) The computation burden of the proposed LDRs-based adjustable robust operation model is very low, which

facilitates its application in real applications.

Table 2: Comparison of different uncertainty budgets with 0.05 step size

Total operation cost ($)
K Computation time (s)

Case 1 Case 2 Case 3

0 1980.41 1980.41  1980.41 1.03
0.05 2046.82 2121.59 2200.92 1.51
0.1 2068.42 2171.38 2284.02 1.56
0.15  2075.24 2185.97 2307.81 1.62
0.2  2080.97 2197.69 2325.86 1.70
0.25 2085.74 2207.26 2340.33 1.62

5.2. Convergence Performance and Solution Quality

The proposed fast ADMM algorithm is compared with its standard counterpart to demonstrate its convergence
performance. Taking hour 4 in Case 2 as an example and assuming that the uncertainty budgets of MGs are all
0.2, the iteration processes of the fast ADMM and standard ADMM on the tie-line power and the total operation

cost are depicted in Fig. 2 and Fig. 3, respectively. The convergence of the maximum primal and dual residue
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over the scheduling cycle is shown in Fig. 4. The fast ADMM and standard ADMM algorithms converge after 35
and 53 iterations, with all the primal and dual residues smaller than the thresholds. As expected, the proposed
fast ADMM algorithm takes fewer iterations and less time to converge. It can be concluded that the proposed
fast ADMM algorithm with predictor-corrector type acceleration step can improve the computation efficiency of

decentralized optimization.
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Figure 3: Convergence of total operation cost

The fast ADMM and standard ADMM algorithms are compared with the centralized method to demonstrate
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Figure 4: Convergence of maximum primal and dual residue

comparable solution quality, summarized in Table 3. The converged operation cost found by the fast and standard
ADMM is nearly the same as the centralized method. The solution gaps for fast and standard ADMM are all
0.0005%, which is fairly small. The conventional centralized scheme needs a single central super operate entity
to control the entire system. However, complete proprietary data of each MG and ADN may not be available,
and the area information privacy and operating independence cannot be ensured. In a decentralized manner,
only a limited set of information is shared. As a result, communication burdens, which usually account for more
processing time in practice, are alleviated, and information privacy is preserved. Compared to the centralized
framework, the proposed decentralized method is, thus, potentially more efficient on computation w.r.t the size
of the problem that can be addressed and on communication w.r.t the size of information exchanged between
neighbors. With the growth in the subsystem scale, the centralized model is difficult to deploy as different
subsystems in the multi-microgrids distribution system generally correspond to different operators. Moreover,
the proposed LDRs model can also reduce the computation burden of each fast ADMM iteration and guarantee
the convergence of the fast ADMM algorithm, and can be easily applied to decentralized optimization.
Although the computing times of the two ADMM algorithms are higher than the centralized model. However,
the proposed fast ADMM-based decentralized scheme is not intended to compete with the centralized scheme
in computing speed, but to achieve area decomposition aiming for operating autonomy and data privacy. In
real applications, subproblems can be simultaneously implemented by local computers in parallel. For both
decentralized schemes, the solution gap should asymptotically approach zero. However, for many engineering
applications, only a mild level of accuracy is needed. Therefore the computational efficiency of the fast ADMM

algorithm will be improved in real applications.
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Table 3: Comparison of different algorithms

Algorithm Iterations  Total operation cost ($)  Solution gap Computation time (s)
Centralized - 2197.69 - 1.70
Standard ADMM 53 2197.70 0.0005% 4.78
Fast ADMM 35 2197.70 0.0005% 2.86

6. Conclusions

Effectively coordinating an active distribution network and multi-microgrids can significantly improve the
penetration rate of renewable energy and provide powerful support for the distribution system. This paper
proposes a fully decentralized adjustable robust operation framework for an active distribution system with
multi-microgrids. The decomposed microgrid operation problem is formulated as a linear decision rules-based
two-stage adjustable robust model that includes both “here-and-now” and “wait-and-see” decisions. The lin-
ear decision rules approach is utilized to recast the two-stage adjustable robust model into a computationally
tractable solution that can be solved directly without decomposition, reducing the computation burden of decen-
tralized optimization. Then, a tailored fast ADMM algorithm with a predictor-corrector type acceleration step
is developed to improve the convergence rate of decentralized optimization. The fully decentralized scheme can

be solved in a parallel manner, achieving the synergistic yet independent operation of multiple entities.

Appendix A. Extended Formulation of LDRs-based Microgrid Adjustable Robust Operation Model

In this section, we follow the steps in Section 3 to derive an LDRs-based microgrid adjustable robust operation
model, which can simultaneously consider the renewable energy curtailment, optimize the adjustable factors
of controllable DGs, and utilize the budget of uncertainty in a polyhedral uncertainty set to reduce solution
conservatism.

The uncertainties pertaining to PV and WT power in each MG (omit the microgrid subscript) are modeled

through bounded intervals within a polyhedral uncertainty set.

PV =P +P¥t PV teT

PP =P, + PP PP~ teT

0<PV+ <PV teT | At
<PV-<p¥ ¥
Y JOSBEY <PV teT N (A1)
0<P/* <Pl iteT |47
0< P~ <Pl teT [

> (th+ - R + B + Pf) <k |t
< < = ~ SK M
byt PtW PtW PtP PtP
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where A\J T, A7) 45t 47 and p* represent the dual variables associated with the constraints of the above
polyhedral uncertainty set. In the following, the wild-char superscript * is substituted by B(r), B(l), W(r),
w (), P(r), P(l), C(r), C(l), D(r), D(I), E(r), and E() in (A.3), (A.4), (A.5), (A.6), (A.7), (A.8), (A.9), (A.10),
(A.11), (A.12), (A.13), and (A.14), respectively. These superscripts are characters only used to discriminate the
dual variables. This uncertainty set is the extended form of (7) in the compact representation. The size of the
uncertainty set U can be controlled by changing the variation ranges (ﬁ’tW, Ptp ) and the budget of uncertainty .
By increasing the variation ranges or increasing x, the size of U increases, which leads to a more robust solution.
The choice of k aims at adjusting the conservativeness of the robust solution. Specifically, choosing x = 0 leads to
the deterministic representation since uncertainties cannot deviate from their forecast values. However, choosing
k>0 leads to robust representation in which uncertainties can deviate from their forecast values.

To derive a tractable form incorporating the uncertain renewable energy, the following LDRs as a function
of the uncertain renewable energy given in (A.1) are considered, which are the extended form of (9). These
functions take real-time realizations of the available WT and PV as input and output WT, PV, and ESS actions

that keep the negotiated tie-line power constant.

pC —pN-C | pALCpW+ | pA2CpW— | pASCpPt | pAdCpP- (A.2a)
pP —pN:D | pALDpW+ | pA2DpW— | pA3.DpP+ | pAd.DpP- (A.2b)
Py =pNW | pALW pW+ | pA2W pIW— | pASW pPt | pALW pP- (A.2¢)
pP =pN¥ | pALPpW+ | pA2ZPpW - | pAS.PpPt | pALP pP- (A.2d)

where the non-adjustable terms (P'¢, PN PN'W  PN-P) represent the first stage “here-and-now” decisions,

: . : Al A As A4 AlL,D pA2,D pA3,D pA4D Al
while the remaining adjustable terms (P; o P; 2’0, P 3.0, P; s P PPOTL P 0 P P W

PtA 2w PtA3’W, PtA4’W7 PtAl’P, PtAQ’P, PtA?”P, PtA4’P) represent the second stage “wait-and-see” recourse deci-
sions, which can be seen as the adjustable factors of controllable DGs. As it is seen, PV and P/ have also been
used in these auxiliary variables (i.e., PtN’W, PtAl’W, PtA2’W7 PtA?”W, PtA4’W and PtN’P7 PtAl’P, PtAz’P, PtAB’P,
PtA4’P to indicate that these auxiliary variables are associated with the decision variables PV and P}. However,
these auxiliary variables are sufficiently discriminated from decision variables P}V and PP using superscripts N,
A1, A2, A3, and A4. In (A.2a)-(A.2d), the unit of auxiliary variables with superscript N is kW, and the auxiliary
variables with superscripts A1, A2, A3, and A4 are dimensionless.

The LDRs-based microgrid adjustable robust operation model can be obtained from the deterministic op-
eration model (3) by replacing the certain WT and PV forecasts with their uncertain values and using the
above-mentioned LDRs. Without loss of generality, we respectively replace the power balance equality constraint
(3b) and the ESS energy balance equality constraint (3h) with two inequality constraints. Then using the duality
theory, the tractable formulation of the power balance equality constraint and the ESS energy balance equality
constraint, which is feasible for any realization of the uncertainties belonging to the polyhedral uncertainty set,
can be written into the following (A.3), (A.4) and (A.13), (A.14). In the following, (3) can be reformulated by

first substituting in (A.2), and then replacing the max operator over the uncertainty set with its dual equivalent.

The tractable formulation, which is feasible for any realization of the uncertainties belonging to the polyhedral
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uncertainty set, can be written using the duality theory as follows:

min Z (cCPtN’C + CDPtN’D) (A.3a)
teT
subject to
P+ BT+ PMC 4 PP — PO dp )+ (A.3b)
PtW)\f(TH I PW}\B(T)— + PtPVF(TH + ptpvf(r)f < PtL

PWABOE L BO) 5 pIv (pAl D pALC L pALW | pAL P) (A.3¢)
ptw)\zs(r)— B0 > P (PA2D PA2C PtAz,W +PtA2,P) (A.3d)
Ptp%B(r)Jr B0 > PtP (PtAS,D -~ PtA3,C + PtAB,W 4 PtA3,P) (A.3¢)
PtpryB('r‘) 4 B0 > ptp (PtAél,D _ PtA4,C n PtA4,W 4 PtA4,P) (A.3f)
)\f(rﬂ- >0, )\F(r)— > O,VtB(T)Jr >0 ,YB(T) >0, B >0 (A.3g)

and
- PtN’W - PtN’P - PtMG - PtNyD + PtN’C + 4H”B(l)+ (A.4a)

PYATOT 1 BVAOT 4 BP0 £ PPAPOT < PE

PWABOF 4 B0 5 pw (PtAl’C LpALDY paLw _ ptAl’P) (A.4b)
PWABO= B0 > pW (PtAzC _ pA2D _ pA2w ptAQ’P) (A.4c)
PPy L BW > pP ( pARC _ pAS.D _ pASW _ Pt"‘&”) (A.4d)
PPAEO= 4 B0 > pP ( PA%C,_ pAasD _ pAeW _ ptA4vP) (A.de)
AP+ 5 0 ABO= 5 g (BOF 5 o BO=- 5 50 > (A.4f)

and
PWAN O L pWAV (= pPAW T | pPAWI= L g0, W) < pW _ pNW (A.5a)
PW)\W(T)+ V0 s pw (p ( AW 1) (A.5b)
PIARO N0 2 B (e 1) (50
ptpvwonwr v > Ptp PtA37W (A.5d)
PtP,yW(r) v > PtPPAél,W (A.5e)
AN+ 5 0 A= 5 g WO+ 5 o W= 5 g W) > (A.5f)

and
ptw)\tW(lH +15tW/\fV(l)_ +15tP)\fV(l)+ +]5tP7tW(l)— 4V O < PtN’W (A.6a)
POV OF L W) 5 pW pALW (A.6b)
O A (A.6¢)
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AR 0 > P (s

PtP,ytVV(l)— 4 'uW(l) > —PtPPtA4’W (A.6e)
)\XV(Z)+ 2 0,)\1/‘/([)_ 2 07,)/2/‘/(1)"" Z 07724/(0_ Z OHMW(Z) 2 0 (AGf)
and
Istp)\f(r) + Ptp)\f(r)_ + thfyf(r)+ + thvf(T)_ + 4rpP ) < P’ _ pNP (A.7a)
PEAPOT 4 P() > pP (P{“’P - 1) (A.7b)
PPAPO= 4 P() > PP (P;W’ + 1) (A.7¢)
PO 0 B a)
PtW%P(T)_ _,_MP(T) > prtA‘hP (A.7e)
/\f(r)+ > O,Af(r)_ > O,th(r)-i_ > O,th(r)_ > O,MP(T) > 0 (A7f)
and
ptPAf(l) +}5tP>\f(l)— +If’twvf(l)+ +15tW’YtP(l)_ 4 4ppP®O < pNP (A.8a)
PPNOT 4 PO > _pFP pALP (A.8b)
PPAFO= 4 PO > _pP pAP (A.8c)
PWAPOF PO > _ pW pA3P (A.8d)
PWAPO= L PO 5 _pW pALP (A.8¢)
AT > 00707 20,40 20,4707 20,470 >0 (A8)
and
~ r P~ r)— - r > T)— T -C
PV L PACTIT L pPACIIY L pPACIT 40 C0) < BT — pNC (A.9a)
ptWAtC(TH 4 uC0) > pW pALC (A.9b)
PWACK= |, 00) 5 pW pA2O (A.9¢)
PtP%C(TH‘ + NC(T) > PtPPtAg’C (A.gd)
PtP%C(T)— +MC(T) > PtPPtA47C (A.9e)
)\tC(r)+ > 0, )\tc(r)‘ > 07,)/250(7")+ > Oy,ytc(r)* > 07’UJC(T) >0 (Agf)
and
PtW)\tC(lH + th)\tc(l)_ + IstP%C(lH— + If’tpwtc(l)_ + 4kpf® < pNC (A.10a)
PtWAf(l)+ + MC(Z) 2 _ptWPtALC (AlOb)
PWACD= 4 OO > _pW pA2C (A.10c)
ptp%c(l)Jr 4 uCW > _pPpAsC (A.10d)
BPAC0" 4 400 5 pPEMC (100
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and

and

and

and

>‘tC(l)+ Z O7 )\tc(l)_ Z O)’YtC(l)Jr 2 Oa’th(l)_ Z O,Mc(l) Z 0

PtWAf(’"H + ptw)\f)(r)f + ptP%D(r)Jr + PtP%D(T)* + 4WD(T) < pD A PtN,D
I:)tw)\tD(r)Jr + MD(T) > PtWPtAl,D

PtWAf)(T)_ +MD(T) > PtWPtAQ,D

PtP,ytD(’l')-F + #D(r) > ptPPtA?;,D

PtP,ytD(T)— +MD(T) > PtPPtA4,D

)‘tD(T)+ > 0’ )\tD(T)* > O,VtD(T)Jr > Oa’ytD(T)7 > O’MD("') > 0

ptw)‘tD(lH + ]Stw)‘?(l)_ + ]ADtPW’tD(l)+ + PtP’VtD(l)_ + 4“ND(Z) < PtNyD
f)tW)\tD(l)Jr + MD(Z) > _PtWPtAl,D

ptw)\f)(l)f + ’uD(l) > 7pthtA2,D

PtP’YtD(lH + uD(l) > 7ptPPtA3,D

f;tP%D(l)— + MD(l) > _ptthA4,D

A= 00707 20,900 20,5707 2 0,420 >0

PtN7C770 - PtN’D/nD + th)‘f(TH + ptw)\f(r)ij

PtP'YtE(T)Jr + PtP’YtE(T)i + 4’€NE(T) <E —-FE
ptw)\f(rwr 1B > ptw (PtAl,CnC _ PtAl,D/nD)
ptw)\f(r)f + ME(T) > PtW (PtAz,cnc _ PtA2,D/nD)
ptp,ytEJr(T.) + ﬂE(T) > ptp (PtAS,CnC _ PtAS,D/nD)
ptpvf(r)— T B0 > ptp (PtA4,C77C _ PtA4,D/nD)

AT 0,077 20,950 > 0,977 20,450 > 0

— PNy 4 pND P pWAEDF L pWAED-

IstP%E(lH +ptP%E(l)— +4WE(5) <E,,—FE
ptw)\f(zwr +ME(I) > ptw (PtAl,D/nD _ PtAl,CnC)
th)\tE(z)— + ME(Z) > th (PtAZ,D/nD _ PtA2’C7ZC)
ptP,ytE(l)Jr + PO > ptp (PtA?;,D/nD _ PtA3,CnC)

. e .
PtP%E() + ME(I) > PtP (PtA4,D/nD o PtM’Cﬁc)
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(A.11la
(A.11b
(A.llc
(A.11d
(A.lle

N -~ ~— ~ = s

(A.11f

(A.12a
(A.12b
(A.12¢
(A.12d
(A.12e

~ ~ N ~ ~ ~—

(A.12f

(A.13a)

(A.13b)
(A.13¢)
(A.13d)
(A.13e)

(A.13f)

(A.14a)

(A.14Db)
(A.14c)
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AEO+ 5 0 \BO= 5 o B0 5 o BO= 5 0 B0 5 ) (A.14f)
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