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ABSTRACT In this study, knowledge of multiple controllers was used and combined with deep rein-
forcement learning (RL) to train a visual servoing (VS) technique. Deep RL algorithms were successful
in solving complicated control problems, however they generally require a large amount of data before
they achieve an acceptable performance. We developed a method that generates online hyper-volume action
bounds from demonstrations of multiple controllers (experts) to address the issue of insufficient data in RL.
The agent then continues to explore the created bounds to find more optimized solutions and gain more
rewards. By doing this, we cut out pointless agent explorations, which results in a reduction in training
time as well as an improvement in performance of the trained policy. During the training process, we used
domain randomization and domain adaptation to make the VS approach robust in the real world. As a result,
we showed a 51% decrease in training time to achieve the desired level of performance, compared to the case
when RL was used solely. The findings showed that the developed method outperformed other baseline VS
methods (image-based VS, position-based VS, and hybrid-decoupled VS) in terms of VS error convergence
speed and maintained higher manipulability.

INDEX TERMS Visual servoing, reinforcement learning, online action bounding, reinforcement learning
from demonstrations, manipulability.

I. INTRODUCTION
Robot vision is significantly important in perception as it
endows the robot with the ability to perceive the surrounding
environment without making direct contact with the object.
One of the well-developed approaches in robot vision is
visual servoing (VS) which converts visual errors into actu-
ator commands [1]. Despite improvements, the traditional
VS methods still have some limitations in terms of stability,
convergence, and gain selection [2]. Some of these issues
are associated with calculating the image Jacobian (Interac-
tion matrix), including singularities and local minima. Other
prominent problems are based on the fact that there is no
direct control over the robot joint velocities. As a result,
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the controller is unaware of the limitations of the robot arm
and its performance, especially when employing stationary
manipulators such as industrial arms. Other essential aspects
of VS are robustness to camera calibration, image noise,
disturbances, errors in modeling of the problem, errors in
robot kinematics, sensor data, and keeping visual features in
the camera field of view (FOV).

Thanks to improved learning methods, new generations
of robots can learn and prevent issues of this kind [3].
Supervised learning techniques aid in anticipating data output
based on prior experiences; therefore, the dataset must be
labeled ahead of time. However, labeled data are scarce for
many real world applications, whereas unlabeled data are
plentiful. Unsupervised learning methods and reinforcement
learning (RL) algorithms could solve the problem of limited
labeled data. Researchers use RL approaches to solve vision
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tracking issues that are difficult to model or computationally
expensive [4], [5], [6].

However, RL methods necessitate a great deal of trial and
error, making it difficult to adapt to actual robot control [7].
This is supported by the fact that the agent neither has any
prior knowledge about the environment, nor pre-existing data
to rely on. Therefore, it necessitates a significant amount of
time to spend exploring the environment. To alleviate the
problem of insufficient data, the data of expert demonstra-
tions would combine with RL algorithms, resulting in an
intuitive framework for the agent that reduces the deployment
costs [8]. However, several challenges remain with the use
of experts, including the expensive cost of data collection,
the inability to generalize to different scenarios and the fact
that the agent exploration is restricted by blindly following a
single expert [9], [10], [11].

This study proposes a method that avoids forcing the agent
to blindly follow the expert behavior, but intelligently restricts
actions based on multiple controllers in an online manner.
As a result, the agent continues to learnwhile ignoring actions
that are outside the adaptive bounds.

A. RELATED WORKS
Classical image-based visual servoing (IBVS) and position-
based visual servoing (PBVS) methods tend to fail in the
presence of noises, disturbances and modelling errors [12].
The literature suggested a number of methods for preventing
issues of this type [13], [14], [15], [16]. In [13], the authors
developed amethod for retaining visual features in the camera
FOV that involves switching between PBVS and backward
motion approaches. However, the controller suffers from dis-
continuities when switching happens, and the sensitivity of
the PBVS to the camera calibration remains.

The author in [14] presented a visual servoing approach
that decouples translation and rotation around the Z -axis from
the interaction matrix in order to address drawbacks of IBVS
method, such as the so-called Chaumette Conundrum and the
camera retreat. However, non-optimized trajectories are gen-
erated for the manipulator, as a result of converging rotation
errors directly to zero from the camera image [15]. Unnec-
essary movements are reduced in 2 1/2 D visual servoing
systems by separating translations from rotations [17]. Never-
theless, these approaches are also computationally expensive
and need homography construction, which is susceptible to
image noise [14]. In our previous study [18], we proposed
a decoupled-hybrid technique that is more robust to image
noise and functions, similar to a 2 1/2 D VS. Addition-
ally, the approach enhanced the manipulability (controlla-
bility) of the robot which is a crucial factor in stationary
robots. Nevertheless, the time-consuming computation of the
pseudo-inverse remained a challenge in calculating camera
velocity, and consequently joint velocity in classical methods.
That is why other studies are vastly focusing on machine
learning approaches to solve the aforementioned vision track-
ing issues [4], [5], [6]. In another study [1], we introduced a
hybrid VS technique called hybrid-decoupled VS (HDVS) to

address the issue of complex computations. The method has
the capability of estimating the pseudo-inverse of the decou-
pled VS interaction matrix using LoLiMoT (i.e. a neuro-
fuzzy neural network). However, HDVS does not take into
account the controllability of the robot separately because the
outputs of the LoLiMoT neural network are camera velocities
and have nothing to do with the joint velocities. In this study,
we employed deep reinforcement learning to directly map
image features to the joint velocities and make the trained
policy robust to image noises and calibration as well as to
enhance the performance of VS in both image and robot
space. There are several papers in the literature that apply VS
using deep RL.

Deep RL-based VS methods are used for various appli-
cations such as for multi-rotor aerial robots [2], [19], [20],
for mobile robots [5], [21], [22], [23], and for stationary
industrial robots [4]. Nevertheless, RL approaches acquire
knowledge through extensive trial and error. Demonstrations
aid in speeding up and enhancing the learning process.

In the literature, online and offline demonstration informa-
tion was integrated with RL for robot vision applications. For
example, a model-free deep reinforcement learning approach
was proposed which uses demonstration data to support a
reinforcement learning agent [24]. In [25], a unique tensor-
based model was proposed to predict the unseen actions of
the expert state sequences by combining RL and data of a
demonstrator.

Our proposed method varies from all of these methods in
that we create an online hyper-cube over the candidate actions
of multiple controllers. By doing so we adaptively reduce
the explorations of RL to develop policies that directly map
inputs of the camera image to joint velocities.We demonstrate
that the learning process is not only greatly accelerated
(compared to pure RL), but the policy will also improve the
performance of each controller technique that was used to
train the policy. More specifically, the joint velocity data
of three experts; image-based VS (IBVS), position-based
VS (PBVS), and hybrid-decoupled VS (HDVS), are used
in the proposed method to limit the action region of the
agent and avoid inapplicable actions. In addition, the agent
explores further the achieved action bounds from the experts
to uncover even more optimal candidates capable of boosting
the cumulative rewards. Defining these limitations has noth-
ing to do with the reward function. As a result, the procedure
could still be applied even without an explicit reward function
using inverse RLmethod. Our proposedmethod addresses the
issue of limited real-time data availability by itself and has
shown promising results. However, it is important to note that
there are still opportunities for further improvement in terms
of training efficiency. Combining our method with other
techniques could potentially enhance the sample efficiency
of the training process, leading to a more efficient overall
training process.

Domain randomization (DR) is also utilized during the
process of learning to adapt the trained policy to real world
environments and to make the policy robust in terms of
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FIGURE 1. The outline of the proposed strategy combined with the RL method for a VS application. The Deep Deterministic Policy Gradient
(DDPG) agent will be trained by using the DR method. The proposed method employs a combination of three different methods (PBVS, IBVS, and
HDVS) as demonstrators to accelerate training and enhance VS performance. Following that, the policy will be further trained with the real
robots to adapt to the real world, and the RL agent will be deployed to complete the visual servoing task.

noise, light, and also in the presence of random objects in
the camera scene. Therefore, the agent will be trained in
simulation, and then the knowledge will be transferred to
the real world. Furthermore, domain adaptation (DA) is used
as a method of deploying the RL agent to the real world.
We demonstrated that the proposed method successfully
accelerated the process of learning and enhanced the perfor-
mance of the controller in both robot base and image base
spaces.

Figure 1 illustrates the graphical overview of the proposed
method, and the contributions of this study are summarized
as follows:

• The proposed method avoids forcing the agent
to blindly follow the behavior of a controller,
but intelligently restricts actions based on multiple
controllers.

• The agent inherits the advantages of each expert while
avoiding their shortcomings.

• The agent will explore the constrained action spacemore
thoroughly in order to find even more optimal solutions
based on the defined rewards. As a result, implementing
the suggested strategy has the potential to perform bet-
ter than baseline techniques that were employed in the
training to develop action bounds.

• Because the action space is achieved using mathemati-
cally proven control methods, the possibility of stacking
in the local minima while training the agent in the RL
algorithm is greatly reduced.

The remainder of this study is structured as follows: Sec-
tion II provides a brief background about the deployed meth-
ods (i.e. VS and RL), followed by a detailed explanation of
the proposed method. In Section III, the simulation environ-
ment and experimental setup will be introduced. Thereafter,
in Section IV, the experimental outcomes and results will
be reported and discussed. Finally, the paper is concluded in
Section V.

II. METHODOLOGY
The next section gives a general overview of the baseline
visual servoing methodologies and RL algorithm, and then
the proposed strategy is thoroughly explained.

A. VISUAL SERVOING
In our proposed method, the results of three different meth-
ods (IBVS, PBVS, HDVS) were combined and used as a
supervisor to provide data to the learner. An overview of the
methodologies utilized in this paper is detailed in the follow-
ing paragraphs. The features in the image space immediately
provide feedback for the IBVS controller. By considering
vcam as the camera velocity vector, and ei as the difference
between the current and desired position of ith feature, the
control law of the IBVS is calculated as follows [26]:

vcam = −kiL+

i ei (1)

where ki is the controller gain and Li is the image Jacobian
matrix used to connect pixel velocity to the camera velocity
(L+

i is the pseudo-inverse representation ofLi). The feedback
in PBVS is received from the environment pose reconstruc-
tion. The pose estimate will be computed using Euclidean
algorithms and camera parameters [27]. The control law of
the PBVS is defined as follows:

vcam = −kpL−1
p ep (2)

where kp is the controller gain and ep is the position difference
between the current and the desired position of the camera,
in the task space. Lp(t) is a 6 × 6 Euclidean matrix to do the
camera 3D position estimation; as defined in [27].

For the third method, we used HDVS method that is
detailed in [1]. The HDVS method employs both 2D infor-
mation from image features and their estimated 3D pose. The
control law in the HDVS method is calculated by solving the
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following equations simultaneously:

vxy = L+
xy {−khe − Lrvr } (3)

vr = L+

Pr

{
−khep − LPxyvxy

}
(4)

where vxy = [vx vy]T , vr = [vz wx wy wz]T , kh is the
controller gain, and Lxy, Lr , LPr , and LPxy are subsets of Li
andLp which are defined in reference [1]. ALoLiMOTneural
network was then trained with the collected data from (3) and
(4) to provide an accurate estimation of the camera velocities
from the feature errors [1].

After calculating the End-Effector (EE) velocities using
the robot kinematics, the joint velocities (q̇) will be com-
puted [28]:

q̇ = J+λξ ec v
c
cam (5)

where λ is a positive scalar known as damping factor [28].
ξ ec is a transformation matrix that maps the velocities in the
robot end effector (EE) frame to the camera frame (c) [29].

B. REINFORCEMENT LEARNING
Reinforcement learning is well known for its applications
in controlling complex, potentially non-linear systems. The
policy is a function that connects observations with actions
[30]. The policy parameters are continuously updated by
the reinforcement learning algorithm. The goal is to find
an optimal policy that is able to maximise the cumulative
rewards. The reward indicates how successful an action is
in terms of fulfilling the task goal. An RL agent interacts
with the actual environment to perform an action a from an
action space A and receive state s from a state space S, both of
which are determined by a policy known as π (a|s). A scalar
reward r and the preceding state s′ are the results of map-
ping from state s to actions a. The rewards function R(s, a),
the environment model, and the state transition probability
T (s, a, s′) = P(s′|s, a) provide the basis for this mapping
between states and actions. This process is continued in an
episodic problem until the agent reaches a terminal state.

The value function Q∗(s, a), which delivers maximal val-
ues in all states, is determined using the Bellman equation
[31]:

Q∗(s, a) = E

[
R(s, a) + γ

∑
s′
P

(
s′ | s, a

)
max
a′

Q∗
(
s′, a′

)]
(6)

where γ ∈ (0, 1] is the discount factor, E is the Bellman
expectation, andQπ (s, a) is an estimate of the expected future
reward.

DDPG is an algorithm that learns a Q-function and a policy
at the same time. The Q function is used to learn the policy
using the Bellman equation and off-policy data. Two different
NNs are used in DDPG: An actor (target policy) π : S → A,
and a critic (action value function approximator)Q : S×A →

R. Approximating the action-value function Qπ of the actor
is the duty of the critic [32].

The actor trains using the following loss function:

La = −EsQ(s, π(s)) (7)

in which s is sampled from the replay buffer. Furthermore,
mini-batch gradient descent on the loss L is used to train the
critic network, which promotes the estimated Q-function to
meet the Bellman equation:

L = E
(
Q

(
st , at

)
− yt

)2 (8)

In (8), yt is computed using the action which is the output
of the actor network:

yt = rt + γQ (st+1, π (st+1)) (9)

Back-propagation through the combined critic and actor
networks is used to calculate the gradient of La with respect
to the actor parameters [33].

In Figure 2, the structure of the proposed technique for the
visual servoing task is outlined. As illustrated in Figure 2,
the proposed method takes in current and desired features
extracted from a vision sensor as inputs. These features are
used to constrain the action space using knowledge from
different approaches, namely HDVS, PBVS, and IBVS. This
helps to ensure that the actions taken by the system are within
acceptable bounds. To enforce these bounds, an action filter
block is employed in the DDPG policy. The DDPG policy
comprises two blocks: the actor and the critic. The actor block
maps the current state to an action, while the critic block
evaluates the quality of the action based on the expected
reward. The actor and critic blocks are trained using actor
and critic loss functions, respectively. During training, if the
action generated by the actor block falls outside the bounds
set by the knowledge of HDVS, PBVS, and IBVS approaches,
the action filter block will remove the action from consid-
eration. This ensures that only actions within the acceptable
bounds are considered, leading to better learning outcomes.
The joint velocity actions that pass through the action filter
block are then applied to the training environment, and the
resulting average rewards are calculated.

C. PROPOSED METHOD: ACTION CONSTRAINED
STRATEGY
As described in Section I-A, our proposedmethod uses imple-
mented control algorithms to limit the action space of the RL
agent rather than letting the AI agent to learn from scratch
through their own exploration. Joint velocities are defined
as RL agent actions (VS commands). The observations are
the positions of image feature points, camera poses, and the
Jacobian of the robot. Three reward functions are combined
to provide the agent reward. The feature errors are driven to
zero in the first reward, r1:

r1 = −

4∑
i=1

√
(ui − uid )2 + (vi − vid )2 (10)

where (u, v) denotes the coordinates of a point in the picture
and (ud , vd ) is the desired coordinates of that point. i = 1 to

VOLUME 11, 2023 26515



A. Aflakian et al.: Boosting Performance of VS Using Deep RL From Multiple Demonstrations

FIGURE 2. The proposed method block receives current and desired features that have been extracted from the vision sensor as
inputs. Consequently, the knowledge of HDVS, PBVS, and IBVS approaches is used at each episode to constrain the action space.
Actions outside the created bounds are filtered using the Action filter block in the DDPG policy. The joint velocity actions will be
applied to the training environment, and accordingly average rewards will be calculated.

n is the number of features (in this case n = 4 features).
The second reward function (r2) is defined to avoid joint
limits [34]:

r2(q) = −
1
2n

n∑
j=1

(
qj − q̄j

qjM − qjm

)2

(11)

where q̄j is center of jth joint range. qjM and qjm are the
maximum and minimum angles of the jth joint respectively,
and n = 7 is the number of joints. Singularity avoidance is
introduced in the final reward component [34]:

r3(q) =

√
det

(
J(q)JT (q)

)
(12)

where J is the robot Jacobian. The overall procedure of the
proposed learning method is detailed in Algorithm 1. In the
proposed acceleration method, the robot achieves the desired
joint velocities at the beginning of each step from IBVS,
PBVS, and HDVS methods. Thereafter, from combination
of these demonstrators, a set of bounds for the action will
be defined (abound ): the lower limits of the bound for the ith
joint would be min(q̇ibvs[i], q̇pbvs[i], q̇hdvs[i]) and the upper
limit of the bound would be: max(q̇ibvs[i], q̇pbvs[i], q̇hdvs[i]).
In this way, the actions which are out of bounds and created
from the critic network would be filtered, and the agent
continues exploring by trial and error, within the created
bounds. We defined a hypercube at each time step (i.e.
a subset of the whole space), as restrictive bounds for action
space. There are relevant actions inside of that, however the
hyper cube is one of the simplest spaces which encapsulate
all of the action vectors.

III. EXPERIMENTAL SETUP
In order to train the policy, an environment was modelled in
the simulation (i.e. ROS/Gazebo). Simulations are preferred

over real world trials because they provide inexpensive and
fast experiments. In addition, using the simulation environ-
ment helps to mitigate the risks of damaging the robot setup
due to unexpected movements during training. Since the real
system is assumed to be one instance in a vast distribution
of training variations, the trained model with DR can adapt
to the real world environment. As mentioned in I-A, DR is
a technique for training a model that works in a variety of
simulated settings with randomized properties [35].

The DDPG algorithm was used as a ROS node, and poli-
cies were taught using Matlab reinforcement Learning Tool-
box [36]. Each control method (IBVS, PBVS, and HDVS)
was employed as a distinct ROS node to deliver the actions
based on the respective observations. Figure 1 depicts the
simulation environment in Gazebo, and the real world setup.
The simulation platform includes two Franka robot manipu-
lators; one with eye-in-hand configuration, and another one
with a tag marker attached to its EE. The reason for using the
second arm was to move the marker into different positions.

An Intel RealSense depth camera D435i was employed as
a vision sensor. Two systems were linked together using an
Ethernet connection in the same network. One system with
the following specifications was utilized for the simulation:
AMD Ryzen 7 3700 × 8-core CPU with × 16 threads and a
3.6 GHz base clock. The graphics card (GPU) of another sys-
tem with the following specifications was used for reinforce-
ment learning and policy training: NVIDIA GTX 1080Ti
GPU, Intel (R) Core (TM) i7-8086K 6-core CPU with × 12
threads and a 4GHz base clock with 32 GB installed RAM.
Moreover, to accelerate the process of learning, parallel train-
ing was used with the help of Parallel Computing Matlab
Toolbox [36]. In this study, 12 workers were deployed to
create a simulation of the agent in the environment and send
data back to the client.
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Algorithm 1 Action Constrained Approach
Inputs:
• Joint velocities from IBVS (q̇ibvs), PBVS (q̇pbvs),
HDVS (q̇hdvs)
Outputs:
• Optimized joint velocities at (actions)
Given:
• RL algorithm DDPG
• The strategy for sampling goals from replay
• The reward function
Initialize actor and critic weights randomly ;
Initialize replay buffer R ;
while VS error not converged do

for episode i=1 to M do
Sample g (goal) and initial s0 (state);
for t=0 to T−1 do

for k=1 to 7 do
Get Lxy, Lr , LPr and LPxy, ep, ei ;
Get joint velocities q̇ibvs from IBVS ;
Get joint velocities q̇pbvs from PBVS ;
Get joint velocities q̇hdvs from HDVS ;
Make bounds: abound =

[min(q̇ibvs[i], q̇pbvs[i], q̇hdvs[i]),
max(q̇ibvs[i], q̇pbvs[i], q̇hdvs[i])];
Sample at (action) using DDPG policy
and filter actions out of the abound
bound: π (st |g) → at ;
Execute at and observe st+1 (new
state) ;
rt := r(st , at , g) ;
Store (st |g, at , rt , st+1|g) (transition)
in R ;
Sample g′ (additional goal) for replay
G : S(current episode) ;

end
for g′

∈ G do
r ′

:= r(st , at , g′) ;
Store (st |g′, at , r ′, st+1|g′) in R ;

end
for t=1 to N do

Sample B (mini-batch) from the R
(replay buffer) ;
Execute one step of optimization using
DDPG and B ;

end
end

end
end

IV. RESULTS AND DISCUSSIONS
To show the efficacy of our suggested strategy (detailed in
Section II-C), we compare the training progress and results
of RL without the proposed strategy (agent-1) and with the
proposed strategy (agent-2).

TABLE 1. Employed RL and noise parameters in the training.

FIGURE 3. Training graph without using any expert (agent-1, blue line),
and with using three experts to constrain the action space (agent-2, red
line).

For the sim-to-real task, DR was used which has been
identified as the most commonly used strategy for improving
simulation realism. The training was carried out for the task
of VS (i.e. tracking the features of a target in the camera
screen). The initial position of the first robot (the robot with
the camera mounted on its wrist) was randomized in each
episode in order to generalize the trained policy better. The
desired threshold of the average reward was defined to be
−200 (determined from preliminary experiments). The agent
restarted the episode in case of meeting one of the following
criteria during training: (I) when the robot is close to the
joint limits, (II) when the features are 10% close to the image
boundary, (III) when the robot Jacobian manipulability is too
small (less than 0.01), and finally (IV) when the number of
steps in each episode surpasses 400. The used RL parameters
are defined in Table 1.

As illustrated in Figure 3, the agents have learned to
maximize the cumulative reward over time. According to
Figure 3, it takes the agent approximately 57800 episodes
and 6 million steps for the average reward to exceed the
desired threshold (−200). However, it is shown that approx-
imately 28400 episodes and 3 million steps are required to
achieve the same average reward of −200 by combining the
proposed method with RL. Thereafter, using the so-called
domain adaptation approach, we let the trained policies train
for 1500 more real world episodes using actual robots (green
area in Figure 3). Both agent-1 and agent-2 reached the award
of−200 before domain adaptation, however agent-2 achieved
a higher reward after domain adaptation. Due to the change of
environment (i.e. sim-to-real), the reward values dropped for
both agents after DA, as shown in Figure 3. Results suggest
that agent-2 is faster and achieved a more effective policy
(higher average reward) than agent-1.
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TABLE 2. The performance comparison of visual servoing techniques derived by averaging 50 trials (10 trails per method). The bold results represent the
best candidate for each column.

FIGURE 4. Comparison of visual servoing feature errors with various approaches for one random trial. The error between the desired and the
current features (a) in the IBVS method, (b) in the PBVS method, (c) in the HDVS method, (d) with agent-1, (e) with agent-2. It should be noted that
exPi and eyPi represent the x and y components of the i th feature, respectively.

Table 2 compares the effective parameters in the perfor-
mance of individual VS methods and the trained policies.
These parameters are derived by averaging 50 trials with
10 different initial positions of the robot equipped with
the camera. These initial positions were chosen randomly
with the condition of having all four features visible in the
image frame. All experiments are duplicated under the same
condition for IBVS, PBVS, HDVS, agent-1, and agent-2.
As shown in Table 2, IBVS shows an optimized behaviour
in 2D image space, because it has the smallest Root Mean
Square Error (RMSE) than other methods. Moreover, the
smaller range of feature errors in IBVS confirms that the
chance of losing the target object from the camera FOV in
this method is lower than in the other four methods. How-
ever, agent-2 is still faster than IBVS based on the num-
ber of iterations. Not to mention that in VS both image
space and robot space should be considered, and this is
where the suggested method surpasses the IBVS. Follow-
ing IBVS, the trained policy with agent-2 performs more
optimally (smaller RMSE, smaller feature error range, and
fewer iterations) than other methods. As a result, agent-2
outperformed PBVS, HDVS, and agent-1 in the image
space.

From Table 2, the average mean value of manipulability
was 0.0492 for agent-2, 0.0407 for IBVS, 0.0446 for PBVS,
0.0396 for HDVS, and 0.0321 for agent-1. Therefore, agent-2
performs better in terms of manipulability in comparison with
the other four approaches. From Table 2, it would also be
inferred that the robot has better controllability with agent-2
while tracking the target due to higher manipulability bounds
created by agent-2.

According to Table 2, the policy trained with agent-2 has
a shorter camera path than IBVS, HDVS, and agent-1. The
robot end-effector (EE) travelled distance is 0.839m with
agent-2. This value is 0.942m, 0.917m, and 1.14m, in IBVS,
HDVS, and agent-1, respectively. In PBVS, the camera trav-
elled distance was 0.722m, and thus provided the shortest EE
trajectory. Agent-2 outperforms IBVS, HDVS, and agent-1 in
the Cartesian (robot) space. However, still better results are
achieved using the PBVS method in terms of EE travelled
distance. It should be mentioned that the PBVS method has
other drawbacks like losing the object from the camera FOV,
high sensitivity to the camera parameters, and its sub-optimal
performance in the image space, while the trained policy with
agent-2 has solved these drawbacks. Another inference from
Table 2 is that the RMSE of position and orientation with the
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FIGURE 5. The manipulability of five different VS methods.

trained policy of agent-2 is smaller than IBVS, HDVS, and
agent-1 policy which indicates a more optimized trajectory
created by agent-2.

In conclusion, agent-2 achieved an optimal overall per-
formance over the image space and cartesian space, where
PBVS and IBVS suffer respectively. Additionally, using our
suggested approach the agent offers the best controllability
among the other techniques. Furthermore, comparing the
average rewards in Table 2, agent-2 performs 17.4% better
than agent-1, 33.1% better than HDVS, 41.7% better than
PBVS, and 40.5% better than IBVS.

We selected a random trial in order to demonstrate the
error convergence and robot manipulability for all five VS
methods. Figure 4 illustrates the convergence error for all
VS methods. By comparing the RMSE for this trial, IBVS
achieved an RMSE of 0.024; comparatively, this value was
0.041 for PBVS, 0.0276 for HDVS, 0.043 for agent-1, and
0.0224 for agent-2. The RMSE for agent-2 is even better
than this value for the IBVS approach. Moreover, the task
is completed in 350 iterations with IBVS, 341 iterations with
PBVS, 308 iterations with HDVS, 292 iterations with agent-
1, and 197 iterations with agent-2. As a result, agent-2 offers
a faster solution than all other approaches, demonstrating that
the trained policy with agent-2 not only inherits good IBVS
performance in terms of RMSE but also learns to operate
faster.

Furthermore, the manipulability of the robot arm for all
five methods is plotted in Figure 5 for the same trial illus-
trated in Figure 4. In Figure 5, the manipulability of the
RL methods with agent-1 and agent-2 are higher than other
IBVS, PBVS, and HDVSmethods. Agent-2 offers the highest
manipulability compared to the other four methods in most
robot configurations. As a result, there would be more con-
trollability for the robot joints using agent-2. In Figure 5,
the mean manipulability for IBVS, PBVS, HDVS, agent-1,
and agent-2 were 0.062, 0.0613, 0.642, 0.0662, and 0.0742,
respectively.

V. CONCLUSION
This study is an extension to our previously proposed method
in [1]. We enhanced the performance of VS by combining
the knowledge of multi-controllers with RL. In our proposed

approach, the online action space of the agent is constrained
with the help of multi-control approaches. Thereafter, the
agent explores further within the created bounds to find more
optimised solutions and accumulate more rewards. There-
fore, the learning process will be significantly accelerated
to achieve a reasonable level of performance. Additionally,
domain randomisation and domain adaptation are used to
make the strategy more robust for the sim-to-real transition.
The results show that the proposed method achieves better
overall performance in terms of feature trajectories in the 2D
image screen, and robot trajectory in the 3D task space, with
the higher Jacobian and manipulability of the robot. Trained
visual servoing policy also incorporates the capabilities of
RL methods to eliminate modeling and calculation difficul-
ties. The proposed action constrained strategy would be used
when there are multiple algorithmic control demonstrators
(from two to an infinite number). This strategy improves the
performance of an RL method and reduces training time by
providing various samples from demonstrators.

In future work, we aim to generalize our proposed
multi-expert method to be used for a variety of applications
whichwill significantly reduce training episodes by bounding
the action apace of each agent. Moreover, Exploring the use
of additional experts with varying levels of competence or
from different domains could be a potential avenue for future
research.
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