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Deciphering the roles of
myeloid derived suppressor
cells in viral oncogenesis

Alexander Glover, Zhaoqin Zhang and Claire Shannon-Lowe*

Institute of Immunology and Immunotherapy, The University of Birmingham, Birmingham, United
Kingdom
Myeloid derived suppressor cells (MDSCs) are a heterogenous population of

myeloid cells derived from monocyte and granulocyte precursors. They are

pathologically expanded in conditions of ongoing inflammation where they

function to suppress both innate and adaptive immunity. They are subdivided

into three distinct subsets: monocytic (M-) MDSC, polymorphonuclear (or

neutrophilic) (PMN-) MDSC and early-stage (e-) MDSC that may exhibit

differential function in different pathological scenarios. However, in cancer

they are associated with inhibition of the anti-tumour immune response and

are universally associated with a poor prognosis. Seven human viruses classified

as Group I carcinogenic agents are jointly responsible for nearly one fifth of all

human cancers. These viruses represent a large diversity of species, including

DNA, RNA and retroviridae. They include the human gammaherpesviruses

(Epstein Barr virus (EBV) and Kaposi’s Sarcoma-Associated Herpesvirus (KSHV),

members of the high-risk human papillomaviruses (HPVs), hepatitis B and C

(HBV, HCV), Human T cell leukaemia virus (HTLV-1) and Merkel cell polyomavirus

(MCPyV). Each of these viruses encode an array of different oncogenes that

perturb numerous cellular pathways that ultimately, over time, lead to cancer. A

prerequisite for oncogenesis is therefore establishment of chronic infection

whereby the virus persists in the host cells without being eradicated by the

antiviral immune response. Although some of the viruses can directly modulate

the immune response to enable persistence, a growing body of evidence

suggests the immune microenvironment is modulated by expansions of

MDSCs, driven by viral persistence and oncogenesis. It is likely these MDSCs

play a role in loss of immune recognition and function and it is therefore essential

to understand their phenotype and function, particularly given the increasing

importance of immunotherapy in the modern arsenal of anti-cancer therapies.

This review will discuss the role of MDSCs in viral oncogenesis. In particular we

will focus upon the mechanisms thought to drive the MDSC expansions, the

subsets expanded and their impact upon the immune microenvironment.

Important ly we wil l explore how MDSCs may modulate current

immunotherapies and their impact upon the success of future immune-

based therapies.

KEYWORDS

myeloid derived suppressor cells (MDSC), epstein barr virus (EBV), human
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Introduction

The concept that an infectious agent may be causal in

oncogeneses dates back to 1842, when Domenico Rigoni-Stern

described cervical cancer incidence as being highest in sex

workers, lowest in nuns and at an intermediate level in married

women (1). However, it took until 1911 for the first tumour-causing

virus to be identified; discovered by the American pathologist

Peyton Rous, the Rous sarcoma virus was shown to be

responsible for the carcinogenesis of domestic chicken tumours

(2). The first human cancer causing virus, the Epstein-Barr virus

(EBV, was identified in 1964 as the infectious agent responsible for

endemic Burkitt lymphoma (3). The later surprise discovery that

EBV infects more than 95% of the world’s population and is the

causal agent of infectious mononucleosis (IM) illustrates the

concept that a common virus can trigger rare cancers (4). There

are now seven known human oncogenic viruses (5, 6). They include

the human gamma herpesviruses; EBV and Kaposi’s Sarcoma-

Associated Herpesvirus (KSHV), members of the high-risk

human papillomaviruses (HPVs), hepatitis B and C (HBV, HCV),

Human T cell lymphotropic virus (HTLV-1) and Merkel cell

polyomavirus (MCPyV). In no case does triggering cancer form

part of the virus’ natural life cycle, yet all the viruses share the ability

to cause chronic infection, which over time and with additional risk

factors can lead to carcinogenesis (5).

Although it is well documented that virus-associated cancers are

common in those with immunocompromise (7), particularly in

conditions such as Kaposi’s sarcoma or post-transplant

lymphoproliferative disease (PTLD), viral oncogenesis also occurs

in those with an intact immune system. The mechanisms enabling

viral oncogenesis are complex and varied but often involve

modulation of the antiviral immune response, including limited

expression of immunogenic viral antigens, or infection of tissues

with reduced immune surveillance. There is, however, growing

evidence that myeloid-derived suppressor cells (MDSCs) may

play a role in this process.

MDSCs are a heterogeneous group of myeloid cells capable of

suppressing antigen-specific immune function. There are three

major classes of MDSCs the phenotype of which is illustrated in

Table 1. Polymorphonuclear (PMN-MDSCs) resemble neutrophils

but have a suppressive function. While key differences in function

have been described between PMN-MDSC and neutrophils in both

mice and humans (8), other groups have called into question if they

can be truly be described as a differentiated population rather than

an alternative activation state (9). Monocytic (M-MDSCs) are

mo r p ho l o g i c a l l y i d e n t i c a l t o mono c y t e s b u t a r e
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immunosuppressive and HLA-DRlow. Early MDSCs (e-MDSCs)

are the third group of suppressive myeloid cells; lacking mature

monocyte or neutrophil markers, it is unclear if these cells could be

the precursors for other MDSC classes (10). The study of MDSCs

has been hampered by a lack of a specific phenotype to separate

them from conventional neutrophils and monocytes (11). Accurate

identification requires either demonstration of suppressive

function, use of biochemical surrogate markers or density

centrifugation in the case of PMN-MDSCs, making identifying

populations in fixed tissues difficult (11). In addition, technical

differences between laboratories can introduce variation in MDSC

enumeration (12).

MDSCs were first described in the context of cancer under a

variety of names before the current terminology was settled upon

(13). In cancer, MDSCs are associated with a reduction in overall

(OS) and progression-free survival (PFS) and an increased rate of

relapse (14). Over time they have been identified in a greater variety

of disease states including infection (15), pregnancy (16), obesity

(17) and sepsis (18). We will first discuss the mechanisms behind

MDSC generation and how this can prevent viral clearance by the

adaptive immune system. We will then discuss the evidence for

MDSCs for each of the cancer-causing viruses. Finally, we will

discuss what therapeutic options are available to eliminate

MDSC populations.
Generation and function of MDSCs

PMN-MDSC

While functionally distinct, PMN-MDSC are phenotypically

almost identical to conventional neutrophils and morphologically

resemble either immature band cells or have the segmented nucleus

of a mature neutrophil. Neutrophils are the most abundant

leukocyte in the blood and under steady-state conditions are

produced in the marrow from lineage-committed precursors (19).

The precise mechanisms by which PMN-MDSC are generated

rather than inflammatory activated neutrophils are not

fully understood.

Neutrophils are typically seen as short-lived cells, but their

lifespan can be extended under inflammatory conditions. In

particular, PGE2 can suppress neutrophil apoptosis and prolong

survival through activation of protein kinase A (PKA) (20).

Neutrophils have a large variety of cell surface receptors for

chemokines, cytokines and immunoglobulin as well as innate

immune receptors which act through diverse signalling pathways
TABLE 1 Phenotype and functional markers by MDSC class.

Cell type Human surface phenotype Functional Characteristics Functional Markers

PMN-MDSC CD11b+ CD14-CD15+ CD66b+ Low Density1 T Cell suppression ARG-1, NO, ROS, STAT3,

e-MDSC Lin- CD33+ HLA-DR- CD14- CD15-

M-MDSC CD14+ CD15- HLA-DRlow/- T cell suppression
Differentiation to TAMs

ARG-1, NO, ROS, STAT3, IL-10, TGF-ß, PD-L1
1- Note phenotype for PMN-MDSC is identical to mature neutrophils and therefore requires further isolation based on density.
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to trigger homing and activation (21). Classically, neutrophils

extravasate at sites of inflammation following a chemokine

gradient and are then activated after exposure to damage-

associated molecular patterns (DAMPs) and pathogen-associated

molecular patterns (PAMPs). These activated, or effector,

neutrophils then kill pathogens by phagocytosis, NETosis and

degranulation (19, 22) and therefore constitute the immunological

first line of defence against bacterial and fungal infections.

The process of MDSC generation appears to involve two

distinct steps: the production of myeloid progenitors and then

activation to a full PMN-MDSC phenotype. The relative

contribution of each step may then impact on the morphological

maturity of the resulting cells. Granulocyte differentiation is initially

triggered by G-CSF which can result in emergency myelopoiesis

and the release of immature myeloid cells (23). Thereafter, a

number of factors have been suggested to trigger the generation

of MDSCs from progenitors, including Stem cell factor (SCF) acting

via C-KIT (24), combinations of G-CSF/IL-6 acting through C/

EBPb (25) and S100A8/A9 through NFkB. Furthermore, factors

produced by MDSCs such as S100 family proteins can trigger an

autocrine feedback loop leading to further MDSC generation (26).

However, other studies propose mature blood neutrophils can

develop an immunosuppressive phenotype induced by factors

such as PGE2 (27) or endoplasmic reticulum (ER) stress (28)

triggered by hypoxia, nutrient deprivation or increased ROS and

NOS often associated with chronic inflammation and in a tumour

microenvironment (29, 30).

PMN-MDSCs are usually characterised by their low density as

opposed to the high density of classical mature neutrophils,

although some activated pro-inflammatory neutrophils are also

low density. Gene expression profiling of low-density neutrophils

identified the expression of LOX-1 in the blood of cancer patients as

well as in tumour tissue but not in healthy donors (28). Initially, due

to their band-like immature morphology, similar to that observed in

LOX1+ neutrophils, it was proposed that PMN-MDSCs have an

immature phenotype (28). Yet, patients treated with high-dose

GCSF for stem cell mobilisation exhibit an expansion of activated

CD10+ neutrophils that are morphologically mature; inhibit T cell

proliferation and release IFN-g in-vitro, and have an activated

phenotype (31). While this appears to be a contradiction, a

further study correlated CD11b and CD16 expression with

nuclear morphology and maturity demonstrating both mature

and immature cells can be suppressive and meet the criteria to be

defined as PMN-MDSCs. However, the greatest degree of immune

suppression was seen in CD11b+CD16+ mature cells (32).
M-MDSC

Monocytes differentiate frommyeloid precursors in the marrow

under the control of growth factors and are then released into the

circulation. Conventional monocytes are divided into classical

(CD14+CD16-) , non-class ica l (CD14dimCD16+) and

intermediate (CD14+CD16+) populations. Classical monocytes

are produced from the marrow and are capable of phagocytosis

and tissue migration. As they mature, they develop an intermediate
Frontiers in Immunology 03
phenotype which is strongly HLA-DR+ and can act as antigen-

presenting cells. Non-classical monocytes principally function

through complement and antibody-dependent phagocytosis (33).

Monocytes can then enter tissues and further differentiate into

macrophages and dendritic cells (34). However, M-MDSC arise

from the CD14+ population and are HLA-DR negative (35). They

express increased IL-10 and IL-8 but reduced IL-1b, IL-6 and TNF

compared to classical monocytes (35).

Monocyte activation towards an inflammatory phenotype

occurs after exposure to PAMPs and DAMPS. Conversely, M-

MDSC generation appears to occur after weaker activation signals

by cytokines, particularly TGF-b, or repeated low-intensity toll-like

receptor (TLR) stimulation. TGF-b initially appears to act as a

chemoattractant for CD14+CD33+ myeloid cells. Tumour tissue

from multiple different cancers express TGF-b and this expression

is closely associated with infiltration of CD14+CD33+ myeloid cells.

In addition, TGF-b also appears to play a role in acquisition of the

M-MDSC phenotype as demonstrated by in-vitro treatment of

CD14+ monocytes with TGF-b, GM-CSF and IL-6, resulting in

the development of the suppressive phenotype. Furthermore,

repeated TLR 2/4 stimulation of the monocytes triggers

downregulation of HLA-DR and secretion of IL-10 and TGF-b,
thereby amplifying the M-MDSC phenotype and generating a TGF-

b-mediated feedback loop (36, 37). In monocytes, TLR stimulation

has been demonstrated by tumour-derived extracellular vesicles

containing factors such as HSP72 that drive M-MDSC generation

via MyD88/STAT3 requiring autocrine IL-6 production (38). In

addition, WNT5a, S100A8/A9, Il-4 and PGE2 have variously been

linked to the acquisition of an MDSC phenotype (39–42). However,

maintenance and accumulation of the M-MDSC population

appears to be mediated, at least in part, by PD-1 and TNF

signalling respectively, whereby PD1-deletion in a murine model

appears to prevent M-MDSC accumulation (43) and TNF signalling

through TNFR-2 appears to prevent M-MDSC apoptosis in a c-

FLIP-dependent manner.

M-MDSCs can further differentiate into tumour-associated

macrophages (TAMs) which have an immunosuppressive M2

phenotype (44) that secrete IL-10, express PD-1 and contribute to

tumour angiogenesis, and appears to depend on S100A9 expression

and signalling acting via C/EBPbeta (39).
E-MDSC

E-MDSC have been identified as myeloid cells lacking

monocyte or neutrophil markers both in the peripheral blood and

the tumour microenvironment. Due to the lack of mature lineage

markers, they are thought to be immature and are potentially

precursors for the other MDSC subsets. In-vitro e-MDSC show

the least capacity to suppress T cell proliferation or IFN-g release
(32). No correlation between e-MDSC frequency and OS has been

shown for either a head and neck or ovarian cancer (32, 45). One

concern with e-MDSC enumeration is that mature basophils have a

similar phenotype but are not immunosuppressive. Using a

basophil marker, such as CD123high expression, allows more

accurate identification of e-MDSC (10). More accurate
frontiersin.org
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identification of e-MDSC may help future studies to explore their

functional effects.
Mechanisms of immunosuppression

The method by which MDSCs trigger immunosuppression

depends on the class of cell involved, but common to both PMN-

MDSCs andM-MDSCs is the secretion of soluble factors. This effect

appears to be the primary method by which PMN-MDSCs mediate

immunosuppression and is stronger on a per-cell basis compared to

M-MDSCs. Arginase is located in the azurophilic granules of

neutrophils and is secreted by both activated neutrophils and

MDSCs (46). Arginine is essential for T cell proliferation and

function (47). When PMN-MDSCs are cultured with T cells

inhibition of arginase restores proliferation, enhances IFN-g
production and improves cytotoxic function (48) (32). Inhibiting

the function of iNOS can similarly reverse the effect of PMN-MDSC

and M-MDSCs on T cell proliferation (32, 49). ROS is produced by

both M-MDSCs and PMN-MDSCs and can inhibit antigen-

dependent T cell proliferation (50, 51). ROS is produced under

the control of STAT3 and appears to function in the immunological

synapse as the expression of the integrin MAC-1 is required for its

effect on T cells (50).

M-MDSCs have several additional functional roles. M-MDSCs

can induce TRegs through a CD40-CD40L dependent process (52)

and trigger TReg and PMN-MDSC recruitment by secreting CCL2,

CCL4 and CCL5 (53, 54). Secretion of cytokines including IL-10

and TGF-b promotes tolerance, suppresses cytotoxic function and

contributes to further MDSC generation (42, 55). M-MDSCs also

express PD-L1 and can adversely affect immune checkpoint therapy

(56, 57)

MDSCs may have a physiological role to control inflammation,

particularly in the lung and liver. Lung resident neutrophils have a

reduced cytokine response to LPS challenge and can protect the

lung from harmful inflammation (27). Furthermore, in a model of

asthma, PMN-MDSCs can inhibit the function of Th2 cells and

suppress inflammation (58) in a PGE2 and COX-1 dependent

manner. However, in COVID-19 early expansion of MDSCs is

predictive of a poor outcome by preventing viral clearance, yet in

late disease, they can be beneficial by reducing secondary

inflammation (59). As will be discussed later MDSCs can be

beneficial in preventing inflammation in chronic viral hepatitis

(60). Although, in the longer term this may be deleterious as it

would inhibit viral clearance and promote carcinogenesis. Both

examples illustrate the yin and yang of MDSC function depending

upon the state of an infection.
Conclusion on MDSC generation
and function

MDSCs are generated in response to chronic inflammation, a

state which is seen in all virally induced cancers. The action of

cytokines, particularly IL-6 and TGF-b, as well as growth factors

such as GM-CSF are important in both triggering emergency
Frontiers in Immunology 04
myelopoiesis and promoting the acquisition of an MDSC

phenotype. Factors such as ER stress appear important in PMN-

MDSC generation, whereas TLR stimulation and TGF-b are more

important for M-MDSCs. MDSCs can also act via autocrine

feedback loops to amplify signals leading to their generation and

recruitment. MDSCs can then act to suppress T cell function

through a variety of interconnected mechanisms. The nature of

the underlying immune microenvironment can influence if M-

MDSCs or PMN-MDSCs are predominant. Figure 1 links factors

produced by oncogenic viruses or infected/transformed cells with

the pathways which result in MDSC generation.

As discussed above identifying MDSCs can be difficult. PMN-

MDSCs are short-lived labile cells that cannot be frozen so cannot

be studied retrospectively (12). However, progress is being made to

establish common flow cytometry protocols (12) and multiplex

tissue staining panels (61) to ensure the unambiguous identification

of the different MDSC populations, neutrophils and monocytes.

This is particularly important when understanding the role of the

different MDSC subsets in the context of different cancers.

Although MDSCs have not yet been considered in many of the

virus-associated cancers, the tumour microenvironment of these

cancers actually exhibit the distinct characteristics that are both

conducive to the generation of MDSCs and consistent with their

presence, and therefore warrant further investigation.
Oncogenic viruses

Human T cell lymphotropic
virus-1 (HTLV-1)

Human T-lymphotropic virus-1 (HTLV-1) is a complex

retrovirus which is prevalent worldwide in clusters of high-

incidence areas, such as Japan and the Caribbean (62). Initial

infection occurs either in infancy, due to spread in breastmilk, or

as a sexually transmitted infection. Following a prolonged

asymptomatic latency period, HTLV-1 can cause adult T cell

leukaemia/lymphoma (ATL), occurring in 2-5% of carriers, as

well as inflammatory diseases such as HTLV-1-associated

myopathy (HAM).

HTLV-1 transmission is primarily dependent upon direct cell-

to-cell contact via a virological synapse rather than infection of

target cells with cell free virus. Following infection HTLV-1

integrates into the target cell DNA and is thought to persist by

infectious (de novo) spread during early infection and thereafter by

mitotic expansion (infected cell proliferation) of cells containing

integrated HTLV-1 genome. Over time, the proviral load rises

commensurate with the number of HTLV-1 infected clones and

the subsequent risk of oncogenic transformation (63). HTLV-1

modifies the infected cell through the action of two genes, TAX and

HBZ, that drive proliferation, inhibit apoptosis and promote tissue

migration and are both required for oncogenesis (64). TAX is a

multifunctional protein capable of driving profound changes to the

immunological microenvironment.

ATL is a highly aggressive malignancy associated with profound

immunosuppression, largely mediated through the action of TAX.
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Indeed TAX drives the acquisition of a CD4+CD25+ Treg

phenotype of the infected transformed cells (65) and triggers the

upregulation of MHC class II allowing infected cells to acquire a

tolerogenic antigen-presenting cell function (66). TAX also drives

changes to the cytokines secreted by the infected cells, leading to the

production of inflammatory cytokines such as TNF-a and IL-6 as

well as anti-inflammatory IL-10 through HBZ induction of TIGIT

(67, 68) . Much of the work looking at the tumour

microenvironment has focused on lymphocytes where HTLV-1+

non-tumour cells assist in the growth of tumour cells particularly

through IL-10 production (69). Checkpoint blockade, particularly

the PD-1 axis leads to disease flair, presumably related to the Treg

nature of the tumour (70). Allograft is the only curative treatment,
Frontiers in Immunology 05
implying that a graft versus tumour effect is important (71).

Immunotherapy directly targeting viral antigens is at a much

earlier stage, but animal studies show in principle this could be

effective (72). Antiviral therapy with zidovudine and interferon is

effective in ATL, particularly in non-lymphomatous disease (73)

and although the mechanism behind this is not fully understand, it

is likely mediated by reducing de novo infection of bystander cells

and therefore modulating the TME.

There is very little data on MDSCs in HTLV-1 infection.

Neutrophilia is common in ATL, particularly in the leukaemic

form (74), and indeed neutrophils appear to show spontaneous

activation in HTLV-1 infection with the production of IFN-g, TNF-
a and IL-12 and increased oxidative stress (75–77). Mechanistically,
FIGURE 1

Mechanisms of MDSC generation and their relation to virus associated cancers. Myeloid cells are produced during myelopoiesis in the marrow in
both steady state and inflammatory conditions. However, myeloid differentiation can be greatly expanded under growth factor control and lead to
the release of immature cells into the circulation. Under conditions favouring MDSC development both bands and mature neutrophils can be
induced to this phenotype. M-MDSCs arise from classical monocytes and can also differentiate to TAMs. The human oncogenic viruses illustrated
below can either directly or indirectly produce factors known to be linked to MDSC differentiation pathways.
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TAX is likely to drive both neutrophilia and neutrophil activation;

TAX expressing cells produce G-CSF, leading to neutrophilia and

splenomegaly in xenograft models (78) and TAX can also induce

the expression of iNOS through an NFkB dependent pathway (79).

M2 macrophages in the TME are associated with a worse prognosis

in ATL and promote the growth of malignant cells in-vitro (80).

However, there is almost no work focusing on MDSC in HTLV-1

infection or attempting to characterise the expanded myeloid

compartment. Given the combination of chronic inflammation,

production of regulatory cytokines and neutrophil expansion, the

presence of MDSCs would certainly be very plausible. How these

would function alongside a tumour composed of regulatory T cells

is unclear but understanding this may help design more

effective immunotherapy.
Merkel cell polyomavirus (MCPyV)

Merkel cell polyomavirus (MCPyV) is one of 14 human

polyomaviruses, but surprisingly is the only one to drive

carcinogenesis (81). MCPyV is responsible for up to 80% of cases

of Merkel cell carcinoma (MCC), a rare and highly aggressive skin

malignancy seen in older age. Initial infection with MCPyV appears

to be completely asymptomatic and occurs during childhood, with a

seroprevalence of around 70% (82). However, oncogenesis is always

associated with viral integration into the host cell DNA, UV

exposure and immune senescence. The MCPyV genome is always

mutated in MCC resulting in truncation of the Large T (LT) gene

that preserves the Retinoblastoma (RB) binding domain but

removes its virus replication functions, resulting in a replication-

deficient virus. Preservation of the LT RB binding domain and

expression of Small T (ST) ensures continual inactivation of RB and

degradation of P53 via ubiquitination by MDM2 respectively,

leading to uncontrolled cell cycle, accumulation of mutations and

development of MCC. Interestingly, both RB and P53 are highly

mutated in MCPyV-negative MCC that more closely resemble the

UV mutational signature observed in malignant melanoma (81)

highlighting how the viral oncogenes mimic the mutational

signature in the virus-negative carcinoma counterparts.

Immune control of MCPyV appears to be important in

preventing carcinogenesis. Individuals with immunosuppression

driven by factors such as HIV, ageing or medication exhibit

significant increases in the frequency of MCC (81). However,

MCPyV is largely controlled in healthy infected individuals who

have readily detectable CD4+ T cells with specificity against LT and

ST antigens (83). Conversely, although a clonal CD3+, CD8+

immune infiltrate into the tumour microenvironment is

associated with a better prognosis (84), the T cells show signs of

exhaustion with the expression of PD-1 on infiltrating lymphocytes

and PD-L1 in the tumour microenvironment (85). However,

reversing T cell anergy by blocking the PD-1 axis with

pembrolizumab has revolutionised the treatment of MCC (86). In

MCPyV+ MCC the response rate is around 70%, with 30%

achieving CR and responders showing 89.6% survival at 3 years

(87). Interestingly, while there was no correlation between CD8+

infiltrate, PD-L1 expression and response to PD-1 blockade a higher
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neutrophil-to-lymphocyte ratio in the blood was associated with a

lower response rate and poorer overall survival (86). Unfortunately,

neutrophil phenotyping was not performed in this study to assess if

these cells were in fact PMN-MDSCs.

There are no studies, which have studied MCC with histological

panels designed to enumerate MDSCs. Similarly in the blood, a high

neutrophil to CD8+ ratio in the tumour is a poor prognostic marker

(88). PD-L1 is expressed on tumour infiltrating cells expressing

CD11c+, CD162+ and CD33+, attributed to DCs and macrophages

but some CD33+ cells may be MDSCs (85, 89). PD-L1+CD33

positive cells appear to be enriched in the periphery of MCC

tumours and may function to shield the tumour against

infiltrating PD-1+ lymphocytes (89). In addition, MCC strongly

express CD200R, which is associated with tumour-infiltrating

myeloid cells including M2 macrophages and MDSCs (90, 91).

Overall, the understanding of non-lymphoid cells in the

microenvironment of MCC is at a limited level, with evidence

that myeloid cells in the form of circulating neutrophils and

infiltrating PD-L1 cells may inhibit T cell response to tumour

antigens. No current biomarkers accurately predict response to

checkpoint inhibition therapy (92). Understanding the TME is

likely to be of significance as there is currently work to target

MCPyV antigens with therapeutic vaccination or adoptive

immunotherapy, which has shown some success in small early-

phase studies (93) (94).
Kaposi’s sarcoma-associated herpesvirus
(KSHV/HHV-8)

Human herpesvirus-8, also known as the Kaposi sarcoma

associated herpesvirus, is linked to two distinct human

malignancies- Kaposi sarcoma (KS) and primary effusion

lymphoma (PEL) (95). In endemic areas, HHV-8 infection

usually occurs in childhood through infected saliva, but sexual

transmission is an important route of spread in other populations.

HHV-8 is endemic only in limited areas, particularly sub-Saharan

Africa, the Mediterranean and south America (96). HHV-8

primarily infects B cells and epithelial cells before establishing

latency in B lymphocytes and monocytes (97). Subsequent

oncogenesis appears dependent on viral reactivation.

HHV-8 is a large double-stranded DNA virus that dedicates at

least 20% of its genome to modulating the cell cycle and antiviral

immunity and encoding numerous viral homologues of human

genes. Latent cycle genes such as LANA-1, v-cyclin and v-FLIP as

well as lytic cycles genes such as v-IL-6 and v-bcl-2 appear

important in carcinogenesis, although the relative dependency on

individual genes differs depending on the malignancy (97).

KS was historically a rare tumour but incidence rose rapidly in

the 1980s with the emergence of HIV/AIDS, indicating the

importance of immune control of the virus in preventing

oncogenesis (95). HHV-8 is capable of marked modulation of the

host immune system, in part due to the production of at least 10

genes with homology to human genes affecting immune function

including IL-6, IL-10, TNF-alpha, CCL1, CCL2 and CCL3 (98, 99).

Replication and transcription activator (RTA) protein down-
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regulates TLR signalling and viral interferon regulatory factors

(vIRFs) block interferon signalling, reducing the innate response

to the virus. vIL-6 acts via JAK to stimulate STAT3 and triggers a

positive feedback loop generating endogenous IL-6 (99). As

discussed, IL-6 is associated with MDSC generation and CCL2

with the recruitment of MDSC (100) (101).

There are relatively few studies that have looked at the immune

environment in HHV-8-related tumours. In a mouse model vFLIP

induced cytokine production leads to the expansion of myeloid cells

with a PMN-MDSC phenotype (102). The TME in KS includes M2

macrophages, MDSCs and lymphocytes with high-level PD-L1

expression (103). In nodular KS, like in MCC, CD33+ PD-L1

positive cells have a peritumoral distribution and may function to

protect the tumour from T lymphocyte infiltration (103). This study

used CD33 as an MDSC marker making further phenotyping of the

cells impossible and would not identify PMN-MDSC which do not

act through PD-1L. Other groups have identified the PD1+ cells as

being CD14+, therefore would this include monocytes and

macrophages (104). In addition, HHV-8 can infect monocytes

and modulate their function by upregulating PD-1 and increasing

the production of a wide range of cytokines including IL-6, GM-

CSF, IL-10 and IL-1beta (105). This may provide a mechanism by

which HHV-8 infection of myeloid cells could trigger emergency

myelopoiesis and MDSC generation.

The benefits of restoring the immune response to HHV-8 are

clear; in AIDS-related KS, treating HIV with antiretroviral therapy

leads to a response in 50%, although in around 10% there is a flare

of disease (106). In those not responding to antiretrovirals, the

standard treatment has been chemotherapy. However, there is

growing evidence for immune modulation with imid drugs or

PD-1 checkpoint inhibition (107). However, while HHV-8 can

clearly cause conditions likely to lead to MDSC production, there

is insufficient evidence of how this may impact the antiviral

response or the effect of checkpoint blockade.
Human papilloma virus (HPV)

Human papilomaviridae (HPV) are a family of small non-

enveloped double-stranded DNA viruses composed of over 450

distinct types that replicate in keratinocytes of squamous epithelia

of either the cutaneous or mucosal surfaces. Most HPV infections

are asymptomatic or cause self-limiting benign diseases, such as

warts. However, a subset of HPV types, termed ‘high risk’ are the

causative agents of 1/3 of all virally induced cancers, the most

common of which are anogenital cancers and oropharyngeal cancer

(108). All HPV types have a similar genome divided into the early

open reading frames (ORFs); E1, E2, E4, E5, E6, E7, E8, (E5 and E8

are not present in all HPV types) and the late genes L2 and L2. The

core genes, E1 and E2 are required for viral replication and the L1

and L2 are required for capsid formation. The accessory genes (E4-

7) facilitate the different stages of the vegetative virus life cycle,

mainly by altering the host cell environment to enable viral

replication but also perturbing the host anti-viral defense

mechanisms (109) (108). In cervical cancer, there is a prolonged

progression through increasing grades of intraepithelial neoplasia
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(CIN) through to invasive cancer (ICC) during which immune

control is gradually lost.

The principal mechanism by which HPV evades the immune

system is by taking advantage of the complex renewal process in

squamous epithelial tissues. Infected basal epithelial cells initially

amplify and maintain the viral episomal genome at approximately

50 – 100 copies per cell where viral DNA replication occurs

synchronously with the host DNA replication. As infected cells

move from the basal lamina, the viral accessory proteins act in

concert to delay differentiation by promoting cell cycle re-entry and

proliferation. Viral DNA replication is induced by virus-mediated

de-regulation of host cell control of the cell cycle. Ultimately,

keratinocyte differentiation occurs with the production of the late

structural proteins, production of virus particles and the sloughing

off of the virus-laden squames (110). Limiting high expression levels

of the viral proteins to the uppermost differentiated keratinocytes

ensures the least exposure to the host immune pathways, reduces

inflammation and delays the generation of an effective immune

response, although this mechanism breaks down in CIN and ICC

(110) . In addi t ion , the HPV prote ins exhib i t some

immunomodulatory functions; E5 prevents effective antigen

processing and E7 downregulates class I MHC and STAT1

preventing immune signalling (111). Indeed, the majority of those

infected with HPV will clear the virus, which is associated with a

CD4 and CD8 response (112). However, the risk of malignancy is

increased with underlying immunosuppression (113). Amongst

patients with HPV16+ ICC half have no CD4+ response to E2 or

E6 with the other half having an impaired response despite having a

normal response to other recall antigens (114). In contrast, strong

IFN-g and IL-5 responses are seen in patients who have cleared

HPV16 without developing malignancy. Prophylactic HPV

vaccination leads to a strong humeral immune response against

L1, which is highly effective in preventing infection and can also

reduce the relapse rate following surgical removal of CIN, but is

ineffective in treating advanced disease (112, 115)

There has been significant research interest in the TME in CIN

and ICC, in which multiple regulatory cells including TAMs, Tregs

as well as MDSCs may play a deleterious role and help explain why

some patients do not mount an immune response to the virus (116).

The TME in ICC is enriched with cells expressing TGF-b and IL10

with lower expression of IL2 compared to cervicitis and CIN (117).

The ratio of Treg to CD4+ and CD8+ cells is higher in advanced

disease with very few regulatory cells in cervicitis (117). Infiltration

with CD163+ TAMs is associated with advanced-stage ICC and

increases with the progression of CIN (118). Total MDSCs are

expanded in the blood of patients with ICC compared to healthy

controls and increase with advanced stage (119). MDSCs are also

found in tumour tissue in ICC and function ex vivo to inhibit T cell

proliferation and cytokine production (119). In a cohort of 22

patients with ICC MDSC numbers in both blood and tissue were

associated with poorer progression free survival, although given the

association with advanced stage a more sophisticated multivariate

analysis with greater numbers would give additional evidence of a

causal relationship (119). PMN-MDSCs appear to be the

predominant population found in the blood of patients with ICC

compared to those with benign cervical lesions and secrete iNOS,
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IDO and arginase-1 (120). Based on RNA-seq data from tumour

tissue in 306 patients there was an association between high MDSC

infiltration and overall survival, although again this was not a

multivariate analysis (120). A further study found PMN-MDSC

numbers increased with disease stage in ICC and where negatively

corelated with CD8+ cells in tumour tissues (121). The role of M-

MDSCs is less clear, comparing all ICC patients to those with

benign lesions appears to show no increase in numbers but when

ICC are sorted by disease stage M-MDSC numbers appear to

increase in metastatic ICC but not early or locally advanced

tumours (57, 120). In CIN there is a strong negative correlation

between increased neutrophil and reduced T cell infiltration which

is not seen in cervicitis (122). This indicates that the

microenvironment is different in CIN compared to the inflamed

cervical mucosa.

MDSC production and activation is likely to be driven by

cytokine production. ICC cells secrete cytokines associated with

myeloid activation and differentiation including G-CSF, IL-6, IL-10

and TGF-beta (122) (122). Plasma G-CSF concentration is

associated with increased numbers of MDSCs in the blood in

CIN and ICC (122). A large cohort which only looked at

leucocytosis, rather than more detailed immunophenotyping,

showed this was associated with a worse prognosis and correlated

with immunoreactivity for G-CSF in the tumour tissue (123). G-

CSF production can be detected in around 85% of tumour biopsies

and is associated with a poorer response to both radiotherapy and

cisplatin chemotherapy (124, 125). TGF-b signalling is increased in

HPV+ tumours compared to HPV- across a range of cancer types

and is associated with an inflamed TME (126). IL-10 is upregulated

in high-risk cervical lesions, although upregulation in early lesions

does not predict which patients progress (127). Reduced CCL2

production in ICC is associated with increased overall survival and a

lower infiltrate with immunosuppressive myeloid cells, although

this study identified TAMs and did not stain for MDSCs (128).

HPV-E6/E7 can induce STAT-3 production in transformed

keratinocytes which leads to IL-6 production. This generates a

positive feedback loop by inducing STAT3 activation in

monocytes which leads to further myeloid accumulation (113).

MDSCs from the blood and tumour tissues of patients with ICC

can inhibit T cell cytokine secretion and proliferation (119). When

neutrophils are cultured with HPV+ ICC cell lines they become

activated and express IL-6, IL-8 and CD62L. When T cells are

cultured with SiHa spheroids, a HPV16+ cell line, they proliferate,

secrete cytokines and eliminate tumour cells. However, when

neutrophils are co-cultured at a 1:1 ratio with T cells they inhibit

T cell function (122). This provides strong evidence that

neutrophils, activated by tumour tissue to an MDSC phenotype,

can inhibit anti-tumour T cell responses. MDSCs can also act via

other mechanisms. PGE2 can enhance the stemness of cervical

cancer cells (129). MDSCs in ICC also express B cell activating

factor and can induce differentiation of IL-10 producing B

regulatory cells. These can act then via IL-10 and STAT3 to

create a positive feedback loop generating further MDSCs (120)

There is substantial interest in immunotherapy for HPV

malignancies including checkpoint blockade and the development

of therapeutic vaccines (130). PD-1 blockade shows benefit in
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treating ICC and HPV positive, as well as negative, head and

neck cancers, however, overall response rates are low (131, 132).

Response to therapeutic vaccination is less strong in advanced

disease, potentially illustrating how the TME can inhibit the

immune response (130). In a murine xenograft model, an E7-

based DNA vaccine can produce a CD8+ effector memory response,

however, this is insufficient to eliminate the tumour. When

combined with MDSC reduction using an anti-GR-1 antibody

complete responses were seen (133). Combining therapeutic

vaccination with all trans-retinoic acid (ATRA) is also successful

in a murine model in reducing MDSC number and increasing

immunogenicity (134). ATRA alone can decrease MDSC numbers

and increase CD8+ T cells in BALB/C mice with U14 cervical

tumours and can enhance the efficacy of PD-1 checkpoint blockade

(57). In an immunocompetent murine model of cervical cancer,

MDSCs accumulate. Again, therapeutic E7 vaccination can induce

antigen-specific T cells but does not lead to tumour regression, an

effect not enhanced with checkpoint blockade. Ex vivo MDSCs but

not Tregs could inhibit T cell and antigen-presenting cell function

(135). This provides strong evidence of both the effect of MDSCs in

HPV-positive tumours and illustrates the difficulties they can cause

with immunotherapy. Immunotherapy to eliminate suppressors

may also enhance the effect of standard cancer therapy. In a

murine model, using cyclophosphamide to deplete Tregs and an

iNOS inhibitor to reduce MDSC function alongside radiotherapy

had a beneficial effect. This included a greater response to treatment

as well as a significant increase in antigen specific CD8+ cells in the

tumour (136).

Overall, the evidence for the role of MDSCs in HPV tumours is

strong. In early-stage HPV infection virus can hide from the

immune system due to its location combined with suppression of

TLR and MHC expression. As CIN develops a cytokine milieu leads

to the generation and invasion of regulatory cells including MDSCs.

Most patients can clear the virus, presumably because the cytotoxic

response can overpower immunosuppressive. However, in those

with cancers, the immunosuppressive response predominates.

There is still the need however for further data. There is no

human data on the role of the MDSCs in predicting response to

immunotherapy in HPV+ cancers, unlike what is seen in murine

models. There is also insufficient data showing a clear correlation

between MDSC expansion and disease progression, rather than an

association with advanced disease.
Hepatitis B virus (HBV)

Hepatitis B virus (HBV) is a member of Hepadnaviridae with a

partially double-stranded DNA genome which is transmitted by

infected bodily fluids and replicates via reverse transcription (137).

In low-prevalence countries infection is usually sexually transmitted

in adulthood, triggering a strong immune response. This leads to

acute hepatitis followed by viral clearance in 99% of patients. In

high-prevalence areas infection is perinatal, this leads to a

tolerogenic immune response with viral persistence in 90% (138).

Immune response to HBV in chronic infection is complex (139).

Initially, the immune response is tolerogenic (IT) with high viral
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loads and low levels of CD8 T cell activation. Over decades the CD8

response becomes stronger leading to chronic hepatitis (CHB) with

intermittent flairs of acute hepatitis (ACLF) and liver damage. Some

patients clear most infected hepatocytes and seroconvert to produce

anti-HBV E antigen (HBeAg) with low levels of HBV DNA and

slowing of the progression of liver injury. In around 1% of anti-

HBeAg positive patients per year, the viral DNA becomes

undetectable, indicating a functional cure. The rest develop

cirrhosis or hepatocellular carcinoma (HCC) many years after the

initial infection (140).

HBV can directly lead to oncogenesis through random

integrations into the human genome after reverse transcription,

this increases genetic instability and prolongs viral gene expression

(140). The HBV X antigen (HBx) can interact with transcription

factors such as CREB promoting transformation (141, 142) and

epigenetically silence tumour suppressors such as RUNX3, p16 and

p21 through promoter hypermethylation (143, 144). Indirectly,

HBV-associated chronic inflammation leads to oxidative stress,

ROS production and altered cellular metabolism promoting DNA

damage and leading to oncogenesis (145, 146).

The immune response to HBV includes innate immune IFN

production, NK and T cells acting in both cytolytic and non-

cytolytic manners against infected hepatocytes as well as the

production of neutralizing antibodies by plasma cells (147). The

tolerogenic state seen in chronic infection is characterized by

regulatory and exhausted cells being enriched in the liver

microenvironment including FOXP3+ T cells, PD-1/PD-L1 axis

activation and the production of IL-10 and TGF-b with a weak CTL

response to HBV antigens (148). However, the mechanisms behind

this dysfunctional response are not fully understood. MDSCs are

significantly expanded in CHB patients (60, 149–154), indicating a

potential role in preventing viral clearance.

The relative importance of PMN- and M-MDSCs in CHB is

debated, with divergent findings in different studies. Both the

analytical strategies and dynamics during the progression of CHB

might contribute to these discrepancies. M-MDSCs have been

reported as being expanded in Indian and Chinese cohorts (155)

(154, 156), whereas in a European cohort PMN-MDSCs were

expanded more significantly (60). In paediatric, but not adult,

CHB patients M-MDSC numbers correlated inversely with CD8

responses to HBsAg (157). These cells could home to the thymus

and when transferred to mice could selectively inhibit HBsAg

targeting CTLs. In ACLF M-MDSC expansion appears to

correlate with markers of liver damage but not viral replication

(153). Whereas in chronic infection DNA load and HBeAg

positivity appears to be more significant (151, 154, 156). The

relationship between MDSCs and liver damage is not clear with

some groups showing a positive correlation with increasing

hepatitis and others a negative implying a protective role (151,

154). MDSC phenotypes and function appear to dynamically

change over time in different stages of HBV infection (60).

Profound suppressive activities, including expression of Arginase,

iNOS and PD-L1 are seen in active CHB, but much weaker

suppressive functions, expressing only arginase, in the IT state

(152). PMN-MDSCs expand transiently in acute HBV and are

increased most in disease states with high viral replication but low
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levels of immune-mediated inflammation (60). This emphasizes

that PMN-MDSCs may prevent immunopathology in CHB, but at

the expense of poor viral control.

There is much less data on the role of MDSCs following the

development of HCC. Elevated LOX-1+CD15+ PMN-MDSCs in

both circulation and tumour tissues were correlated with poor

clinical outcomes in HCC, but not with HBsAg expression (158).

Expansion of M-MDSCs in HCC has also been associated with a

poor prognosis after surgical or chemotherapeutic treatments (159–

161). Only a single study has described increasing numbers of both

PMN-MDSCs and M-MDSC on the progression of CHB to HCC

with a positive correlation with increased liver damage (149).

Interestingly, this study did not find any association of MDSC

numbers with other clinical features or OS, which may be a function

of relatively low patient numbers. More data are needed, with

prospective follow-up, to examine if MDSC numbers in CHB are

a risk factor for future HCC development.

MDSCs have been reported to act via several mechanisms in

CHB infection. M-MDSCs can act via PD-1/PD-L1 and IL-10 to

suppress HBsAg-specific cytotoxic function and proliferation in

CD8+ T cells (154). PMN-MDSC from CHB patients inhibits T cell

function in an arginase-dependent manner in-vitro. Arginase

expressing MDSC can be identified in the blood and liver of CHB

patients (60). In-vitro treatment of PBMC with HBeAg induces IDO

expressing M-MDSCs which inhibit CD4+ and CD8+ T cell

proliferation and IFN-g production (156) Tregs can be induced

by MDSCs in HBV infection in an IL-10 and TGF-b dependent

process (155). In a mouse model, chemokine receptor CCR9 in M-

MDSCs is induced by HBsAg via ERK/IL-6 pathway, and CCR9-

CCL25 interaction mediates Gr1+Ly6ChighLy6G- M-MDSCs

homing to the thymus, where HBsAg-specific CD8+CD4- T cells

are killed by NOX1-expressing M-MDSCs (162). Another HBV-

specific mechanism involves impaired CCR5-CCL5 interaction by

TGF-b released from MDSCs, which affects the migration of HBV-

specific T cells to the liver (152, 163, 164). This effect is seen during

active hepatitis, but not during IT or after viral clearance (152).

Hepatitis antigens appear to be capable of directly inducing

MDSC production. When PBMC are treated with HBeAg in-vitro

there is induction of IL-1b, IL6 and IL-10 along with the

accumulation of IDO producing MDSCs. Blocking IL-6 or IL-1b
with neutralizing antibodies prevents MDSC generation (156).

HBsAg can induce arginase and NOX-1 producing MDSC

differentiation from mature monocytes via an ERK/IL-6/STAT-3

dependent process (165). It is interesting that different viral proteins

can produce MDSC with altered function and illustrates the

potential complexity of the immune microenvironment shaped by

HBV infection. HBx and HBcAG can induce hepatocytes to secrete

IL-6 which is likely to be capable of inducing MDSCs in a paracrine

manner (166, 167). In a murine model of CHB, gdT cells can induce

CD11b+Gr1+ M-MDSCs in mice through an IL-17-dependent

manner, which then inhibit IFN-g production by hepatic CD8+ T

cells via ARG-I expression (168).

Therapy for HBV consists of either nucleoside analogue

antiviral drugs such as entecavir, achieving viral clearance in 67%

(169), or peg-IFN-a-a2 with a clearance rate of 25% (170). Even

after viral clearance, Tenofovir does not normalize MDSC or Tregs
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numbers and HBV-specific CTL responses remain impaired (152,

155). This indicates that viral clearance is not necessarily correlated

with recovered immune responses and may allow viral rebound at

the end of treatment. This creates a rationale for combing

immunotherapy with direct antivirals (171). Knocking down HBx

expression with a siRNA can reduce MDSC frequency, IL-10 and

ROS level in HBV-infected mice (172). Activating TLR-8 with GS-

9688, a specific agonist decreases MDSC and Treg numbers and

promotes a cellular antiviral response using ex vivo cells from CHB

patients. This can reduce viral loads in a woodchuck HBV

model (173). However, the residual MDSCs released more

immunosuppressive gelactin-9 and PD-L1 after treatment (173).

While IFN-a has been widely used in CHB treatment, its

immunological effects are complex and may promote MDSC

production (174). IFN-a can increase Tregs and MDSCs numbers

with increased IL-10 and PD-1L expression, while the roles of Tregs

and MDSCs promote tolerance in acute hepatitis B in a murine

model (175). ATRA can reduce HBsAg-induced M-MDSC function

and restore T cell function in a murine CHB model (165). Icaritin, a

small molecule derived from horny goat weed, can prohibit the

generation of MDSCs by disrupting STAT3 and AKT signalling.

This can then modulate cytokine secretion in HCC patients (176).

Again, in a murine model, depleting MDSCs with an anti-GR1

antibody or inhibiting their function with an arginase inhibitor can

enhance CTL function and promote viral clearance (168).

Overall, there is convincing evidence for a functional role of

MDSCs in HBV infection but the significance of this cell population

in preventing viral clearance or allowing the development of HCC is

unclear. Investigating MDSCs in HBV is difficult given the different

stages of infection, where these cells may have different functional

roles. Prospective trials where the same patients have measurements

of MDSC phenotype and number in different phases of their disease

using a standardized methodology may help answer these

questions. This may also help identify if targeting MDSCs would

be an effective method to help with viral clearance and prevent the

development of HCC.
Hepatitis C virus (HCV)

The Hepatitis C virus (HCV) belongs to Flaviviridae and has a

single-stranded RNA genome (177). HCV is transmitted by infected

blood exposure, which can be through transfusion, IV drug use or

vertical transmission, and leads to chronic hepatitis (CHC) in 70-

80% of those infected (178). 10-20% of those with CHC develop

cirrhosis over 20-30 years and HCV is the second most common

cause of HCC after HBV (179). There is no effective vaccine to

prevent HCV infection, but treatment has been revolutionised over

the last 10 years with direct-acting antivirals (DAA), which can cure

90% of patients (180, 181). Unlike HBV, HCV-associated HCC

always develops occurs in the context of cirrhosis and HCV does

not appear capable of direct transformation of hepatocytes (140).

Instead, cytotoxicity mediated by type I IFN, NK cells and CD8+

effector T cells generates an inflammation-necrosis-regeneration

cycle with ROS production, triggering lipid peroxidation, DNA

damage and mitochondrial dysfunction (182, 183). Additionally,
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the HCV core antigen (HCVcAg) activates the Ras/MAPK and

PI3K/Akt pathways which can promote transformation (184, 185).

HCVcAg also plays a role in metabolic reprogramming with

enhanced lipogenesis and impaired lipid degradation, this

promotes steatosis and the development of cirrhosis (186).

During acute HCV infection, there is a robust IFN response

triggered by HCV RNA and antigens through RIG-I and TLRs (187,

188). Viral clearance depends on a strong cellular and humoral

adaptive immune response followed by the development of memory

(189). However, in most patients a combination of immune

exhaustion, regulatory cell expansion and viral escape mutations

causes this process to fail (189).

MDSCmay act as part of the expanded regulatory population in

CHC (190–201). M-MDSC are the population most frequently

reported as being elevated (190–195), with a few groups also

observing PMN-MDSC expansion (196–200). Most studies have

not attempted to study PMN-MDSCs, and others have carried out

flow cytometry on frozen cells, which adversely affects PMN-MDSC

enumeration as discussed earlier (190). It is unclear how much this

variation is explained by biological variation in heterogenous

patient populations or is a result of methodological differences

The clinical significance of MDSCs in CHC has also been

explored. Many research groups identified positive correlations

between MDSC frequencies and HCV genotypes (196), HCV

RNA load (191, 192, 195, 196, 200, 201) or liver damage

parameters including ALT and AST level (191, 195, 201), and

negative correlation with CD4+ or CD8+ T cell counts and

functions (191, 201). Although not all studies have found these

associations (194, 197). It may be that MDSC populations change

dynamically in response to viral factors, inflammation,

development of cirrhosis and treatment as described in HBV

(152). Longitudinal analysis of MDSC populations in different

phases of disease and treatment may help better describe the

significance of this population The role of HCV in producing

MDSCs in HCC is another key question. One study compared

PMN-MDSC numbers in HCC patients with and without HCV

infection in an American patient cohort (202). MDSCs and Tregs

were increased in HCC patients compared to healthy volunteers but

there was no difference between virus positive and negative cases.

This may relate to the presence of multiple factors capable of

generating MDSCs being present in established HCC. It would be

interesting to see similar work in other populations as well as to

assess if this is also true for M-MDSCs.

PMBCs which have been exposed to HCV can develop an M-

MDSC phenotype and reduce NK IFN production through arginase

depletion which then suppresses mTOR signalling (203). Exposing

CD33+ cells to HCVcAg or infected hepatocytes generates M-

MDSCs, which upregulate ROS but not ARG-1 or iNOS through

a p47-dependent process and then inhibit CD4 and CD8 T cells

(204). HCV-induced M-MDSCs express high levels of pSTAT3 and

Il-10 and can induce Treg function (194) MDSCs isolated from

CHC patients can increase the ratio of follicular regulatory to

follicular helper T cells in a cell contact-dependent process (205).

This may then inhibit T cell-dependent B cell function.

PMN-MDSCs can be generated from PBMCs by culturing with

HCVcAg in a process reliant on STAT3 which is activated by ERK
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1/2 (201), However, M-MDSC generation is more reliant on the

TLR2/PI3K/AKT/STAT3 axis, resulting in upregulated IDO, PD-L1

and IL-10 (206, 207). This suggests that different mechanisms are

involved in M-MDSCs and PMN-MDSCs generation, although

both are induced by HCVcAg. Interestingly, exosomes containing

viral RNA generated by HCV-infected hepatocytes can also induce

the generation of M-MDSCs (198, 199, 205). This process relies on

modulating HOTAIRM1, HOXA and miR124 and leads to an M-

MDSC phenotype with STAT3 activation and production of iNOS

and ARG-1. An attempt to develop an HCV vaccine using mice

mesenchymal stem cells transfected to express non-structural HCV

proteins (NS3~NS5B) triggers strong anti-HCV immunity without

expanding MDSC (208). Suggesting that this may be a successful

approach for vaccine development.

During treatment with IFN and ribavirin, MDSC numbers

decrease in proportion to HCV RNA load. This occurs as early as

4 weeks into therapy and is accompanied by increases in T cell

function (191, 196, 197). After IFN therapy M-MDSC numbers rise

with higher levels seen in non-responders versus responders (209).

Although, the significance of this is less relevant as this therapy has

been superseded by direct activating antivirals. Results with DAA

have been mixed. A study looking at a European population did not

detect significantly reduced M-MDSCs until 48 weeks post-therapy,

along with scant recovery of T cell functions (193). However, in a

Chinese cohort, there was a rapid reduction in M-MDSCs along with

restoration of CD8+ T cells and NK cells with DAA therapy at as early

as 12 weeks. The authors proposed the recovery of immune cells was

associated with efficient viral clearance achieved by DAA therapy

(195). In another Chinese cohort, PMN MDSCs but not M-MDSCs

were elevated after DAA with levels higher in those not achieving a

sustained antiviral response (201). These studies used different flow

strategies, were carried out in different populations, may have

involved infections with different strains of HCV and there was no

detailed discussion in either paper of the degree of underlying liver

damage in their respective cohorts. It may be that immune recovery

in HCV requires both viral clearance and resolution of inflammation.

Overall, our current understanding of MDSCs in HCV infection,

including their presence, clinical significance, immunosuppressive

properties and generation are limited. Although there is data

demonstrating the association between MDSC expansion and

disease parameters, some results are conflicting. To build on this it

will be necessary to use standardizedMDSC detection techniques and

correlate with clinical and virological features. There is also a need for

further data on the link betweenMDSCs and HCC in CHC. This may

better help understand the propensity of HCV to cause chronic

infection. Furthermore, understanding the ability of HCV to cause

sustained immune changes may help guide how antiviral and

immunotherapy can be combined.
Epstein Barr virus (EBV)

EBV is a g-1 herpesvirus which infects 90-95% of individuals

worldwide, establishing a lifelong latent infection. Primary infection

is classically responsible for infectious mononucleosis, although

infection in childhood is usually asymptomatic. EBV has a natural
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tropism for B cells but can also infect T cells and epithelial cells and

is causally linked to a range of cancers including lymphoma,

nasopharyngeal cancer (NPC) and gastric cancer (210).

After primary B cell infection, EBV initiates the expression of a

unique set of growth transforming genes including the virus-encoded

nuclear antigens EBNA 1, 2, 3A, 3B, 3C, and –LP, the latent

membrane proteins LMPs 1 and 2A/2B, the non-coding EBER

RNAs and two blocks of microRNAs (BHRF1- and BART-miRs).

This growth transforming Latency III is highly immunogenic and

vulnerable to immunosurveillance, therefore to establish lifelong

persistence, the virus adopts a restricted Latency 0 expressing only

the EBERs and BART-miRs (210). However, this reflects only two of

several alternative forms of latency with increasingly restricted

transcriptional programmes compared to Latency III. These

alternate forms of latency, termed Latency II and I are observed

during the establishment of Latency 0, however all forms of latency

have been observed in the EBV-associated malignancies and are

dependent upon the cell type infected and the class of tumour. Most

EBV-related Hodgkin (HL) and non-Hodgkin lymphomas (NHL) as

well as epithelial malignancies are latency II, (EBNA-1, LMP-1-2,

EBER, BART-miRs), which rely on both EBV genes and somatic

mutations to drive tumour growth (211). Importantly latency III

tumours generally only occur in immunosuppressed states such as

post-transplant lymphoproliferative disease (PTLD).

In healthy carriers, CD8+ responses to EBNA-3s are the

dominant, with CD8+ responses to EBNA-1, EBNA-2 and LMP-2

subdominant and rare responses to LMP-1 (212). While latency I

and II tumours are more common in immunosuppression, they also

occur in those with intact immune systems where they virus

employs a plethora of immune modulatory mechanisms. Such

mechanisms include EBER-mediated induction of IL-10 in B cells

(213); exosomes produced by NPC inducing Treg migration to the

TME via CCL20 (214); inhibition of interferon signalling and

reduction of class II MHC expression by BZLF1 and BRLF1 (215,

216), amongst many others. In addition, there is increasing evidence

of a role for MDSC in driving immune evasion.

Both PMN-MDSCs and M-MDSCs have been identified in

patients with EBV-related tumours. MDSCs, predominantly of a

monocytic phenotype, are expanded in the blood of ENKTL

patients (213). Ex vivo these cells can suppress T cell proliferation

and IFN-g production. In a multivariate analysis, high levels of

MDSCs are associated with a worse prognosis in ENKTL (213). In

chronic active EBV (CAEBV) PMN-MDSCs are expanded and

again functionally inhibit T cell responses (217). Interestingly,

while LMP-1-specific CTLs were isolated from these patients, no

anti-tumour immune response was seen. MDSCs are expanded in

NPC cancer patients and correlate with disease burden. In one

study enrolling 49 patients’ total blood and tumour MDSC levels

were associated with a worse prognosis (218). Unfortunately, this

study did not use standardised flow to identify MDSC subtypes and

did not carry out a multivariate analysis

There are multiple potential drivers of MDSC production and

differentiation. High levels of the MDSC-associated cytokines GM-

CSF, IL-1beta and IL-6 are seen in CAEBV patients with the same

cytokines produced by CAEBV cell lines (217). In NPC, MDSC

levels correlated with COX-2 production by the tumour and
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knocking down COX-2 could inhibit MDSC production in-vitro

(218). High levels of the MDSC-associated cytokines GM-CSF, IL1b
and IL-6 are seen in CAEBV patients with the same cytokines

produced by CAEBV cell lines (217). In NPC, MDSC levels

correlated with COX-2 production by the tumour and knocking

down COX-2 could inhibit MDSC production in-vitro (218). In a

murine model, MDSCs could stimulate further COX-2 expression

by the NPC cells, an effect which could be blocked by inhibiting

TGF-b or iNOS and enhanced through arginine supplementation.

LMP-1 appears capable of inducing extra-mitochondrial glycolysis

through a GLUT1-dependent process. In NPC tissues there is a

strong correlation between LMP1 and GLUT1 with numbers of

CD33+ MDSC. GLUT1 glycolysis activates the phosphorylation of

NF-kB, induces COX-2 signalling pathways and activates the

NLRp3 inflammasome leading to the production of IL-1b, IL-6
and GM-CSF (219). EBV may be able to directly modulate myeloid

cells. EBV can infect monocyte-derived macrophages in-vitro and

increases the production of IL-6 and TNF-a which then induces

IDO (220). However, it should be noted that PMN-MDSCs and M-

MDSCs are expanded in HL and NHL regardless of aetiology and

are associated with a worse prognosis (221, 222). Therefore, the

mechanism for MDSC generation cannot purely be a direct effect of

the virus. Unfortunately, there have been no comparisons between

EBV-positive and negative lymphoma or NPC which have looked at

differences in MDSC populations or drivers for their differentiation.

There is the potential for crosstalk between cancer-causing viral

infections which can drive MDSC generation. More NPC patients

with CHB have EBV-positive tumours than those without this

condition. CHB is associated with increased LOX1+ MDSCs and

higher levels of EBV DNA (219). This implies that hepatitis B-

induced MDSCs may inhibit the immune response to EBV, although

further evidence would be needed to demonstrate this conclusively.

There is substantial interest in using EBV-targeted CTLs to treat

EBV-positive tumours (223). However, response rates in advanced

tumours other than PTLDmay be limited (224). A clinical trial in NPC

gave chemotherapy followed by multiple infusions of CTLs. EBV viral

load and a high monocyte-to-lymphocyte ratio were associated with

poor survival (225). The patients with the best responses showed a CD8

+ cytotoxic response which was not seen in poor responders who had

an expansion of M-MDSCs. Unfortunately, flow cytometry was

performed retrospectively on frozen samples precluding analysis of

PMN-MDSCs. Unfortunately, no other studies have examinedMDSCs

in the context of CTL therapy so the evidence for this is limited.

Overall, there is good evidence that MDSCs play a role in

inhibiting the immune response to EBV in NPC and EBV-related

T-cell lymphomas. The data for the role of EBV in modulating

MDSCs in the TME of other lymphoma subtypes is much more

limited. Answering these questions will require comparisons

between EBV-positive and negative tumours. This may help guide

the use of EBV-targeted immunotherapies.
MDSC targeted therapy

Given their association with poor prognosis in multiple cancer

types, there have been efforts to target MDSCs to improve the
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outcomes of cancer therapy. Potential strategies include depletion

of MDSC populations, inhibiting recruitment to the TME, blocking

suppressive functions, and differentiating away from a suppressive

phenotype (226). The potential approaches, along with the evidence

for them, are summarised in Table 2. However, very little of this

research has been focused in the context of virally induced cancers or

how therapy may impact the transformation of premalignant lesions.

Some chemotherapeutic agents may be able to reduce MDSC

populations. Gemcitabine (GEM) appears capable of reducing

PMN-MDSCs in patients with pancreatic cancer, although the

effect is transient and M-MDSCs are not affected (238). Although,

the evidence is mixed as GEM appears capable of enhancing the

function of M-MDSCs in a mouse breast cancer model (239). The

CD33 targeting antibody-drug conjugate gemtuzumab ozogamicin

can efficiently eliminate MDSCs, however, it may be too toxic for

easy combination with other treatments (228, 240)

In multiple cancer models including EBV-related NPC, COX

appears to be a marker for immune evasion partially through PGE2-

driven effects on myeloid cells (218, 241). COX-2 inhibition can

decrease MDSC numbers and increase the efficacy of dendritic cell-

based immunotherapy in the context of a murine model of

mesothelioma (229). PGE2 induces arginase expression in a

mouse model of lung cancer and inhibiting COX-2 can lead to a

lymphocyte-mediated anti-tumour response (242). A large meta-

analysis, across multiple tumour types, showed modest benefits

(238) in adding the selective COX-2 inhibitor celecoxib to standard

anticancer therapy with no concerning toxicity (230). Celecoxib has

been used in a phase I trial combined with radiotherapy in NPC

with encouraging outcomes and no clear toxicity, however, this trial

did not report on the effect of EBV positive versus negative tumours

or look at MDSC numbers or function (243). Overall, COX-2

inhibition is an interesting strategy given its low toxicity and data

on combination with immunotherapy in virally induced cancers

would be interesting.

As discussed earlier, ATRA can decrease the frequency of MDSCs,

improving response to checkpoint blockade or therapeutic vaccination

in murine models of cervical cancer (57, 134). One small clinical trial

showed that ATRA can decrease the frequency of MDSCs and appears

to increase T cell responses to checkpoint inhibition, although this was

in the context of melanoma. Unfortunately, this study was too small to

see if this led to improved tumour responses (231). ATRA acts by

inducing MDSC differentiation away from a suppressive phenotype

through the upregulation of glutathione synthesis (244). Other

potential therapeutic approaches include phosphodiesterase-5 (PDE-

5) inhibitors, which can reduce MDSC numbers in head and neck

cancers through the downregulation of iNOS (232). Blocking

chemokine signalling has the potential to prevent MDSC

accumulation in the tissues. However, the CCL2 targeting MAB

carlumab was unable to affect the CCL2/CCR2 axis sufficiently or

have a single agent anti-tumour effect (234). Inhibiting STAT3 is

another potential method to reduce the effect of MDSCs. The STAT3

inhibitor Napabucasin could eliminate the immunosuppressive effects

of MDSCs in a murine model and in-vitro with human M-MDSCs

(235). Although, this will require the use of highly selective inhibitors to

avoid inhibiting STAT-dependent T cell function (245). PI3K,

especially the PI3K-g isoform is highly expressed on tumour
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infiltrating myeloid cells. Pharmacological inhibition of PI3K-g can

restore sensitivity to checkpoint blockade in murine cancer models

(237). Although when targeting PI3K it is important to use specific

inhibitors at appropriate doses to prevent off target inhibition of T cell

function (246).

TargetingMDSCs appears to be an attractive therapeutic strategy.

However, while there are options available, all are at a relatively early

stage in development. The true potential in targeting MDSCs may

come from a combination with other immunotherapy options.
Discussion

There is growing evidence that MDSC expansion could help to

explain how cancer-causing viruses can evade immune detection,

trigger oncogenesis and prevent immune recognition of the resultant

tumour, although the strength of evidence for this is highly

dependent on the virus type. As illustrated in Figure 1, many

factors released from virally transformed or infected cells along

with substances directly produced by cancer-causing viruses are

linked to the pathways known to generate MDSCs. There are,
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however, several unanswered questions. How much of the

expansion in MDSCs is a direct result of the viral infection, which

may occur at an early stage in infection, or a result of cellular

transformation? For this question, comparisons of the TME

between viral and non-viral mediated types of the same tumour

may be beneficial. Is MDSC expansion a marker of advanced

malignancy or a true independent marker of poor prognosis? How

significant is the impact of MDSCs on targeted immunotherapy? This

last question is becoming more significant given the development of

therapeutic vaccines or cellular immunotherapies.

MDSCs remain challenging to study. In the blood human PMN-

MDSCs can only be reliably identified with density gradient

centrifugation followed by multicolour flow which has to be

performed on fresh specimens. In tissues, MDSC identification

requires the use of multiple different markers. There is also a need to

correlate MDSC numbers and function with responses to treatments,

particularly with novel immunotherapies. This will allow the potential

benefits ofMDSCmanipulating treatments to be ascertained. However,

doing this effectively will require the examination of larger cohorts of

patients alongside other clinical data. However, there is scope for

progress as newer highly multiplexed techniques may make the
TABLE 2 Approaches to modulate MDSC populations in cancer.

Strategy Rational Evidence Ongoing clinical trials

Gemcitabine Chemotherapeutic agent believed to have
a specific MDSC depleting effect

Mixed evidence- reductions in MDSC numbers
seen in some tumour types and not others (227)

NCT02479230- Gemcitabine with dendritic cell
vaccine in breast cancer
Drug in clinical use in multiple cancer types as
chemotherapeutic agent

Gemtuzumab
Ozogamicin

Antibody drug conjugate targeting CD33 Effective in vitro (228) No specific trials investigating MDSCs
Drug in clinical use in Acute Myeloid Leukaemia

COX-2
inhibition

Reduces PGE2 production and prevents
effect on myeloid cells

Effective in animal models in combination with
immunotherapy (229)
Improves outcomes in human cancers through
multiple potential mechanisms (230)

NCT03245489- Assessing COX-2 inhibition along
with other anti-platelet therapy in combination with
checkpoint blockade in head and neck cancer

ATRA Induces MDSC differentiation away from
suppressive phenotype

Improves responses to checkpoint blockade in a
murine model of cervical cancer (57)
Can reduce MDSC populations in combination
with checkpoint blockade in melanoma. No
evidence of improved efficacy of treatment (231).

NCT04919369-ATRA and checkpoint blockade in
lung cancer
NCT05388487- Pegylated ATRA in multiple
refractory cancers

PDE-5
inhibitors

Downregulates iNOS Modulates the TME and reduces MDSCs in head
and neck cancers (232).
No evidence of improved outcomes in patients.
Trial terminated for futility in myeloma (233)

NCT02544880- PDE5 inhibition combined with
tumour vaccine
NCT05709574- PDE5 inhibition combined with
chemotherapy in gastric cancer

CCL2
blockade

Prevents MDSC migration to tissues Carlumab, a CCL2 targeting antibody is
ineffective as a single agent in cancer (234)

No currently recruiting trials

STAT3 STAT3 signalling is important in MDSC
suppressive function

Effective in murine melanoma model in reducing
immunosuppressive effect of MDSCs (235)
Not effective in cancer outcomes in currently
reported trials which did not assess for MDSC
effects (236)

No currently recruiting trials

PI3K PI3K-g is highly expressed in tumour
infiltrating myeloid cells and promotes
migration and immunosuppressive
function

Inhibits MDSC function in vitro and synergises
with checkpoint blockade in murine models (237)

NCT03673787- Ipatasertib in combination with
checkpoint blockade in advanced solid tumours
NCT03961698- Eganelisib with checkpoint blockade
and chemotherapy in renal and breast cancer
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identification of MDSCs alongside the study of the tumour and other

cells in the TME easier. Hopefully, this approach will help conclusively

determine the role of MDSCs in virally induced cancers.
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