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the autonomous characteristic and heterogeneity of the individual agents in active distribution n

with multi-microgrids (MMG), this paper proposes a fully decentralized adjustable robust ope

ork achieving the coordinated operation between ADN and MMG. The improved linear decision

based microgrid adjustable robust operation model is proposed to reduce the solution conservat

with renewable energy uncertainty. The LDRs model is then reformulated as a computationally tra

such that the proposed adjustable robust extension of decentralized operation can handle ren

uncertainty while reducing the computation burden of decentralized optimization. Then, a t

ernating direction method of multipliers algorithm with a predictor-corrector type acceleration

ed to improve the convergence rate of decentralized optimization. The effectiveness of the pr

s validated on a modified IEEE 69-bus distribution system with four microgrids.

ds: Multi-microgrids (MMG), adjustable robust optimization, linear decision rules (LDRs),

alized optimization, fast alternating direction method of multipliers (ADMM)

oduction

ckground and motivation

olve global environmental pollution and energy shortages, distributed renewable energy resources s

d solar energy have been receiving much attention [1, 2, 3]. Microgrids (MGs), with their flexib

integration capabilities, have aroused great attention as an effective way to utilize distributed

es as well as become an important part of the active distribution network (ADN) [4, 5]. In addition
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fferent regions can be interconnected to form multi-microgrids (MMG), and each microgrid of MMG

l power from/to ADN in grid-connected mode. By forming an MMG system, the operational st

nomic efficiency of MGs can be greatly improved. However, it will need to optimize the opera

al MGs and manage the MMG system of ADN in an integrated manner [6, 7, 8, 9]. Therefore,

ely coordinate the operation between ADN and MMG has become a hot research topic, which contai

allenges: (1) the interactive mechanism between ADN and MMG, in which the autonomy and priv

ribution system operator and each MG operator needs to be considered; (2) the self-dispatching o

h intelligent energy management is required to obtain an economical and reliable dispatching s

ring the uncertainties of renewable energy resources.

terature review

ently, many studies have been conducted on the coordinated operation problem for ADN with

a game-theory based method is proposed to simulate the potential cooperative behaviors of M

higher energy efficiency and operation economy. In [11], a model predictive control-based dispa

o maximize the global benefits of MMG is proposed. In [12], a two-stage collaborative operation

MG is constructed, and the interactive energy dispatching model between the distribution netwo

s addressed in [13]. The dynamic economic dispatch model for the grid-connected and islanded

microgrids is proposed in [14] to increase the system operating efficiency. An optimal configuratio

to capacity sizes and types of distributed generators (DGs) for multi-energy microgrids is presen

he optimal design of microgrids with combined heat and power units is investigated in [16] by co

mental and economic sustainability in a multi-objective model. However, the above-mentioned rese

the way of centralized implementation. When the scale of the ADN or the number of MGs is

formation must be collected. The calculation burden will also increase, which may lead to the c

ionality. For centralized implementation, it is also difficult to reflect the different interests of th

ADN. Nor can the decentralized, autonomous characteristics of a microgrid be described by this k

to the autonomous characteristic and heterogeneity of the individual agents in an active distri

with multi-microgrids, the distribution system operator and microgrid operator are respectively ma

rent entities. Centralized optimization will face technical and political challenges [17, 18, 19]. Co

ir own benefits, a decentralized framework becomes favorable as it is not always efficient to pool

formation for centralized computation due to the large size of the problem dimension, a large amo

ta, and privacy issues. In recent years, research on decentralized or distributed energy managem

istribution systems with multi-microgrids has been carried out. The general distributed or decent

ation algorithms mainly include alternating direction method of multipliers (ADMM) [20, 21, 22, 2

al target cascading (ATC) [25, 26], Benders decomposition (BD) algorithm [27], heterogeneous dec

HD) algorithm [28], and optimality condition decomposition (OCD) [29] algorithm. However, wh

of entities and uncertain renewable energy units is large, the communication burden of HD, OC

rithms will be heavy. Thus, the scalability of these methods is not satisfactory [20]. Among them, A
2
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eriority in convergence properties that has been adopted to the integrated transmission-distributi

1], integrated electricity-gas system operation [22, 23], and peer-to-peer energy trading [24] probl

ther challenge for the operation of a multi-microgrid distribution system is how to hedge uncert

ing to renewable energy. In [30], an energy management scheme based on information gap decision

sed for the energy hub, which can robustly handle uncertainties by defining the interval of objectiv

Considering distribution characteristics for uncertainties, stochastic optimization (SO) has been

the operation of MMGs. A stochastic bi-level operation problem of MMG is presented in [31]. A

driving pattern of electric vehicles to follow chi-square distribution, a two-stage SO integrated

ing strategy for MMG is introduced in [32]. To solve SO problems, scenarios are usually generated

obability distribution of uncertain parameters. However, the exact probability distribution in SO

in and SO may pose computational challenges. Differently, as a promising method, robust optim

3, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43] characterize uncertainties through uncertainty sets an

eir constrained perturbations to find a solution, which is optimal for the worst-case realization. I

tive RO with reference distributions is used to confine load demands in MGs. In [42], the risk

ion maintenance dispatch for MMG is formulated as a two-stage RO problem. In [43], the RO me

ed to address uncertainties from renewable generation and energy demand for MMG. However, t

hes are a decomposition-based master-subproblem iteration algorithm, which may demand a consid

ation time at each iteration. Contrary to the decomposition-based robust approach, the linear d

DRs) [37, 38, 39, 40] model can provide a slightly conservative, yet single-tractable solution to the

. Since the robust counterpart of an LDRs-based adjustable robust approach is usually a tractable

, the LDRs model is more suitable for the application of distributed or decentralized optimization

ed on the existing research, there are still research gaps that need to be studied.

hen considering uncertainties in LDRs model for the operatin of active distribution system with

icrogrids, the existing works [37, 38] adopt the allowable output interval to describe uncertainties

er, the adjustable factors of LDRs model must be predefined, which is restrictive and leads to a c

tive solution. The other previous works [39, 40] adopt the nonadjustable bounded interval to d

ncertainties, which is also quite conservative. Moreover, these LDRs models [37, 38, 39, 40] cann

ith the renewable energy curtailment. As a result, the potential of the LDRs-based adjustable

odel in reducing solution conservatism has not been fully exploited, especially when we consid

newable energy curtailment and describe uncertainties in a controllable polyhedral uncertainty se

nother alternate to consider uncertainties is the decomposition-based RO models [33, 34, 35], whic

o disadvantages when deploying distributed ADMM optimization. Firstly, the robust counterpart

cond-stage max-min problem is a bilinear problem. The commonly used outer approximation m

big-M method for this bilinear problem cannot guarantee the convergence of ADMM. Second

lculation burden will be enlarged as the inner master-subproblem iteration of the decomposition

O algorithm is needed in each outer ADMM iteration. Therefore, the application of the decompo

ased RO algorithm to the distributed or decentralized operation of active distribution system with

icrogrids faces many limitations.
3



Journal Pre-proof

3. T convex

qu moti-

va ralized

op roblem

of

1.3. Co

To fi opera-

tion fra endent

operati el the

highly v sed ro-

bust ap ized as

follows:

1. A multi-

m Then,

a dictor-

co d fast

A d opti-

m

2. A 37, 38]

th tors as

va h non-

ad atism.

M for the

ro ize the

ad

3. T ble of

h LDRs

ar which

ca while,

by rather

th es not

in

The model

is intro sented

in Sect tion 5

present
Jo
ur

na
l P

re
-p

ro
of

he widely used distributed ADMM algorithm may converge slowly for solving a distributed

adratic programming problem, which requires a large number of iterations to converge. This

tes us to apply a fast ADMM variant to improve the convergence rate of distributed or decent

timization. As a result, the applicability of the fast ADMM variant in the distributed operation p

active distribution system with multi-microgrids should be fully exploited.

ntribution and organization

ll the research gap, this paper proposes a fast ADMM-based fully decentralized adjustable robust

mework for the active distribution system with multi-microgrids, achieving the synergistic yet indep

on of multiple entities. The LDRs-based two-stage adjustable robust approach is adopted to mod

olatile uncertainties of renewable energies overcoming the disadvantages of the decomposition-ba

proach when applied to decentralized optimization. The contributions of this paper are summar

fully decentralized coordinated operation framework for the active distribution system with

icrogrids is proposed, achieving the synergistic yet independent operation of multiple entities.

tailored fast ADMM algorithm, which is an accelerated variant of standard ADMM with a pre

rrector type acceleration step, is proposed. Compared with the standard ADMM, the propose

DMM approach has one more restarting step, which can improve the convergence of decentralize

ization.

n improved LDRs model is proposed for the robust operation of MMG. Compared to the works in [

at regard the adjustable factors of the LDRs model as constants, we regard the adjustable fac

riables. Compared to the works in [39, 40] that describe uncertainties in the LDRs model throug

justable intervals, we adopt a controllable polyhedral uncertainty set to control the solution conserv

eanwhile, renewable energy curtailment can be handled. As a result, the proposed LDRs model

bust operation of MMG can simultaneously consider the renewable energy curtailment, optim

justable factors, and utilize the budget of uncertainty in a polyhedral uncertainty set.

he LDRs-based adjustable robust extension of fast ADMM-based decentralized framework capa

andling renewable uncertainties in active distribution system with multi-microgrids is proposed.

e utilized to recast the microgrid adjustable robust problem into a single tractable convex problem,

n reduce the computation burden of each fast ADMM iteration and guarantee its convergence. Mean

aggregating the uncertainties, only a one-dimensional random variable needs to be considered

an a high-dimensional random variable. Therefore, the computation burden of the LDRs model do

crease with the number of uncertain sources.

rest of this paper is organized as follows. The separable formulation of the deterministic operation

duced in Section 2. The compact LDRs-based microgrid adjustable robust operation model is pre

ion 3. The decentralized adjustable robust operation framework is summarized in Section 4. Sec

s the numerical results and conclusions are given in Section 6.
4
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enclature

Subset of nodes with controllable DGs

Set of MGs

Set of nodes

Set of periods

Set of polyhedral uncertainty

Maximum deviation of voltage

D Charging/discharging efficiency of ESS

Uncertainty budget

Q
ex

Exchanged active/reactive power limit be-

tween main grid and ADN

Exchanged active power limit between ADN

and MG at node i

D

t Maximum charging/discharging rate of ESS

at time t

P
P

t Predicted output of WT/PV at time t

Transmission capacity limit from nodes i to

i+ 1

Mimimum/maximum capacity of ESS

i Mimimum/maximum voltage magnitude of

node i

/ci Fuel cost coefficients of controllable DG i

Charging/discharging cost of ESS

cbt/c
s
t Buying/selling price from/to main gri

time t

PL
i,t Load demand of node i at time t

ri/xi Line resistance/reactance between nod

and i+ 1

RD
i /RU

i Ramp-up/down limit of controllable D

V0,t Voltage of substation, normally 1 p.u.

Et Actual output of ESS at time t

P b
t /P s

t Active power deficiency/surplus of AD

time t

PC
t /PD

t Charging/discharging power of ESS at

t

PE
t Actual output of ESS at time t

PW
t /PP

t Actual output of WT/PV at time t

PMG
t /PDN

i,t Active power injected to MG/flo

from ADN at node i in time t

P1,t/Q1,t Exchanged active/reactive power betw

main grid and ADN at time t

Pi,t/Qi,t Active/reactive power from nodes i to

at time t

PG
i,t/Q

G
i,t Active/reactive power of controllable D

node i in time t

Vi,t Voltage magnitude of node i at time t

ion: The main symbols and notation used in the system model are listed here for quick reference.

ining are defined later when they first appear. Boldface lower case and upper case letters repre

rs and matrices, respectively.

arable Formulation of Deterministic Operation Model

s section introduces the affinely coupled separable formulation of the deterministic operation mo

lti-microgrids distribution system amenable to decentralized optimization.
5
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pology of Distribution System with Multi-microgrids

ESS

PV

Main grid

MG i

Controllable DG
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DN
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Tie-line 4 in M
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Figure 1: Topology of distribution system with multi-microgrids

pical topology of the multi-microgrids distribution system is shown in Fig.1. The microgrid orga

es the photovoltaic (PV), wind turbine (WT), and energy storage system (ESS) to meet the loc

. When the MMG generation is excessive or insufficient, the MMG will exchange power flow

imilarly, the ADN satisfies its own load demand with the controllable DGs and coordinates the

ission with the main grid.

eration Problem of ADN

optimization objective of ADN is to minimize the operation costs of controllable DGs as well as the

tion costs including electricity purchasing costs or selling benefits from the main grid. By consid

price higher than the selling price, we can promote the self-consumption of ADN over exporting

ain grid. The corresponding optimization model is formulated as follows:

min
∑

t∈T

∑

i∈G

[
ai
(
PG
i,t

)2
+ biP

G
i,t + ci

]
+
∑

t∈T

(
cbtP

b
t − cstP s

t

)

subject to Pi+1,t = Pi,t + PG
i+1,t − PL

i+1,t − PDN
i+1,t, i ∈ N , t ∈ T

Qi+1,t = Qi,t +QG
i+1,t −QL

i+1,t, i ∈ N , t ∈ T

Vi+1,t = Vi,t −
riPi,t + xiQi,t

V0,t
, i ∈ N , t ∈ T

P1,t = P b
t − P s

t , P
b
t ≥ 0, P s

t ≥ 0, t ∈ T

− P ex ≤ P1,t ≤ P
ex
, t ∈ T

−Qex ≤ Q1,t ≤ Q
ex
, t ∈ T

P 2
i,t +Q2

i,t ≤ S
2

i , i ∈ N , t ∈ T

1− ε ≤ Vi,t ≤ 1 + ε, i ∈ N , t ∈ T

− PDN

i ≤ PDN
i,t ≤ P

DN

i , i ∈M, t ∈ T

PG
i ≤ PG

i,t ≤ P
G

i , i ∈ G, t ∈ T
6
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−RD
i ≤ PG

i,t − PG
i,t−1 ≤ RU

i , i ∈ G, t ∈ T

QG

i
≤ QG

i,t ≤ Q
G

i , i ∈ G, t ∈ T .

objective (1a) minimizes the total operation costs of ADN. Constraints (1b)–(1d) are the line

tion load flow (Dist-Flow) equations. The Dist-Flow model is originally proposed in [44] and line

The linearized DistFlow branch model is more appropriate than the DC power flow model by incorpo

power and voltage magnitudes, as it can produce a solution, which is comparable with the cl

w branch model. Constraints (1e)-(1g) represent the relationship between the power flow from th

the ADN. It is noted that P b
t >0 means the ADN buys electricity from the main grid and P s

t >0

N sells electricity to the main grid. Constraint (1h) denotes the branch capacity limit. Constrai

the voltage magnitude of each node is kept within the allowed maximum deviation from the n

onstraint (1j) denotes the power flow limits transferred from ADN to MMG. Constraints (1k)-(1

eration limits on controllable DGs.

the quadratic constraint (1h), we propose a number of linear constraints (2) to substitute it. Intu

g, this procedure is approximating the original circular feasible region using an octagon.

−Si ≤ Pi,t ≤ Si,

−Si ≤ Qi,t ≤ Si,

−
√

2Si ≤ Pi,t +Qi,t ≤
√

2Si,

−
√

2Si ≤ Pi,t −Qi,t ≤
√

2Si.

eration Problem of MMG

optimization objective of MMG aims for the minimum operation cost of ESS. The operation m

MG (omitting the subscript k in further notation) is written as:

min
∑

t∈T

(
cCPC

t + cDPD
t

)

subject to PW
t + PP

t + PD
t − PC

t + PMG
t = PL

t , t ∈ T

− PDN ≤ PMG
t ≤ PDN

, t ∈ T

0 ≤ PW
t ≤ P

W

t , t ∈ T

0 ≤ PP
t ≤ P

P

t , t ∈ T

0 ≤ PC
t ≤ P

C
, t ∈ T

0 ≤ PD
t ≤ P

D
, t ∈ T

Et = Et−1 + ηCPC
t ∆t− PD

t ∆t/ηD, t ∈ T

E ≤ Et ≤ E, t ∈ T

E0 = ET .

objective function (3a) minimizes the total operation costs of each MG. Here, note that reactive

ission between the ADN and MMG is not considered in this paper. Constraint (3b) represen
7
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alance of MG while constraint (3c) denotes the power flow limits transferred from the MG to the

ints (3d) and (3e) is the power production limit for WT and PV, respectively. Constraints (3

the charging and discharging rate limits of ESS [46]. Constraint (3h) represents the energy bala

onstraint (3i) keeps the energy of ESS within its capacity limits. Constraint (3j) specifies the init

ergy level of ESS. Note that the operation cost function of ESS in (3a) and the charging/disch

y will lead to extra energy loss and energy cost in the case of simultaneous charge/discharge, the

neous charge/discharge will never happen in an optimal energy schedule for ESS.

k 1. Model (3) can avoid simultaneous charging and discharging of ESS without introducing

s. To further explain this point, we simplify constraint (3b) as

PD
t − PC

t = ∆PCD
t , t ∈ T with ∆PCD

t = PL
t − PW

t − PP
t − PMG

t .

e can simplify the objective (3a) as:

min
∑

t∈T

(
(cC + cD)PC

t + cD∆PCD
t

)
with PC

t ∈ [0, P
C

] ,

min
∑

t∈T

(
(cC + cD)PD

t − cD∆PCD
t

)
with PD

t ∈ [0, P
D

] .

cC , cD > 0, it is clear that the objective (4a) and objective (4b) monotonic increasing with respect

, respectively. Therefore, we have either the charging power PC
t = 0 or discharging PD

t = 0.

upling of ADN and MMG

a coupling constraints tend to guarantee the agreement on tie-line power between ADN and MMG.

enting the decentralized optimization, it is necessary that the output power from the ADN sho

the input power to the MMG. Hence, the area coupling constraint (5) should be established.

PDN
k,t = PMG

k,t , k ∈M, t ∈ T .

operation problem for each MG is an independent decision-making process that does not cont

on about other neighboring MGs. Namely, there is no information exchange among MGs. Only

tion is shared between ADN and MMG to ensure consistency in operation. Therefore, the coord

on problem of a multi-microgrids distribution system can be solved in a fully decentralized way, pres

ependent decision of each subsystem operator.

pact LDRs-based Microgrid Adjustable Robust Operation Model

s section introduces the main idea of the LDRs-based adjustable operation model for MGs using a co

he robust adjustable model includes two stages, i.e., “here-and-now” and “wait-and-see”. Each M

with the ADN to obtain their coordinated “here-and-now” decisions prior to the uncertainty realiz

first stage. Then, each MG takes local “wait-and-see” recourse decisions that compensate the fo

ns in real-time to keep the negotiated tie-line power constant at the second stage.
8
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the sake of presentation, we write the deterministic operation model of each MG into the fol

t epigraph form:

min
x,y

Φ (x,y)

subject to A · x+B · y +C · ξ̂ + e = 0,

D · x+E · y + F · ξ̂ + f ≤ 0

efficient matrices A, B, C, D, E, and F in appropriate dimensions, e,f denote the requirement v

tes the “here-and-now” variables made before the realization of uncertainty, variables y can take

” recourse decisions, function Φ(·, ·) denotes the compact linear objective, ξ̂ denotes a forecast v

ertainty of renewable energy denoted by vector ξ.

his paper, the uncertain parameter ξ is restricted by being in a polyhedral uncertainty set given b

U = {ξ ≥ 0, K · ξ − g ≤ 0} .

robustness level can be controlled using a parameter denominated as the budget of uncertainty

form of (6c) can be, thus, written as the following semi-infinite form:

∀ ξ ∈ U , D · x+E · y + F · ξ + f ≤ 0,

nsures the robustness of the optimal solution against any realization of uncertain parameters.

decision variable y is replaced by an LDR including two parts,

y = yN + yA · ξ,

on-adjustable variable yN is the “here-and-now” part made before the realization of uncertaint

variable yA is the “wait-and-see” part made after the uncertain parameters are revealed, which

d as the adjustable factors of controllable DGs.

s, (8) can be further rewritten as

∀ ξ ∈ U , D · x+E ·
(
yN + yA · ξ

)
+ F · ξ + f ≤ 0.

constraint (10) is feasible for any realization of the uncertain parameters if it is feasible for the wor

ion of the uncertain parameters such that (10) is equivalent to

max
ξ∈U

{
E ·

(
yN + yA · ξ

)
+ F · ξ

}
+D · x+ f ≤ 0.

worst-case constraint (11) can be further simplified by using duality theory [47] to eliminate th

r such that the robust form of (6) is given by

min
x,yN,yA,Λ,Π

Φ
(
x,yN,yA,Λ

)

subject to A · x+B · yN +C · ξ̂ + e = 0

D · x+E · yN + Π> · g + f ≤ 0
9
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Π> ·K ≥ E · yA + F

Λ, Π ≥ 0

sociated dual variable Λ and Π.

e, the reformulation of the worst-case objective is the same as the reformulation of constraints (

he duality theory such that Φ is also linear [48]. Accordingly, the resulting adjustable robust ope

12) is a tractable LP problem, which can be efficiently and directly solved by off-the-shelf optim

s, e.g., Gurobi. Moreover, the above LDRs-based adjustable robust model can simultaneously co

ewable energy curtailment, optimize the adjustable factors of controllable DGs, and utilize the

rtainty in a polyhedral uncertainty set to reduce the conservatism of robust solutions. The ex

tion of the LDRs model can be seen in Appendix.

t ADMM-based Fully Decentralized Adjustable Robust Operation Framework

s section proposes a fast ADMM-based fully decentralized adjustable robust operation formulation

tion system based multi-microgrids. To this end, we first stack by χ0 and χa, a ∈ R the local d

s of the ADN and the a-th sub-MG. Here, R denotes the index of local systems including the

G. Following the star-topology described in Figure 1, i.e., all MGs are connected with ADN b

ed with each other, we can now rewrite the adjustable robust operation model for ADN with M

owing distributed convex quadratic form

min
χ

Ψ0(χ0) +
∑

a∈R
Ψa(χa)

subject to Γ0,aχ0 = Γa,0χa , a ∈ R

χ0 ∈ X0, χa ∈ Xa , a ∈ R

nvex quadratic objective Ψ0, and decoupled linear objective Ψa for all a ∈ R. Local constrai

a ∈ R collects all decoupled constraints and their associated robust tractable reformulation intro

ion 2 and 3 for the ADN and each MG, respectively. Here, the coupled affine equality constraint

rizes constraints (5) for all a ∈ R with selection matrices Γa,0 and Γ0,a.

rder to solve (13) using ADMM in a fully decentralized manner, we introduce consensus variables

owing affine equalities

Γ0,aχ0 = ζ0,a , Γa,0χa = ζ0,a , a ∈ R

he auxiliary decision variables ζ0,a introduces the indirect coupling between ADN and a-th MG.

result, the augmented Lagrangian is written as

L(χ, ζ,λ) := Ψ0(χ0) +
∑

a∈R





Ψa(χa) +


λ0,a

λa,0



> 
Γ0,aχ0 − ζ0,a

Γa,0χa − ζ0,a


+

ρ

2

∥∥∥∥∥∥


Γ0,aχ0 − ζ0,a

Γa,0χa − ζ0,a



∥∥∥∥∥∥

2

2





,

0,a and λa,0 denotes the Lagrangian multipliers of (14), ρ is the penalty parameter. The standard A

n is thus outlined as follows.
10
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Algorithm 1: Standard ADMM for Solving (13)

Input: (ζ00,a, λ
0
0,a, λ

0
a,0), a ∈ R, ρ > 0

For ` =0, 1, 2, 3, ...

χ`+1
0 = argmin

χ0∈X0

Ψ0(χ0) +
∑

a∈R

(
(Γ0,aχ0)>λ`

0,a +
ρ

2

∥∥Γ0,aχ0 − ζ`0,a
∥∥2
2

)
(15a

χ`+1
a = argmin

χa∈Xa

Ψa(χa) + (Γa,0χa)>λ`
a,0 +

ρ

2

∥∥Γa,0χa − ζ`0,a
∥∥2
2
, a ∈ R (15b

ζ`+1
0,a = argmin

ζ0,a


λ

`
0,a

λ`
a,0



> 
Γ0,aχ

`+1
0 − ζ0,a

Γa,0χ
`+1
a − ζ0,a


+

ρ

2

∥∥∥∥∥∥


Γ0,aχ

`+1
0 − ζ0,a

Γa,0χ
`+1
a − ζ0,a



∥∥∥∥∥∥

2

2

=
λ`
a,0 + λ`

0,a

2
+
ρ(Γ0,aχ

`+1
0 + Γa,0χ

`+1
a )

2
, a ∈ R (15c

λ`+1
0,a = λ`

0,a + ρ(Γ0,aχ
`+1
0 − ζ`+1

0,a ) , a ∈ R (15d

λ`+1
a,0 = λ`

a,0 + ρ(Γa,0χ
`+1
a − ζ`+1

a,0 ) , a ∈ R (15e

End for

e, ` denotes a global iteration counter. The local primal update (15a) and (15b) can be deplo

. Then, the explicit update of ζ0,a and dual pair (λ0,a,λa,0) can be sequentially calculated in p

ocal MG’s computational unit. Algorithm 1 only requires one forward-backward communication

the ADN and MMG. However, as literature, e.g., [49], illustrated, in practice, the standard A

es slowly for solving a distributed convex quadratic programming. To improve its convergence spe

a fast ADMM approach to deal with (13) as follows.

Algorithm 2: Fast ADMM with Restart for Solving (13)

Input: (ζ00,a = ζ̂10,a, λ
0
0,a = λ̂1

0,a, λ
0
a,0 = λ̂1

a,0), a ∈ R, ρ > 0, θ0 > 0, β ∈ (0, 1), σ0 = 1

For ` =1, 2, 3, ...

χ`
0 = argmin

χ0∈X0

Ψ0(χ0) +
∑

a∈R

(
(Γ0,aχ0)>λ̂`

0,a +
ρ

2

∥∥∥Γ0,aχ0 − ζ̂`0,a
∥∥∥
2

2

)
(16a

χ`
a = argmin

χa∈Xa

Ψa(χa) + (Γa,0χa)>λ̂`
a,0 +

ρ

2

∥∥Γa,0χa − ζ`0,a
∥∥2
2
, a ∈ R (16b

ζ`0,a = argmin
ζ0,a


λ̂

`
0,a

λ̂`
a,0



> 
Γ0,aχ

`
0 − ζ0,a

Γa,0χ
`
a − ζ0,a


+

ρ

2

∥∥∥∥∥∥


Γ0,aχ

`
0 − ζ0,a

Γa,0χ
`
a − ζ0,a



∥∥∥∥∥∥

2

2

=
λ̂`
a,0 + λ̂`

0,a

2
+
ρ(Γ0,aχ

`
0 + Γa,0χ

`
a)

2
, a ∈ R (16c

λ`
0,a = λ̂`

0,a + ρ(Γ0,aχ
`
0 − ζ`0,a) , a ∈ R (16d

λ`
a,0 = λ̂`

a,0 + ρ(Γa,0χ
`
a − ζ`a,0) , a ∈ R (16e
11
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if θ` =
∑

a∈R
ρ−1

∥∥∥∥∥∥


λ

`
0,a − λ`

0,a

λ`
a,0 − λ`

a,0



∥∥∥∥∥∥

2

2

+ ρ
∥∥ζ`0,a − ζ`0,a

∥∥2
2
< β · θ`−1 (16f

σ`+1 =
1 +

√
1 + 4(σ`)2

2
(16g

λ̂`+1
0,a = λ`+1

0,a +
σ` − 1

σ`+1
(λ`+1

0,a − λ`
0,a) , a ∈ R (16h

λ̂`+1
a,0 = λ`+1

a,0 +
σ` − 1

σ`+1
(λ`+1

a,0 − λ`
a,0) , a ∈ R (16i

ζ̂`+1
0,a = ζ`+1

0,a +
σ` − 1

σ`+1
(ζ`+1

0,a − ζ`0,a) , a ∈ R (16j

else

σ`+1 = 1, λ̂`+1
0,a = λ`

0,a, λ̂
`+1
a,0 = λ`

a,0, ζ̂
`+1
0,a = ζ`0,a, a ∈ R (16k

End

End for

pared to Algorithm 1, Algorithm 2 uses a predictor-corrector type acceleration strategy, i.e., steps

o improve the convergence performance. The main idea is to deploy Nesterov’s acceleration [50] to

d (λ̂0,a, λ̂a,0) for all a ∈ R. However, the acceleration step is stable only when the objectives Ψ

∈ R are strongly convex such that a restarting strategy has to be implemented for generic conve

ee [51]. In Algorithm 2, the restating step (16f) implements the acceleration when the residua

ed. Otherwise, the iterations of Algorithm 2 are equivalent to Algorithm 1.

k 2 (Convergence rate). When all Ψa and Ψ0 are strongly convex, [51] has shown that Algorithm 2 w

arting can improve the convergence rate from the standard ADMM’s O( 1
` ) to O( 1

`2 ). Unfortunate

(13) does not satisfy this assumption, which can only achieve convergence guarantee [52] by dep

arting step but without a convergence rate. In practice, some heuristic regularization tricks can b

rce the strong convexity of the objective [53], but a suboptimal solution is obtained as one expect

del, the improvement in the convergence of Algorithm 2 compared to Algorithm 1 can be nume

trated, while the regularization numerically does not show any improvement when the suboptima

ble.

k 3 (Communication overhead). Compared to the standard ADMM, the acceleration variant, as

ed, requires the restarting step to ensure convergence for the generic convex problem. Fortunate

ng only additionally communicates a scalar between the a-th MG and the ADN to determine wheth

tion operations (16g)–(16j) are activated.

erical Results

erical experiments were performed by applying the algorithm to the modified IEEE 69-bus distri

[54] with four MGs located at nodes 27, 46, 50, and 65. The voltage tolerance is set as [0.95 1.05] p.
12
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ad electricity price, the operating characteristics of controllable DGs and ESSs, the day-ahead ou

d WTs, and other detailed parameters can be found at [55]. Variation ranges of renewable ener

red as 20%, which means that the positive/negative deviations of PV and WT power in all MGs a

forecast values. The scheduling period is one day with an interval of 1 h. Thus there are 24 un

wer forecasts and 24 uncertain PV power forecasts, which means that the budget of uncertainty is b

8. The initial values of coupling variables and multipliers are all set to 0. To simplify the analys

inty budgets of each MG are assumed to be the same. The case study is implemented in Matlab R

ntel Core i7-8700, 3.2 GHz, 16 GB RAM computer and solved by Gurobi 9.0.

mparison of Different Variation Ranges

ee different robust cases with different variation ranges for PVs and WTs are considered here:

), Case 2 (20%), and Case 3 (30%). To simplify the analysis, the uncertainty budgets of eac

med to be the same. Table 1 illustrates the total operation costs and computation time with v

inty budgets. Note that only the solver time is selected for comparison. The following observatio

ined:

Table 1: Comparison of different uncertainty budgets with 12 step size

κ

Total operation cost ($)
Computation time (s)

Case 1 Case 2 Case 3

0 1980.41 1980.41 1980.41 1.03

12 2085.74 2207.26 2340.33 1.62

24 2085.74 2207.26 2340.33 1.65

36 2085.74 2207.26 2340.33 1.97

48 2085.74 2207.26 2340.33 1.74

or κ = 0, the operation costs of the three cases are identical. This is because when the uncertainty

no uncertainties can deviate from their forecasts. Thus, κ = 0 is the traditional deterministic ope

or a specific variation range, increasing κ makes the solution more robust at the expense of

on costs. Different from the decomposition-based robust model, the impact of κ on the objective

onotonic. This is because the second-stage problem in the decomposition-based robust model i

ax-min problem, and a single, worst-case scenario will be identified by the second-stage problem.

odel, a worst-case scenario will be obtained for each constraint of the second-stage problem. Th

ng κ, the robustness of the LDRs model increases and reaches its maximum value more rapidly th
13
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osition-based robust model. Hence, after a specific κ, the robustness level and operation costs

t since all uncertainties have adopted their worst-case realizations.

o more accurately evaluate the previous observation, the numerical experiment of Table 1 ha

ed in Table 2 with a smaller κ step, i.e., 0.05. As κ increases, the total operation costs monoto

until κ = 0.25. In other words, κ = 0.25 is the point with the maximum robustness level wh

inties have adopted their worst-case realizations.

or a specific value of uncertainty budget, the operation costs increase by increasing the variation

because a greater variation range allows the uncertain renewable energies to deviate more from

s, which leads to a worse worst-case realization. That is, the proposed LDRs model becomes imm

higher variations of the uncertainties but at the expense of higher operation costs.

y aggregating the renewable energy uncertainties, only a one-dimensional random variable needs

red rather than a high-dimensional random variable. Therefore, the computation burden does not in

e number of uncertain sources. Meanwhile, the proposed LDRs model can simultaneously consid

le energy curtailment, optimize the adjustable factors of DGs, and utilize the uncertainty budg

ral uncertainty set, leading to significantly less conservative solutions.

he computation burden of the proposed LDRs-based adjustable robust operation model is very low,

es its application in real applications.

Table 2: Comparison of different uncertainty budgets with 0.05 step size

κ

Total operation cost ($)
Computation time (s)

Case 1 Case 2 Case 3

0 1980.41 1980.41 1980.41 1.03

0.05 2046.82 2121.59 2200.92 1.51

0.1 2068.42 2171.38 2284.02 1.56

0.15 2075.24 2185.97 2307.81 1.62

0.2 2080.97 2197.69 2325.86 1.70

0.25 2085.74 2207.26 2340.33 1.62

nvergence Performance and Solution Quality

proposed fast ADMM algorithm is compared with its standard counterpart to demonstrate its conve

ance. Taking hour 4 in Case 2 as an example and assuming that the uncertainty budgets of MGs

iteration processes of the fast ADMM and standard ADMM on the tie-line power and the total ope

depicted in Fig. 2 and Fig. 3, respectively. The convergence of the maximum primal and dual r
14
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e scheduling cycle is shown in Fig. 4. The fast ADMM and standard ADMM algorithms converge a

iterations, with all the primal and dual residues smaller than the thresholds. As expected, the pr

MM algorithm takes fewer iterations and less time to converge. It can be concluded that the pr

MM algorithm with predictor-corrector type acceleration step can improve the computation efficie

alized optimization.
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Figure 2: Convergence of tie-line power flow
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Figure 4: Convergence of maximum primal and dual residue

able solution quality, summarized in Table 3. The converged operation cost found by the fast and sta

is nearly the same as the centralized method. The solution gaps for fast and standard ADMM

, which is fairly small. The conventional centralized scheme needs a single central super operate

rol the entire system. However, complete proprietary data of each MG and ADN may not be ava

area information privacy and operating independence cannot be ensured. In a decentralized m

imited set of information is shared. As a result, communication burdens, which usually account fo

ing time in practice, are alleviated, and information privacy is preserved. Compared to the cent

ork, the proposed decentralized method is, thus, potentially more efficient on computation w.r.t t

roblem that can be addressed and on communication w.r.t the size of information exchanged b

rs. With the growth in the subsystem scale, the centralized model is difficult to deploy as di

ems in the multi-microgrids distribution system generally correspond to different operators. Mo

posed LDRs model can also reduce the computation burden of each fast ADMM iteration and gua

vergence of the fast ADMM algorithm, and can be easily applied to decentralized optimization.

ough the computing times of the two ADMM algorithms are higher than the centralized model. Ho

posed fast ADMM-based decentralized scheme is not intended to compete with the centralized s

uting speed, but to achieve area decomposition aiming for operating autonomy and data priva

plications, subproblems can be simultaneously implemented by local computers in parallel. Fo

alized schemes, the solution gap should asymptotically approach zero. However, for many engin

tions, only a mild level of accuracy is needed. Therefore the computational efficiency of the fast A

m will be improved in real applications.
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Table 3: Comparison of different algorithms

Algorithm Iterations Total operation cost ($) Solution gap Computation time (s)

Centralized - 2197.69 - 1.70

Standard ADMM 53 2197.70 0.0005% 4.78

Fast ADMM 35 2197.70 0.0005% 2.86

clusions

ctively coordinating an active distribution network and multi-microgrids can significantly impro

tion rate of renewable energy and provide powerful support for the distribution system. This

s a fully decentralized adjustable robust operation framework for an active distribution system

icrogrids. The decomposed microgrid operation problem is formulated as a linear decision rules

ge adjustable robust model that includes both “here-and-now” and “wait-and-see” decisions. T

ision rules approach is utilized to recast the two-stage adjustable robust model into a computat

le solution that can be solved directly without decomposition, reducing the computation burden of

optimization. Then, a tailored fast ADMM algorithm with a predictor-corrector type acceleratio

oped to improve the convergence rate of decentralized optimization. The fully decentralized schem

d in a parallel manner, achieving the synergistic yet independent operation of multiple entities.

dix A. Extended Formulation of LDRs-based Microgrid Adjustable Robust Operation

his section, we follow the steps in Section 3 to derive an LDRs-based microgrid adjustable robust ope

which can simultaneously consider the renewable energy curtailment, optimize the adjustable

rollable DGs, and utilize the budget of uncertainty in a polyhedral uncertainty set to reduce so

atism.

uncertainties pertaining to PV and WT power in each MG (omit the microgrid subscript) are m

bounded intervals within a polyhedral uncertainty set.

U =





P̃W
t = P

W

t + PW+
t − PW−

t , t ∈ T

P̃P
t = P

P

t + PP+
t − PP−

t , t ∈ T

0 ≤ PW+
t ≤ P̂W

t , t ∈ T | λ∗+t
0 ≤ PW−

t ≤ P̂W
t , t ∈ T | λ∗−t

0 ≤ PP+
t ≤ P̂P

t , t ∈ T | γ∗+t
0 ≤ PP−

t ≤ P̂P
t , t ∈ T | γ∗−t

∑

t∈T

(
PW+
t

P̂W
t

+
PW−
t

P̂W
t

+
PP+
t

P̂P
t

+
PP−
t

P̂P
t

)
≤ κ | µ∗




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∗+
t , λ∗−t , γ∗+t , γ∗−t , and µ∗ represent the dual variables associated with the constraints of the

ral uncertainty set. In the following, the wild-char superscript ∗ is substituted by B(r), B(l),

(r), P (l), C(r), C(l), D(r), D(l), E(r), and E(l) in (A.3), (A.4), (A.5), (A.6), (A.7), (A.8), (A.9), (

(A.12), (A.13), and (A.14), respectively. These superscripts are characters only used to discrimina

riables. This uncertainty set is the extended form of (7) in the compact representation. The size

inty set U can be controlled by changing the variation ranges (P̂W
t , P̂P

t ) and the budget of uncerta

easing the variation ranges or increasing κ, the size of U increases, which leads to a more robust so

ice of κ aims at adjusting the conservativeness of the robust solution. Specifically, choosing κ = 0 le

erministic representation since uncertainties cannot deviate from their forecast values. However, ch

ds to robust representation in which uncertainties can deviate from their forecast values.

erive a tractable form incorporating the uncertain renewable energy, the following LDRs as a fu

uncertain renewable energy given in (A.1) are considered, which are the extended form of (9).

s take real-time realizations of the available WT and PV as input and output WT, PV, and ESS a

ep the negotiated tie-line power constant.

PC
t =PN,C

t + PA1,C
t PW+

t + PA2,C
t PW−

t + PA3,C
t PP+

t + PA4,C
t PP−

t ,

PD
t =PN,D

t + PA1,D
t PW+

t + PA2,D
t PW−

t + PA3,D
t PP+

t + PA4,D
t PP−

t ,

PW
t =PN,W

t + PA1,W
t PW+

t + PA2,W
t PW−

t + PA3,W
t PP+

t + PA4,W
t PP−

t ,

PP
t =PN,P

t + PA1,P
t PW+

t + PA2,P
t PW−

t + PA3,P
t PP+

t + PA4,P
t PP−

t ,

he non-adjustable terms (PN,C
t , PN,D

t , PN,W
t , PN,P

t ) represent the first stage “here-and-now” dec

he remaining adjustable terms (PA1,C
t , PA2,C

t , PA3,C
t , PA4,C

t , PA1,D
t , PA2,D

t , PA3,D
t , PA4,D

t , P

PA3,W
t , PA4,W

t , PA1,P
t , PA2,P

t , PA3,P
t , PA4,P

t ) represent the second stage “wait-and-see” recours

hich can be seen as the adjustable factors of controllable DGs. As it is seen, PW
t and PP

t have als

these auxiliary variables (i.e., PN,W
t , PA1,W

t , PA2,W
t , PA3,W

t , PA4,W
t and PN,P

t , PA1,P
t , PA2,P

t ,

o indicate that these auxiliary variables are associated with the decision variables PW
t and PP

t . Ho

uxiliary variables are sufficiently discriminated from decision variables PW
t and PP

t using superscr

, A3, and A4. In (A.2a)-(A.2d), the unit of auxiliary variables with superscript N is kW, and the au

s with superscripts A1, A2, A3, and A4 are dimensionless.

LDRs-based microgrid adjustable robust operation model can be obtained from the determinis

model (3) by replacing the certain WT and PV forecasts with their uncertain values and usi

entioned LDRs. Without loss of generality, we respectively replace the power balance equality con

d the ESS energy balance equality constraint (3h) with two inequality constraints. Then using the d

the tractable formulation of the power balance equality constraint and the ESS energy balance e

int, which is feasible for any realization of the uncertainties belonging to the polyhedral uncertain

written into the following (A.3), (A.4) and (A.13), (A.14). In the following, (3) can be reformula

stituting in (A.2), and then replacing the max operator over the uncertainty set with its dual equi

ctable formulation, which is feasible for any realization of the uncertainties belonging to the poly
18
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inty set, can be written using the duality theory as follows:

min
∑

t∈T

(
cCPN,C

t + cDPN,D
t

)

to

PN,W
t + PN,P

t + PMG
t + PN,D

t − PN,C
t + 4κµB(r)+

P̂W
t λ

B(r)+
t + P̂W

t λ
B(r)−
t + P̂P

t γ
B(r)+
t + P̂P

t γ
B(r)−
t ≤ PL

t

P̂W
t λ

B(r)+
t + µB(r) ≥ P̂W

t

(
PA1,D
t − PA1,C

t + PA1,W
t + PA1,P

t

)

P̂W
t λ

B(r)−
t + µB(r) ≥ P̂W

t

(
PA2,D
t − PA2,C

t + PA2,W
t + PA2,P

t

)

P̂P
t γ

B(r)+
t + µB(r) ≥ P̂P

t

(
PA3,D
t − PA3,C

t + PA3,W
t + PA3,P

t

)

P̂P
t γ

B(r)−
t + µB(r) ≥ P̂P

t

(
PA4,D
t − PA4,C

t + PA4,W
t + PA4,P

t

)

λ
B(r)+
t ≥ 0, λ

B(r)−
t ≥ 0, γ

B(r)+
t ≥ 0, γ

B(r)−
t ≥ 0, µB(r) ≥ 0

− PN,W
t − PN,P

t − PMG
t − PN,D

t + PN,C
t + 4κµB(l)+

P̂W
t λ

B(l)+
t + P̂W

t λ
B(l)−
t + P̂P

t γ
B(l)+
t + P̂P

t γ
B(l)−
t ≤ PL

t

P̂W
t λ

B(l)+
t + µB(l) ≥ P̂W

t

(
PA1,C
t − PA1,D

t − PA1,W
t − PA1,P

t

)

P̂W
t λ

B(l)−
t + µB(l) ≥ P̂W

t

(
PA2,C
t − PA2,D

t − PA2,W
t − PA2,P

t

)

P̂P
t γ

B(l)+
t + µB(l) ≥ P̂P

t

(
PA3,C
t − PA3,D

t − PA3,W
t − PA3,P

t

)

P̂P
t γ

B(l)−
t + µB(l) ≥ P̂P

t

(
PA4,C
t − PA4,D

t − PA4,W
t − PA4,P

t

)

λ
B(l)+
t ≥ 0, λ

B(l)−
t ≥ 0, γ

B(l)+
t ≥ 0, γ

B(l)−
t ≥ 0, µB(l) ≥ 0

P̂W
t λ

W (r)+
t + P̂W

t λ
W (r)−
t + P̂P

t λ
W (r)+
t + P̂P

t γ
W (r)−
t + 4κµW (r) ≤ P̄W − PN,W

t

P̂W
t λ

W (r)+
t + µW (r) ≥ P̂W

t

(
PA1,W
t − 1

)

P̂W
t λ

W (r)−
t + µW (r) ≥ P̂W

t

(
PA2,W
t + 1

)

P̂P
t γ

W (r)+
t + µW (r) ≥ P̂P

t P
A3,W
t

P̂P
t γ

W (r)−
t + µW (r) ≥ P̂P

t P
A4,W
t

λ
W (r)+
t ≥ 0, λ

W (r)−
t ≥ 0, γ

W (r)+
t ≥ 0, γ

W (r)−
t ≥ 0, µW (r) ≥ 0

P̂W
t λ

W (l)+
t + P̂W

t λ
W (l)−
t + P̂P

t λ
W (l)+
t + P̂P

t γ
W (l)−
t + 4κµW (l) ≤ PN,W

t

P̂W
t λ

W (l)+
t + µW (l) ≥ −P̂W

t PA1,W
t

P̂Wλ
W (l)−

+ µW (l) ≥ −P̂WPA2,W

t t t t
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P̂P
t γ
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t γ
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P (r)
t + P̂P

t λ
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t + P̂W

t γ
P (r)+
t + P̂W

t γ
P (r)−
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P̂P
t λ
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t + µP (r) ≥ P̂P

t

(
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t − 1
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P̂P
t λ
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t + µP (r) ≥ P̂P

t

(
PA2,P
t + 1

)

P̂W
t γ

P (r)+
t + µP (r) ≥ P̂W

t PA3,P
t

P̂W
t γ

P (r)−
t + µP (r) ≥ P̂WPA4,P

t

λ
P (r)+
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P (r)−
t ≥ 0, γ

P (r)+
t ≥ 0, γ

P (r)−
t ≥ 0, µP (r) ≥ 0

P̂P
t λ

P (l)
t + P̂P

t λ
P (l)−
t + P̂W

t γ
P (l)+
t + P̂W
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P (l)−
t + 4κµP (l) ≤ PN,P

P̂P
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