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Abstract—Adjusting operator support in human-machine sys-
tems is a promising way of combining operator involvement
with high overall system performance. Adaptive automation aims
to achieve this goal without burdening the operator with the
task of selecting and setting the desired amount of support. In
this work, two novel adaptive automations are presented. We
use the performance measure of ”robot health” to formulate
the optimal control problem of maximizing the robot health
of a human-robot system through the adaption of operator
support to develop two model predictive controllers. The first
one considers discrete levels of operator support, or levels of
automation, the second one uses the continuous conception of the
degree of automation. We report on a proof-of-concept simulation
study evaluating the proposed model predictive controllers in
a collaborative teleoperation of a mobile robot; the results
demonstrate the ability of both model predictive controllers
to successfully arbitrate control between the operator and the
robot’s controller to maximize robot health.

Index Terms—Adaptive automation, Variable autonomy,
Shared control, Cooperation, Degree of automation, Levels of
autonomy, Levels of automation, Mixed initiative control

I. INTRODUCTION

The application of robots becomes increasingly important
in a wide variety of fields such as industrial manufacturing
[1], search and rescue operations [2], [3], healthcare [4] and
planetary exploration [5]. Most of these robots are either
statically teleoperated, partially automated or even fully au-
tomated; however, systems with scalable autonomy that adjust
the type of interaction and amount of operator support during
runtime will be valuable in future applications [3], [6]: While
the ability to adjust operator support flexibilizes the application
of such systems, the task of choosing and setting the optimal
amount of support causes additional workload [7].

To relieve the operator form this workload, systems that
are able to automate this task have been developed: Adaptive
Automation systems (AAS) can automatically adjust operator

This work was supported by NCNR under Grants EP/R02572X/1,
EP/P01366X/1, and EP/P017487/1, and by ReLiB under Grant FIRG005.

support using measures of task difficulty [8], task-load [7],
workload and skill-level [9], competence [10] or performance
[11] to adjust operator support. While most of the previous
work focuses on switching between discrete levels of automa-
tion (LOA) which is also the prevalent approach in system
analysis [12], literature calling for a continuous view on LOA
receives increasing attention [13]. In this work, we use the
term degree of automation (DOA) to refer to this continuous
conception of automation e.g. implemented as shared control
in human-machine systems.

One of the most crucial parts of AAS are the measures of
the considered decision variables. In this work, we focus on
performance measures in human-robot systems (HRS); here,
previous work either focused on offline metrics which are
inapplicable to the online adjustment of LOA or DOA or on
individual application-specific online performance indicators
[14]–[16]. To address this issue, Ramesh et al. [16] recently
introduced the framework of robot vitals and robot health
to aggregate information about various runtime performance
degrading effects into the online robot health performance
measure. This combination of information is more generally
applicable than previous measures and has been shown to be
both an efficient and robust online estimate of HRS perfor-
mance [16]. Hence, the question arises whether robot health
can be used to adjust the amount of LOA or DOA online.
To this end, this paper aims to develop and evaluate systems
that optimize robot health and, thus, runtime performance by
adjusting LOA or DOA in a HRS.

In [17], we already present two AAS to optimize robot
health by adjusting the LOA or DOA of a HRS. Both perform a
parameter optimization to determine the most suitable LOA or
DOA based on a prediction model for robot health. While the
parameter optimization already shows improvements over the
fully manual or automated operation, it is limited to optimizing
only one LOA or DOA for a considered time horizon. If the
environment changes drastically during the time horizon, thus



requiring an adjustment of LOA or DOA tailored to each
of the environmental conditions, the parameter optimization
will lead to a suboptimal LOA or DOA due to being limited
to the optimization of only one parameter. In contrast, we
treat the problem of optimizing robot health by adjusting the
LOA or DOA as an optimal control problem considering a
sequence of LOAs or DOAs in this work instead. Especially
during environmental changes this approach leads to a more
nuanced and precise adjustment of LOA or DOA, thus leading
to improved performance.

II. THE ROBOT HEALTH FRAMEWORK

In this work, we use a slight variation of the definition
of robot health described in [16]. Information Entropy was
initially used to emphasise the surprise of observing events
responsible for performance degradation. However, this causes
a very dynamic value trend of robot health. Given the proba-
bility of suffering of the robot Psuf (t), robot health H (t) is
instead defined as

H (t) =

∫ t

t−Ti

(1− Psuf (τ)) dτ (1)

in this work with Ti denoting the time span considered for the
computation of H . The probability of suffering is computed
from individual probabilities of suffering given certain robot
vitals vi (t):

Psuf (t) =
1

Nv

Nv∑
i=1

Psuf|vi (t) (2)

Here, Nv is the number of considered robot vitals. The robot
vitals capture individual performance degrading effects such
as laser scanner noise, impaired movement of the robot or
localization errors. Please refer to [16] for further information
on the considered vitals and the modeling of Psuf|vi (t). All in
all, robot health aggregates multiple features over a time span
to give a robust measure of current robot performance.

As the definition of robot health (1) features an integral, the
current health cannot be affected by taking action at the current
point of time but rather needs to be precisely steered over the
considered time span instead. This is an important implication
for the design of systems striving to optimize robot health as
they cannot only react to the current health status in a feedback
control fashion but rather need to predict which actions would
lead to which health in the future and choose actions based on
this prediction. To this end, we formulate a model predictive
control (MPC) problem in the following section to apply the
widely used MPC [18] concept to reach the goal of this work.

III. PROBLEM STATEMENT

Fig. 1 depicts the HRS considered in this work: The inputs
of the human operator uH and the robot control algorithm uA

are arbitrated based on the current LOA or DOA to form a
common input u = Γ (uH,uA,α) before being applied to
the robot. The robot states x are observed by the operator,
the robot controller and the MPC; while the operator and
the robot controller use this information to generate their

inputs, the MPC uses the state information alongside model
information about the HRS and robot health H to compute the
LOA or DOA sequence α∗(t) that optimizes H over a finite
time horizon with the length TH. Due to the receding horizon
principle of model predictive control, only the first LOA or
DOA of the sequence α (t0) computed for the current time
step t0 is applied to the arbitration module. The remaining
part of the sequence (for t ∈ [t0 + Tc, TH]) is updated in
the following MPC cycles with a cycle time of Tc before
being applied to the system. Following the majority of MPC
literature, we consider the MPC’s input to the system α to
be constant during a cycle t ∈ [t0, t0 + Tc]. Throughout this
paper we mostly omit time-dependencies for better readability;
however, we do explicitly show them if they are significant for
the expression.

As the goal of the adjustment of LOA or DOA is to optimize
robot health over TH, the objective function can be formulated
as follows:

α∗(t) = argmax
α(t)

H(t0 + TH), t ∈ [t0, t0 + TH] (3)

As α remains constant during each MPC cycle, (3) is the
problem of finding an optimal sequence of NH = THT

−1
c

LOAs or DOAs. In contrast to our previous work [17], (3)
thus constitutes an optimal control problem as α(t) is treated
as a sequence rather than a system parameter fixed for TH.
The parameter optimization problem considered in [17] is the
special case of this optimal control problem if TC = TH is
set.

We consider the two following problems in order to design
the LOA- or DOA-MPCs; while both strive to optimize the
objective function (3), they differ in the arguments α(t)
available for doing so:

Problem 1: MPC for the LOA-case. Design a LOA-MPC
module optimizing (3) s.t. the model information about the
HRS described above considering α (t) ∈ L with L denoting
the countable set of all sequences (NH-tuples) that can be
created from the set of considered LOAs Λ.

Problem 2: MPC for the DOA-case. Design a DOA-MPC
module optimizing (3) s.t. the model information about the
HRS described above considering α (t) ∈ D with D
denoting the uncountable set of all sequences (NH-tuples) that
can be created from the set of considered DOAs [0, 1].

As Λ ⊂ [0, 1] always holds, Problem 1 is always a special
case of Problem 2. However, due to its structure, Problem 1
allows for solution concepts that are infeasible for Problem
2. Thus, we consider Problem 1 both individually as well as
implicitly included in Problem 2.

IV. MODEL PREDICTIVE CONTROL OF LOA AND DOA

A. LOA-MPC

As the set of possible LOAs Λ is countable, the number
of possible sequences of length TH, or NH-tuples, is NS =
|Λ|NH . Here, |Λ| denotes the cardinality of Λ. Since NS is
finite, Problem 1 allows for the evaluation of the performance
of all possible solutions and the subsequent selection of the
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Fig. 1: Structure of the considered adaptive automation system using either a LOA-MPC or a DOA-MPC.

best one. Fig. 2 visualizes this approach where NS model
instances of the HRS are initialized with the currently observed
states and evaluated for t ∈ [t0, t0 + TH] using a fixed
sequence αi(t), i ∈ {1, ..., NS}. Subsequently, the resulting
robot health Hi can be computed and the optimal solution
αj(t) can be determined by comparing the resulting robot
health values to select Hj , the one with the highest value.

This approach is of interest as it is guaranteed to find the
globally optimal solution and can easily be implemented in a
parallel fashion since the time-consuming evaluations of the
HRS models are mutually independent.

B. DOA-MPC

Considering Problem 2, the set of possible DOAs is un-
countable, hence the number of possible sequences is infinite.
Thus, the system proposed in Subsection IV-A is no longer
applicable as an infinite amount of model evaluations would
be required.

Following most of the MPC literature, we propose to
address this issue by using an iterative optimization algorithm
instead. The resulting structure is depicted in Fig. 3: The
HRS model is again initialized with the currently observed
system states in each MPC cycle, but instead of evaluating all
possible sequences, only the sequences αopt(t) selected by
the optimization algorithm are evaluated. The resulting robot
health values are used to iteratively update the currently best
solution until convergence is reached. As the solution of the
previous MPC cycle is, apart from a time shift of Tc, likely
similar to the optimal solution for the current cycle, we always
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Human-Robot
System Modelα1(t)
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αNS
(t)

Robot Health H2

Human-Robot
System Model

Robot Health
HNS

Human-Robot
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...
...

>
<

.

.

.

α∗(t0)

Current
States

LOA-MPC

Fig. 2: Structure of the LOA-MPC.

initialize the optimization with the solution of the previous
iteration shifted by Tc to improve computational efficiency.

Due to the usage of an iterative optimization, no general
statements about optimality or even convergence can be made;
however, in most practical cases at least a locally optimal
solution can be achieved. As Λ ⊂ [0, 1] always holds, all
possible solutions of LOA-MPCs are solution candidates for
a DOA-MPC, too. Hence, the potential solution performance
of DOA-MPC is always at least equal to the one of an LOA-
MPC.

V. SIMULATION RESULTS

In order to assess the systems presented in Section IV,
a proof-of-concept study was carried out in simulation. We
applied both LOA- and DOA-MPC to a collaborative teleop-
eration of a 2-D mobile ground robot traversing a previously
scouted environment. As we focus on the general functionality
and effects of LOA- and DOA-MPC, perfect model knowledge
of the modules depicted in Fig. 1 is assumed. While the
LOA or DOA sequences are computed quasi-time-discrete, all
simulations consider the overall system including the MPCs
in a continuous-time fashion. The results presented in the
following were achieved by creating a Simulink model of
Fig. 1 using Simulink 10.6 and implementing LOA- and DOA-
MPC using MATLAB 9.13 (R2022b). The scenario presented
below is similar but not identical to the one used in [17].

A. Scenario

Fig. 4 gives an overview of the considered scenario. The
initial robot pose is depicted with a triangle, the location of the

Robot Health
Human-Robot
System Model

Current
States

DOA-MPC

αopt(t)

α∗(t0)

H(αopt(t))Iterative
Optimization

Fig. 3: Structure of the DOA-MPC.
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Fig. 4: Map of the considered scenario.

goal is indicated by a large cross and the six intermediate way-
points are marked with labeled crosses. During the traverse
to the goal, four areas featuring adverse conditions have to
be passed by the robot: 1) In the grey area, noise affects
the laser scanner, forcing the robot’s controller (RC) to limit
its range of commanded velocities to 10% of the maximum
velocity. 2) In the pink area, the operator gets distracted and
reduces their range of commanded velocities to 30% of the
maximum velocity. The laser scanners are still impaired by
noise in this area, however, the noise is less severe than in the
grey area allowing the RC to use up to 60% of its nominal
input range. 3) The orange area features bumpy terrain; all
other parts of the map are even. The information about the
terrain is unknown to the RC which would result in using the
solid path between way-point 4 and 5. However, the human is
able to recognize the terrain and operate the robot to take the
dashed path to bypass the uneven terrain. 4) While traversing
the blue area, the RC faces an unexpected malfunction limiting
its input range to 30% of the maximum velocity without any
environmental influences causing this. All areas colored in
white are unaffected by performance degrading factors.

We model the mobile robot with the following unicycle
dynamics, similar e.g. to [19]:

ẋ =

ẋ
ẏ

θ̇

 =

cos (θ) 0
sin (θ) 0

0 1

u (4)

Here, x is the robot’s state with x and y denoting its position
and θ representing its heading. The robot can be operated via
the inputs u = (β, ω)

⊤. β denotes the robot’s velocity in the
direction of the heading and ω is its angular velocity.

LOAs and DOAs are varied using a linear policy blending
Γ : R2 × R2 × [0, 1] → R2 to arbitrate the input of the RC
uA and the commands issued by the operator uH [20]:

Γpb (uA,uH,α) = α

(
βA

ωA

)
+ (1− α)

(
βH

ωH

)
(5)

Here, α allows for control authority shifts ranging from
manual control (α = 0), over shared control (α ∈ (0, 1))
to a fully automated robot operation (α = 1). Depending on

whether the LOA- or DOA-case is considered, α can either
be chosen from the set Λ featuring discrete values or from the
full spectrum of possible DOAs, i. e. α ∈ [0, 1].

To compute robot health based on x, we included the three
vitals capturing the performance degrading effects introduced
in the description of the scenario from the ones presented in
[16]: The vital describing the rate of change of distance from
the navigational goal (ROCODO), the vital assessing the jerk
along the z-axis of the robot, and the vital monitoring the laser
scanner noise. The rate of change ḋg of the ROCODO vital
was computed with respect to the currently active way-points
(xg,i, yg,i) , i ∈ {1, ..., 7}:

ḋg =
1

∥dg∥2
d⊤
g

(
β cos (θ)
β sin (θ)

)
with dg =

(
xg,i − x
yg,i − y

)
(6)

The structure of the vitals is implemented as described in [16],
the parameters of the mappings are fine-tuned to the scenario
described above.

The human operator models are based on the experience
from extensive teleoperation experiments during the ARCHES
project [5]: When told to pursue a goal point via way-points
as described above, the operators usually first turned the
robot until the correct heading had been reached and then
commanded velocities subsequently. This behavior is modeled
by switching between a proportional controller for θ and
a proportional controller for dg using the inputs ω and β.
Apart from different parametrization and different types of
performance degradation, the model of the RC is identical to
the one of the operator as this structure was also successfully
applied in [5].

B. Results of LOA-MPC

To evaluate LOA-MPC we consider a traded control setting,
where either the human or the operator is in charge of
commanding the robot. Hence, the set of admissible LOAs is
Λ = {0, 1}. Fig. 5a shows the resulting trajectory of the robot.
LOA-MPC is able to successfully arbitrate control between the
operator and the RC to pass all the way-points and reach the
goal state.

The LOA evolution depicted in Fig. 5c shows that LOA-
MPC successfully shifts control to the human while traversing
the grey area where the RC is impaired and then hands control
back over to the RC once the pink area is reached where
the operator is distracted and the RC faces less noise. To
avoid the orange area, the human receives control authority
at around 35s, however, instead of completely following the
overly conservative dashed path of the human, control is
shifted to the RC to barely avoid the bumpy orange area while
maximizing the ROCODO vital. Despite not being captured by
any of the environmental vitals, control is correctly handed to
the human during the malfunction of the RC in the blue area
as it is recognized by the ROCODO vital and then handed
back to the RC to reach the goal.

LOA-MPC provides a reasonable arbitration of control
authority, giving it either to the operator or to the RC based
on who is predicted to have the best capability of handling



(a) Trajectory for LOA-MPC. (b) Trajectory for DOA-MPC.
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Fig. 5: Simulation results of LOA-MPC and DOA-MPC using TH = 4s and Tc = 1s. Background colors in Fig. 5c and 5d
indicate the traverse of the equally colored areas in Fig. 5a and Fig. 5b.

the task thus maximizing robot health and consequentially
maximizing the overall performance of the HRS.

C. Results of DOA-MPC

While the models considered in this scenario are given
analytically which would allow for using gradient-based opti-
mization algorithms, we strive for a system that is flexible in
terms of the used model type. The real-world implementations
we are planning to apply in the future might feature grey- or
even black-box models without gradient information. Hence,
we chose to use the gradient-free pattern search algorithm [21]
for the implementation of DOA-MPC.

The robot trajectory achieved with this system is depicted
in Fig. 5b. Again, all way-points are precisely passed and the
goal state is reached. Fig. 5d shows the evolution of the DOA
chosen by DOA-MPC. Similar to LOA-MPC, control authority
is given to the operator in the grey and blue areas as well as to
avoid the orange area, while the RC is used in the pink area.
In contrast to the results of LOA-MPC, DOA-MPC uses a
collaborative shared control at approximately 38s to smoothly
shift control back to the automation. This allows for an even
more efficient passing of the orange area as the RC is able
to start steering the robot towards way-point 5 even before
the orange area is fully passed (slightly visible before the turn
close to the orange area in Fig. 5b), thus increasing robot
health because of the ROCODO vital.

Apart from the collaborative time span, slight artifacts can
be observed in the grey and blue area. The reason for this is
the rather coarse MPC cycle-time Tc of 1s: The transition e.g.
from the grey to the pink area would have happened exactly
within one cycle, thus leading to a DOA only optimal for half
of the cycle time. To avoid this, DOA-MPC gives a slight
amount of control to the RC before the transition leading to a
slightly slower traverse (and thus slightly lower robot health),
this way synchronizing the transition of the gray to the pink
area with the beginning of a new cycle time. This leads to an
optimal DOA for the whole cycle Tc by sacrificing only a small
amount of performance in the previous cycles. These artifacts
can be removed by decreasing Tc, however they showcase
the capability of the DOA-MPC to use even small effects to
optimize robot health and thus performance.

In addition to Tc, the considered time horizon TH plays
an important role, too, as it scales the amount of information
available for planning the optimal DOA. To analyze its impact,
we conducted simulations with varying TH; the results are
depicted in Fig. 6. Fig. 6a shows the special case of a
parameter optimization similar to [17], Fig. 6b and Fig. 6c
result from setting TH = 4s and TH = 15s, respectively,
and Fig. 6d shows the result if TH covers the full scenario.
Despite their significantly different TH, Fig. 6c and Fig. 6d
achieve very similar results and use shared control only very
aimed. Fig. 6a shows a more elaborate use of shared control
which stems from an averaging effect: As only one DOA can
be optimized for the time horizon, an intermediate DOA is
chosen as a compromise if the environment changes within
the time horizon.

Considering the overall robot health averaged over the du-
ration of the scenario, the configurations of Fig. 6 achieve the
values given in Table I: All of the DOA-MPC configurations
significantly outperform a fully manual (α(t) = 0 ∀t) or fully
automated (α(t) = 1 ∀t) operation of the robot. Increasing TH

and thus increasing the information available for computing
the DOA improves the achieved robot health monotonously
with the configuration considering the whole duration per-
forming best. Nevertheless, the comparable DOA evolution
of TH = 15s also leads to comparable robot health. Despite
the significantly different DOA sequence shown in Fig. 6a and
Fig. 6b, their achieved robot health is still far better than in
the fully manual and fully automated case, thus indicating that
DOA-MPCs even of relatively low computational complexity
might provide a significant benefit for applications.

TABLE I: Comparison of the average robot health. A higher
value means less performance degradation.

Configuration Average health per second

Fully automated 0.7583
Fully manual 0.9380

TH = 4s, Tc = 4s 0.9860
TH = 4s, Tc = 1s 0.9878
TH = 15s, Tc = 1s 0.9892
TH = 75s, Tc = 1s 0.9895
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(a) DOA-MPC using TH = 4s
and Tc = 4s.
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(c) DOA-MPC using TH = 15s
and Tc = 1s.
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(d) DOA-MPC using TH = 75s
and Tc = 1s.

Fig. 6: Comparison of DOA-MPC results for multiple TH. Background colors indicate the traverse of the equally colored areas.

VI. CONCLUSION AND FUTURE WORK

In this paper, we contribute two MPCs for the online
adjustment of the level or degree of automation to optimize
robot health. The proof-of-concept simulation study shows
their applicability as well as their ability to significantly
increase robot health even for relatively small prediction time
horizons.

Currently, we are preparing a user study to evaluate how
humans interact with the proposed systems in real-world
robotic scenarios focusing on performance, human factors and
the ability of the systems to deal with model errors.
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