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Entropy estimation is of practical importance in information theory and statistical science. 
Many existing entropy estimators suffer from fast growing estimation bias with respect 
to dimensionality, rendering them unsuitable for high-dimensional problems. In this work 
we propose a transform-based method for high-dimensional entropy estimation, which 
consists of the following two main ingredients. Firstly, we provide a modified k-nearest 
neighbors (k-NN) entropy estimator that can reduce estimation bias for samples closely 
resembling a uniform distribution. Second we design a normalizing flow based mapping 
that pushes samples toward the uniform distribution, and the relation between the 
entropy of the original samples and the transformed ones is also derived. As a result 
the entropy of a given set of samples is estimated by first transforming them toward 
the uniform distribution and then applying the proposed estimator to the transformed 
samples. The performance of the proposed method is compared against several existing 
entropy estimators, with both mathematical examples and real-world applications.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Entropy, a fundamental concept in information theory, has found applications in various fields such as physics, statistics, 
signal processing, and machine learning. For example, in the statistics and data science contexts, various applications rely 
critically on the estimation of entropy, including goodness-of-fit testing [1,2], sensitivity analysis [3], parameter estimation 
[4,5], and Bayesian experimental design [6,7].

In this work we focus on the continuous version of entropy that takes the form,

H(X) = −
∫

log[px(x)]px(x)dx, (1)

where px(x) is the probability density function (PDF) of random variable X . Despite the rather simple definition, entropy 
only admits an analytical expression for a limited family of distributions and needs to be evaluated numerically in general. 
When the distribution of interest is analytically available, in principle its entropy can be estimated by numerical integration 
schemes such as the Monte Carlo method. However, in many real-world applications, the distribution of interest is not 
analytically available, and one has to estimate the entropy from the realizations drawn from the target distribution, which 
makes it difficult or even impossible to directly compute the entropy via numerical integration.
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Entropy estimation has attracted considerable attention from various communities in the last a few decades, and nu-
merous methods have been developed to directly estimate entropy from realizations. In this work we only consider 
non-parametric approaches which do not assume any parametric model of the target distribution, and those methods can be 
broadly classified into two categories. The first class of methods, are known as the plug-in estimators, which first estimate 
the underlying probability density, and then compute the integral in Eq. (1) using numerical integration or Monte Carlo (see 
[8] for a detailed description). Some examples of density estimation approaches that have been studied for plug-in meth-
ods are kernel density estimator [9–12], histogram estimator [13,10] and field-theoretic approach [14]. A major limitation 
of this type of methods is that they rely on an effective density estimation, which is a difficult problem in its own right, 
especially when the dimensionality of the problem is high. A different strategy is to directly estimate the entropy from the 
independent samples of the random variable. Popular methods falling in this category include the sample-spacing [15] and 
the k-nearest neighbors (k-NN) [16,17] based estimators. The latter is particularly appealing among the existing estimation 
methods thanks to its theoretical and computational advantages and has been widely used in practical problems. Efforts 
have been constantly devoted to extending and improving the k-NN methods, and some recent variants and extensions of 
the methods are [18–20]. It is also worth mentioning that there are many other types of direct entropy estimators available. 
For example, Ariel and Louzoun [21] decoupled the target entropy to a sum of the entropy of marginals, which is estimated 
using one-dimensional methods, and the entropy of copula, which is estimated recursively by splitting the data along sta-
tistically dependent dimensions. Kandasamy et al. [22] suggested a leave-one-out technique for the von Mises expansion 
based estimator [23]. We also note that in certain applications the main purpose is to minimize or maximize the quan-
tity of entropy, and in this case entropy gradient estimation strategies [24,25] have been explored to avoid direct entropy 
estimation.

It is well known that, entropy estimation becomes increasingly more difficult as the dimensionality grows, and such 
difficulty is mainly due to the estimation bias, which decays very slowly with respect to sample size for high-dimensional 
problems. For example in many popular approaches including the k-NN method [16], the estimation bias decays at the 
rate of O (N−γ /d) where N is the sample size, d is the dimensionality, and γ is a positive constant [26,22,27,28]. As a 
result, very few, if not none, of the existing entropy estimation methods can effectively handle high-dimensional problems 
without making strong assumptions about the smoothness of the underlying distribution [22]. Indeed, the well-known 
minimax bias results (e.g., [29,30]) indicate that without the strong smoothness assumption [22], the curse of dimensionality 
is unavoidable. However, efforts can still be made to reduce the difference between the actual estimation bias and the 
theoretical bound.

The main goal of this work is to provide an effective entropy estimation approach which can achieve faster bias decay-
ing rate under mild smoothness assumption, and thus can effectively deal with high-dimensional problems. The method 
presented here consists of two main ingredients. First propose two truncated k-NN estimators based on those by [16] and 
[17] respectively, and also provide the bounds of the estimation bias in these estimators. Interestingly our theoretical re-
sults suggest that the estimators achieve zero bias for uniform distributions, while there is no such a result for any existing 
k-NN based estimators, according to the bias analysis available to date [27,31,32]. This property offers the possibility to 
significantly improve the performance of entropy estimation by mapping the data points toward a uniform distribution, 
a procedure that we refer to as uniformization. Therefore the second main ingredient of the method is to conduct the 
uniformization of the data points, with the normalizing flow (NF) technique [33,34]. Simply speaking, NF constructs a se-
quence of invertible and differentiable mappings that transform a simple base distribution such as standard Gaussian into a 
more complicated distribution whose density function may not be available. Specifically we use the Masked Autoregressive 
Flow [35], a NF algorithm originally developed for density estimation, combined with the probability integral transform, to 
push the original data points towards the uniform distribution. We then estimate the entropy of the resulting near-uniform 
data points with the proposed truncated k-NN estimators, and derive that of the original ones accordingly (by adding an 
entropic correction term due to the transformation). Therefore, by combining the truncated k-NN estimators and the nor-
malizing flow model, we are able to decode a complex high-dimensional distribution represented by the realizations, and 
obtain an accurate estimation of its entropy.

The rest of the paper is organized as follows. In Section 2, we describe the traditional k-NN based methods of entropy 
estimation and their convergence properties. In Section 3, we introduce the truncated k-NN estimators for distributions 
with compact support, and then show how to combine these new estimators with the NF-based uniformization procedure 
to estimate the entropy of general distributions. Numerical examples and applications are presented in Sections 4 and 
Section 5 respectively to demonstrate the effectiveness of the proposed methods. Finally, in Section 6, we summarize our 
findings and discuss some future research directions.

2. k-NN based entropy estimation

We provide a brief introduction to two commonly used k-NN based entropy estimators in this section. We start with 
the original k-NN entropy estimator proposed in [16], where the k-th nearest neighbor is contained in the smallest possible 
closed ball. Next, we introduce a popular variant of the k-NN estimator proposed in [17], and this method uses the smallest 
possible hyper-rectangle to cover at least k points. We finally discuss some theoretical analysis of estimation errors in the 
estimators.
2
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2.1. Kozachenko-Leonenko estimator

Recall the definition of entropy in Eq. (1). Given a density estimator p̂x(x) for px(x) and a set of N i.i.d. samples 
S = {x(i)}N

i=1 drawn from px(x), the entropy of the random variable X can be estimated as follows:

Ĥ(X) = −N−1
N∑

i=1

log p̂x(x(i)). (2)

The Kozachenko-Leonenko (KL) estimator depends on a local uniformity assumption to obtain the estimate p̂x(x). For each 
x(i) , one first identifies the k-nearest neighbors (in terms of the p-norm distance) of it, and defines the smallest closed ball 
covering all these k neighbors as:

B(x(i), εi/2) = {x ∈Rd
∣∣ ‖x − x(i)‖p ≤ εi/2},

where εi be twice the distance between x(i) and its k-th nearest neighbor among the set S . We shall refer to the closed ball 
B(x(i), εi/2) as a cell centered at x(i) , and let qi be the mass of the cell B(x(i), εi/2), i.e.,

qi(εi) =
∫

x∈B(x(i),εi/2)

px(x)dx.

It can be derived that the expectation value of log qi over εi is given by

E(log qi) = ψ(k) − ψ(N), (3)

where ψ(x) = �′(x)
�(x) with �(x) being the Gamma function [17]. KL estimator then assumes that the density is constant in 

B(x(i), εi), which gives

qi(εi) ≈ cdε
d
i px(x(i)), (4)

where d is the dimension of X and

cd = �(1 + 1

p
)d/�(1 + d

p
),

is the volume of the d-dimensional unit ball with respect to p-norm. Combining (3) and (4) one can get an estimate of the 
log-density at each sample point,

log p̂x(x(i)) = ψ(k) − ψ(N) − log cd − d logεi . (5)

Plugging the above estimates for i = 1, ..., N into (2) yields the KL estimator:

ĤKL(X) = −ψ(k) + ψ(N) + log cd + d

N

N∑
i=1

logεi . (6)

2.2. KSG estimator

As is mentioned earlier, the Kraskov-Stögbauer-Grassberger (KSG) estimator is an important variant of ĤKL. Unlike KL 
estimator that is based on closed balls, KSG estimator uses hyper-rectangles to form the cells at each data point. Namely 
one chooses the ∞-norm as the distance metric (i.e. p = ∞), and as a result the cell B(x(i), εi/2) becomes a hyper-cube 
with side length εi . Next, we allow the hyper-cube to become a hyper-rectangle: i.e., the cells admit different side lengths 
along different dimensions. Specifically, for j = 1, ..., d, we define εi, j to be twice of the distance between x(i) and its k-th 
nearest neighbor along dimension j, and the cell centered at x(i) covering its k-nearest neighbors becomes

B(x(i), εi,1:d/2) = {x = (x1, ...,xd) | |x j − x(i)
j | ≤ εi, j/2,

for j = 1, ...,d},
(7)

where εi,1:d = (εi,1, ..., εi,d). This change leads to a different formula for computing the mass of the cell B(x(i), εi,1:d/2),

E(log qi) ≈ ψ(k) − d − 1 − ψ(N). (8)

k

3
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It is worth noting that the equality in Eq. (3) is replaced by approximate equality in Eq. (8), because a uniform density 
within the rectangle has to be assumed to obtain Eq. (8) (see Lemma 2 in Appendix A.2 for details). Using a similar local 
assumption as Eq. (4), the KSG estimator is derived as,

ĤKSG(X) = −ψ(k) + ψ(N) + d − 1

k
+ 1

N

N∑
i=1

d∑
j=1

logεi, j. (9)

We note that the KSG method was actually developed in the context of estimating mutual information [17], and has been 
reported to outperform the KL estimator in a wide range of problems [27]. As has been shown above, it is straightforward 
to extend it to entropy estimation, and our numerical experiments also suggest that it has competitive performance as an 
entropy estimator, which will be demonstrated in Section 4.

2.3. Convergence analysis

Another important issue is to analyze the estimation errors in these entropy estimators and especially how they behave 
as the sample size increases. In most of the k-NN based estimators including the two mentioned above, the variance is 
generally well controlled, decaying at a rate of O (N−1) with N being the sample size, while the main issue lies on the 
estimation bias. In fact, the bias of estimator ĤKL has been well studied, but that of ĤKSG receives very little attention. 
Previous results related to the former are listed as follows. The original [16] paper established the asymptotic unbiasedness 
for k = 1 while [36] obtained the same result for general k. For distributions with unbounded support, [37] proved that the 
bias bound decays at a rate of O ( 1√

N
) for d = 1. [27] generalized it to higher dimensions, obtaining a bias bound of O (N− 1

d )

up to polylogarithmic factors. For distributions compactly supported, usually densities satisfying the β-Hölder condition are 
considered. [32] gave a quick-and-dirty upper bound of bias, O (N−β), for a simple class of univariate densities supported on 
[0, 1] and bounded away from zero. [31] proved the bias is around O (N− β

d ) (β ∈ (0, 2]) for general d with some additional 
conditions on the boundary of support. We reinstate that all these works obtained a variance bound of O (N−1).

It should be noted that the bias bounds given by previous studies typically depend on some properties of target den-
sities, such as smoothness parameter and Hessian matrix, providing insights that these estimators perform well on certain 
distributions. This motivates the idea that one can transform the given data points toward a desired distribution for a more 
accurate entropy estimation, which is detailed in next section.

3. Uniformizing mapping based entropy estimation

In this section, we present the proposed approach in detail. As is mentioned earlier, it consists of two main ingredients: 
a truncated version of the k-NN entropy estimators, and a transformation that can map data points toward a uniform 
distribution.

3.1. Truncated KL/KSG estimators

For compactly supported distributions, a significant source of bias comes from the boundary of the support, where 
the k-NN cells are constructed including areas outside of the support of the distribution density [31]. Intuitively speaking, 
incorrectly including such areas results in an underestimate of the densities, leading to bias in the estimator. We thus 
propose a method to reduce the estimation bias by excluding the areas outside of the distribution support, and remarkably 
the resulting estimator enjoys certain convergence properties which enable us to design the NF based estimation approach. 
The only additional requirement for using these estimators is that the bound of support of density should be specified. 
Without loss of generality, we suppose the target density is supported on the unit cube Q := [0, 1]d in Rd . The procedure 
of our method is as follows: we first determine all the cells using either KL or KSG, then examine whether each k-NN cell 
covers area out of the distribution support, and if so, truncate the cell at the boundary to exclude such area (see Fig. 1 for 
a schematic illustration). Mathematically the truncated KL (tKL) estimator (with ∞-norm), is given by

ĤtKL(X) = −ψ(k) + ψ(N) + 1

N

N∑
i=1

d∑
j=1

log ξi, j, (10)

where

ξi, j = min{x(i)
j + εi/2,1} − max{x(i)

j − εi/2,0};
and the truncated KSG (tKSG) esitmator is given by

ĤtKSG(X) = −ψ(k) + ψ(N) + (d − 1)/k + 1

N

N∑ d∑
log ζi, j, (11)
i=1 j=1

4
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Fig. 1. The schematic illustration of the truncated estimator. The shaded area is that removed from the k-NN cell.

where

ζi, j = min{x(i)
j + εi, j/2,1} − max{x(i)

j − εi, j/2,0}.
Next we shall theoretically analyze the bias of the truncated estimators. Our analysis relies on some assumptions on the 

density function px, which are summarized as below:

Assumption 1. The distribution px satisfies:

(a) px is continuous and supported on Q;
(b) px is bounded away from 0, i.e., C1 = inf

x∈Q
px(x) > 0;

(c) The gradient of px is uniformly bounded on Qo, i.e., C2 = sup
x∈Qo

||�px(x)||1 < ∞.

First we consider the bias of estimator ĤtKL and the following theorem states that, the bias in ĤtKL is bounded and 
vanishes at the rate of O (N− 1

d ).

Theorem 1. Under Assumption 1 and for any finite k and d, the bias of the truncated KL estimator is bounded by∣∣E[ĤtKL(X)] − H(X)
∣∣ ≤ C2

C1+1/d
1

( k

N

) 1
d .

The variance of the truncated KL estimator is bounded by

Var[ĤtKL(X)] ≤ C
1

N
,

for some C > 0.

Proof. We provide a skeleton proof here, where the complete proof including the notations is detailed in Appendix A.3 and 
Appendix A.4.

Proof of the bias bound for the truncated KL estimator proceeds as follows.

1. Show that

E[Ĥt K L(X)] = −E
[

log
P (B(x;εk/2))

μ(B(x;εk/2))

]
. (12)

2. Bound the following difference by∣∣∣∣ log p(x) − log
P (B(x;εk/2))

μ(B(x;εk/2))

∣∣∣∣ ≤ C2

2C1
εk. (13)

3. Note that H(X) = −E(log p(x)), and using Eq. (12), Eq. (13) and the upper bound of E(εk) obtained from Lemma 4, we 
can derive that the bias E[Ĥt K L(X)] is bounded by∣∣E[Ĥt K L(X)] − H(X)

∣∣ ≤ C2

C1+1/d

( k

N

) 1
d . (14)
1

5



Z. Ao and J. Li Artificial Intelligence 322 (2023) 103954
Proof of the variance bound for the truncated KL estimator proceeds as follows.

1. Let αi = ∑d
j=1 log ξi, j and let α∗

i (for i = 2, ..., N) be the estimators with sample x(1) removed. Then, by the Efron-Stein 
inequality [38],

Var[Ĥt K L(X)] = Var

[
1

N

N∑
i=1

αi

]
≤ 2NE

[(
1

N

N∑
i=1

αi − 1

N

N∑
i=2

α∗
i

)2]
. (15)

2. Let 1Ei be the indicator function of the event Ei = {εk(x(1)) 
= ε∗
k (x(1))}, where ε∗

k (x(1)) is twice the k-NN distance of 
x(1) when α∗

i are used. Then we show that

N2
(

1

N

N∑
i=1

αi − 1

N

N∑
i=2

α∗
i

)2

≤ (1 + Ck,d)

(
α2

1 + 2
N∑

i=2

1Ei (α
2
i + α∗2

i )

)
, (16)

where Ck,d is a constant.
3. Since αi and α∗

i are identically distributed, we only need to derive the upper bounds of the following three expectations: 
E[α2

1], (N − 1)E[1E2α
2
2 ] and (N − 1)E[1E2α

∗2
2 ].

4. Finally we obtain the bound of the variance of Ĥt K L(X)

Var[Ĥt K L(X)] ≤ C
1

N
, (17)

for some C > 0. �
Note that C2 = 0 when px is uniform on Q, and the following corollary follows directly:

Corollary 1. Under the assumption in Theorem 1, if X is uniformly distributed on Q, then the truncated KL estimator is unbiased.

This corollary is the theoretical foundation of the proposed method, as it suggests that if one can transform the data 
points into a uniform distribution, the tKL method can yield an unbiased estimate. In reality, it is usually impossible to map 
the data point exactly into a uniform distribution to achieve the unbiased estimate. To this end, Theorem 1 suggests that, 
as long as the transformed samples are close to a uniform distribution in the sense that C2 is small, the transformation can 
still significantly reduce the bias. Since the main contribution of the mean-square estimation error comes from the bias (as 
the variance decays at the rate of O (N−1)), reducing the bias therefore leads much more accurate estimation of the entropy.

We next consider the bias of the tKSG estimator. The second theorem shows that the expectation of ĤtKSG has the same 
limiting behavior up to a polylogarithmic factor in N .

Theorem 2. Under Assumption 1 and for any finite k and d, the bias of the truncated KSG estimator is bounded by

∣∣E[ĤtKSG(X)] − H(X)
∣∣ ≤ C

(log N)k+2

Ck+1
1 N

1
d

for some C > 0. The variance of the truncated KSG estimator is bounded by

Var[ĤtKSG(X)] ≤ C ′ (log N)k+2

N
,

for some C ′ > 0.

Proof. Again, we only provide a skeleton proof here, with the complete details given in Appendix A.5 and Appendix A.6.
Proof of the bias bound for the truncated KSG estimator proceeds as follows.

1. Suppose that P̃ , p̃, and q̃
ε

x1
k ,...,ε

xd
k

(x) are defined as in Lemma 2 with l = p(x)−
1
d , and by Lemma 2 and the fact that ∑d

j=1 log ζi, j are identically distributed, we have

E[Ĥt K SG(X)] = E
x∼p

E
P

[
log ζ

x1
k · · · ζ xd

k

] − E
x∼p

E
P̃

[
log

(
p(x)εx1

k · · ·εxd
k

)]
. (18)

2. We separate the d-dimensional unit cube Q into two subsets, Q =Q1 +Q2, where Q1 := [ aN
2 , 1 − aN

2 ]d , aN = ( 2k log N
C1 N

) 1
d , 

and Q2 =Q −Q1.
6
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3. Note that H(X) = −E(log p(x)), and we can then decompose the bias into three terms according to the above separation 
of unit cube:∣∣E[Ĥt K SG(X)] − H(X)

∣∣
=

∣∣∣∣ Ex∼p
E
P

[
log

(
ζ

x1
k · · · ζ xd

k

)] − E
x∼p

E
P̃

[
log

(
εx1

k · · ·εxd
k

)]∣∣∣∣
≤I1 + I2 + I3,

(19)

with

I1 =
∣∣∣∣ E
x∈Q2

E
P :εk<aN

[
log

(
ζ

x1
k · · · ζ xd

k

)]∣∣∣∣ +
∣∣∣∣ E
x∈Q2

E
P̃ :εk<aN

[
log

(
εx1

k · · ·εxd
k

)]∣∣∣∣,
I2 =

∣∣∣∣ E
x∈Q1

E
P :εk<aN

[
log

(
ζ

x1
k · · · ζ xd

k

)] − E
x∈Q1

E
P̃ :εk<aN

[
log

(
εx1

k · · ·εxd
k

)]∣∣∣∣,
I3 =

∣∣∣∣ E
x∈Q E

P :εk≥aN

[
log

(
ζ

x1
k · · · ζ xd

k

)]∣∣∣∣ +
∣∣∣∣ E
x∈Q E

P̃ :εk≥aN

[
log

(
εx1

k · · ·εxd
k

)]∣∣∣∣,
(20)

where E
P :εk<aN

means taking expectation under the probability measure P over εx j

k < aN , j = 1, ..., d.

4. Finally, by bounding the three terms separately, we obtain

∣∣E[ĤtKSG(X)] − H(X)
∣∣ ≤ C

(log N)k+2

Ck+1
1 N

1
d

, (21)

for some C > 0.

Proof of variance bound for the truncated KSG estimator proceeds as follows.

1. Let βi = ∑d
j=1 log ζi, j , and define β∗

i (for i = 2, ..., N) to be the estimators with sample x(1) removed. Next we show 
that (N − 1)E[1E2β

2
2 ] and (N − 1)E[1E2β

∗2
2 ] are of the same order as E[β2

1 ]. As such we only need to prove that 
E[β2

1 ] = O ((log N)k+2), which is done in Steps 2 and 3.
2. Separate E

[
β2

1

]
into two parts,

E
[
β2

1

] = E
x∈Q E

P :εk<aN

[
β2

1

] + E
x∈Q E

P :εk≥aN

[
β2

1

]
, (22)

where aN = ( 2k log N
C1 N

) 1
d .

3. By bounding the two parts separately, we obtain the bound of the expectation of β2
1

E[β2
1 ] ≤ C9(log N)k+2, (23)

for some C9 > 0.
4. With the above bound, we can obtain the bound of the variance of Ĥt K SG(X)

Var[Ĥt K SG(X)] ≤ C ′ (log N)k+2

N
, (24)

for some C ′ > 0. �
As one can see from Theorem 2, while the uniform distribution leads to zero bias for ĤtKL, we can not obtain the same 

result for ĤtKSG, which means no theoretical justification for mapping the data points toward a uniform distribution for 
this estimator. That said, the tKSG estimator and Theorem 2 are still useful, and the reason for that is two-fold. First as is 
mentioned earlier, no existing result on the bound of bias is available for the KSG estimator to the best of our knowledge, 
and to this end our analysis on tKSG is the first known bias bound for this type of estimators, and may provide useful 
information for understanding the convergence property of them. More importantly, our numerical experiments demonstrate 
that mapping the data points toward a uniform distribution does significantly improve the performance of tKSG as well. In 
fact, we have found that tKSG can achieve the same or slightly better results than tKL on the transformed samples in our 
test cases.
7
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3.2. Estimating entropy via transformation

As is mentioned earlier, based on the interesting convergence properties of the truncated estimators in particularly tKL, 
we want to estimate the entropy of a given set of samples by mapping them toward a uniform distribution. To implement 
this idea, an essential question to ask is that, how the entropy of the transformed samples relates to that of the original 
ones. Proposition 1 provides an answer to this question.

Proposition 1 ([39]). Let f be a mapping: Rd → Rd, X be random variable defined on Rd following distribution px , and Z = f (X). 
If f is bijective and differentiable, we have

H(X) = H(Z) +
∫

pz(z) log

∣∣∣∣ det
∂ f −1(z)

∂z

∣∣∣∣dz, (25)

where pz(z) is the distribution of Z .

Therefore given a data set S = {x(i))}N
i=1 and a mapping Z = f (X), from Eq. (25) we can construct an entropy estimator 

of X as,

Ĥ(X) = Ĥ(Z) + 1

n

n∑
i=1

log

∣∣∣∣det
∂ f −1(z(i))

∂z

∣∣∣∣, (26)

where Ĥ(Z) is an entropy estimator of Z (either tKL or tKSG) based on the transformed samples S Z = {z(i) = f (x(i))}n
i=1.

We refer to such a mapping f (·) as a uniformizing mapping (UM) and the resulting methods as UM based entropy 
estimators where the main procedure is outlined in Algorithm 1. A central question in the implementation of Algorithm 1
is obviously how to construct a UM which can push the samples toward a uniform distribution, which is discussed in next 
section.

The bias of the UM based estimators rely on the property of the UM (or equivalently the NF), on which we make the 
following assumption:

Assumption 2. Let S = {x(i)}N
i=1 be the set of i.i.i.i.d. samples used to construct the UM and pS

z be the resulting density of Z in Eq. (26). 

Denote C N
2 = sup

z∈Qo
||�pS

z (z)||1 , and assume that C N
2 satisfies: (1) C N

2
P−→

N→∞ 0; (2) There exist a positive integer M and a positive real 

number C̄ < 1 such that:

∀N > M, C N
2 ≤ C̄, a.s.

Based on Theorem 1 and Theorem 2, we can obtain the bias bounds and the MSE bounds of the UM based estimators.

Corollary 2. Suppose that the density function of the original distribution is differentiable and the UM satisfies Assumption 2. The bias 
of UM-tKL estimator is bounded by

∣∣E[ĤUM−tKL(X)] − H(X)
∣∣ ≤ C N

UM−tKL

( k

N

) 1
d , (27)

where lim
N→∞ C N

UM−tKL = 0. The MSE of UM-tKL estimator is bounded by

E[(ĤUM−tKL(X) − H(X))2] ≤ C1
1

N
+ D N

U M−t K L

( k

N

) 2
d , (28)

where C1 is a positive constant and lim
N→∞ D N

U M−t K L = 0.

Proof. See Appendix B. �
Corollary 3. Suppose that the density function of the original distribution is differentiable and the UM satisfies Assumption 2. The bias 
of UM-tKSG estimator is bounded by

∣∣E[ĤUM−tKSG(X)] − H(X)
∣∣ ≤ CU M−t K SG

(log N)k+2

N
1
d

, (29)

where CU M−t K SG = C
(1+C̄)

(
(1+C̄)d+1

)
k+1 and C is a positive constant. The MSE of UM-tKSG estimator is bounded by
(1−C̄)

8



Z. Ao and J. Li Artificial Intelligence 322 (2023) 103954
E[(ĤUM−tKSG(X) − H(X))2] ≤ C2
(log N)k+2

N
+ D N

U M−t K SG
(log N)2(k+2)

N
2
d

, (30)

where C2 is a positive constant and D N
U M−t K SG =

(
C

(1+C̄)
(
(1+C̄)d+1

)
(1−C̄)k+1

)2
.

Proof. See Appendix C. �

Algorithm 1 UM based entropy estimator.

Input: a set of i.i.d samples: S X = {x(i)};
Output: an entropy estimate Ĥ(X);

• compute a uniformizing map f (·);
• let S Z = {z(i) = f (x(i)), i = 1, ..., n};
• estimate Ĥ(Z) from S Z using Eq. (10) or Eq. (11);
• compute Ĥ(X) using Eq. (26).

3.3. Constructing UM via normalizing flow

We discuss in this section how to construct a UM via the NF method. First since the image of f is [0, 1]d , we assume 
that f is in the form of f = � ◦ g where g : Rd → Rd is learned and � : Rd → [0, 1]d is prescribed. Recall that pz is the 
distribution of Z = f (X) with X following px, and we want the function g by minimize the Kullback-Leibler divergence 
(KLD) between pz and the uniform distribution pu:

min
g∈�

D(pz|pu) :=
∫

pz(z) log

[
pz(z)

pu(z)

]
dz, (31)

where z = � ◦ g(x) and � is a suitable function space. Solving Eq. (31) directly poses some computational difficulty as the 
calculation involves the function �, the choice of which may affect the computational efficiency. To simplify the computa-
tion, we recall the following proposition:

Proposition 2 ([34]). Let T : Y → Z be a bijective and differentiable transformation, pz(z) be the distribution obtained by passing 
py(y) through T , and πz(z) be the distribution obtained by passing πy(y) through T . Then the equality

D(πy(y)||py(y)) = D(πz(z)||pz(z)) (32)

holds.

We now construct the mapping � with the cumulative distribution function of the standard normal distribution, a 
technique known as the probability integral transform, yielding, for a given y ∈ Rd ,

�(y) = (φ1(y1), ..., φd(yd)), φi(yi) = 1

2
(1 + erf(

y√
2
)),

where erf(·) is the error function. It should be clear that if y follows a standard normal distribution, z = �(y) follows a 
uniform distribution in [0, 1]d , and vice versa. Now applying Proposition 2, we can show that Eq. (31) is equivalent to

min
g∈�

D(py(y)|q(y)), (33)

where y = g(x) follows distribution py(·) and q(·) is the standard normal distribution. Now assume that g(·) is invertible 
and let its inverse be h = g−1. We also assume that both g and h are differentiable. Applying Proposition 2 to Eq. (33) with 
T = h, we find that Eq. (33) is equivalent to

min
h∈�−1

D(px(x)|qh(x)), (34)

where �−1 = {g−1|g ∈ �} and qh is the distribution obtained by passing q through the mapping h:

qh(x) = q
(
h−1(x)

) ∣∣∣∣det

(
∂h−1 )∣∣∣∣. (35)

∂x

9
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Eq. (34) essentially says that we want to push a standard normal distribution q toward a target distribution px, and 
therefore solving Eq. (34) falls naturally into the framework of NF. Specifically, NF aims to build such a mapping h by 
composing multiple simple mappings: h = h1 ◦ ... ◦ hK . Each hk needs to be a diffeomorphism: namely it is invertible and 
both it and its inverse are differentiable, which ensures that their composition h is also a diffeomorphism. Next by plugging 
in the data, we can rewrite Eq. (34) as a maximum likelihood problem:

max
h=(h1,...,hK )

E px [log qh(x)] :≈ 1

N

N∑
i=1

log qh(x(i)). (36)

As is mentioned earlier, the intermediate mapping hi is usually taken to be of a simple parametrized form and so that its 
gradient and inverse are easy to compute. Once h1, ..., hK are computed, the function g can be obtained as

g = (h1 ◦ · · · ◦ hK )−1 = h−1
K ◦ · · · ◦ h−1

1 , (37)

and recall that in Eq. (13) in the main paper we also need the det-Jacobian of mapping g−1 (i.e., h), which can be calculated 
as,

det
∂ g−1(y)

∂y
= det

∂h1(y1)

∂y1
◦ · · · ◦ det

∂hK (yK )

∂yK
, (38)

where yK = y, y0 = x and yk−1 = hk(yk) for k = 1, ..., K .
The NF methods depend critically on the component layers, the choice of which has to be balanced between computa-

tional efficiency and representing flexibility. In this paper, we use a special version of NF, the Masked Autoregressive Flow 
(MAF) [35] that is originally designed for density estimation. Since the purpose of MAF is to estimate the density px, it is 
specifically designed to efficiently evaluate the inverse mappings, which is thus particularly useful for our application. We 
note, however, our method does not rely on any specific implementation of NF.

Once the mapping h(·) (or equivalently g−1(·)) is obtained, it can be inserted directly into Algorithm 1 to estimate the 
sought entropy. In practice, the samples are split into two sets, where one of them is used to construct the UM and the 
other is used to estimate the entropy.

4. Numerical experiments

Before diving into the applications, we conduct several numerical comparisons of the proposed estimators using mathe-
matical examples. The code for reproducing these examples can be found in https://github .com /ziq -ao /NFEE.

4.1. An illustrating example for the truncated estimators

Here we use a toy example to demonstrate the improvement of the truncated estimators over the naïve version. Specifi-
cally, the test example is an independent multivariate Beta distributions B(b, b) with dimensionality d and shape parameter 
b. In the numerical experiments, the dimensionality is varied from 1 to 40 and the parameter b takes three values 1, 1.5
and 2. In each setup, we generate 1000 samples from the distribution and use KL, KSG, tKL and tKSG to estimate the en-
tropy. All experiments are repeated 100 times and the Root-mean-square-error (RMSE) of estimates are computed. In Fig. 2, 
we plot the RMSE (on a logarithmic scale) against the dimensionality d. From this figure, we can see that the truncated 
methods (blue lines) significantly outperform the naïve ones (red lines) in all cases, indicating that the truncation technique 
can improve the performance of the KL/KSG estimators for compactly supported distributions.

4.2. Multivariate normal distribution

To validate the idea of UM based entropy estimator, a natural question to ask is that how it works with a perfect NF 
transformation, that yields exactly normally distributed samples. To answer this question, we first conduct the numerical 
tests with the standard multivariate normal distribution, corresponding to the situation that one has done a perfect NF (in 
this case the function g in Section 3.3 is chosen to be identity map).

Specifically we test the four methods: KL, KSG, UM-tKL and UM-tKSG, and we conduct two sets of tests: in the first one 
we fix the sample size to be 1000 and vary the dimensionality, while in the second one we fix the dimensionality to be 40 
and vary the sample size. All the tests are repeated 100 times and the RMSE of the estimates are calculated. In Fig. 3 (left), 
we plot the RMSE (on a logarithmic scale) as a function of the dimensionality. One can see from this figure that, as the 
dimensionality increases, the estimation error in KL and KSG grows significantly faster than that in the two UM based ones, 
with the error in KL being particularly large. Next in Fig. 3 (right) we plot the RMSE against the sample size N (note that 
the plot is on a log-log scale) for d = 40, which shows that for this high-dimensional case, the two UM based estimators 
yield much lower and faster-decaying RMSE than those two estimators on the original samples. Overall these results support 
the theoretical findings in Section 3.1 that the estimation error can be significantly reduced by mapping the target samples 
toward a uniform distribution.
10
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Fig. 2. Truncated estimators vs non-truncated estimators for multidimensional Beta distributions with various shape parameters b. (For interpretation of the 
colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 3. Left: RMSE plotted against the dimensionality d. Right: RMSE (on a logarithmic scale) plotted against the sample size N .

Fig. 4. Left: the original samples drawn from a 2-D Rosenbrock distribution; Right: the UM-transformed samples used in the entropy estimation.

4.3. Multivariate Rosenbrock distribution

In this example we shall see how the proposed method performs when NF is included. Specifically our example is the 
Rosenbrock type of distributions – the standard Rosenbrock distribution is 2-D and widely used as a testing example for 
various of statistical methods. Here we consider two high-dimensional extensions of the 2-D Rosenbrock [40]: the hybrid 
Rosenbrock (HR) and the even Rosenbrock (ER) distributions. The details of the two distributions including their density 
functions are provided in Appendix D.2. The Rosenbrock distribution is strongly non-Gaussian, and that can be demonstrated 
by Fig. 4 (left) which shows the samples drawn from 2-D Rosenbrock. As a comparison, Fig. 4 (right) shows the samples 
that have been transformed toward a uniform distribution and used in entropy estimation.

In this example we compare the performance of seven estimators: in addition to the four used in the previous example, 
we include an estimator only using NF (details in SI) as well as two state-of-the-art entropy estimators: CADEE [21] and the 
von-Mises based estimator [22]. First we test how the estimators scale with respect to dimensionality, where the sample 
size is taken to be N = 500d. With each method, the experiment is repeated 20 times and the RMSE is calculated. The RMSE 
against the dimensionality d for both test distributions is plotted in Figs. 5 (a) and (b). One can observe here that in most 
cases, the UM based methods (especially UM-tKSG) offer the best performance. An exception is that CADEE performs better 
in low dimensional cases for ER, but its RMSE grows much higher than that of the UM methods in the high-dimensional 
regime (d > 15). Our second experiment is to fix the dimensionality at d = 10 and vary the sample size, where the RMSE 
11
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Fig. 5. Top: RMSE vs. dimensionality for HR (a) and ER (b); Bottom: RMSE vs. sample size for HR (c) and ER (d).

is plotted against the sample size for both HR and ER in Figs. 5 (c) and (d). The figures show clearly that the RMSE of the 
UM based estimators decays faster than other methods in both examples, with the only exception being CADEE in the small 
sample (≤ 104) regime of ER. It is also worth noting that, though it is not justified theoretically, UM-tKSG seems to perform 
slightly better than UM-tKL in all the cases.

4.4. Multivariate Rosenbrock distribution with discontinuous density

Recall that Corollaries 2 and 3 assume the differentiability of the original density functions, which is often not satis-
fied by practice. Thus, it is also of interest to examine the performance of the proposed methods for distributions with 
discontinuous densities. To this end, we modify the multivariate Rosenbrock distributions studied in Section 4.3, so that 
their densities are discontinuous on the boundaries of their supports (see Appendix D.2 for the details), and repeat the 
comparisons conducted in Section 4.3. The results are shown in Figs. 6. For the modified HR (in Fig. 6 (a) and (c)), only 
the von-Mises estimator achieves a smaller RMSE than the UM based ones in the low-dimensional regime (d≤10), while 
the UM based estimators perform the best in the high-dimensional regime. For modified ER (in Fig. 6 (b) and (d)), the UM 
based estimators are inferior to CADEE but outperform any other methods in most cases.

5. Application examples

In this section, we consider two applications involving entropy estimation, in which our methods are compared with the 
existing ones.

5.1. Application to entropy rate estimation

Our first application example is to estimate the differential entropy rate of a continuous-valued time series. Shannon 
entropy rate [41] measures the uncertainty of a stochastic process X = {Xi}i∈N . For a stationary process, it is defined as,

H̄(X ) = lim
t→∞ H(Xt | Xt−1, ..., X1), (39)

where H(· | ·) is the conditional entropy of two random variables. In this example, we consider the stochastic processes that 
satisfy the following two assumptions:

• First X is a conditionally stationary process of order p: there exists a fixed positive integer p such that, for any integer 
t > p, the conditional density function of Xt given Xt−1 = xt−1, ..., Xt−p = xt−p satisfies

p(Xt = xt | Xt−1 = xt−1, ..., Xt−p = xt−p) = f (xt | xt−1, ..., xt−p), (40)
12
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Fig. 6. Top: RMSE vs. dimensionality for modified HR (a) and ER (b); Bottom: RMSE vs. sample size for modified HR (c) and ER (d).

where f is a fixed conditional density function independent from t .
• Second X is a Markov process of order p: there exists a positive integer p such that, for any integer t > p,

p(Xt = xt | Xt−1 = xt−1, ..., X1 = x1)

= p(Xt = xt | Xt−1 = xt−1, ..., Xt−p = xt−p .) (41)

Under these assumptions, the entropy rate of X can be calculated as,

H̄ = H(Xt | X(t−1):(t−p)) = H(Xt:(t−p)) − H(X(t−1):(t−p)), (42)

where Xt:(t−p) = (Xt , Xt−1, ..., Xt−p) and so on. Note here that t can be taken to be any integer > p, and for simplicity we 
can take it to be t = p + 1, and as a result Eq. (42) is simplified to,

H̄ = H(Xt | X(t−1):(t−p)) = H(X(p+1):1) − H(Xp:1).

Suppose that we have a T -step (with T > p) observation of X : {xt}T
t=1, and we can compute its entropy rate as follows [42]:

Ĥ = Ĥ(X(p+1):1) − Ĥ(Xp:1),

where Ĥ(X(p+1):1) and Ĥ(Xp:1) are estimated with a desired estimator from the observation {xt }T
t=1.

In this example, we consider three autoregressive models of orders 3, 7 and 15 respectively, which are given by

AR(3) : Xt = −1.35 + 0.5Xt−1 + 0.4X2
t−2 − 0.3Xt−3 + εt, (43a)

AR(7) : Xt = −1.35 + 0.5Xt−1 + 0.3X2
t−5 − 0.3Xt−7 + εt, (43b)

AR(15) : Xt = −1.35 + 0.5Xt−1 + 0.05(Xt−5 + Xt−6 + Xt−7)
2

−0.005(Xt−11 + Xt−12 + Xt−13)
2 − 0.1Xt−15 + εt, (43c)

where εt ∼ N (0, (0.03)2) is white noise. Fig. 7 shows the simulated snapshots of the three models. We implemented the 
procedure described above to estimate the entropy rate of these three models where the entropy is estimated with the 
seven estimators used in Section 4. On the other hand, since the conditional density functions are analytically available 
in this example, the entropy rate can also be directly estimated via the standard Monte Carlo integration, which will be 
used as the ground truth. We apply the aforementioned entropy estimators to compute the entropy rate with a simulated 
sequence of 10, 000 steps. With each method, 20 repeated trials are conducted and the RMSE is calculated. The results are 
reported in Table 1, from which we make the following observations. The performance of the von-Mises estimator appears 
13
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Fig. 7. Snapshots of the simulated time series.

Table 1
RMSE of entropy rate estimations based on entropy estimators for the autoregressive model. The smallest (best) RMSE value is shown in bold.

Method UM-tKL UM-tKSG KL KSG NF CADEE von-Mises

AR(3) 0.029 0.051 0.027 0.032 0.12 0.31 0.016
AR(7) 0.67 0.43 1.23 0.90 0.95 2.40 0.70
AR(15) 1.15 0.68 1.51 0.98 1.61 4.14 1.42

to be the best for the AR(3) model, however, all estimators yield very small Root Mean Squared Error (RMSE) suggesting 
that this problem is not particularly challenging. For the AR(7) model, the UM-based methods have smaller RMSE than 
the others, and for the AR(15) model, the two UM-based methods and KSG perform better than the other three. Overall, 
UM-KSG results in the smallest RMSE for both AR(7) and AR(15).

5.2. Application to optimal experimental design

In this section, we apply entropy estimation to an optimal experimental design (OED) problem. Simply put, the goal of 
OED is to determine the optimal experimental conditions (e.g., locations of sensors) that maximize certain utility function 
associated with the experiments. Mathematically let λ ∈ D be design parameters representing experimental conditions, θ be 
the parameter of interest, and Y be the observed data. An often used utility function is the entropy of the data Y , resulting 
in the so-called maximum entropy sampling method (MES) [6]:

max
λ∈D U (λ) := H(Y |λ), (44)

and therefore evaluating U (λ) becomes an entropy estimation problem. This utility function is equivalent to the mutual 
entropy criterion under certain conditions [43]. This formulation is particularly useful for problems with expensive or in-
tractable likelihoods, as the likelihoods are not needed if the utility function is computed via entropy estimation. A common 
application of OED is to determine the observation times for stochastic processes so that one can accurately estimate the 
model parameters and here we provide such an example, arising from the field of population dynamics.

Specifically we consider the Lotka-Volterra (LV) predator-prey model [44,45]. Let x and y be the populations of prey and 
predator respectively, and the LV model is given by

ẋ = ax − xy, ẏ = bxy − y,
where a and b are respectively the growth rates of the prey and the predator. In practice, often the parameters a and b are 
not known and need to be estimated from the population data. In a Bayesian framework, one can assign a prior distribution 
on a and b, and infer them from measurements made on the population (x, y). Here we assume that the prior for both a
and b is a uniform distribution U [0.5, 4]. In particular we assume that the pair (x + εx, y + εy), where εx, εy ∼ N (0, 0.01)

are independent observation noises, is measured at d = 5 time points located within the interval [0, 10], and the goal is 
to determine the observation times for the experiments. As is mentioned earlier, we shall determine the observation times 
14
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Fig. 8. Top: some sample data paths of (x, y); Bottom: the optimal observation times obtained by the eight methods.

Table 2
The reference entropy values of the observation time placements obtained by using all the methods. The smallest (best) entropy value is shown in bold.

Method UM-tKL UM-tKSG CADEE Equidistant KL KSG NF von-Mises

NMC -1.45 -2.73 -1.65 -1.56 -1.48 -1.81
(SE) (0.0073) (0.0074) (0.0072) (0.0076) (0.0072) (0.0049)
RMSE 0.73 0.48 0.86 — 3.60 1.05 0.88 1.31

using the MES method. Namely, the design parameter in this example is λ = (t1, ..., td), the data Y is the pair (x +εx, y +εy)

measured at t1, ..., td , and we want to find λ that maximizes the entropy H(Y |λ).
A common practice in such problems is not to optimize the observation times directly and instead parametrize them 

using the percentiles of a prescribed distribution to reduce the optimization dimensionality [46]. Here we use a Beta distri-
bution, resulting in two distribution parameters to be optimized (see [46] and Appendix D.4 for further details). We solve 
the resulting optimization problem with a grid search where the entropy is evaluated by the seven aforementioned esti-
mators each with 10,000 samples. We plot in Fig. 8 the optimal observation time placements computed with the seven 
aforementioned estimators, as well as the equidistant placement for a comparison purpose. Also shown in the figure are 
some sample paths of the population (x, y) where we can see that the population samples are generally subject to larger 
variations near the two ends and relative smaller ones in the middle. Regarding the optimization results, we see that the 
optimal time placements obtained by the two UM based estimators and CADEE are the same, while they are different from 
the results of other methods. To validate the optimization results, we compute a reference entropy value for the optimal 
placement obtained by each method, using Nested Monte Carlo (NMC) (see [47] and Appendix D.5 for details) with a large 
sample size (105 × 105), and show the results in Table 2. Note that though the NMC can produce a rather accurate entropy 
estimate, it is too expensive to use directly in this OED problem. Using the reference values as the ground truth, we can 
further compute the RMSE of these estimates (over 20 repetitions), which are also reported in Table 2. From the table one 
observes that the placement of observation times computed by the two UM methods and CADEE yields the largest entropy 
values, which indicates that these three methods clearly outperform all the other estimators in this OED problem. More-
over, from the RMSE results we can see that the UM based methods (especially UM-tKSG) yield smaller RMSE than CADEE, 
suggesting that they are more statistically reliable than CADEE.

6. Conclusion

In summary, we have presented a uniformization based entropy estimator, and also provided some theoretical analysis of 
it. We believe the proposed entropy estimator can be useful for a wide range of real-world applications. Some improvements 
and extensions of the method are possible. First while our theoretical results provide some justification for the method, 
further analysis is needed to establish the convergence rate and understand the estimation bias. Additionally, the method 
may be extended to estimate other density functionals, such as the Renyi entropy and the Kullback-Leibler divergence. 
Finally in this work the proposed method is demonstrated only with synthetic data, and it is therefore sensible to further 
examine the method with real-world data sets. We will explore these research problems in future studies.
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Appendix A. Proofs of Theorem 1 and Theorem 2

Here we provide proofs of Theorems 1&2. We follow closely the framework from [31] and [27] of finite-sample analysis 
of fixed k nearest neighbor entropy estimators. They both gave a bias bound of roughly O (

( 1
N

)γ /d
) (γ is some positive 

constant) and a variance bound of roughly O ( 1
N ) for the entropy estimator Ĥ K L , under some mild assumptions. Similarly 

here we prove that the proposed Ĥt K L and Ĥt K SG also have such bias and variance bounds. More interestingly, our analysis 
relates the bias bound of Ĥt K L to the gradient of density function.

A.1. Definitions and assumptions

In this section, we introduce some notations and assumptions that the proofs rely on. As is mentioned in the main paper, 
we only consider distributions with densities supported on the unit cube in Rd . Let Q := [0, 1]d denote the unit cube in 
d-dimensional Euclidean space Rd and P denote an unknown μ-absolutely continuous Borel probability measure, where μ
is the Lebesgue measure. Let p : Q → [0, ∞) be the density of P .

Definition 1 (Twice the k-NN distance for cubes). Suppose {x(i)}N−1
i=1 is set of N −1 i.i.d. samples from P . We define twice the maximum-

norm k-NN distance for cubes by εk(x) = 2||x − x∗||∞ , where x∗ is the k-nearest element amongst {x(i)}N−1
i=1 to x with respect to 

∞-norm.

Definition 2 (Twice the k-NN distance for rectangles). Suppose {x(1′), ..., x(k′)} is set of the k nearest elements amongst {x(i)}N−1
i=1 to 

x with respect to ∞-norm. We define twice the k-NN distance in the marginal direction x j by εx j

k (x) = 2|x j − x∗ j
j |, where x∗ j is the 

k-nearest element amongst {x(1′), ..., x(k′)} in the marginal direction x j to x. It should be noted that εk(x) = max
1≤ j≤d

ε
x j

k (x).

Definition 3 (Truncated twice the k-NN distance). Since we only consider densities supported on the unit cube, we define so-called 
truncated distance for convenience. In the cubic case, we define truncated twice the k-NN distance in the marginal direction x j by 
ξ

x j

k (x) = min{x j + εk(x)/2, 1} − max{x j − εk(x)/2, 0}. In the rectangular case, such distance in the marginal direction x j is defined 
by ζ x j

k (x) = min{x j + ε
x j

k (x)/2, 1} − max{x j − ε
x j

k (x)/2, 0}.

Definition 4 (r-cell). We define the r-cell centered at x by B(x; r) = {x′ ∈Rd : ||x′ − x||∞ < r} in the cubic case, and by B(x; r1:d) =
d⋂

j=1
{x′ ∈Rd : |x′

j − x j | < r j} in the rectangular case.

Definition 5 (Truncated r-cell). We define the truncated r-ball centered at x by B(x; r) = Q ∩ B(x; r) in the cubic case, and by 
B(x; r1:d) =Q ∩ B(x; r1:d) in the rectangular case.

Definition 6 (Mass function). We define the mass of the cell B(x; r/2) as a function with respect to r, which is given by pr(x) =
P (B(x; r/2)), and define the mass of the cell B(x; r1:d/2) as a function with respect to r1, ..., rd, which is given by qr1,...,rd (x) =
P (B(x; r1:d/2)).

Assumption 3. We make the following assumptions:

(a) p is continuous and supported on Q;
(b) p is bounded away from 0, i.e., C1 = inf

x∈Q
p(x) > 0;

(c) The gradient of p is uniformly bounded on Qo, i.e., C2 = sup
o
||�p(x)||1 < ∞.
x∈Q
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A.2. Preliminary lemmas

Here, we present some lemmas that support the proofs of the main results.

Lemma 1 ([17]). The expectation of log pεk (x) satisfies

E[log pεk (x)] = ψ(k) − ψ(N).

Lemma 2. Let ̃P be the probability measure of a uniform distribution supported on a d-dimensional (hyper-)cubic area S := B(x; l/2), 
and ̃p(x) = 1

ld
, x ∈ S be the density function. Define ̃qr1,...,rd (x) = P̃ (B(x; r1/2, ..., rd/2)) and ̃pr(x) = P̃ (B(x; r/2)). Then, we have

E[log q̃
ε

x1
k ,...,ε

xd
k

(x)] = ψ(k) − d − 1

k
− ψ(N),

where εx j

k , j = 1, ..., d are defined as Definition 2 after replacing P by ̃P .

Proof. The probability density function for (εx1
k , ..., εxd

k ) is given by,

f N,k(r1, ..., rd) = (N − 1)!
k!(N − k − 1)! × ∂d (̃qk

r1,...,rd
)

∂r1 · · · ∂rd
× (1 − p̃rm)N−k−1, (A.1)

where p̃r = P̃ (B(x; r/2)), and rm = max
1≤ j≤d

r j [17]. Then we have

E[log q̃
ε

x1
k ,...,ε

xd
k

(x)] =
l∫

0

· · ·
l∫

0

(
N − 1

k

)
· ∂d (̃qk

r1,...,rd
)

∂r1 · · · ∂rd
· (1 − p̃rm)N−k−1 log q̃r1,...,rd dr1 · · ·drd

=
l∫

0

· · ·
l∫

0

(
N − 1

k

)
· ∂d

(
( 1

ld
r1 · · · rd)

k
)

∂r1 · · · ∂rd
· (1 − 1

ld
rd

m)N−k−1 log(
1

ld
r1 · · · rd)dr1 · · ·drd

=
(

N − 1
k

)
kd 1

ld

l∫
0

· · ·
l∫

0

(
1

ld
r1 · · · rd)

k−1(1 − 1

ld
rd

m)N−k−1 log(
1

ld
r1 · · · rd)dr1 · · ·drd

=
(

N − 1
k

)
kd

1∫
0

· · ·
1∫

0

(u1 · · · ud)
k−1(1 − ud

m)N−k−1 log(u1 · · · ud)du1 · · ·dud,

(A.2)

where the last equality comes from the change of variables ui = 1
l ri, i = 1, ..., d. Note that the integrand is symmetric under 

a permutation of the labels 1, ..., d, and so we have

E[log q̃
ε

x1
k ,...,ε

xd
k

(x)]

=dkd
(

N − 1
k

) 1∫
0

dud

(
uk−1

d (1 − ud
d)

N−k−1

ud∫
0

· · ·
ud∫

0

(u1 · · · ud−1)
k−1 log(u1 · · · ud)du1 · · ·dud−1

) (A.3)

Computing the integral over u1, ..., ud−1 using the symmetry again, we obtain

ud∫
0

· · ·
ud∫

0

(u1 · · · ud−1)
k−1 log(u1 · · · ud)du1 · · ·dud−1

=(d − 1)

ud∫
0

· · ·
ud∫

0

(u1 · · · ud−1)
k−1 log u1du1 · · ·dud−1 + log um

ud∫
0

· · ·
ud∫

0

(u1 · · · ud−1)
k−1du1 · · ·dud−1

=I1 + I2,

(A.4)

where I1 is the first term and I2 is the second term. By basic calculus, we have
17
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I1 = (d − 1)

ud∫
0

uk−1
1 log u1du1

( ud∫
0

(u2)
k−1du2

)d−2

= (d − 1)
(1

k
uk

d

)d−1
(log ud − 1

k
),

(A.5)

and

I2 = log ud(
1

k
uk

d

)d−1
, (A.6)

which yield I1 + I2 = ( 1
k uk

d

)d−1(
d log ud − d−1

k

)
. Plug this into Eq (A.3) and change the variables by t = ud

d , and we finally 
have

E[log q̃
ε

x1
k ,...,ε

xd
k

(x)]

=dk

(
N − 1

k

) 1∫
0

ukd−1
d (1 − ud

d)
N−k−1(d log ud − d − 1

k

)
dud

=k

(
N − 1

k

) 1∫
0

tk−1(1 − t)N−k−1( log t − d − 1

k

)
dt

=ψ(k) − d − 1

k
− ψ(N). �

(A.7)

Lemma 3 (Lemma 3 in [31]). Suppose p satisfies Assumption (a) and (b). Then, for any x ∈Q and r >
( k

C1 N

)1/d
, we have

P (εk(x) > r) ≤ e−C1rd N(eC1rd N

k

)k
.

Lemma 4 (Lemma 4 in [31]). Suppose p satisfies Assumption (a) and (b). Then, for any x ∈Q and α > 0, we have

E[εα
k (x)] ≤ (1 + α

d
)
( k

C1N

) α
d .

Lemma 5. Suppose p satisfies Assumption 3, then, for any x ∈Q and array (r1, ..., rd) that satisfy{
x j + r j

2 ≤ 1, i f x j ≤ 1
2

x j − r j
2 ≥ 0, i f x j > 1

2

for j = 1, ..., d, we have∣∣∣∣∂dqr1,...,rd (x)

∂r1 · · · ∂rd
− 1

2
∑d

j=1 1 j
p(x)

∣∣∣∣ ≤ 1

2
∑d

j=1 1 j+1
C2rm,

and ∣∣∣∣∂uqr1,...,rd (x)

∂r1 · · · ∂ru
− 1

2
∑u

j=1 1 j
p(x)μ

(
B(xu+1:d; ru+1

2
, ...,

rd

2
)
)∣∣∣∣ ≤ 1

2
∑u

j=1 1 j+1
C2rmμ

(
B(xu+1:d; ru+1

2
, ...,

rd

2
)
)
,

where u < d, rm = max
1≤ j≤d

r j and 1 j is the indicator function admitting the value 1 if [x j − r j
2 , x j + r j

2 ] intersects [0, 1] and 0 otherwisely.

Proof. For the sake of convenience, we only discuss the case when x ∈ [0, 12 ]d and 1 j = 1 for j = 1, ..., n ≤ u. The proof for 
other cases can be obtained by permuting the labels 1, ..., d. By the definition of qr1 ,...,rd (x), we have

qr1,...,rd (x) =
x1+r1/2∫

x1−r1/2

· · ·
xd+rd/2∫

xd−rd/2

p(x′
1, ...,x′

d)dx′
d · · ·dx′

1

=
x1+r1/2∫

0

· · ·
xn+rn/2∫

0

xn+1+ rn+1
2∫

x − rn+1

· · ·
xd+rd/2∫

xd−rd/2

p(x′
1, ...,x′

d)dx′
d · · ·dx′

1,

(A.8)
n+1 2
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and the partial derivative of it with respect to the first n variables is given by

∂nqr1,...,rd (x)

∂r1 · · · ∂rn

= 1

2n

xn+1+ rn+1
2∫

xn+1− rn+1
2

· · ·
xd+rd/2∫

xd−rd/2

p(x1 + r1

2
, ...,xn + rn

2
,x′

n+1, ...,x′
d)dx′

d · · ·dx′
n+1.

(A.9)

Next we obtain the partial derivative of qr1,...,rd (x) with respect to the first u variables

∂uqr1,...,rd (x)

∂r1 · · · ∂ru

= 1

2u

xu+1+ru+1/2∫
xu+1−ru+1/2

· · ·
xd+rd/2∫

xd−rd/2

p(x1 + r1

2
, ...,xn + rn

2
,xn+1 ± rn+1

2
, ...,xu ± ru

2
,x′

u+1, ...,x′
d)dx′

u+1 · · ·dx′
d

= 1

2u

∫
B(xu+1:d; ru+1

2 ,...,
rd
2 )

p(x1 + r1

2
, ...,xn + rn

2
,xn+1 ± rn+1

2
, ...,xu ± ru

2
,x′

u+1, ...,x′
d)dx′

u+1 · · ·dx′
d,

(A.10)

where the notation p(..., x ± r
2 , ...) = p(..., x + r

2 , ...) + p(..., x − r
2 , ...).

Finally, we have∣∣∣∣∂uqr1,...,rd (x)

∂r1 · · · ∂ru
− 1

2
∑u

j=1 1 j
p(x)μ

(
B(xu+1:d; ru+1

2
, ...,

rd

2
)
)∣∣∣∣

≤ 1

2u

∫
B(xu+1:d; ru+1

2 ,...,
rd
2 )

∣∣∣∣p(x1 + r1

2
, ...,xn + rn

2
,xn+1 ± rn+1

2
, ...,xu ± ru

2
,x′

u+1, ...,x′
d)

− 2u−n p(x)

∣∣∣∣dx′
u+1 · · ·dx′

d

≤2u−n

2u

∫
B(xu+1:d; ru+1

2 ,...,
rd
2 )

C2
rm

2
dx′

u+1 · · ·dx′
d

= 1

2n+1 C2rmμ
(

B(xu+1:d; ru+1

2
, ...,

rd

2
)
)
,

(A.11)

which completes the proof for u < d.
Particularly, we have∣∣∣∣∂dqr1,...,rd (x)

∂r1 · · · ∂rd
− 1

2
∑d

j=1 1 j
p(x)

∣∣∣∣ ≤ 1

2
∑d

j=1 1 j+1
C2rm. � (A.12)

Lemma 6. Suppose p satisfies Assumption 3, then, for any x ∈Q and r that satisfy{
x j + r

2 ≤ 1, i f x ≤ 1
2

x j − r
2 ≥ 0, i f x > 1

2

for j = 1, ..., d, we have∣∣∣∣pr(x) − p(x)μ
(

B(x; r

2
)
)∣∣∣∣ ≤ C2

r

2
B(x; r

2
),

and ∣∣∣∣dpr(x)

dr
−

d∑
j=1

1

21 j
p(x)μ

(
B(x ĵ;

r

2
)
)∣∣∣∣ ≤

d∑
j=1

1

21 j+1 C2rμ
(

B(x ĵ;
r

2
)
)
,

where m < d and 1 j is the indicator function admitting the value 1 if [x j − r , x j + r ] intersects [0, 1] and 0 otherwisely.
2 2
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Proof. By the definition of pr(x), we have

pr(x) =
∫

B(x; r
2 )

p(x′
1, ...,x′

d)dx′
d · · ·dx′

1. (A.13)

It then follows that,∣∣∣∣pr(x) − p(x)μ
(

B(x; r

2
)
)∣∣∣∣

≤
∫

B(x; r
2 )

∣∣p(x′
1, ...,x′

d) − p(x)
∣∣dx′

d · · ·dx′
1

≤
∫

B(x; r
2 )

C2
r

2
dx′

d · · ·dx′
1

=C2
r

2
B(x; r

2
),

(A.14)

which completes proof of the first inequality. For the second inequality, one can easily see that

pr(x) = qr,...,r(x). (A.15)

Now using Lemma 5, we obtain

∣∣∣∣dpr(x)

dr
−

d∑
j=1

1

21 j
p(x)μ

(
B(x ĵ;

r

2
)
)∣∣∣∣

≤
d∑

j=1

∣∣∣∣∂qr1,...,rd (x)

∂r j

∣∣∣
r1:d=r

− 1

21 j
p(x)μ

(
B(x ĵ;

r

2
)
)∣∣∣∣

≤
d∑

j=1

1

21 j+1 C2rμ
(

B(x ĵ;
r

2
)
)
.

� (A.16)

A.3. Proof of bias bound for the truncated KL estimator

Proof. Note that 
∑d

j=1 log ξi, j are identically distributed, then we have

E[Ĥt K L(X)] = −ψ(k) + ψ(N) + 1

N

N∑
i=1

E
[ d∑

j=1

log ξi, j
]

= −ψ(k) + ψ(N) +E
[ d∑

j=1

log ξ
x j

k (x)
]

= −E[log pεk (x)] +E[logμ(B(x; ξx1
k /2, ..., ξ

xd
k /2))]

= −E
[

log
P (B(x;εk/2))

μ(B(x; ξx1
k /2, ..., ξ

xd
k /2))

]

= −E
[

log
P (B(x;εk/2))

μ(B(x;εk/2))

]
,

(A.17)

where the third equality is from Lemma 1 and the fifth equality is due to the fact that p is supported on Q. Note that

C1 ≤ P (B(x;εk/2))

μ(B(x;εk/2))
≤ sup

x∈Q
p(x) < ∞, (A.18)

and we have
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∣∣∣∣ log p(x) − log
P (B(x;εk/2))

μ(B(x;εk/2))

∣∣∣∣
≤ 1

C1

∣∣∣∣p(x) − P (B(x;εk/2))

μ(B(x;εk/2))

∣∣∣∣
≤ 1

C1μ(B(x;εk/2))

∫
B(x;εk/2)

|p(x) − p(x′)|dx′ (A.19)

≤ 1

C1μ(B(x;εk/2))

∫
B(x;εk/2)

C2||x − x′||∞dx′

≤ C2

2C1
εk.

Finally, using Lemma 4, the bias bound of E[Ĥt K L(X)] can be obtained by

∣∣E[Ĥt K L(X)] − H(X)
∣∣

≤ E
x∼p

E
[∣∣∣∣ log p(x) − log

P (B(x;εk/2))

μ(B(x;εk/2))

∣∣∣∣]
≤ C2

2C1
E

x∼p
E[εk]

≤ C2

C1+1/d
1

( k

N

) 1
d ,

(A.20)

which completes the proof. �
A.4. Proof of variance bound for the truncated KL estimator

Proof. For the sake of convenience, we define αi = ∑d
j=1 log ξi, j . We then define α′

i , i = 1, ..., N as the estimators after x(1)

is resampled and α∗
i , i = 2, ..., N as the estimators after x(1) is removed. Then, by the Efron-Stein inequality [38],

Var[Ĥt K L(X)] = Var

[
1

N

N∑
i=1

αi

]

≤ N

2
E

[(
1

N

N∑
i=1

αi − 1

N

N∑
i=1

α′
i

)2]

≤ NE

[(
1

N

N∑
i=1

αi − 1

N

N∑
i=2

α∗
i

)2

+
(

1

N

N∑
i=1

α′
i − 1

N

N∑
i=2

α∗
i

)2]

= 2NE

[(
1

N

N∑
i=1

αi − 1

N

N∑
i=2

α∗
i

)2]
.

(A.21)

Let 1Ei be the indicator function of the event Ei = {εk(x(1)) 
= ε∗
k (x(1))}, where ε∗

k (x(1)) is twice the k-NN distance of x(1)

when α∗
i are used. Then,

N

(
1

N

N∑
i=1

αi − 1

N

N∑
i=2

α∗
i

)
= α1 +

N∑
i=2

1Ei (αi − α∗
i ). (A.22)

By Cauchy-Schwarz inequality, we have
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N2
(

1

N

N∑
i=1

αi − 1

N

N∑
i=2

α∗
i

)2

≤
(

1 +
N∑

i=2

1Ei

)(
α2

1 +
N∑

i=2

1Ei (αi − α∗
i )2

)

≤ (1 + Ck,d)

(
α2

1 +
N∑

i=2

1Ei (αi − α∗
i )2

)

≤ (1 + Ck,d)

(
α2

1 + 2
N∑

i=2

1Ei (α
2
i + α∗2

i )

)
,

(A.23)

where Ck,d is the constant such that x1 is amongst the k-nearest neighbors of at most Ck,d other samples. Note that αi and 
α∗

i are identically distributed, we only need to bound

E[α2
1], (A.24a)

(N − 1)E[1E2α
2
2], (A.24b)

(N − 1)E[1E2α
∗2
2 ]. (A.24c)

Bound of (A.24a):
We separate (A.24a) into two parts,

E
[
α2

1

] = E
x∈Q E

P :εk<aN

[
α2

1

] + E
x∈Q E

P :εk≥aN

[
α2

1

]
, (A.25)

where aN = ( 2k log N
C1 N

) 1
d .

First, we consider the bound of the first term in Eq (A.25). For any x ∈Q,

E
P :εk<aN

[
α2

1

]

=
aN∫

0

f N,k(r)
[

log
(
ξ

x1
k · · · ξxd

k

)]2
dr.

(A.26)

where f N,k(r) = k 
(

N − 1
k

)
· dpr

dr · pk−1
r · (1 − pr)

N−k−1 [17]. Note that for sufficiently large N ,

aN∫
0

[log
(
ξ

x1
k · · · ξxd

k

)]2
dr

≤
aN∫

0

[
log

( r

2
· · · r

2

)]2
dr

≤C3
(log N)3

N1/d
,

(A.27)

for some C3 > 0, we now focus on bounding f N,k(r). By basic calculus, we can see that

k

(
N − 1

k

)
· pk−1

r · (1 − pr)
N−k−1 ≤ C4N, (A.28)

for some C4 > 0 and pr ∈ (0, 1). Also, by Lemma 6, we have dpr
dr ≤ C5

log N
N for some C5 > 0 and r < aN . Therefore, the pdf 

term can be bounded by

f N,k(r) ≤ C4C5 log N. (A.29)

Combining Eq (A.27) and Eq (A.29), we can bound Eq (A.26) by:

E
P :εk<aN

[
α2

1

] ≤ C3C4C5
(log N)4

N1/d
≤ C6, (A.30)

for some C6 > 0. Thus, the first term in Eq (A.25) is bounded by

E E
[
α2

1

] ≤ C6. (A.31)

x∈QP :εk<aN
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Now we consider the second term in Eq (A.25). For εk ≥ aN and sufficiently large N , we have[
log

(
ξ

x1
k · · · ξxd

k

)]2 ≤ [
log

(
εk/2 · · ·εk/2

)]2

≤ d2[ log
(aN

2

)]2

≤ C7(log N)2,

(A.32)

for some C7 > 0. Using Lemma 3 and Eq (A.32), the second term in Eq (A.25) can be bounded by

E
x∈Q E

P :εk≥aN

[
α2

1

] = E
x∈Q E

P :εk≥aN

[[
log

(
ξ

x1
k · · · ξxd

k

)]2
]

≤ C7(log N)2 · P (εk ≥ aN)

≤ C8
(log N)k+2

N2k
,

(A.33)

for some C8 > 0.
Combining Eq (A.31) and Eq (A.33), the expectation of α2

1 is bounded by

E[α2
1] ≤ C9, (A.34)

for some C9 > 0.

Bound of (A.24b):
Since the event E2 is equivalent to the event that x(1) is amongst the k-NN of x(2) , E[1E2 ] =P {x(1) ∈ B(x(2); εk(x(2))} =

k
N−1 . Additionally, since E2 is independent of εk(x(2)), (A.24b) is therefore bounded as

(N − 1)E[1E2α
2
2] ≤ (N − 1)E[1E2 ]E[α2

2] ≤ kC9, (A.35)

where the second inequality is from Eq (A.34).
Bound of (A.24c):
Using the independence between E2 and ε∗

k (x(2)) (twice the k-NN distance of x(2) after x(1) is removed), we can bound 
(A.24c) as

(N − 1)E[1E2α
∗2
2 ] ≤ (N − 1)E[1E2 ]E[α∗2

2 ] ≤ kC10, (A.36)

for some C10 > 0, where the second inequality is obtained from Eq (A.34) when the sample size is reduced to N − 1.
Finally we obtain the bound of the variance of Ĥt K L(X)

Var[Ĥt K L(X)] ≤ C11
1

N
, (A.37)

for some C11 > 0. �
A.5. Proof of bias bound for the truncated KSG estimator

Proof. We separate the d-dimensional unit cube Q into two subsets, Q = Q1 + Q2, where Q1 := [ aN
2 , 1 − aN

2 ]d , aN =( 2k log N
C1 N

) 1
d , and Q2 = Q − Q1. Suppose that P̃ , p̃, and q̃

ε
x1
k ,...,ε

xd
k

(x) are defined as in Lemma 2 with l = p(x)−
1
d , and by 

Lemma 2 and the fact that 
∑d

j=1 log ζi, j are identically distributed, we have

E[Ĥt K SG(X)] = −ψ(k) + ψ(N) + (d − 1)/k + 1

N

N∑
i=1

E
[ d∑

j=1

log ζi, j
]

= E
x∼p

E
P

[
log ζ

x1
k · · · ζ xd

k

] − E
x∼p

E
P̃

[
log q̃

ε
x1
k ,...,ε

xd
k

]
= E

x∼p
E
P

[
log ζ

x1
k · · · ζ xd

k

] − E
x∼p

E
P̃

[
log

(
p(x)εx1

k · · ·εxd
k

)]
.

(A.38)

We decompose the bias into three terms and bound them separately:∣∣E[Ĥt K SG(X)] − H(X)
∣∣

=
∣∣∣∣ Ex∼p

E
P

[
log

(
ζ

x1
k · · · ζ xd

k

)] − E
x∼p

E
P̃

[
log

(
εx1

k · · ·εxd
k

)]∣∣∣∣ (A.39)
≤I1 + I2 + I3,
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with

I1 =
∣∣∣∣ E
x∈Q2

E
P :εk<aN

[
log

(
ζ

x1
k · · · ζ xd

k

)]∣∣∣∣ +
∣∣∣∣ E
x∈Q2

E
P̃ :εk<aN

[
log

(
εx1

k · · ·εxd
k

)]∣∣∣∣,
I2 =

∣∣∣∣ E
x∈Q1

E
P :εk<aN

[
log

(
ζ

x1
k · · · ζ xd

k

)] − E
x∈Q1

E
P̃ :εk<aN

[
log

(
εx1

k · · ·εxd
k

)]∣∣∣∣,
I3 =

∣∣∣∣ E
x∈Q E

P :εk≥aN

[
log

(
ζ

x1
k · · · ζ xd

k

)]∣∣∣∣ +
∣∣∣∣ E
x∈Q E

P̃ :εk≥aN

[
log

(
εx1

k · · ·εxd
k

)]∣∣∣∣,
(A.40)

where E
P :εk<aN

means taking expectation under the probability measure P over εx j

k < aN , j = 1, ..., d.

Bound of I1:
For any x ∈Q2,

E
P :εk<aN

[
log

(
ζ

x1
k · · · ζ xd

k

)]

=
aN∫

0

· · ·
aN∫

0

f N,k(r1, ..., rd) log
(
ζ

x1
k · · · ζ xd

k

)
dr1 · · ·drd.

(A.41)

where f N,k(r1, ..., rd) =
(

N − 1
k

)
· ∂d(qk

r1,...,rd
)

∂r1···∂rd
· (1 − prm )N−k−1, and rm = max

1≤ j≤d
r j [17]. Note that for sufficiently large N , we 

have,

aN∫
0

· · ·
aN∫

0

∣∣ log
(
ζ

x1
k · · · ζ xd

k

)∣∣dr1 · · ·drd

≤
aN∫

0

· · ·
aN∫

0

∣∣ log
( r1

2
· · · rd

2

)∣∣dr1 · · ·drd

≤
aN∫

0

· · ·
aN∫

0

∣∣ log
(
r1 · · · rd

)∣∣dr1 · · ·drd +
aN∫

0

· · ·
aN∫

0

d log 2dr1 · · ·drd

= − d(aN)d−1

aN∫
0

log rdr + d log 2

( aN∫
0

dr

)d

≤C3

(
log N

)2

C1N
,

(A.42)

for some C3 > 0. We now focus on bounding f N,k(r1, ..., rd). We omit the subscripts of qr1,...,rd for simplicity from now. By 
the multivariate version of Faà di Bruno’s formula [48], one obtains

∂d(qk)

∂r1 · · · ∂rd
=

∑
π∈�

d|π |qk

(dq)|π | ·
∏
B∈π

∂ |B|q∏
j∈B ∂r j

, (A.43)

where π runs through the set � of all partitions of the set 1, ...,d. By Lemma 5, we have

∂ |B|q∏
j∈B ∂r j

≤ p(x)rd−|B|
m + C2rd−|B|+1

m , (A.44)

which implies that

∏
B∈π

∂ |B|q∏
j∈B ∂r j

≤ Mr(|π |−1)d
m , (A.45)

where M = p∗d + 1 and p∗ = sup p(x). Therefore, for |π | ≤ k and rm ≤ aN we can bound f N,k(r1, ..., rd) as

x∈Q
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f N,k(r1, ..., rd) =
∑
π∈�

(
N − 1

k

)
· d|π |qk

(dq)|π | ·
∏
B∈π

∂ |B|q∏
j∈B ∂r j

· (1 − prm)N−k−1

≤
∑
π∈�

(N − 1)!
(k − |π |)!(N − k − 1)!qk−|π |(1 − prm)N−k−1Mr(|π |−1)d

m

≤
∑
π∈�

M · Nk pk−|π |
rm (1 − prm)N−k−1r(|π |−1)d

m

≤
∑
π∈�

C M · N |π |r(|π |−1)d
m

≤
∑
π∈�

C M

(
2k log N

C1

)|π |−1

N

≤|�|C M

(
2k log N

C1

)k−1

N,

(A.46)

where the third inequality is due to the fact that pk−|π |(1 − p)N−k−1 ≤ C N−k+|π | for p ∈ [0, 1]. Combining Eq (A.46) and 
Eq (A.42), we can bound the expectation in Eq (A.41) by∣∣∣∣ E

P :εk<aN

[
log

(
ζ

x1
k · · · ζ xd

k

)]∣∣∣∣ ≤ C4

(
log N

)k+1

Ck
1

(A.47)

for some C4 > 0. It follows that the first term of I1 is bounded by∣∣∣∣ E
x∈Q2

E
P :εk<aN

[
log

(
ζ

x1
k · · · ζ xd

k

)]∣∣∣∣ ≤ C4

(
log N

)k+1

Ck
1

E
x∈Q2

[1]

≤ C4

(
log N

)k+1

Ck
1

p∗μ(x ∈ Q2)

≤ p∗C4

(
log N

)k+1

Ck
1

(d + 1)aN

= (d + 1)p∗C4

(
log N

)k+1

Ck
1

(2k log N

C1N

) 1
d .

(A.48)

Since P̃ is a special case of P , the second term of I1 can also be bounded by the same order. Thus, I1 is bounded by

|I1| ≤ C5

(
log N

)k+2

Ck+1
1 N

1
d

, (A.49)

for some C5 > 0.
Bound of I2:
For any x ∈Q1 and εx j

k < aN , j = 1, ..., d, it is easy to see that ζ x j

k = ε
x j

k . Thus, I2 can be bounded and rewritten as

I2 ≤ E
x∈Q1

∣∣∣∣ E
P :εk<aN

[
log

(
ζ

x1
k · · · ζ xd

k

)] − E
P̃ :εk<aN

[
log

(
εx1

k · · ·εxd
k

)]∣∣∣∣
= E

x∈Q1

∣∣∣∣
aN∫

0

· · ·
aN∫

0

(
f N,k(r1, ..., rd) − f̃ N,k(r1, ..., rd)

)
log

(
r1 · · · rd

)
dr1 · · ·drd

∣∣∣∣,
(A.50)

where f̃ N,k(r1, ..., rd) =
(

N − 1
k

)
∂d (̃qk

r1,...,rd
)

∂r1···∂rd
· (1 − p̃rm )N−k−1. Again, we omit the subscripts of ̃qr1,...,rd in the following anal-

ysis. Since we have

aN∫
0

· · ·
aN∫

0

∣∣ log
(
r1 · · · rd

)∣∣dr1 · · ·drd

≤C3

(
log N

)2

,

(A.51)
C1N
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from (A.42), we now focus on bounding f N,k(r1, ..., rd) − f̃ N,k(r1, ..., rd). Recall the Faà di Bruno’s formula in Eq (A.43), and 
we have

f N,k(r1, ..., rd)

=
∑
π∈�

(
N − 1

k

)
∂ |π |qk

(∂q)|π |
∏
B∈π

∂ |B|q∏
j∈B ∂r j

(1 − prm)N−k−1

=
∑
π∈�

(
N − 1

k

)
k!

(k − |π |)!
(

p(x)r1 · · · rd + O (r1 · · · rdrm)
)k−|π |

×
∏
B∈π

(
p(x)

∏
j∈B̂

r j + O (rm

∏
j∈B̂

r j)
)(

1 − p(x)rd
m − O (rd+1

m )
)N−k−1

=
∑
π∈�

(
N − 1

k

)
k!

(k − |π |)!
(

p(x)r1 · · · rd
)k−|π |(

1 + O (rm)
)k−|π | ∏

B∈π

(
p(x)

∏
j∈B̂

r j
)

× (
1 + O (rm)

)(
1 − p(x)rd

m

)N−k−1(
1 − O (rd+1

m )
)N−k−1

=
∑
π∈�

(
N − 1

k

)
k!

(k − |π |)!
(

p(x)r1 · · · rd
)k−|π | ·

∏
B∈π

(
p(x)

∏
j∈B̂

r j
)

× (
1 − p(x)rd

m

)N−k−1 · (1 + O (rm)
)k(

1 − O (rd+1
m )

)N−k−1

=
∑
π∈�

(
N − 1

k

)
∂ |π |̃qk

(∂q̃)|π | ·
∏
B∈π

∂ |B |̃q∏
j∈B ∂r j

· (1 − p̃rm)N−k−1 · (1 + O (rm)
)k(

1 − O (rd+1
m )

)N−k−1

= f̃ N,k(r1, ..., rd) · (1 + O (rm)
)k(

1 − O (rd+1
m )

)N−k−1

(A.52)

where the second equality is from Lemma 5 and Lemma 6 and the fifth equality is from the fact that ̃q = p(x)r1 · · · rd and 
p̃rm = p(x)rd

m for x ∈Q1 and rm ≤ aN .
By Eq (A.52), we obtain the bound of the difference f N,k(r1, ..., rd) − f̃ N,k(r1, ..., rd)

| f N,k(r1, ..., rd) − f̃ N,k(r1, ..., rd)|
=

∣∣∣∣(1 + O (rm)
)k(

1 − O (rd+1
m )

)N−k−1 − 1

∣∣∣∣ f̃ N,k(r1, ..., rd)

≤C6rm f̃ N,k(r1, ..., rd)

≤C6

(
2k log N

C1N

) 1
d |�|C M

(
2k log N

C1

)k−1

N,

(A.53)

for some C6 > 0, where the last inequality is from Eq (A.46) and the fact that P̃ is a special case of P . Combining Eq (A.53)
and Eq (A.51), we obtain the bound of I2

I2 ≤ C3C6

(
2k log N

C1N

) 1
d |�|C M

(
2k log N

C1

)k−1 (
log N

)2

C1
E

x∈Q1
[1]

≤ C7
(log N)k+2

Ck+1
1 N

1
d

,

(A.54)

for some C7 > 0, as E
x∈Q1

[1] ≤ 1.

Bound of I3:
To bound the first term of I3, we need to bound E

P :εk≥aN

[∣∣ log
(
ζ

x1
k · · · ζ xd

k

)∣∣] first. Note that the event {εk ≥ aN} is equiva-

lent to that there is at least one j ∈ {1, ..., d} such that εx j

k ≥ aN , and by the symmetry of the equation, the expectation over 
this set can be rewritten as

E
P :εk≥aN

[∣∣ log
(
ζ

x1
k · · · ζ xd

k

)∣∣] =
d∑

i=1

C i
d E

P :
{
εk,1:i ≥ aN

εk,i:d < aN

[∣∣ log
(
ζ

x1
k · · · ζ xd

k

)∣∣].
(A.55)

Consider each term in Eq (A.55)
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E

P :
{
εk,1:i ≥ aN

εk,i:d < aN

[∣∣ log
(
ζ

x1
k · · · ζ xd

k

)∣∣]

≤ E

P :
{
εk,1:i ≥ aN

εk,i:d < aN

[∣∣ log
(
ζ

x1
k · · · ζ xi

k

)∣∣] + E

P :
{
εk,1:i ≥ aN

εk,i:d < aN

[∣∣ log
(
ζ

xi+1
k · · · ζ xd

k

)∣∣]. (A.56)

For εx j

k ≥ aN , j = 1, ..., i and sufficiently large N , we have∣∣ log
(
ζ

x1
k · · · ζ xi

k

)∣∣ ≤ ∣∣ log
(
εx1

k /2 · · ·εxi
k /2

)∣∣
≤ ∣∣ log

(aN

2

)i∣∣
≤ C8 log N,

(A.57)

for some C8 > 0. Using Lemma 3 and Eq (A.57), the first term of Eq (A.56) can be bounded by

E

P :
{
εk,1:i ≥ aN

εk,i:d < aN

[∣∣ log
(
ζ

x1
k · · · ζ xi

k

)∣∣] ≤ C8 log N · P {εk,1:i ≥ aN , εk,i:d < aN}

≤ C8 log N · P {εk ≥ aN}
≤ C9

(log N)k+1

N2k
,

(A.58)

For some C9 > 0.
Now consider the second term of Eq (A.56). Like Eq (A.42), the integration with respect to Lebesgue measure can be 

bounded as

1∫
aN

· · ·
1∫

aN

( aN∫
0

· · ·
aN∫

0

∣∣ log
(
ζ

xi+1
k · · · ζ xd

k

)∣∣dri+1 · · ·drd

)
drd · · ·dri

≤ − (d − i)(aN)d−i−1

aN∫
0

log rdr + (d − i) log 2(

aN∫
0

dr)d−i

≤C10 log N,

(A.59)

for some C10 > 0. Again using the multivariate version of Faà di Bruno’s formula, we can bound f N,k(r1, ..., rd) for |π | ≤ k
and rm ≥ aN as

f N,k(r1, ..., rd) =
∑
π∈�

(
N − 1

k

)
· d|π |qk

(dq)|π | ·
∏
B∈π

∂ |B|q∏
j∈B ∂r j

· (1 − prm)N−k−1

≤
∑
π∈�

(N − 1)!
(k − |π |)!(N − k − 1)!qk−|π |(1 − prm)N−k−1Mr(|π |−1)d

m

≤
∑
π∈�

(N − 1)!
(k − |π |)!(N − k − 1)! (1 − C1ad

N)N−k−1M

≤C11
1

Nk
,

(A.60)

for some C11 > 0. Therefore, combining Eq (A.59) and Eq (A.60) leads to the bound of the second term of Eq (A.56)

E

P :
{
εk,1:i ≥ aN

εk,i:d < aN

[∣∣ log
(
ζ

xi+1
k · · · ζ xd

k

)∣∣] ≤ C10C11
log N

Nk
, (A.61)

which is a larger bound then Eq (A.58). As a result we can bound Eq (A.56) by

E

P :
{
εk,1:i ≥ aN

εk,i:d < aN

[∣∣ log
(
ζ

x1
k · · · ζ xd

k

)∣∣] ≤ C10C11
log N

Nk
. (A.62)
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Given Eq (A.62), we are now able to estimate Eq (A.55) and then the first term of I3 by the same bound up to a constant. 
Similarly, we can also bound the second term of I3 by O

( log N
Nk

)
. Thus, I3 can be bounded by

I3 ≤ C12
log N

Nk
, (A.63)

for some C12 > 0.
Finally, combining the upper bounds of I1, I2 and I3, we obtain that the bias is bounded by

∣∣E[Ĥt K SG(X)] − H(X)
∣∣ ≤ C13

(log N)k+2

Ck+1
1 N

1
d

, (A.64)

for some C13 > 0. �
A.6. Proof of variance bound for the truncated KSG estimator

Proof. We let βi = ∑d
j=1 log ζi, j , and define β ′

i , i = 1, ..., N as the estimators after x(1) is resampled and β∗
i , i = 2, ..., N as 

the estimators after x(1) is removed. It should be noted that this proof can be completed by following the roadmap in 
Appendix A.4, and the only issue that needs to be validated here is that E[β2

1 ] = O ((log N)k+2).
Again, we separate E

[
β2

1

]
into two parts,

E
[
β2

1

] = E
x∈Q E

P :εk<aN

[
β2

1

] + E
x∈Q E

P :εk≥aN

[
β2

1

]
, (A.65)

where aN is defined as in Appendix A.5.
First, we consider the bound of the first term in Eq (A.65). For any x ∈Q,

E
P :εk<aN

[
β2

1

]

=
aN∫

0

· · ·
aN∫

0

f N,k(r1, ..., rd)
[

log
(
ζ

x1
k · · · ζ xd

k

)]2
dr1 · · ·drd,

(A.66)

where f N,k(r1, ..., rd) =
(

N − 1
k

)
· ∂d(qk

r1,...,rd
)

∂r1···∂rd
· (1 − prm )N−k−1, and rm = max

1≤ j≤d
r j [17].

Note that for sufficiently large N , we have,

aN∫
0

· · ·
aN∫

0

[
log

(
ζ

x1
k · · · ζ xd

k

)]2
dr1 · · ·drd

≤
aN∫

0

· · ·
aN∫

0

[
log

( r1

2
· · · rd

2

)]2
dr1 · · ·drd

=d

aN∫
0

· · ·
aN∫

0

[
log

( r1

2

)]2
dr1 · · ·drd + d(d − 1)

aN∫
0

· · ·
aN∫

0

log
( r1

2

)
log

( r2

2

)
dr1 · · ·drd

≤C3
(log N)3

N
,

(A.67)

for some C3 > 0. Recall Eq (A.46), and we can bound Eq (A.66) as:

E
P :εk<aN

[
β2

1

] ≤ C4(log N)k+2, (A.68)

for some C4 > 0. Thus, the first term in Eq (A.65) is bounded by

E
x∈Q E

P :εk<aN

[
β2

1

] ≤ C4(log N)k+2. (A.69)

Now we consider the second term in Eq (A.65).
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Like the bound analysis of I3 in Appendix A.5, we can rewrite E
P :εk≥aN

[
β2

1

]
as

E
P :εk≥aN

[
β2

1

] =
d∑

i=1

C i
d E

P :
{
εk,1:i ≥ aN

εk,i:d < aN

[
β2

1

]
.

(A.70)

Consider each term of Eq (A.55)

E

P :
{
εk,1:i ≥ aN

εk,i:d < aN

[
β2

1

]

≤2

(
E

P :
{
εk,1:i ≥ aN

εk,i:d < aN

[∣∣ log
(
ζ

x1
k · · · ζ xi

k

)∣∣2] + E
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{
εk,1:i ≥ aN

εk,i:d < aN

[∣∣ log
(
ζ

xi+1
k · · · ζ xd

k

)∣∣2]) (A.71)

For εx j

k ≥ aN , j = 1, ..., i and sufficiently large N , we have∣∣ log
(
ζ

x1
k · · · ζ xi

k

)∣∣2 ≤ ∣∣ log
(
εx1

k /2 · · ·εxi
k /2

)∣∣2

≤ ∣∣ log
(aN

2

)i∣∣2

≤ C5(log N)2,

(A.72)

for some C5 > 0. Using Lemma 3 and Eq (A.72), the first term of Eq (A.71) can be bounded by

E

P :
{
εk,1:i ≥ aN

εk,i:d < aN

[∣∣ log
(
ζ

x1
k · · · ζ xi

k

)∣∣2] ≤ C5(log N)2 · P {εk,1:i ≥ aN , εk,i:d < aN}

≤ C5(log N)2 · P {εk ≥ aN}
≤ C6,

(A.73)

for some C6 > 0.
Now consider the second term of Eq (A.71). Like Eq (A.67), the integration with respect to Lebesgue measure is bounded 

as
1∫

aN

· · ·
1∫

aN

( aN∫
0

· · ·
aN∫

0

∣∣ log
(
ζ

xi+1
k · · · ζ xd

k

)∣∣2
dri+1 · · ·drd

)
drd · · ·dri

≤C7,

(A.74)

for some C7 > 0. Therefore, combining Eq (A.74) and the PDF bound in Eq (A.60) leads to the bound of the second term of 
Eq (A.71)

E

P :
{
εk,1:i ≥ aN

εk,i:d < aN

[∣∣ log
(
ζ

xi+1
k · · · ζ xd

k

)∣∣2] ≤ C8, (A.75)

for some C8 > 0. As a result we can bound Eq (A.71) by

E

P :
{
εk,1:i ≥ aN

εk,i:d < aN

[∣∣ log
(
ζ

x1
k · · · ζ xd

k

)∣∣] ≤ C6 + C8. (A.76)

Given Eq (A.76), we are now able to estimate Eq (A.70) and then the second term of Eq (A.65) by the same bound up to a 
constant.

Finally, the expectation of β2
1 is bounded as

E[β2
1 ] ≤ C9(log N)k+2, (A.77)

for some C9 > 0. Following the same procedure in Appendix A.4, we can obtain the bound of the variance of Ĥt K SG(X)

Var[Ĥt K SG(X)] ≤ C10
(log N)k+2

N
, (A.78)

for some C10 > 0. �
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Appendix B. Proof of Corollary 2

Proof. Given a UM f , the density of the original distribution satisfies the change of variable formula,

px(x) = pz( f (x))g(x), (B.1)

where g(x) =
∣∣∣det ∂ f (x)

∂x

∣∣∣ is differentiable and positive for any x ∈Rd ([35,49]). Recall that px is differentiable, and it follows 
that,

pz(z) = px( f −1(z))

g( f −1(z)))
, (B.2)

is also differentiable for any z ∈ Q o . Thus, the supreme C N
2 is a well defined random variable.

Since pS
z is a differentiable density function defined on Q, there exists a z∗ ∈ Q such that pS

z (z∗) = 1. By mean value 
theorem, we have

|1 − pS
z (z)|

≤|�pS
z (ξ) · (z∗ − z)|

≤||�pS
z (ξ)||1 · ||z∗ − z||∞

≤C N
2 ,

(B.3)

where ξ is some vector in Q. Thus, we have

1 − C N
2 ≤ pN

x (x) ≤ 1 + C N
2 . (B.4)

Now define C N
1 = inf

z∈Q
pS

z (z). For N > M , the bias can then be bounded by

∣∣E[ĤUM−tKL(X)] − H(X)
∣∣

≤EU M
∣∣EX [ĤUM−tKL(X)] − H(X)

∣∣
≤E

[ C N
2

(C N
1 )1+1/d

]( k

N

) 1
d

≤C N
U M−t K L

( k

N

) 1
d ,

(B.5)

where C N
U M−t K L = 1

(1−C̄)1+1/d E[C N
2 ]. Note that C N

2
P−→

N→∞ 0 and C N
2 ≤ C̄, a.s. for any N > M , we have lim

N→∞E[C N
2 ] = 0 and 

therefore lim
N→∞ C N

U M−t K L = 0. The MSE can be bounded by

E[(ĤUM−tKL(X) − H(X))2]
≤2E[(ĤUM−tKL(X) −EX [ĤUM−tKL(X)])2] + 2E[(EX [ĤUM−tKL(X)] − H(X))2]
=2EUMEX [(ĤUM−tKL(X) −EX [ĤUM−tKL(X)])2] + 2EUM[(EX [ĤUM−tKL(X)] − H(X))2]

(B.6)

Note that when N > M , C N
1 and C N

2 satisfy Assumption 3. Then by Theorem 1, we can bound the first term of Eq. (B.6) by

2EUMEX [(ĤUM−tKL(X) −EX [ĤUM−tKL(X)])2] ≤ C1
1

N
, (B.7)

for some C1 > 0. The second term of Eq. (B.6) can be bounded by

2EUM[(EX [ĤUM−tKL(X)] − H(X))2]

≤2E
[ (C N

2 )2

(C N
1 )2(1+1/d)

]( k

N

) 2
d

≤D N
U M−t K L

( k

N

) 2
d

(B.8)

where D N
U M−t K L = 2

(1−C̄)2(1+1/d) E[(C N
2 )2]. Again, we have, lim

N→∞ D N
U M−t K L = 0 for any N > M . Thus, the MSE is bounded by

E[(ĤUM−tKL(X) − H(X))2] ≤ C1
1 + D N

U M−t K L

( k ) 2
d . � (B.9)
N N
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Appendix C. Proof of Corollary 3

Proof. For N > M , the bias can be bounded by∣∣E[ĤUM−tKSG(X)] − H(X)
∣∣

≤CE
[ p̄ S

z

(
(p̄ S

z )d + 1
)

Ck+1
1

] (log N)k+2

N
1
d

≤CU M−t K SG
(log N)k+2

N
1
d

,

(C.1)

where C is a positive constant, p̄ S
z = sup

z∈Q
pS

z (z) and CU M−t K SG = C
(1+C̄)

(
(1+C̄)d+1

)
(1−C̄)k+1 . Similarly as the proof of Corollary 2 and 

by Theorem 2, we can bound the MSE by

E[(ĤUM−tKSG(X) − H(X))2] ≤ C2
(log N)k+2

N
+ D N

U M−t K SG
(log N)2(k+2)

N
2
d

, (C.2)

where C2 is a positive constant and D N
U M−t K SG =

(
C

(1+C̄)
(
(1+C̄)d+1

)
(1−C̄)k+1

)2
. �

Appendix D. Further details of the numerical examples

D.1. Implementation details of the estimators

The setup of MAF: We use a MAF built by 10 autoregressive layers [50] for Hybrid Rosenbrock distribution and one built 
by 5 autoregressive layers for Even Rosenbrock distribution and the application of experimental design. Each layer has two 
hidden layers of 50 units and tanh nonlinearities. In each experiment, half of the samples are used to train the MAF model 
and the other half are used to estimate the entropy.

The implementation of CADEE and non-Mises estimator: The two estimators are implemented using the code provided 
by [21] and [22] with the default parameters.

D.2. The two multivariate Rosenbrock distributions

Hybrid Rosenbrock Distribution. The density of the hybrid Rosenbrock distribution is given by

π(x) ∝ exp

⎧⎨
⎩−a(x1 − μ)2 −

n2∑
j=1

n1∑
i=2

b j,i(x j,i − x2
j,i−1)

2

⎫⎬
⎭ , (D.1)

where the dimensionality of x is d = (n1 − 1)n2 + 1. The variable x j,1 = x1 for j = 1, ..., n2. The normalization constant of 
Eq. (D.1) is

√
a
∏n1,n2

i=2, j=1

√
b j,i

πd/2
. (D.2)

In this experiment, we set μ = 1.0, a = 1.0, b j,i = 0.1 for all i and j, n1 = 4 and n2 ranging from 1 to 7. This setting 
forms a class of distributions with dimensions ranging from 4 to 22.

Even Rosenbrock Distribution. The density of the even Rosenbrock distribution is given by

π(x) ∝ exp

⎧⎨
⎩−

d/2∑
i=1

[
(x2i−1 − μ2i−1)

2 − ci

(
x2i − x2

2i−1

)2
]⎫⎬
⎭ , (D.3)

where the dimensionality d must be an even number. The normalization constant for Eq. (D.3) is∏d/2
i=1

√
ci

πd/2
. (D.4)

In this experiment, we set μ2i−1 = 0, ci = 12.5 for i = 1, ..., d/2 with d ranging from 2 to 22. This setting forms a class of 
distributions with dimensions ranging from 2 to 22.

Hybrid Rosenbrock Distribution with Discontinuous Density. The density of the hybrid Rosenbrock distribution with 
discontinuous density is given by
31
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π(x) = unifpdf(x1,μ,

√
1

8a
) ×

n2∏
j=1

n1∏
i=2

unifpdf(x j,i, x2
j,i−1,

√
1

8b
) (D.5)

where unifpdf(x, α, β) is the pdf of the continuous uniform distribution on the interval [α − β, α + β], evaluated at the 
values in x, and where the dimensionality of x is d = (n1 − 1)n2 + 1. The variable x j,1 = x1 for j = 1, ..., n2.

In this experiment, we set μ = 1.0, a = 1.0, b j,i = 0.1 for all i and j, n1 = 4 and n2 ranging from 1 to 7. This setting 
forms a class of distributions with dimensions ranging from 4 to 22.

Even Rosenbrock Distribution with Discontinuous Density. The density of the even Rosenbrock distribution with dis-
continuous density is given by

π(x) =
d/2∏
i=1

[
unifpdf(x2i−1,μ2i−1,0.5) × unifpdf(x2i, x2

2i−1, ci)
]
, (D.6)

where the dimensionality d must be an even number.
In this experiment, we set μ2i−1 = 0, ci = 0.025 for i = 1, ..., d/2 with d ranging from 2 to 22. This setting forms a class 

of distributions with dimensions ranging from 2 to 22.

D.3. Entropy estimator only using NF

In this section we describe a simplified version of the proposed method, which estimate the entropy only using NF 
(without the truncated entropy estimators). To start with, we recall Eq. (12) in the main paper,

H(X) = H(Z) +
∫

pz(z) log

∣∣∣∣ det
∂ f −1(z)

∂z

∣∣∣∣dz. (D.7)

The main idea of this simplified method is to assume that the transformed random variable Z exactly follows a uniform 
distribution and as a result H(Z) = 0. Therefore the entropy of X is estimated as,

Ĥ N F (X) = 1

n

n∑
i=1

log

∣∣∣∣det
∂ f −1(z(i))

∂z

∣∣∣∣, (D.8)

where z(i) = f (x(i)). A limitation of this method is quite obvious – the transformed random variable Z is usually not 
uniformly distributed and simply taking its entropy to be zero will undoubtedly introduce bias, which is demonstrated by 
the numerical examples in the main paper. It should also be noted that, while not in the context of entropy estimation, a 
NF based approach has been used for maximum entropy modeling [51].

D.4. The Beta scheme for parametrizing the observation times

In the optimal experimental design (OED) example, we use a lower dimensional parameterization scheme to reduce the 
dimensionality of the optimization problem [46]. In particular we use the Beta scheme [46] to allocate the placements of 
the observation times. Specifically, let Q (·, α, β) be the quantile function of the beta distribution with shape parameters α
and β , and the d observation times λ = (t1, ..., td) in the time interval [0, T ] are allocated as,

ti = T · Q (
i

d + 1
,α,β), i = 1, ...,d. (D.9)

As such the d-dimensional variable λ is parametrized by α > 0 and β > 0.

D.5. Nested Monte Carlo

Here we describe the Nested Monte Carlo (NMC) approach that is used to estimate the entropy in the experimental 
design example. Recall that the entropy of interest is H(Y ) (here for simplicity we omit the design parameter λ):

H(Y ) =
∫

log p(y)p(y)dy, (D.10)

which can be estimated via Monte Carlo (MC):

H(Y ) ≈ − 1

M

M∑
log p(y(i)), (D.11)
i=1

32



Z. Ao and J. Li Artificial Intelligence 322 (2023) 103954
where y(i) are drawn from p(y). A difficulty here is that we do not have an explicit expression of p(y). Note however that 
in this example the likelihood p(y|θ) and the prior p(θ) are available and we can therefore write

p(y) =
∫

p(y|θ)p(θ)dθ. (D.12)

It follows that p(y) can also be estimated via MC:

p(y(i)) ≈ 1

N

N∑
j=1

p(y(i)|θ( j)), (D.13)

where θ( j) are drawn from p(θ). Combining Eq. (D.13) and Eq. (D.11), we obtain an estimator of H(Y ), which is referred to 
as the NMC method [47]. In particular, Eq. (D.13) is usually referred to as the inner MC and Eq. (D.11) is referred to as the 
outer one. Since the theoretical results in [47,52] show that the mean squared error of NMC estimator decays at a rate of 
O ( 1

M + 1
N ), we can obtain an accurate evaluation of H(Y ) with a sufficiently large number of samples, and in the numerical 

example we use M = N = 1 × 105. We emphasize that such a large number of samples is not computationally feasible to 
use in the experimental design procedure, and thus in the example we have to resort to other entropy estimation methods.
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