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AUTOMATING THE COMPOSITION OF POPULAR MUSIC: 
THE SEARCH FOR A HIT 

 
 

T. Millea And J. Wakefield 
University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK 

 
ABSTRACT 

 
The field of automated music composition has existed since the 1950s and spans a wide variety of 
techniques. Popular music is often thought of as being compositionally simpler than classical forms but, as 
far as is known no automated composer has ever had a hit record. A system is proposed which uses the 
decomposition of an input set of existing music to guide the search for new popular music within an 
evolutionary algorithm. A novel representation of music is proposed to reduce the search space and is 
expected to improve the quality of the results. 
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1. INTRODUCTION 
 

“Music is the universal language of mankind” (Henry Wadsworth Longfellow) 
 

Evidence suggests that every known culture has made and listened to music since the evolution of modern 
humans in East Africa around 200,000 years ago (Wallin et al 1963). Today we find music in our daily lives 
on television and radio, on our telephones, digital music players and computers, played while we shop, eat 
or drink, to celebrate or dance to and to mark social gatherings. Music is also big business. According to the 
Recording Industry Association of America (RIAA), the global music market has a turnover of around forty 
billion U.S. Dollars per annum. That all commercially successful music is, as far as we know, human-
composed in an industry of this size is testimony to difficulty of the task of programming computers to 
compose music that we humans like. 
 
The term popular music is usually associated with commercial music, i.e. music recorded and bulk 
distributed for profit, which has its origins in the sale of duplicated sheet music in the mid-eighteen century. 
Today, commercial music covers a bewildering array of diverse musical genres including avant garde, 
country, folk, jazz, latin, rap, rhythm and blues, reggae, rock, World and some eclectic crossovers of these. 
Here the term popular music shall be taken to mean little more than the the sum of its parts: the adjective 
popular, in the sense of appealing to, or being liked by, a large number of people or a large proportion of a 
given populous, and the noun music: 
 
“Music is an art form whose medium is sound. Common elements of music are pitch (which governs melody 
and harmony), rhythm (and its associated concepts tempo, meter, and articulation), dynamics, and the sonic 
qualities of timbre and texture. The word derives from Greek μουσική (mousike), (art) of the Muses". 
(Wikipedia 2009) 
 
The aim of this project is to develop an automated means of composing popular music. The system will 
generate new music based upon the analysis of a given set of existing music. For example, given a set of 
songs of a particular genre, the system should generate new songs of the same genre and of comparable 
standard. The interfaces of the system's input and output will be electronic scores in the ubiquitous Musical 
Instrument Digital Interface (MIDI 2009) file format. Lyrics, music performance and production are therefore 
outside the scope of the current work. 
 
Popular music makes an interesting subject for automated composition. It has the advantage of being 
compositionally simple compared to classical forms. However, the requirement of popularity brings with it its 
own research challenges. 

 
2. A BRIEF HISTORY OF AUTOMATED MUSIC COMPOSITION 

 
The first significant computer-composed piece of music was the Illiac Suite, a piece for string quartet, in 1957 
(Hiller & Isaacson 1957). Since that time, the field of automated music composition, also known as 
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algorithmic composition, has become an established inter-disciplinary field. It contains a great diversity of 
techniques which may be broadly categorised as follows. 
 
2.1. Rule-Based 
Since the Renaissance period, the process of musical composition has been partially automated through the 
formulation and application of music treatises and by teaching music students the rules and constraints that 
music treatises typically encode. Perhaps the most famous early example is Fux's treatise on counterpoint 
(Fux 1725). Composition may be automated by regarding a treatise as a set of constraints to be satisfied. 
For a survey of such work see Pachet & Roy (2001). Closely related are approaches based upon Chomsky's 
theory of generative grammar (Chomsky 1956), in which music is regarded as a sequence of sentences 
generated according to a set of production rules. The production rules may be derived from existing music 
and/or embody music theory, e.g. Holtzman (1980), Roads & Wieneke (1979) and Steedman (1984). 
 
2.2. Stochastic 
Randomness is introduced to music composition systems to add originality and/or variation and to enable the 
composition of a large number of compositions from the same program with the same input. Statistical 
measures of features of existing music may also be used in the generation of new music to ensure it shares 
similar features. A common such use in this field is the use of Markov chains to stochastically generate the 
next musical event, e.g. a note or chord, based on the sequence of previous ones. Pachet's Continuator 
(Pachet 2003) is an excellent example that can convincingly generate short segments of music, or 
continuations, in the style of any human providing the input. 
 
2.3. Chaotic 
Chaos is the branch of mathematics that explains how complex, otherwise unpredictable systems are the 
deterministic result of the interaction of relatively simple starting conditions. Fractals, which are self-
replicating patterns at ever higher scales, visibly demonstrate the chaotic principle. Chaotic music is 
generated through the interaction of a set of simple musical rules at ever higher scales, e.g. Bidlack (1990), 
Bolognesi (1983) and Harley (1994). 
 
2.4. Artificially Intelligent 
Artificial intelligence (AI) is the branch of computer science concerned with simulating successful, external 
human behaviour, as distinct from cognitive science which seeks to model the internal processes. The AI 
approach to music composition therefore does not seek to emulate human musical creativity but rather 
produce systems which generate music that could have been composed by a human. Many AI problems can 
be framed in terms of representation and search. Theoretically, a data type representing music defines a 
search space which only need be searched in order to find all existing and future music. Much effort in this 
approach is devoted to the choice and design of the representation, reducing the size of the search space 
and devising means of recognising good solutions when they are found. The field of AI also includes learning 
systems such as neural networks which may be trained on existing music then used to constrain or guide 
automated generation. 
 
In addition to the above broad classifications, a distinction is made between fully automated systems and 
those, such as composing tools or David Cope's Musical Creativity work (Cope 2005), which involve some 
human guidance, interaction or selection. 
 
In practice, many automated composing systems fall under more than one of these classifications as is the 
case with this project. 
 

3. APPROACH: THE SEARCH FOR A HIT 
 

In his book Six Steps to Songwriting Success, Jason Blume states that the most successful popular music 
structure is verse-chorus-verse-chorus-bridge-chorus (Blume 1999). An expert system could use such 
domain knowledge when generating new music. However, other genres of music may have different 
structures and different common elements. In order to cope with the widest variety of popular music genres, 
the proposed system should automatically extract this knowledge from its input. Besides, a musically-
agnostic approach may extract common features that a human may miss while avoiding some hard-coded 
restrictions which do not apply to a particular input set. Evolutionary algorithms, e.g. genetic algorithms 
(Holland 1962, Holland 1975), are search mechanisms that, to varying degrees, model and acquire the 
search benefits of the natural evolution phenomena of mutation, recombination and survival of the fittest. A 
population of trial solutions to the given problem gradually adapt to their environment, as defined by some 
measure of fitness. The search may terminate upon finding an optimal solution, or upon some other 
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termination criteria, or it may continue indefinitely as in dynamic searches where the fitness function changes 
over time. For a comparison of the features of the most common evolutionary algorithms see Back & 
Schwefel (1993). 
 
The following is the conceptual outline of an evolutionary algorithm for composing music.  
 
create an initial random population of songs 
 
REPEAT 
 
FOR size of the number of offspring songs DO pick two songs 
 
COMBINE them to form a new song 
 
MUTATE the new song evaluate the FITNESS of the new song 
 
SELECT a new population of songs 
 
UNTIL we have a song with hit potential 
 
Initially random songs are combined and mutated to form new offspring songs. The fitness of each song is 
calculated with respect to an analysis with the given set of existing songs. The fittest songs are the most 
likely to survive and pass-on their musical qualities. The search is simplest, fastest and most likely to 
succeed with the smallest possible search space. The dimensions and size of the search space is defined by 
the representation. This therefore means that choice of an appropriate representation is crucial to finding 
good solutions in an acceptable time frame. 
 
The key research issues to address are therefore the musical representation, the combination and mutation 
operators of the evolutionary algorithm and a means of determining fitness. 
 
3.2. Representation 
The ideal representation corresponds to a search space that contains only hit songs that have not yet been 
written. The search in this case would never fail. The worse case search space is infinitely large and 
contains not one hit. Between these extremes there are many possible representations corresponding to 
search spaces which contain huge redundancy, e.g. admitting sequences of notes that lack musical meaning 
or structure, and noise which affects the search but is not critical to the composition, e.g. including the 
particular instruments used as in MIDI. 
 
Low level MIDI note on and off events are first converted to a sequence of notes for each instrument. 
The datatype for Note retains the musical data, i.e. pitch, volume, duration and instrument. Each Note also 
has an offset field which is the time to the onset of the next note and may be zero. This intermediate 
representation conveniently handles arbitrary polyphony as well as inter-note rests. This representation is 
amenable for the inference of the lead instrument, usually the melody or instrumental solo line, and 
corresponding harmonisation. Lead plus harmony is the amount of detail considered sufficient for musicians 
to recreate the given song, or for a non-musician to recognise it. Removing much of the noise and 
redundancy of the original MIDI files helps to vastly reduce the search space. As the next step, much of the 
absolute information, such as pitches and durations are replaced with pitch intervals and quantised to 
relative durations. This is the first order representation. 
 
A piece of popular music typically contains much repetition and variations, e.g. the chorusses and verses 
both usually repeat their respective melodies. The music may be therefore represented in less space as a 
sequence of higher level patterns and their variations. Consider a sequence of n notes in which a pattern of 
p notes which occurs f times. Like grammatical generation in reverse, we can replace each occurrence of the 
pattern with an identifier, c.f a non-terminal symbol. The new symbol covers f x p notes or f x p / n of the 
total. However, the new symbol must occur f times in place of the original pattern and require a reference to 
the original pattern which is of length p. Therefore the pattern whose substitution saves the greatest space is 
the one that maximises (f x p) / (f + p). This corresponds to the intuitive notion of repetitiveness. 
 
Once the most repetitive pattern has been substituted, the second most repetitive pattern is identified and 
substituted and so on until the entire sequence is covered and replaced by a new sequence of symbols. This 
is the 2nd order representation. The same algorithm is applied to the new sequence, to find patterns of 
patterns, in order to generate the third order representation, and so on until there are no further repeated 
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patterns. The resulting set of sequences and lookup tables corresponds to a top down hierarchical 
description of the original piece with the production rules and symbols in order of repetition required to 
recreate it. Work is currently underway to implement this algorithm. 
 
Thus we have a higher-order, recursive data type capable of capturing repetition and variation of musical 
patterns at every scale. The lowest order represents patterns of individual musical events, e.g notes, while 
the highest order will represent the top-level structure of the song. Only the relative pitches and quantised 
durations of melody and its harmonisation are retained in order to further reduce the search space of the 
evolutionary algorithm and simplify the musical analysis of the input. 
 
3.3. Combination 
The purpose of combination or crossover in an evolutionary algorithm is to mix elements of two or more trial 
solutions in the hope of that some offspring are fitter than their parents. Here we wish to combine the 
elements of two songs in a musically meaningful way. There are a number of possible means of 
combination. Firstly, as in genetic algorithms, sequences from each parent may be simply spliced together at 
a randomly chosen point in the corresponding level. Secondly, some of the nonterminal symbols in one order 
of one song may be redirected to refer to patterns in corresponding order below in the other song. A simple 
example at the highest level would be the replacement of the chorus of song A by the chorus from song B. At 
the lowest level it could be the replacement of a repeated bar or line in one song by one from the other. This 
type of combination will be termed crossindirection and may be partial as per these examples or total where 
the offspring randomly acquires entire sequence at each level from the corresponding levels of each of the 
parents. Finally, elements or entire sequences may jump levels, e.g. a second order pattern in one parent 
may be promoted to a third order pattern in the offspring. In each case, where the corresponding number of 
symbols differs between the parents there will an added conforming step to ensure no reference is made to a 
nonexisting pattern. 
 
3.4. Mutation 
The basic unit of repetition in music is the bar. It is the unit from which all higher orders of patterns are built. 
If we enforce a same-length-multiple restriction of patterns at any given order, we gain the convenience of 
being able to represent one pattern as a vector offset of another. Where there are no common symbols in 
corresponding positions between two patterns, those patterns can be said to be independent. In all other 
cases, one can be said to be a variation of the other. A variation may also be regarded as a mutation of its 
corresponding difference vector applied to patterns other than those from which they were derived in order to 
achieve new and musically meaningful variations. Mutations will therefore be derived automatically from the 
input set. 
 
The severity of a mutation is ideally controlled in relation to the overall success over a number of mutations, 
where a successful mutation is defined as one that results in increased fitness. The underlying principle is 
that in a random population, far away from the optimal solution, there is an expectation that half of all 
mutations are successful. However, as the optimal is approached, there are fewer opportunities for 
improvement, so the average success rate falls until, at the optimal, all mutations are unsuccessful. The 
gradual reduction in mutation severity as the population evolves is analogous to the reduction of energy in 
simulated annealing (Kirkpatrick & Sorkin 1998). Related to the velocity of convergence towards the optimal, 
this control becomes a powerful negative feedback mechanism in the search. 
 
In order to control mutation severity, we require a means to measure the distance between the two same-
length patterns from which it was derived. This work adopts the Kolmogorov variational distance metric using 
the Temporal Elements Displayed as Squares (TEDAS) system as described by Toussaint (2004). The 
distance between two rhythmic patterns is calculated graphically. The x-axis is time. Note onset times are 
marked on the x-axis and a square is inserted between each pair. The two patterns of squares are overlaid 
and the variational distance is the total difference in their areas. The method was derived from one originally 
intended to measure the distance between two melodies where the vertical axis represented pitch or pitch 
class, i.e. A-G# without octave information. Here we modify the original such that the vertical element of the 
difference is calculated from the harmonic distance between corresponding notes based on the harmonic 
series, i.e. in ascending order: octave, perfect fifth, perfect fourth, major third, and minor third and so on in 
declining pitch intervals. 
 
Mutations are therefore musical variations automatically derived from the input. Their severity is calculated 
using a adapted Kolmogorov TEDAS system and mutations are picked at random from those of the 
appropriate severity in order to control the convergence of the evolutionary algorithmic towards fit solutions. 
 
3.5. Fitness 
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The fitness of an offspring song will be calculated as the similarity between it and the given input songs. 
Straightforward metrics such duration, tempo, tonal range, etc. will be combined with Markovian analyses 
which reward trial songs sharing patterns at corresponding scales with the input set. Due to the stochastic 
nature of the search, it is expected that the evolving population of songs will acquire fitness-neutral musical 
features not present in the input set leading to original compositions. A number of fitness functions will be 
investigated with a view to meeting the overriding aim of the project. 
 

4. CONCLUSIONS 
 

This paper has briefly looked at the field of automated music composition and identified popular music as a 
candidate for research. It has also outlined in more detail a proposed approach using an evolutionary 
algorithm to evolve initially random pieces of music guided by an analysis of a given set of existing pieces of 
music. A novel musical representation has been adopted in order to significantly reduce the size of the 
search space and facilitate analysis and comparison. Besides simplifying the MIDI file input to its bare 
musical essence, i.e. lead and harmonisation, a recursive pattern-factoring algorithm has been devised in 
order to capture and represent the inherent repetition prevalent in popular music. Implementation work is 
currently underway and progress to date appears promising 
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