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Let G be an abelian group acting on a smooth algebraic vari-
ety X. We investigate the product structure and the bigrading 
on the cohomology of polyvector fields on the orbifold [X/G], 
as introduced by Căldăraru and Huang. In this paper, we 
provide many new examples given by quotients of Fermat hy-
persurfaces, where the product is shown to be associative. 
This is expected due to the conjectural isomorphism at the 
level of algebras between the cohomology of polyvector fields 
and the Hochschild cohomology of orbifolds. We prove this 
conjecture for the Calabi-Yau Fermat hypersurface orbifold. 
We also show that for Calabi-Yau orbifolds, the multiplicative 
bigrading on the cohomology of polyvector fields agrees with 
what is expected in homological mirror symmetry.
© 2023 The Author(s). Published by Elsevier Inc. This is an 
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1. Introduction

1.1. Let X be a smooth algebraic variety over a field of characteristic zero. The Hochschild 
cohomology of X is well-understood due to the work of Swan, Kontsevich, Calaque-Van 
den Bergh, and many other mathematicians. The HKR map [23] is an isomorphism of 
vector spaces

HT∗(X)
∼=→ HH∗(X)

between the polyvector field cohomology

HT∗(X) =
⊕

p+q=∗
Hp(X,∧qTX)

and the Hochschild cohomology HH∗(X).
The Hochschild cohomology HH∗(X) is by definition Ext∗(Δ∗OX , Δ∗OX), where Δ :

X ↪→ X × X is the diagonal embedding. Therefore its classes can be composed using 
the Yoneda product. There is a wedge product on polyvector fields. However, the HKR 
map is not an isomorphism of algebras in general. Kontsevich [19] constructed a highly 
nontrivial map HT∗(X) → HH∗(X) which was proven to be an isomorphism of algebras 
by Calaque and Van den Bergh [5].

1.2. Mathematicians start to study the multiplicative structure of the Hochschild co-
homology for orbifolds recently. Some progress has been made by Arinkin-Căldăraru-
Hablicsek [1], Negron-Schedler [21], and Căldăraru-Huang [3]. This product structure is 
the mirror to the quantum cup product on the mirror hence it reveals deep enumerative 
geometry under mirror symmetry.

Let G be a finite group acting on a smooth algebraic variety X over a field of character-
istic zero. The Hochschild cohomology HH∗([X/G]) of the orbifold [X/G] has a natural 
algebra structure. Having an explicit formula for the product structure of the algebra 
HH∗([X/G]) would yield many possible applications in homological mirror symmetry 
and the crepant resolution conjecture.

1.3. Arinkin, Căldăraru, and Hablicsek [1] gave an explicit decomposition of the Hoch-
schild cohomology of [X/G] in terms of polyvector field cohomology for orbifolds. They 
showed that there exists a graded vector space isomorphism
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HH∗([X/G]) ∼= HT∗([X/G]) def=

⎛
⎝⊕

g∈G

⊕
p+q=∗

Hp−cg(Xg,∧qTXg ⊗ ωg)

⎞
⎠

G

,

where Xg is the fixed locus of g ∈ G, cg is the codimension of Xg in X, and ωg is 
the dualizing sheaf of the inclusion Xg ↪→ X. This is now called the orbifold HKR 
isomorphism.

The Hochschild cohomology HH∗([X/G]) has a natural product. When G is abelian, 
Căldăraru and Huang [3] defined a product on

HT∗(X;G) def=
⊕
g∈G

⊕
p+q=∗

Hp−cg (Xg,∧qTXg ⊗ ωg).

Note that HT∗(X; G) carries a natural G-action and the G-invariant part is HT∗([X/G]). 
This product on HT∗(X; G) is the wedge product on HT∗(X) in the case where G is triv-
ial. The authors in [3] conjecture that the two algebras HH∗([X/G]) and HT∗([X/G]) are 
isomorphic in a highly nontrivial way which generalizes the isomorphism of algebras [19]
in the case where G is trivial.

1.4. The associativity. The first evidence that would be needed for such an isomorphism is 
that the product on HT∗(X; G) is associative. The authors of [3] showed that the product 
they defined is associative when the Bass-Quillen class vanishes. A few examples have 
been computed in [3] and the Bass-Quillen class vanishes there, but the size of the group 
G is small in those examples.

In this paper we consider the (Z/dZ)n−1 action on the degree d Fermat hypersurface 
in Pn. We prove that the product is associative in this case. This provides examples such 
that the product on HT∗(X; G) is associative with an arbitrarily large group G.

1.5. Theorem A. Let [x0 : · · · : xn] be the homogenous coordinates on Pn. The degree d
Fermat hypersurface X in Pn is defined by 

∑n
j=0 x

d
j = 0. The group G = (Z/dZ)n−1

acts on X. Let ζ = exp2πi/d be the root of unity. An element of G is of the form 
g = (ζa0 , ζa1 , · · · , ζan−1 , 1), where aj ∈ Z/dZ and 

∑n−1
j=0 aj = 0. The group action of G

on X is defined by

g · [x0 : · · · : xn] = [ζa0x0 : · · · : ζan−1xn−1 : xn].

Then the Bass-Quillen classes [3,16] associated to the sequences Xg,h ↪→ Xgh ↪→ X and 
Xg,h ↪→ Xg ↪→ X vanish for all g, h ∈ G. Therefore the product [3] defined on

HT∗(X;G) =
⊕
g∈G

⊕
p+q=∗

Hp−cg (Xg,∧qTXg ⊗ ωg),

is associative.
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1.6. The product in [3] is defined by abstract tools in derived algebraic geometry. It is 
difficult to compute the product explicitly in general. However, in Section 7 of [3] the 
authors defined a new product which we call the simplified product on HT∗(X; G) by 
explicit formulas. We call the original product the unsimplified product. Conjecturally 
the simplified product is equal to the unsimplified product for Calabi-Yau orbifolds. Here 
Calabi-Yau orbifolds are the direct generalization of Calabi-Yau varieties:

1.7. Definition. A smooth proper orbifold (or Deligne-Mumford stack) Y is said to be 
Calabi-Yau if its canonical bundle is trivial, i.e. ωY � OY as an orbifold line bundle.

1.8. One may directly check that a global quotient orbifold [X/G] is Calabi-Yau if and 
only if X is Calabi-Yau and the G action on X preserves the holomorphic volume form 
ΩX ∈ Γ(X, ωX). A first example is the Fermat quintic with the (Z/5Z)3 action. In this 
paper, we show that in this example the simplified and unsimplified products agree.

1.9. Theorem B1. In the case of Fermat quintic, i.e., d = 5 and n = 4, the unsimplified 
and the simplified products on HT∗(X; G) are equal.

For a general Calabi-Yau Fermat hypersurface, we are not able to prove the simplified 
and unsimplified product on HT∗(X; G) agree. However, we can prove that they agree 
after taking G-invariants.

1.10. Theorem B2. In the case of Calabi-Yau Fermat hypersurface, i.e., d = n + 1, the 
unsimplified and the simplified products on HT∗([X/G]) = HT∗([X/G])G are equal.

1.11. The multiplicative bigrading. To prove Theorem B2, we need to study the mul-
tiplicative bigrading on HT∗(X; G) and apply Theorem C below. The authors in [3]
defined a new bigrading on HT∗(X; G) as follows

HTq,p(X;G) =
⊕
g∈G

Hp−ι(g)(Xg,∧q−cg+ι(g)TXg ⊗ ωg),

where ι(g) is the age of g ∈ G [8,17]. The age ι(g) of a group element g is defined as 
follows. Let X be an algebraic variety of dimension D with the action of a finite group 
G. For g ∈ G and a point x ∈ Xg, let λ1, · · · , λD be the eigenvalues of the action of g on 
the tangent space TX,x; note that they are roots of unity. Write λj = e2πirj where rj is 
a rational number in the interval [0, 1). The age ι(g, y) of g in y is the rational number ∑

rj . The age ι(g, y) only depends on the connected component Z of Y g in which y
lies [17]. For simplicity, we write ι(g) instead of ι(g, Z) when the connected component 
Z is clear from the context.

When [X/G] is Calabi-Yau, we show that the bigrading defined above agrees with the 
bigrading on the orbifold singular cohomology of the mirror in the sense of Theorem C
below. To explain Theorem C, we start with the variety case first.
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1.12. Definition. For a smooth algebraic variety X, define

HTq,p(X) def= Hp(X,∧qTX),

and

Hq,p(X) def= Hp(X,∧qΩX).

For a Calabi-Yau variety X of dimension n, the dimension of the cohomology of 
polyvector fields is related to the dimension of singular cohomology of X because of the 
identification

∧qTX
∼= ∧n−qΩX .

It implies HTq,p(X) ∼= Hn−q,p(X).
Mirror symmetry predicts that Hn−q,p(X) ∼= Hq,p(X̌) if the Calabi-Yau variety X has 

a mirror X̌. Hence mirror symmetry expects the isomorphism HTq,p(X) ∼= Hn−q,p(X) ∼=
Hq,p(X̌). In fact homological mirror symmetry predicts that

HT∗(X) =
⊕

p+q=∗
HTq,p(X)

should be isomorphic to

H∗(X̌,C) =
⊕

p+q=∗
Hq,p(X̌)

as bigraded algebras [18,22], where the product on H∗(X̌, C) should be the quantum 
product rather than the singular cohomology product.

1.13. For an orbifold [X/G], there is an orbifold version of Hodge decomposition arising 
from orbifold singular cohomology

H∗([X/G],C) =

⎛
⎝⊕

g∈G

⊕
p+q=∗

Hp−ι(g)(Xg,∧q−ι(g)ΩXg )

⎞
⎠

G

of [X/G] defined by Chen and Ruan [8]. This has a bigrading given as follows.

1.14. Definition. For a global quotient orbifold [X/G], define

Hq,p(X;G) =
⊕
g∈G

Hp−ι(g)(Xg,∧q−ι(g)ΩXg ),

Hq,p([X/G]) = Hq,p(X;G)G,
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and

HTq,p(X;G) =
⊕
g∈G

Hp−ι(g)(Xg,∧q+ι(g)−cgTXg ⊗ ωg),

HTq,p([X/G]) = HTq,p(X;G)G.

Both of the bigradings are multiplicative, i.e., they are preserved by the corresponding 
product structures respectively. The dimension of Hq,p([X/G]) is the (q, p)-th orbifold 
Hodge number of [X/G]. When [X/G] is Calabi-Yau, i.e. its canonical bundle is trivial 
as an orbifold line bundle, we prove that the bigrading for HT∗([X/G]) coincides with 
the bigrading on the singular cohomology of its mirror.

1.15. Theorem C. Let [X/G] be a Calabi-Yau orbifold of dimension n. Then HTq,p(X; G)
∼= Hn−q,p(X; G) and HTq,p([X/G]) ∼= Hn−q,p([X/G]).

If [X/G] is Calabi-Yau of dimension n and has a mirror [Y/H], then Hn−q,p([X/G])
should be identified with Hq,p([Y/H]). Theorem C shows that

HT∗([X/G]) =
⊕

p+q=∗
HTq,p([X/G])

is identified with

H∗([Y/H],C) =
⊕

p+q=∗
Hq,p([Y/H])

as bigraded vector spaces. This provides evidence that the multiplicative bigrading we 
put on HT∗(X; G) is the correct one. Note that Theorem C only requires [X/G] to be 
Calabi-Yau, not necessarily to be the Fermat hypersurface orbifold.

Theorems B2 and C above and Conjecture A in [3] suggest that the Hochschild coho-
mology of Calabi-Yau orbifolds should carry a multiplicative bigrading.

1.16. We return to the Calabi-Yau Fermat hypersurface orbifold case, where X is the 
Calabi-Yau Fermat hypersurface of degree d and G is the group (Z/dZ)d−2. We compute 
the product on HT∗([X/G]) explicitly.

For g, h ∈ G let ε(g, h) = ι(g) + ι(h) − ι(gh). We define a modified algebra structure 
on HT∗([X/G]) by

αg ◦ βh = (−1)ε(g,h)αg · βh.

Denote this new algebra by (HT∗([X, G]), ◦). Note that the sign is not surprising because 
Fantechi and Göttsche [17, Definition 3.9] have also introduced a similar sign in their 
study of orbifold singular cohomology. The product is graded commutative after the sign 
is introduced.

We study this modified product structure in detail and obtain Theorem D below.
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1.17. Theorem D. In the case of Calabi-Yau Fermat hypersurface orbifold, the orbifold 
polyvector field with the modified product (HT∗([X/G]), ◦) is isomorphic to the orbifold 
Hochschild cohomology HH∗([X/G]) as algebras.

Theorem D provides a positive answer to Conjecture A in [3] in the case of the Calabi-
Yau Fermat hypersurface orbifold. We discuss connections in the field of mirror symmetry 
at the last of this paper.

1.18. Plan of the paper. In Section 2 we compute the fixed locus of an element g ∈ G. 
Then we prove Theorem A.

In Section 3 we study the group G = (Z/5Z)3. We classify the elements of the group 
into four types. The result will be used in Sections 4-5.

In Section 4 we study the simplified product in [3]. The definition of the simplified 
product depends on a cohomology class which is introduced in [17]. We show that the 
simplified product can be simplified further when the class is trivial. We use the results 
to study the simplified product in the case of the Fermat quintic orbifold.

In Section 5 we prove Theorem B1.
In Section 6 we prove Theorem C.
In section 7 we prove Theorems B2 and D.

1.19. Acknowledgments. We would like to thank Andrei Căldăraru for introducing the 
subject of orbifold Hochschild cohomology and thank Tyler Kelly for his useful sug-
gestions on writing. We are also grateful to the referee for careful reading and many 
suggestions and comments which greatly improved this paper.

The first author was partially supported by the UKRI Future Leaders Fellowship 
through grant number MR/T01783X/1.

2. Proof of Theorem A

We study the fixed locus of an element g ∈ G. Then we prove Theorem A.

2.1. Let [x0 : · · · : xn] be the homogenous coordinates on Pn. The degree d hypersurface 
X in Pn is defined by 

∑n
j=0 x

d
j = 0. The group G = (Z/dZ)n−1 acts on X. Let ζ =

exp2πi/d be the root of unity. An element of G is of the form g = (ζa0 , ζa1 , · · · , ζan−1 , 1), 
where aj ∈ Z/dZ and 

∑n−1
j=0 aj = 0. The group action is defined by

g · [x0 : · · · : xn] = [ζa0x0 : · · · : ζan−1xn−1 : xn].

We need to study the fixed locus of g ∈ G before we study the product on HT∗(X; G).

2.2. The fixed locus. The fixed locus depends on the numbers of a0,..., an−1 that are 
equal to each other. We compute an example and one can generalize the proof to the 
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general case. For example, choose d = 5, n = 8, and g = (ζ, ζ, ζ, ζ2, ζ2, ζ2, ζ2, ζ−1, 1). Let 
[x0 : · · · : x8] be a point in the fixed locus of g. Then

g · [x0 : · · · : x8] = [ζx0 : ζx1 : ζx2 : ζ2x3 : ζ2x4 : ζ2 : x5 : ζ2x6 : ζ−1x7 : x8].

By the definition of the homogenous coordinates, there exists a nonzero number λ
such that

(ζx0, ζx1, ζx2, ζ
2x3, ζ

2x4, ζ
2x5, ζ

2x6, ζ
−1x7, x8) = (λx0, · · · , λx8).

If any of x0, x1, and x2 is nonzero, then λ has to be ζ. We can conclude x3 = · · · =
x8 = 0.

If any of x3, x4, x5, and x6 is nonzero, then λ has to be ζ2. We can conclude x0 =
x1 = x2 = 0 and x7 = x8 = 0.

If all of x0,..., x6 are zero, then x7 = x8 = 0.
From the computation above, we see that the fixed locus of g is the disjoint union of 

P 2 ∩X and P 3 ∩X. A similar proof applies to the general case in the lemma below.

2.3. Lemma. In the same setting as Theorem A, the fixed locus of a subgroup H of G
decomposes into connected components. Each of the component is of the form Pm∩X ⊂
Pn for some m, where Pm is defined by the equations xj1 = xj2 = · · · = xjn−m

= 0.

Remark. In this paper we only consider the projective subspaces in Pn which are cut 
out by the equations xj1 = xj2 = · · · = xjn−m

= 0.

2.4. The unsimplified product on HT∗([X/G]) is associative if the Bass-Quillen class 
associated with the sequence of schemes

Xg,h ↪→ Xgh ↪→ X

and the sequence of schemes

Xg,h ↪→ Xg ↪→ X

is zero [3,16]. The Bass-Quillen class associated with a general sequence of schemes

Y ↪→ Z ↪→ S

is a cohomology class in Ext1OY
(NY/Z ⊗NZ/S |Y , NZ/S |Y ) [3,16].

When X is the Fermat hypersurface in Pn, the sequence of fixed loci is of the form

P l ∩X ↪→ Pm ∩X ↪→ X.
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The following lemma shows that it suffices to study the Bass-Quillen class associated 
with the sequence

P l ↪→ Pm ↪→ Pn

and then restrict it to X ∩ P l.

2.5. Lemma. Let Y ↪→ S and T ↪→ S be closed embedding of smooth schemes. Assume 
that the intersection W = Y ×S T is smooth and transversal. Let IY ⊂ OS and IT ⊂ OS

be the ideal sheaves of Y and T . Further we assume that IY ∩ IT = IY IT . Then the 
normal bundle NW/T is the normal bundle NY/S restricted to W .

Proof. We have a short exact sequence

0 → IY → OS → OS/IY → 0

on S. Tensor the exact sequence above with OT = OS/IT . Since all the schemes are 
smooth and the intersection W = Y ×S T is transversal, we have OS/IY ⊗OS

OS/IT is 
the structure sheaf OW of W . We obtain the following sequence

IY |T = IY ⊗ OS/IT → OT → OW → 0.

Equivalently we have

IY /IY IT → OS/IT → OS/(IY + IT ) → 0.

The kernel of the map OS/IT → OS/(IY + IT ) is (IY + IT )/IT ∼= IY /(IY ∩ IT ). Due to 
the assumption IY ∩ IT = IY IT , we see that the sequence above is exact. The sequence 
shows that IY |T is the ideal sheaf of W in T . Therefore the conormal bundle N∨

W/T is 
IY |T /(IY |T )2 which is N∨

Y/S |W . �
Set Y , S, and T to be Pm, Pn, and X. The assumptions in the lemma above hold 

when m ≥ 1. Therefore the normal bundle of Pm ∩ X ↪→ X is the normal bundle of 
Pm ↪→ Pn restricted to X ∩ Pm. Similarly, one can show that the Bass-Quillen class 
associated with the sequence

P l ∩X ↪→ Pm ∩X ↪→ Pn ∩X = X

is the Bass-Quillen class associated with the sequence

P l ↪→ Pm ↪→ Pn

restricted to X ∩ P l when l ≥ 1, when l = 0, the Bass-Quillen class vanishes on a set of 
points.
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To study the Bass-Quillen class, we need to study the normal bundle of the map 
Pm ↪→ Pn.

2.6. Lemma. Let M ⊂ Pn be a complete intersection1 of irreducible polynomials f1,..., 
fj of degree d1,..., dj . Then the normal bundle NM/Pn is

j⊕
l=1

OM (dl).

Proof. One can check this by Koszul complex. �
2.7. Proposition. The Bass-Quillen class associated to

P l ↪→ Pm ↪→ Pn

is zero.

Proof. The normal bundle NP l/Pn is O(1)⊕(n−l) due to Lemma 2.6. The Bass-Quillen 
class is an element in Ext1(NP l/Pm ⊗NPm/Pn |P l , NPm/Pn |P l). This Ext group is (m −
l)(n − m)(n − m) copies of H1(P l, O(−1)). We know the cohomology H1(P l, O(−1))
vanishes. �
Proof of Theorem A. This is due to (2.4), Proposition 2.7, and Lemma 2.5. �
3. Classification of the group elements

In this section, we study the group G = (Z/5Z)3. The elements of G are divided into 
four types. The fixed loci of different types of elements have different dimensions. We 
compute the fixed loci and the ages ι(g) for all g ∈ G. The classification will be used 
when we study Fermat quintic orbifold.

3.1. Let X be the Fermat quintic in P 4 defined by x5 + y5 + z5 + s5 + t5 = 0, where 
[x : y : z : s : t] is the homogenous coordinates on P 4. The group G = (Z/5Z)3 acts on 
X. An element of G is of the form g = (ζ−a−b−c, ζa, ζb, ζc, ζ0), where ζ is the root of 
unity and a, b, c ∈ {0, 1, 2, 3, 4}. The group action is defined by

g · [x : y : z : s : t] = [ζ−a−b−cx : ζay : ζbz : ζcs : t].

We classify the elements of G. We define the four different types of elements in G as 
follows.

1 This holds in great generality (for reducible or non-reduced M) if we define NM/Pn to be (IM/I2
M )∨

although we only need the simplest case: a liner subspace of Pm.
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• Type one. There is only one element (1, 1, 1, 1, 1) ∈ G which is of type one.
• Type two. A nontrivial element g = (ζ−a−b−c, ζa, ζb, ζc, ζ0) is of type two if three of 

the following five numbers −a − b − c, a, b, c, 0 are equal. For example (ζ, ζ4, 1, 1, 1)
and (ζ, ζ, ζ, ζ2, 1) are of type two. There are 40 of them.

• Type three. A nontrivial element g = (ζ−a−b−c, ζa, ζb, ζc, ζ0) is of type three if two 
of the following five numbers −a − b − c, a, b, c, 0 are equal and the element is not 
type two. For example (ζ, ζ, ζ4, ζ4, 1) and (1, ζ, ζ, ζ3, 1) are of type three. There are 
60 of them.

• Type four. An element g = (ζ−a−b−c, ζa, ζb, ζc, ζ0) is of type four if all the following 
numbers −a − b − c, a, b, c, 0 are different. For example (ζ, ζ2, ζ3, ζ4, 1) is of type 
four. There are 24 of them.

3.2. The fixed locus. The dimension of the fixed locus is completely determined by the 
numbers of −a − b − c, a, b, c, and 0 that are equal to each other. The computation of 
the fixed locus of an element has been done in (2.2). The fixed locus Xg can be classified 
according to the types of g ∈ G.

• Type one. The fixed locus is X.
• Type two. The fixed locus is a genus 6 curve in X ∩ P 2. For example, when g =

(ζ, ζ4, 1, 1, 1), the fixed locus is [0 : 0 : z : s : t] ⊂ X ∩ P 2, where z5 + s5 + t5 = 0. 
Similarly, when g = (ζ, ζ, ζ, ζ2, 1), the fixed locus is [x : y : z : 0 : 0] ⊂ X ∩P 2, where 
x5 + y5 + z5 = 0.

• Type three. The fixed locus is zero-dimensional. For example, when g = (ζ, ζ, ζ4, ζ4,

1), the fixed locus is a set of ten points [1 : −ζj : 0 : 0 : 0] and [0 : 0 : 1, −ζj : 0].
• Type four. No fixed locus.

3.3. The age ι(g) of an group element g. For a general orbifold [X/G], the age ι(g, U)
defined in [8] and recalled in 1.11 is a non-negative rational number that will be used in 
this paper. When Xg decomposes into connected components, the number ι(g) can be 
different on each component U . For simplicity, we write ι(g) instead of ι(g, U) when U
is clear from the context. When the orbifold is Calabi-Yau, then ι(g) is an integer [17]. 
Age plays an important role in the product on the orbifold polyvector field [3] and in 
the orbifold singular cohomology [8] as well.

We can compute the age ι(g) of g ∈ G according to its type in the case of the 
Fermat quintic orbifold. Type one and four are trivial. In the case of type three, one 
can compute the age by straightforward computations using the definition of age. For 
type two we may use the following identity in [17]: ι(g, U) + ι(g−1, U) = codim(U, X), 
as the conjugation from the S5 action on X flips g and g−1 and preserves U , we see that 
ι(g, U) = ι(g−1, U) = codim(U, X)/2 = 1. One can also use the definition to compute 
the age in the case of type two. To summarize:
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• Type one. ι(g) = 0.
• Type two. ι(g) = 1.
• Type three. ι(g) = 2 or 1. For example, choose g = (ζ, ζ, ζ4, ζ4, 1). The fixed locus is 

a set of ten points [1 : −ζj : 0 : 0 : 0] and [0 : 0 : 1, −ζj : 0]. The age of g is 2 on the 
first five points and is 1 on the other five points.

• Type four. No fixed locus. No ι(g).

4. The simplified product

Căldăraru and Huang [3] have a conjectural way to simplify the product we defined 
on HT∗([X/G]). Let αg be an element in Hp−cg(Xg, ∧qTXg ⊗ωg) and βh be an element 
in Hp′−ch(Xh, ∧q′TXh ⊗ ωh). The simplified product of αg and βh uses a cohomology 
class γg,h introduced in Fantechi-Göttsche’s paper [17]. We review the definition of the 
simplified product and show that the simplified product has an easier formula when the 
class γg,h is trivial. When [X/G] is the Fermat quintic orbifold, we show that either the 
class γg,h is trivial or the simplified product αg · βh vanishes when γg,h is not trivial.

We recall the definition of the simplified product and the unsimplified product in 
Sections 4 and 5 respectively. The rest of Sections 4 and 5 are devoted to proving Theorem
B1. For most of the applications in Hochschild cohomology and homological mirror 
symmetry, it suffices to consider HT∗([X/G]) rather than HT∗(X; G). Namely Theorem
B2 is enough for most of the applications. The proof of Theorem B2 is much easier, so 
readers feel free to skip the proof of Theorem B1 in Sections 4 and 5.

4.1. In [17] Fantechi-Göttsche introduced a cohomology class to study orbifold singular 
cohomology. This class γg,h is the top Chern class of a vector bundle Rg,h of rank 
k = ι(g) + ι(h) − ι(gh) − codim(Xg,h, Xgh) on Xg,h.

4.2. The simplified product. The simplified product is defined as follows

Hp(Xg,∧qTXg ⊗ ωg[−cg])⊗Hp′
(Xh,∧q′TXh ⊗ ωh[−ch])

↓

Hp+p′
(Xg,h,∧qTXg |Xg,h ⊗ ωg|Xg,h [−cg]⊗ ∧q′ TXh |Xg,h ⊗ ωh|Xg,h [−ch])

= Hp+p′
(Xg,h,∧qTXg |Xg,h ⊗ ∧q′TXh |Xg,h⊗ωg|Xg,h [−cg] ⊗ ωh|Xg,h [−ch])

∼= Hp+p′
(Xg,h,∧qTXg |Xg,h ⊗ ∧q′TXh |Xg,h⊗ωg,h[−cg,h] ⊗ ∧rE[−r])

↓
i+j=k⊕
i=0

Hp+p′−r+k(Xg,h,∧q−iTXg |Xg,h⊗ ∧q′−j TXh |Xg,h ⊗ ωg,h[−cg,h] ⊗ ∧rE)

↓
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Hp+p′−r+k(Xgh,∧q+q′−k+rTXgh ⊗ ωgh[−cgh]),

where E is the excess bundle of rank r = cg +ch−cg,h and k is the rank of Rg,h. The first 
arrow is the naive restriction from Xg and Xh to Xg,h, so we call it by the naive restric-
tion and multiplication. The isomorphism in the middle is due to the isomorphism [3]
below

ωg|Xg,h [−cg] ⊗ ωh|Xg,h [−ch] ∼= ωg,h[−cg,h] ⊗ ∧rE[−r].

The second arrow in the middle involving k is the action of γg,h. We call the last map the 
extension map because it is from Xg,h to Xgh. More explanations can be found in [3].

4.3. Definition. We say the class γg,h is trivial if the rank k = ι(g) + ι(h) − ι(gh) −
codim(Xg,h, Xgh) is zero or the rank k is strictly greater than the dimension of Xg,h. 
The class γg,h is 1 in the first case and 0 in the second case.

Remark. The rank k of Rg,h may be greater than the dimension of Xg,h. For example, 
choose g = h = (ξ4, ξ4, ξ2, 1, 1) when [X/G] is the Fermat quintic orbifold. Then ι(g) =
ι(h) = ι(gh) = 2 and cg = ch = cgh = cg,h = 3. The vector bundle Rg,h has rank 2 on 
Xg,h which is a set of points.

We study the simplified product when γg,h is trivial. We need the proposition below.

4.4. Proposition. When k > dimXg,h, r > dimXgh.

Proof. Let dg, dg,h be the dimension of Xg and Xg,h. The rank k is by definition ι(g) +
ι(h) − ι(gh) − dgh + dg,h. When k > dg,h, we have ι(g) + ι(h) > dgh − ι(gh). There is an 
equality

ι(g) + ι(g−1) = cg

in [17]. Therefore r = cg + ch − cg,h = ι(g) + ι(g−1) + ι(h) + ι(h−1) − cg,h. Using the 
inequality above, we have

r > ι(g−1) + ι(h−1) + dgh − ι(gh) − cg,h. (1)

On the other hand, the rank

r = ι(g) + ι(h) − ι(gh) − dgh + dg,h = ι(g) + ι(h) − ι(gh) + cgh − cg,h ≥ 0

for all g, h ∈ G, i.e.,

ι(g) + ι(h) − ι(gh) + cgh ≥ cg,h
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for all g, h ∈ G. Note that cgh − ι(gh) = ι((gh)−1) which implies the following

ι(g) + ι(h) − ι((gh)−1) ≥ cg,h.

Similarly, we have

ι(h−1) + ι(g−1) − ι(gh) ≥ ch−1,g−1 = ch,g. (2)

Combining the inequalities (1) and (2) above, we get the desired inequality r > dgh. �
4.5. Proposition. When γg,h is trivial, the simplified product is equal to the composite 
map below

Hp(Xg,∧qTXg ⊗ ωg[−cg])⊗Hp′
(Xh,∧q′TXh ⊗ ωh[−ch])

↓

Hp+p′
(Xg,h,∧qTXg |Xg,h ⊗ ωg|Xg,h [−cg]⊗ ∧q′ TXh |Xg,h ⊗ ωh|Xg,h [−ch])

= Hp+p′
(Xg,h,∧qTXg |Xg,h ⊗ ∧q′TXh |Xg,h⊗ωg|Xg,h [−cg] ⊗ ωh|Xg,h [−ch])

∼= Hp+p′−r(Xg,h,∧qTXg |Xg,h ⊗ ∧q′TXh |Xg,h⊗ωg,h[−cg,h] ⊗ ∧rE)

↓

Hp+p′−r(Xgh,∧q+q′+rTXgh⊗ωgh[−cgh]).

Namely, we only do the naive restriction and multiplication and then extend.

Proof. When the rank k of Rg,h is zero, the class γg,h is equal to 1. It is clear that γg,h
acts as the identity map.

When the rank k of Rg,h is greater than the dimension of Xg,h, the class is equal to 
0 rather than 1. It is clear that γg,h acts as the zero map. It suffices to show that the 
composite map in Proposition 4.5 is also zero in this case. Due to Proposition 4.4, we 
have r > dimXgh which implies the last term Hp+p′−r(Xgh, ∧q+q′+rTXgh ⊗ ωgh[−cgh])
of the composite map vanishes. �

When γg,h is trivial, the product can be summarized as restriction and multiplication 
which is the first arrow, and then extension which is the last arrow. There is no nontrivial 
construction in the middle in this special case.

4.6. The simplified product for Fermat quintic. From now on we study the Fermat quintic 
case.

4.7. Proposition. In the same setting as Theorem B1, either the class γg,h is trivial or g
is of type two and h = gj, where j = 1, 2, 3.
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Proof. The class depends on g, h, and (gh)−1. In [17] it is shown that γg,h has the 
following property (∗)

γg,h = γh,g = γg,(gh)−1 = γh,(gh)−1 .

We study the class γg,h case by case according to the dimension of Xg,h.
The group G can be viewed as a vector space V = G over Z/5Z and g, h can be 

viewed as vectors. If the two elements g, h are linearly independent, i.e., h is not in the 
cyclic group < g > generated by g, then Xg,h is zero-dimensional. If the vectors g, h
generate a one-dimensional subspace of V , i.e., h is an element of the cyclic group < g >

generated by g, then Xg,h could be a genus 6 curve.
When Xg,h is zero dimensional, the class γg,h is trivial.
Consider the case when Xg,h is a curve. Then g must be an element of type two and 

h must be of the form gj, where j = 0, 1, 2, 3, 4. Due to the property (∗) of the class γg,h, 
it suffices to consider the cases when h = 1 and h = g.

Recall that the class γg,h is the top Chern class of a vector bundle on Xg,h of rank

ι(g) + ι(h) − ι(gh) − codim(Xg,h, Xgh).

When h = 1, it is clear that the rank is zero and therefore γg,h is trivial.
When h = g, it is clear that ι(g) = ι(g2) = 1 because the fixed locus Xg is a curve, 

and therefore g is of type two. The rank is 1.
Similarly, we see that the rank r is zero when h = g4 and the rank is 1 when h = gj , 

where j = 2 and 3. �
4.8. Proposition. We are in the same setting as Theorem B1. Let αg be an element in 
Hp−cg (Xg, ∧qTXg⊗ωg) and βh be an element in Hp′−ch(Xh, ∧q′TXh⊗ωh). The simplified 
product of αg and βh is equal to the composite map in Proposition 4.5 for all g, h ∈ G.

Proof. Due to Propositions 4.5 and 4.7, it suffices to consider the case where g is of type 
two and h = gj for j = 1, 2, 3. It suffices to show that both the simplified product in (4.2)
and the composite map in Proposition 4.5 are zero in this case. Note that Xg,h = Xgh

is a genus 6 curve and the rank r = cg + ch − cg,h = 2 in this case. A map of the form

H∗(Xg,h,∧∗TXg |Xg,h ⊗ ∧∗TXh |Xg,h ⊗ ωg,h ⊗ ∧2E)

−→ H∗(Xgh,∧∗+2TXgh ⊗ ωgh),

appears in the last arrow of the simplified product in (4.2) and in the last arrow of 
the composite map in Proposition 4.5. The vector bundle ∧∗+2TXgh is zero because 2 is 
greater than the dimension of Xgh. �
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5. Proof of Theorem B1

We review the definition of the unsimplified product and prove Theorem B1.

5.1. The unsimplified product. The unsimplified product is defined in a similar way [3]. 
We do the derived restriction and multiplication first and then extend

D(L
X̃g/X) ⊗ D(L

X̃h/X) → D(L
X̃g ×R

X L
X̃h/X)

∼=→ D(L(X̃g×XX̃h)/X)

Lm∗−→ D(L
X̃gh/X),

where the maps above are explained in [3]. The only difference is that the first arrow 
in the simplified product is the naive restriction and the first arrow in the unsimplified 
product is the derived restriction which could have more terms

Hp−cg (Xg,∧qTXg ⊗ ωg) ⊗Hp′−ch(Xh,∧q′TXh ⊗ ωh)

−→
r⊕

i=0
Hp+p′−i−cg,h(Xg,h,∧qTXg |Xg,h ⊗ ∧q′TXh |Xg,h ⊗ ωg,h ⊗ ∧iE).

Then we use the same extension map as before, so the output of the unsimplified product 
lands in

−→
r⊕

i=0
Hp+p′−cgh−i(Xgh,∧q+q′+iTXgh ⊗ ωgh).

Proof of Theorem B1. Let αg be an element in Hp−cg (Xg, ∧qTXg ⊗ ωg) and βh be an 
element in Hp′−ch(Xh, ∧q′TXh⊗ωh). To prove the two products agree, it suffices to show 
that

αg · βh ∈ Hp+p′−cgh−r(Xgh,∧q+q′+rTXgh ⊗ ωgh)

for the unsimplified product. Namely, the unsimplified product of αg and βh lands only 
in one of the direct summand, where i can only be r, of the big direct sum

r⊕
i=0

Hp+p′−cgh−i(Xgh,∧q+q′+iTXgh ⊗ ωgh).

We prove the statement above according to the dimension of the fixed locus Xg,h.
When Xg,h is zero dimensional, we know that p + p′ − cg,h − i must be zero. We also 

have p − cg ≥ 0 and p′ − ch ≥ 0. We conclude i + cg,h = p + p′ ≥ cg + ch. However, i is 
an integer from 0 to r = cg + ch − cg,h which forces i to be r in this case.

When Xg,h is not zero dimensional, h must be of the form gj , where j = 0, 1, 2, 3, 4. 
The fixed locus is a genus 6 curve C.
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When h = g0 = (1, 1, 1, 1, 1) is the identity, it is easy to see that the rank r =
cg + ch − cg,h is zero.

When h = g−1, cg = ch = cg,h = 2 and cgh = 0. We look at the unsimplified product

Hp−2(C,∧qTC ⊗ ωC) ⊗Hp′−2(C,∧q′TC ⊗ ωC)

→
2⊕

i=0
Hp+p′−2−i(C,∧qTC ⊗ ∧q′TC ⊗ ∧iE ⊗ ωC)

→
2⊕

i=0
Hp+p′−i(X,∧q+q′+iTX),

where E is the normal bundle NC/X .
Recall that we need to prove that all the maps vanish when i �= 2. We know that 

1 ≥ p −2 ≥ 0 and 1 ≥ p′−2 ≥ 0 from the first line in the product and 1 ≥ p +p′−2 −i ≥ 0
from the second line in the product. We conclude that i can not be 0 immediately.

Consider the case when i = 1. Due to the same inequality above, we can conclude that 
p and p′ must be 2 in this case. The dimensions of HT∗(X) is well-known and nonzero 
terms in HT∗,3(X) are HT0,3(X) and HT3,3(X). This implies q and q′ must be 1. The last 
map in the product above is induced by a map of vector bundles ∧qTC ⊗∧q′TC ⊗∧iE →
∧qTX |C ⊗ ∧q′TX |C ⊗ ∧iTX |C → ∧q+q′+iTX |C [3]. When q = q′ = 1, the map of vector 
bundles must vanish because TC is rank 1 and ∧2TC = 0. We complete the proof that i
must be 2 when h = g−1.

When h = gj for j = 1, 2, 3, we can assume j = 1 and h = g without losing generality. 
One can check that the proof for the case when j = 2, 3 is similar to the proof below. 
Under this assumption, cg = ch = cg,h = cgh = 2. The rank r is also equal to 2. We look 
at the unsimplified product

Hp−2(C,∧qTC ⊗ ωC) ⊗Hp′−2(C,∧q′TC ⊗ ωC)

→
2⊕

i=0
Hp+p′−2−i(C,∧qTC ⊗ ∧q′TC ⊗ ∧iE ⊗ ωC)

→
2⊕

i=0
Hp+p′−2−i(C,∧q+q′+iTC ⊗ ωC),

where E = NC/X is the normal bundle in this case.
Recall that we need to prove that all the maps vanish when i �= 2. We know that 

1 ≥ p −2 ≥ 0 and 1 ≥ p′−2 ≥ 0 from the first line in the product and 1 ≥ p +p′−2 −i ≥ 0
from the second line in the product. We conclude that i can not be 0 immediately.

Consider the case when i = 1. Due to the same inequality above, we can conclude 
that p and p′ must be 2 in this case.

The last line above shows that 1 ≥ q + q′ + i = q + q′ + 1 ≥ 0 which shows that q and 
q′ must be zero in this case.
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In this case, the map we are looking at is

H0(C,ωC) ⊗H0(C,ωC)

→ H1(C,E ⊗ ωC)

→ H1(C, TC ⊗ ωC) = H1(C,OC).

The second arrow above is induced by a map E → TXgh |Xg,h = TC [3]. We can show 
that the map is zero as follows. Denote TX |C by V . Then E = V

V g+V h = V
V g in this case. 

The tangent bundle TXgh is naturally considered as a quotient space Vgh of V [1], not a 
subspace of V . The map

E = V

V g + V h
→ V → Vgh

is defined by the formula [3]

v → v − g · v.

Note that Vgh = V
<v−gh·v> . In the case when h = g, we have v − gh · v = v − g2 · v.

The relation above means v = gh · v = g2 · v for a vector v ∈ Vgh. Then

v → v − g · v = v − g(g2 · v) = v − g(g2(g2 · v)) = v − v = 0

which shows that the map E → Vgh is zero. We can conclude that the map

H1(C,E ⊗ ωC) → H1(C, TXg,h ⊗ ωC) = H1(C, TC ⊗ ωC)

is zero in this case.
As a consequence, the only possible non-vanishing product lands in the direct sum-

mand where i = 2.
Note that it is not hard to show that the product is also zero when i = 2 and j = 1, 2, 3

by direct computation. �
6. The multiplicative bigrading

Before we prove Theorem B2, we need to study the multiplicative bigrading and prove 
Theorem C. We do not need [X/G] to be the Fermat hypersurface in this section. We 
assume [X/G] is an arbitrary Calabi-Yau orbifold of dimension n.

Proof of Theorem C. The dualizing sheaf ωg of the map Xg ↪→ X is the top exterior 
power of the normal bundle NXg/X [11]. There is a short exact sequence of sheaves on Xg

0 → TXg → TX → NXg/X → 0.
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It implies that ω∨
Xg ⊗ ωg

∼= ω∨
X |Xg by taking the top exterior power of the sequence. 

Since [X/G] is Calabi-Yau, the canonical bundle ωX is trivial. Therefore ωg
∼= ωXg . Due 

to the nondegenerate pairing

∧qΩXg ⊗ ∧dg−qΩXg → ωXg ∼= ωg,

we can identify ∧qTXg ⊗ωg with ∧dg−qΩXg , where dg is the dimension of Xg. Therefore

Hp−ι(g)(Xg,∧q−cg+ι(g)TXg ⊗ ωg)

is isomorphic to

Hp−ι(g)(Xg,∧dg−q+cg−ι(g)ΩXg ).

Note that dg + cg = n, so

Hp−ι(g)(Xg,∧dg−q+cg−ι(g)ΩXg ) ∼= Hp−ι(g)(Xg,∧n−q−ι(g)ΩXg ).

Taking the sum over g ∈ G, we obtain the first result HTq,p(X; G) ∼= Hn−q,p(X; G). 
Moreover, all the isomorphisms are functorial, hence equivariant under the G action 
on X, which implies that the isomorphism HTq,p(X; G) ∼= Hn−q,p(X; G) is compat-
ible with the G action, taking invariants we get the second result HTq,p([X/G]) ∼=
Hn−q,p([X/G]). �
7. Proof of Theorem B2 and Theorem D

In this section, we assume that [X/G] is a Calabi-Yau Fermat hypersurface orbifold. 
We put the dimensions of HTp,q([X/G]) in the form of a diamond. We study this diamond 
and compute it explicitly as an example when [X/G] is the Fermat quintic orbifold. Then 
we prove Theorem B2 and Theorem D.

7.1. In mirror symmetry, the mirror of the Calabi-Yau Fermat hypersurface orbifold 
[X/G] is X. Therefore we expect a natural identification

HTq,p([X/G]) ∼= HHq,p([X/G]) ∼= Hq,p(X),

as bigraded vector spaces. This identification is due to Theorem C and the homological 
mirror symmetry conjecture. Below we explain a concrete proof of the identification 
which can be found in the literature.

First, we apply Orlov’s theorem of derived equivalence of categories. Orlov’s theo-
rem [14] says that there is a canonical equivalence of categories

Db(X) ∼= MFgr(An+1,Z/dZ,Σn
i=0 x

d
i ),
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where the left hand side is the derived category of X and the right hand side is the Z-
graded matrix factorization category with the Z/dZ-action on the coordinates xi. The 
Hochschild cohomology is a categorical invariant, so we obtain the isomorphism below

HH∗(X) ∼= HH∗(Db(X)) ∼= HH∗(MFgr(An+1,Z/dZ,Σn
i=0 x

d
i )).

Note the fact that the derived category and matrix factorization category of a G-
quotient can be viewed as the G-invariant of the original category [4,7], so this isomor-
phism can be upgraded to G-equivariant version:

HH∗([X/G]) ∼= HH∗(Db([X/G])) ∼= HH∗(Db(X)G)

∼= HH∗(MFgr(An+1,Z/dZ,Σn
i=0 x

d
i )G)

∼= HH∗(MFgr(An+1, G× Z/dZ,Σn
i=0 x

d
i ))

Then it has been proven that the following two are identified as bigraded vector 
spaces [20]

HHq,p(MFgr(An+1, G× Z/dZ,Σn
i=0 x

d
i )) ∼= Hq,p

FJRW (W ),

where the right hand side is the state space of the FJRW theory of the Fermat polynomial 
W =

∑n
i=0 x

d
i .

It has been proven [10] that the state space of the FJRW theory is identified with 
Hq,p(X) as bigraded vector spaces. Putting all the identifications above together, we get 
the desired result. In fact, taking direct sum over all (q, p), homological mirror symmetry 
predicts that the identifications above should be isomorphisms of bigraded algebras, 
where the product on H∗

FJRW (W ) and H∗(X, C) =
⊕

q+p=∗
Hq,p(X) are the quantum 

products.

7.2. In paragraphs 7.2 and 7.3, we compute the dimensions HTq,p([X/G]) explicitly as 
an example to illustrate the identification above.

Denote Hp−ι(g)(Xg, ∧q−ι(g)ΩXg ) by Hq,p(X; g) and its dimension by hq,p(X; g). Sim-
ilarly denote Hp−ι(g)(Xg, ∧q−cg+ι(g)TXg ⊗ ωg) by HTq,p(X; g) and its dimension by 
ȟq,p(X; g). We compute the numbers hq,p(X; g) and ȟq,p(X; g) for Fermat quintic orb-
ifold. The age and the fixed locus from Sections 2 and 3 give the numbers immediately. 
We put the numbers into a diamond. See the pictures below.
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1

0 0

0 1 0 1 1 × 5 = 5

1 101 101 1 6 6

0 1 0 1 1 × 5 = 5

0 0

1

The three diamonds above from the left to the right correspond to the numbers hq,p(X; g)
when g is of type one, two, and three respectively. There are 60 type three elements whose 
fixed loci are points denoted by {∗}. For each of the type three elements, the fixed locus 
is a set of ten points. The element g acts transitively on five of them and transitively on 
the other five of them. The age of g is 1 or 2 depending on the points, so the cohomology 
H0({∗}, C) of the fixed locus has degree (1, 1) and (2, 2) respectively.

1

0 0

0 101 0 6

1 1 1 1 1 1 1 × 5 1 × 5

0 101 0 6

0 0

1

The three diamonds above from the left to the right correspond to the numbers ȟq,p(X; g)
when g is of type one, two, and three respectively. There are 60 type three elements whose 
fixed loci are points denoted by {∗}. The cohomology H0({∗}, C) of the fixed locus has 
degree (1, 2) and (2, 1) respectively due to the same reason above.

7.3. Let h ∈ G be an element of the group G and αg ∈ HTq,p(X; g) be a class indexed 
by g. Then h · αg ∈ HTq,p(X; hgh−1) is a class indexed by hgh−1. When the group 
G is abelian, the group G acts on each direct summand HTq,p(X; g) of HTq,p(X; G)
individually. Denote the dimensions of HTq,p(X; g)G and Hq,p(X; g)G by ȟq,p(X; g)G
and hq,p(X; g)G respectively. We compute the dimensions in the following.

In the proof of Theorem C, the nondegenerate pairing

∧qΩXg ⊗ ∧dg−qΩXg → ωXg ∼= ωg

identifies
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HTq,p(X; g) = Hp−ι(g)(Xg,∧q−cg+ι(g)TXg ⊗ ωg)

with

Hn−q,p(X; g) = Hp−ι(g)(Xg,∧dg−q+cg−ι(g)ΩXg ),

where dg is the dimension of Xg. Their dimensions are related by the equality 
hn−q,p(X; g) = ȟq,p(X; g).

In the case of the Fermat quintic orbifold, the pairing above is compatible with the 
group action. Therefore, the corresponding G-invariants HTq,p(X; g)G and H3−q,p(X; g)G
are naturally isomorphic. To compute ȟq,p(X; g)G, it suffices to compute h3−q,p(X; g)G. 
We compute the numbers when g is of type four, three, two, and one respectively.

• There are 24 elements of type four of the group G. The fixed locus is empty in this 
case.

• There are 60 elements of type three of the group G. As an example we choose 
g = (ζ, ζ, ζ4, ζ4, 1). The computations for general type three elements are similar. 
The fixed locus is a set of ten points [1 : −ζj : 0 : 0 : 0] and [0 : 0 : 1, −ζj : 0]. The 
age ι(g) is 2 on the first five points and 1 on the other five points. Therefore the 
dimension

ȟq,p(X; g) = dim HTq,p(X; g) = dimHp−ι(g)(Xg,∧q−cg+ι(g)TXg ⊗ ωg)

is five when (q, p) = (1, 2) or (2, 1) and zero otherwise.
The group G acts transitively on the first five points [1 : −ζj : 0 : 0 : 0] and 
transitively on the other five points [0 : 0 : 1, −ζj : 0] respectively. The G-invariant 
dimension ȟq,p(X; g)G is one when (q, p) = (1, 2) or (2, 1) and zero otherwise.

• There are 40 elements of type two of the group G. The age ι(g) is one. The 
fixed locus is a genus 6 curve C ⊂ X ∩ P 2. It has been shown above that 
h1,1(X; g) = ȟ2,1(X; g) = 1, h2,2(X; g) = ȟ1,2(X; g) = 1, h2,1(X; g) = ȟ1,1(X; g) =
6, h1,1(X; g) = ȟ2,2(X; g) = 6 and zero otherwise. It is easy to see that the group G
acts trivially on H1−1(Xg, ∧1−1ΩC) = H0(C, OC). This implies that the G-invariant 
dimension h1,1(X; g)G is one and similarly h2,2(X; g)G is one due to Serre duality. In 
the next paragraph, we show that the G action on H1−1(X, ∧2−1ΩC) = H0(X, ΩC)
has no invariant. This implies that the G-invariant dimension h2,1(X; g)G is zero and 
h1,2(X; g)G is zero due to Serre duality.
We show that H0(C, ΩC) has no invariant under the G action. We take g =
(ζ, ζ, ζ, ζ2, 1) and the fixed locus C is [x : y : z : 0 : 0] ⊂ X∩P 2, where x5+y5+z5 = 0. 
The computation for general type three elements is similar. A basis of differential 
forms of this curve is given by the formula below [13]. Let y2 = y

x and y3 = z
x . Then

θr,α = yr2dy2
α ,
y3
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where 0 ≤ α ≤ 4 and 0 ≤ r ≤ α − 2, form a basis of H0(C, ΩC). One can check 
directly that none of them is invariant under the group action.

• There is one element of type one. The fixed locus is the entire X. The Hodge diamond 
is shown above. We want to show that the Hodge diamond after taking the G-
invariant is of the following form

1

0 0

0 1 0

1 1 1 1

0 1 0

0 0

1.

To show this, we apply Orlov’s theorem of derived equivalence of categories [14]

Db(X) ∼= MFgr(A5,Z/5Z,Σ4
i=0 x

5
i ),

where the left hand side is the derived category of X and the right hand side is the 
Z-graded matrix factorization category with the Z/5Z-action on the coordinates xi. 
The Hochschild cohomology is a categorical invariant, so we obtain the isomorphism 
below

HH∗(X) ∼= HH∗(MFgr(A5,Z/5Z,Σ4
i=0 x

5
i )).

It is known [6,2] that the Hochschild cohomology of the equivariant matrix factoriza-
tion MF (A5, Z/5Z, 

∑4
i=0 x

5
i ) is isomorphic to a sum as follows (we refer the readers 

to [2] for the product structure and this will not be used in our paper)

HH∗(X) ∼= (
⊕

g∈Z/5Z

Jac(Y g,W |Y g ) ⊗ ωg)Z/5Z,

where Y is the affine space A5, W =
∑4

i=0 x
5
i and ωg is the dualizing sheaf of the 

embedding Y g ↪→ Y . Note that Y g is a point when g ∈ Z/5Z is nontrivial. We know 
that the dimensions of the Hochschild cohomology2 of X are of the form

2 Note that the Hodge diamond for Hochschild homology and cohomology are related by a flip which 
corresponds to contraction with the holomorphic volume form.
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1

0 0

0 101 0

1 1 1 1

0 101 0

0 0

1.

Under the isomorphism above, the odd degree part of the Hochschild cohomology 
HH∗(X) corresponds to the twisted Jacobi ring. Jac(Y g, W |Y g ) ⊗ωg indexed by the 
four nontrivial elements of Z/5Z. The even degree part of HH∗(X) is the vertical line 
in the diamond above. It corresponds to the Jacobi ring Jac(A5, W ) of the Fermat 
polynomial W . The numbers 1, 101, 101, and 1 in the diamond of the Hochschild 
cohomology correspond to the numbers of monomials of degree 0, 5, 10, and 15 in 
the Jacobi ring.
We add the group G = (Z/5Z)3 action on both sides of the isomorphism above. 
One concludes that the odd degree part is invariant under the group action. In the 
even degree part, the invariant in the Jacobi ring Jac(A5, W ) of W is spanned by 
the monomials 1, Πxi, (Πxi)2, and (Πxi)3.

Let hq,p(X; G) be the sum of hq,p(X; g) for g ∈ G and let ȟq,p(X; G) be the sum of 
ȟq,p(X; g) for g ∈ G. Let hq,p([X/G]) be the sum of hq,p(X; g)G for g ∈ G and let 
ȟq,p([X/G]) be the sum of ȟq,p(X; g)G for g ∈ G. We put the numbers hq,p([X/G]) and 
ȟq,p([X/G]) into the form of a diamond. Based on the computations above, the diamonds 
are

1 1

0 0 0 0

0 101 0 0 1 0

1 1 1 1, 1 101 101 1

0 101 0 0 1 0

0 0 0 0

1 1,

where 101 is equal to 1 + 60 × 1 + 40 × 1.
Before we prove Theorem B2, we need the proposition below.

7.4. Proposition. We put the numbers ȟq,p([X/G]) = dim HTq,p([X/G]) into a form of a 
diamond. Then it is in the form of a Greek cross below
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1

0 0

· · · 1 · · ·
0 · · · · · · 0

∗ ∗ · · · ∗ ∗
0 · · · · · · 0

· · · 1 · · ·
0 0

1.

The vertical line and the horizontal line in the diamond are possibly nonzero and the 
other part of the diamond is zero.

Proof. We know that the Hodge diamond of a general hypersurface in projective space 
is in the form of a Greek cross and the numbers (except for the one in the middle degree) 
in the vertical line are 1.

Paragraph 7.1 shows that the diamond of HTq,p([X/G]) is equal to the Hodge diamond 
of X. �
7.5. Similar to the Fermat quintic case, we have an isomorphism of algebras

HH∗(X) ∼= (
⊕

g∈Z/dZ

Jac(Y g,W |Y g ) ⊗ ωg)Z/dZ.

This isomorphism of algebras is crucial in the rest of this paper because of the reason 
below. We explained that HT∗(X) is isomorphic to HH∗(X) as algebras in the introduc-
tion. In the definition of both the simplified and unsimplified products, it is clear that 
HT∗(X) is a subalgebra of HT∗(X; G). Therefore the isomorphism of algebras between 
the Hochschild cohomology and the Jacobi ring above can help us to study the product 
on HT∗(X; G) and on HT∗([X/G]).

Similar to the computation in Paragraph 7.3, we conclude that there is an element 
α ∈ HT1,1([X/G]) such that α, α2, · · · , αn are all nonzero. This class α corresponds to 
the monomial Πxi in the Jacobi ring under the isomorphism of algebras above and αj

corresponds to (Πxi)j . Since the numbers in the vertical line of the diamond are 1 except 
for the middle of this line, the family < 1, α, α2, · · · , αn > determines everything in the 
vertical line except for the middle of this line.

7.6. We need to clarify terminology before we prove Theorem B2. When the dimension 
n of X is an odd number, the horizontal line and the vertical line of the diamond of 
HT∗([X/G]) do not intersect, and there is nothing special to say. When the dimension 
n = 2m of X is an even number, the vertical line and the horizontal line intersect in 
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the middle HTm,m([X/G]). Let α be the class in HT1,1(X) in the vertical line. Then the 
class αm lies in the intersection HTm,m([X/G]) of the vertical line and the horizontal 
line. The intersection naturally decomposes

HTm,m([X/G]) =
⊕
g∈G

(HTm,m(X; g)G).

Similar to the computation in Paragraph 7.3, one concludes that HTm,m(X; 1)G is one 
dimensional and it is spanned by αm. Then we have the following

HTm,m([X/G]) =
⊕

1�=g∈G

(HTm,m(X; g)G)
⊕

< αm > .

7.7. Definition. When the dimension n of X is odd, the horizontal and vertical lines of 
the diamond do not intersect. We define V L as the vector space spanned by the vertical 
line and define HL as the vector space spanned by the horizontal line.

When the dimension n = 2m of X is even, define V L as the vector space
⊕
i�=m

HTi,i([X/G])
⊕

< αm >,

and define HL as the vector space
⊕
i�=0

HTm−i,m+i([X/G])
⊕

1�=g∈G

(HTm,m(X; g)G).

The intersection HTm,m([X/G]) of the vertical line and the horizontal line is naturally 
indexed by g

HTm,m([X/G]) =
⊕
g∈G

(HTm,m(X; g)G).

The term < α >= HTm,m(X; 1)G belongs to V L and all the other terms belong to HL.
From the discussion above, we know that the vector space V L is always spanned 

by < 1, α, · · · , αn >. We also know that V L and HL span the entire diamond of 
HT(q,p)([X/G]) and that V L ∩HL = 0.

Proof of Theorem B2. Let [X/G] be a Calabi-Yau Fermat hypersurface of dimension 
n and degree d. We want to prove that the simplified and unsimplified products on 
HT∗([X/G]) agree for [X/G].

Let ∗s and ∗u be the simplified product and unsimplified product respectively. Let αg

be a class indexed by g and βh be a class indexed by h. To prove Theorem B2, it suffices 
to show that αg ∗s βh = αg ∗u βh when αg, βh are both in the vector space V L, or both 
in the vector space HL, or one is in V L and the other is in HL.
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When g is the trivial element, the isomorphism of algebras HT∗(X) = HT∗(X, 1) ∼=
HH∗(X) = HH∗(X, 1) is explained in the introduction. One can conclude that 
HT∗(X)G ∼= HH∗(X)G is a subalgebra of

HT∗([X/G]) =
⊕
g∈G

HT∗(X, g)G

for both the simplified and the unsimplified products using the definition of the products.
It has been shown in Paragraph 7.5 that the product restricted to

V L =< 1, α, α2, · · · , αn >

is generated by α as an algebra. Namely, the product restricted to V L is determined by 
HT∗(X) ∼= HH∗(X) and it has no contribution from HT∗(X; g) for nontrivial g ∈ G. 
Therefore, the simplified and unsimplified product agree on V L, i.e., αg ∗s βh = αg ∗u βh

when αg, βh are both in V L.
When one of αg and βh is in V L and the other one is in the HL, we can assume 

that αg is in V L, i.e., g is the trivial element 1 ∈ G and αg = αi for some i, without 
loss of generality. We want to show that the product is either zero or αg is the unit of 
this algebra for both the simplified and unsimplified products. The argument for the 
simplified and the unsimplified products are the same. Let · be the simplified or the 
unsimplified product in this paragraph. If αg is not the unit and αg ·βh is not zero, then 
the degree of αg · βh is strictly greater than the degree of βh ∈ HL. Therefore αg · βh is 
not in HL because all the elements in HL lie in the middle degree. Since the diamond 
is of the form of a Greek cross, we conclude that αg · βh must be in V L, i.e., it is of the 
form αi for some i. The class αg is also of the form αi for some i, so this implies that βh

is also of the form αi and it is in V L. We obtain a contradiction. This shows that the 
product is either zero or αg is the unit of this algebra in this case.

Then we look at the case where both αg and βh are in HL. The simplified product 
must land in HHn,n(X) and g and h must be inverse to each other because the simplified 
product preserves the (q, p) bidegree. Recall that there is a class γg,h introduced in the 
definition of the simplified product. It is the top Chern class of a vector bundle of rank 
ι(g) + ι(h) − ι(gh) − codim(Xg,h, Xgh). When h = g−1 or g = 1, the rank above is zero 
which implies the class γg,h is trivial. As a consequence, we conclude that the class γg,h
does not show up in the simplified product on HT∗([X/G]). When the class does not 
show up in the product, the simplified product is in the form of Proposition 4.5. By 
definition, the unsimplified product must land in

cg⊕
i=0

HTn−cg+i,n+cg−i(X),

where cg is the codimension of Xg in X. However, there is only one nonvanishing term 
HTn,n(X, 1) ∼= HHn,n(X, 1) of degree 2n in HT∗([X/G]), i.e., the direct summands above 
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is only nonzero when i = cg. Then the unsimplified product must also land in HHn,n(X). 
Because of this reason, one concludes that the unsimplified product is also of the form 
in Paragraph 4.5, i.e., we have αg ∗s βh = αg ∗u βh. �

Before we prove Theorem D, we need the proposition below.

7.8. Proposition. Let αg, βh ∈ HT∗,∗([X/G]) be a class indexed by g and h respectively. 
The product αg ◦βh is determined by the following three cases: both αg and βh are in V L, 
both of them are in HL, and αg is in V L and βh is in the HL. The product restricted 
to V L is generated by a class α ∈ HT1,1([X/G]) as an algebra, i.e., it is of the form 
< 1, α, α2, · · · , αn >. The product (HT∗([X/G]), ◦) restricted to HL can be identified with 
a pairing. This pairing is nondegenerated. When the dimension n is even, this pairing 
is symmetric, and when the dimension n is odd, this pairing is skew-symmetric. In the 
last case, the class αg must be the unit of the algebra or the product vanishes.

Proof. We consider the first case. Note that the introduced sign ε(g, h) is 1 in V L because 
g and h are trivial in this case. Under the identification

HH∗(X) ∼= (
⊕

g∈Z/5Z

Jac(Y g,W |Y g ))Z/5Z,

we know that the space V L is represented by the classes 1, Πxi, (Πxi)2, · · · , and (Πxi)n
in the Jacobi ring, from the explanation above. Moreover, the multiplication structure is 
preserved [24], i.e., the classes are of the form < 1, α, α2, · · · , αn >, where α is the class 
represented by Πxi.

We consider the second case. The product restricted to HL can be viewed as a pairing. 
The sign ε(g, h) is introduced to make the product graded commutative. Therefore, it 
suffices to show that the pairing is nondegenerated. From the previous discussions, we 
know that the only possibly nonzero product, in this case, is of the form below

HTq,p(X; g)G ⊗ HTq′,p′
(X;h)G → Hn(X,∧nTX) ∼= C,

where h = g−1, p + p′ = q + q′ = n, and p + q = p′ + q′ = n.
We expand the term

HTq,p(X; g)G = Hp−ι(g)(Xg,∧q−cg+ι(g)TXg ⊗ ωg)G

and similarly the term

HTq′,p′
(X;h)G = Hp′−ι(h)(Xh,∧q′−ch+ι(h)TXh ⊗ ωh)G.

The orbifold [X/G] is Calabi-Yau, so we can apply the identification in Theorem C. We 
have
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HTq,p(X; g)G ∼= Hp−ι(g)(Xg,∧n−q−ι(g)ΩXg )G,

HTq′,p′
(X;h)G ∼= Hp′−ι(h)(Xh,∧n−q′−ι(h)ΩXh)G,

and

Hn(X,∧nTX) ∼= Hn(X,∧nΩX).

Use the definition of the product and the three identifications above to expand the 
product in detail. The product is the composite map below

Hp−ι(g)(Xg,∧n−q−ι(g)ΩXg )G ⊗Hp′−ι(h)(Xh,∧n−q′−ι(h)ΩXh)G

→ Hp+p′−ι(g)−ι(h)(Xg,h ∧n−q−ι(g) ΩXg ⊗ ∧n−q′−ι(h)ΩXh)G

−→ Hn(X,∧nΩX) ∼= C.

We are in the case where h = g−1. We have Xg = Xh = Xg,h and ι(g) + ι(h) = cg. In 
addition, we have p + p′ = q + q′ = p + q = p′ + q′ = n. Then the numbers satisfy

p + p′ − ι(g) − ι(h) = n− cg = dg,

and

n + n− q − q′ − ι(g) − ι(h) = n− cg = dg,

where dg is the dimension of Xg. The product is greatly simplified thanks to the equations 
above. The product now can be rewritten as the composite map below

Hi(Xg,∧jΩXg )G ⊗Hi′(Xg,∧j′ΩXg )G

→ Hdg (Xg,∧jΩXg ⊗ ∧j′ΩXg )G → Hdg (Xg,∧dgΩXg )G = Hdg (Xg,∧dgΩXg )

−→ Hn(X,∧nΩX),

where i + i′ = j + j′ = dg.
The composite map of the first two arrows above is the wedge product. The last 

arrow is of the form H0(Xg, OXg )∨ → H0(X, OX)∨ by applying Serre duality. Using 
the definition of the product, one can conclude that the last arrow is exactly due to the 
natural map

H0(X,OX) → H0(Xg,OXg ).

It is clear that the composite map below

Hi(Xg,∧jΩXg ) ⊗Hi′(Xg,∧j′ΩXg )
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→ Hdg (Xg,∧jΩXg ⊗ ∧j′ΩXg ) → Hdg (Xg,∧dgΩXg )

−→ Hn(X,∧nΩX) ∼= C

is a nondegenerate pairing because it is the standard pairing on de Rham cohomology 
of each Xg. Now we only need to show that it remains nondegenerate after taking G-
invariants. It follows from the lemma below.

The third case has been proven in the proof of Theorem B2. �
7.9. Lemma. Let V a vector space and <, > be a nondegenerate pairing on V . A finite 
group G acts on V and preserves the pairing, i.e., < gv, gw >=< v, w > for all v, w ∈ W . 
Then the induced pairing on the fixed locus V G remains nondegenerate.

Proof. Let w be an element in V G. We need to show that if < w, v >= 0 for all v ∈ V G, 
then w = 0.

Suppose w is not zero and < w, v >= 0 for all v ∈ V G. There exists an element v0 ∈ V

such that < w, v0 >�= 0 because the pairing on V is nondegenerated. Then

< w,
1
|G|

∑
g∈G

gv0 >= 1
|G|

∑
g∈G

< w, gv0 >

= 1
|G|

∑
g∈G

< g−1w, v0 >= 1
|G|

∑
g∈G

< w, v0 >=< w, v0 >�= 0.

The first equality in the second row is due to the fact that the G action preserves the 
pairing. The second equality in the second row is due to the fact that w is invariant 
under G. However, 1

|G|
∑

g∈G v0 is an element in V G. We get a contradiction. �
Since we have computed the product (HT∗([X/G]), ◦) explicitly, we are able to prove 

Theorem D easily as follows.

Proof of Theorem D. As explained at the beginning of this section, there is an isomor-
phism of algebras

HH∗([X/G]) ∼= HH∗(MFgr(An+1, G× Z/dZ,Σn
i=0 x

d
i ))

∼=
⊕

g∈G×Z/dZ

(Jac(Y g,W |Y g ) ⊗ ωg)G×Z/dZ,

where Y is An+1.
To prove Theorem D, it suffices to compare the product (HT∗([X/G]), ◦) with the 

product on
⊕

(Jac(Y g,W |Y g ) ⊗ ωg)G×Z/dZ.

g∈G×Z/dZ
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The product structure on the orbifold matrix factorization category has been defined 
and studied in [12]. One can directly check that the products match. In fact, it has 
been shown in [12] that the product on the orbifold matrix factorization has a Frobenius 
algebra structure. Think about the diamond of this algebra which is exactly the same as 
the diamond of HTq,p([X/G]). Therefore the diamond decomposes into HL and V L as 
before. The Frobenius algebra structure determines the product structure on HL because 
it has to be a nondegenerate symmetric or skew-symmetric pairing. There is only one 
such pairing in a fixed dimension.

The remaining part of the product can be computed in the same method as the one 
that has been used in the proof of Theorem B2. The product restricted to V L is again 
generated by one class α of bidegree (1, 1) because the same computation can be done 
in the Jacobi ring above. Using the same argument in the proof of Theorem B2, one 
can see that the product of an element x ∈ V L with an element y ∈ HL is completely 
determined due to degree reason. This product x · y has to vanish unless x is the unit of 
the algebra. �
7.10. In the rest of this section we explain the possible application of the theorems in 
this paper to mirror symmetry. We explain that the product on the orbifold polyvector 
field of [X/G] is expected to match with the product on the state space of the FJRW 
theory of the Fermat polynomial W .

Standard physical arguments [15] predict that Fermat hypersurface X is the mirror 
to [X/G], which in particular implies the topological A model of X is equivalent to the 
topological B model of [X/G]. On the B side we have the complex moduli of [X/G]
parameterized by ψ (the defining equation is explicitly given by 

∑
xn
i +ψ

∏
xi = 0), on 

each point of the moduli there is a 2D TQFT associated with its derived category. By 
mirror symmetry we would have a corresponding structure on the A side, i.e., we would 
have a (stringy) Kahler moduli parameterized by ψ and for each ψ a TQFT constructed 
from symplectic geometry of X. This picture is much less understood due to the presence 
of instanton corrections, we only have precise mathematical definitions in certain limits. 
The large volume limit of A model corresponds to ψ → ∞, where the corresponding 
category is the Fukaya category of X which is closely related to its Gromov-Witten 
invariants. There is an opposite limit ψ → 0 which formally means negative infinity 
Kahler class and the corresponding mathematical objects are the Fukaya-Seidel category 
and FJRW invariants. In this case of Fermat hypersurface, there is a proof [9] of the 
expected fact that FJRW theory and Gromov-Witten theory are related by analytic 
continuation in genus 0.

7.11. In this paper, we studied the B model chiral ring at point ψ = 0 (note that un-
like the large complex structure limit ψ → ∞, ψ → 0 converges to a smooth orbifold, 
categorically this is better behaved) which under mirror symmetry goes to the classical 
FJRW ring, i.e. we only need the point 0 instead of its formal neighborhood. This is 
purely topological and also expected to be the orbifold Jacobi ring of the mirror Fermat 
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polynomial. Actually, the isomorphism of orbifold Jacobi ring and orbifold Hochschild 
cohomology has a purely B model explanation without referring to mirror symmetry: 
for different points in the (stringy) Kahler moduli we get different descriptions of the 
theory which are canonically isomorphic up to monodromy on the Kahler moduli (this is 
the mirror to the well-known fact that we need to choose an almost complex structure to 
define the Fukaya category and different choices are canonically isomorphic). There are 
two particular points in the Kahler moduli resembling ψ → ∞ and ψ → 0 and give two 
descriptions of the category as (orbifold) derived category and matrix factorization, and 
their equivalence is the orbifold extension of Orlov’s theorem. This equivalence induces 
an isomorphism of their Hochschild cohomology, which is one of the key ingredients of 
our proof.
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