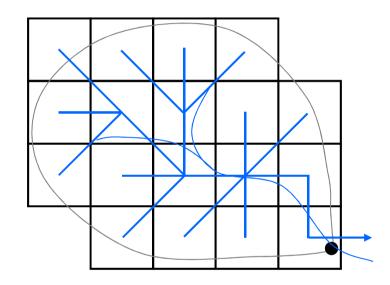
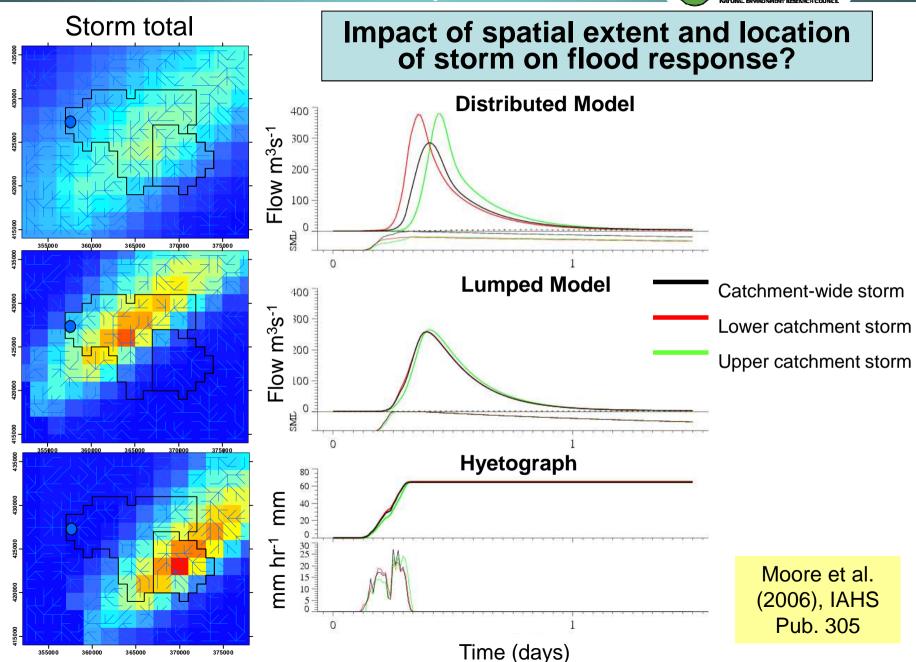

The Grid-to-Grid Model for nationwide flood forecasting and its use of weather radar

Steve Cole, Alice Robson and Bob Moore Centre for Ecology & Hydrology, Wallingford


Lumped and Distributed hydrological modelling

Lumped Model

- One model for each gauging station
- Many parameters calibrated to observed flow location
- Flow estimates for one location only
- Uses catchment average rainfall


Distributed Model (G2G)

- One model for large regions (UK)
- Small set of regional parameters, strong support from digital datasets
- Flow estimates in each grid (1km²)
- Uses gridded rainfall estimates

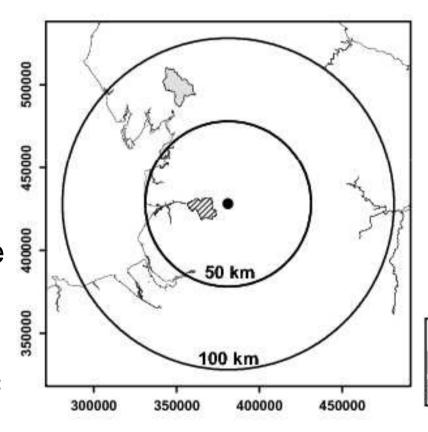
Need for distributed models of flood response

Motivation

 Distributed hydrological models used with radar rainfall estimates offer a natural approach to area-wide flood forecasting

BUT:

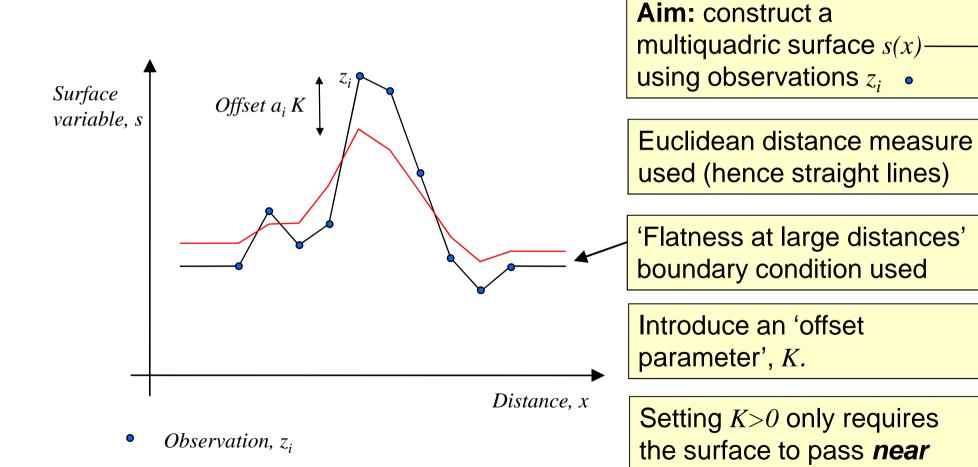
- Radar rainfall estimates can lack consistent, quantitative accuracy
- Distributed models can be difficult to formulate and configure due to process complexity and scaling issues


Science Questions

- How to obtain consistent gridded rainfall estimators, using radar and/or raingauge data, for use in distributed flood modelling?
- How to formulate area-wide distributed models for operational use in flood forecasting?
- How do these area-wide models perform at gauged and ungauged locations?
- Use two G2G modelling case studies:
 - River Kent (North-west England)
 - National application for the Flood Forecasting Centre

Gridded rainfall estimators: examples

- Using Hameldon Hill radar in North-West England
- Two relatively steep upland catchments (for the UK)
- Strong topographic control on flow response


Cole and Moore (2009), AWR

K = 0

data points

Multiquadric surface fitting – a 2D example

K > 0

Multiquadric rainfall estimation: Application

C-band radar data, from the Met Office (1 or 2km resolution)

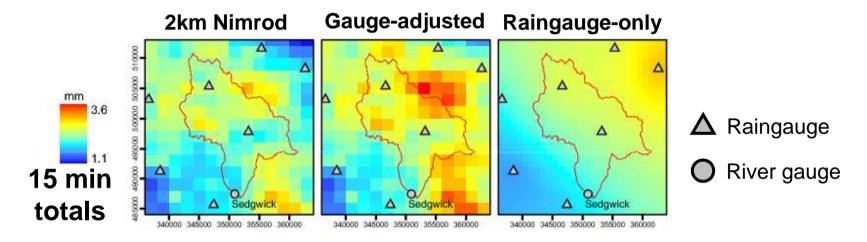
- Raw radar data
- Nimrod radar data, a post-processed radar product including physically-based corrections

Raingauge-adjusted radar

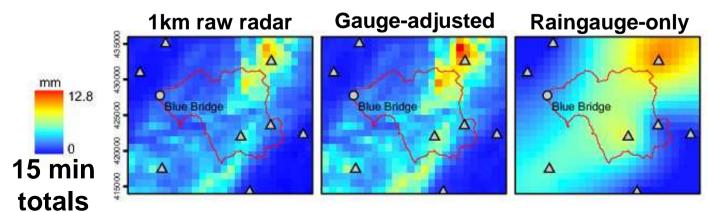
- Let R_g^i be the rainfall rate of the *i*'th raingauge R_r^i be the radar pixel rainfall rate coincident with the *i*'th raingauge
- Then z_i is defined to be a modified ratio

$$z_i = \frac{R_g^i + \mathcal{E}_g}{R_r^i + \mathcal{E}_r}$$
 where \mathcal{E}_g and \mathcal{E}_r (mm h⁻¹) are positive incidental parameters

- An **offset parameter** is invoked (*K>0*)
- The spatial surface of adjustment factors is calculated at 15 minute intervals

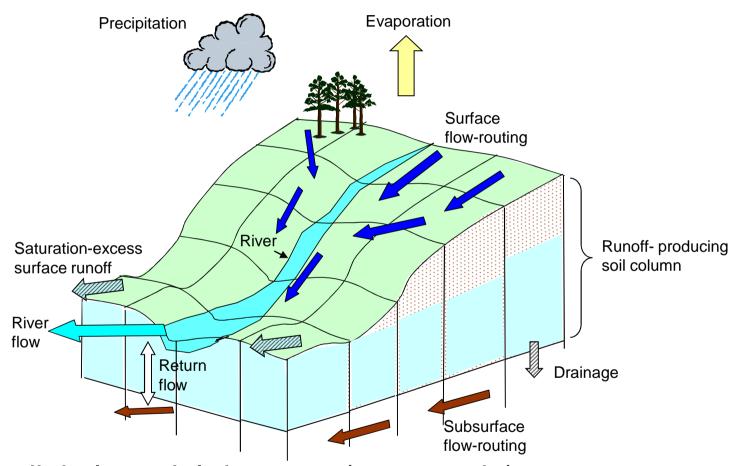

Raingauge-only estimator

- Here z_i is defined to be the 15 minute raingauge totals
- No offset parameter was used, i.e. K = 0



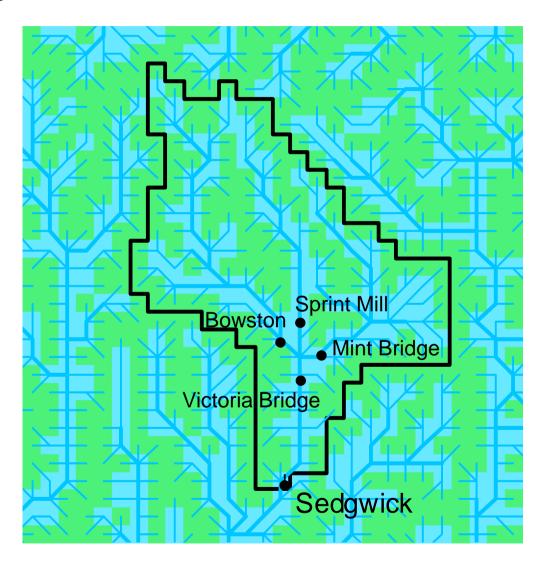
Gridded rainfall estimators: examples

River Kent catchment, orographic event, 3 Feb 2004

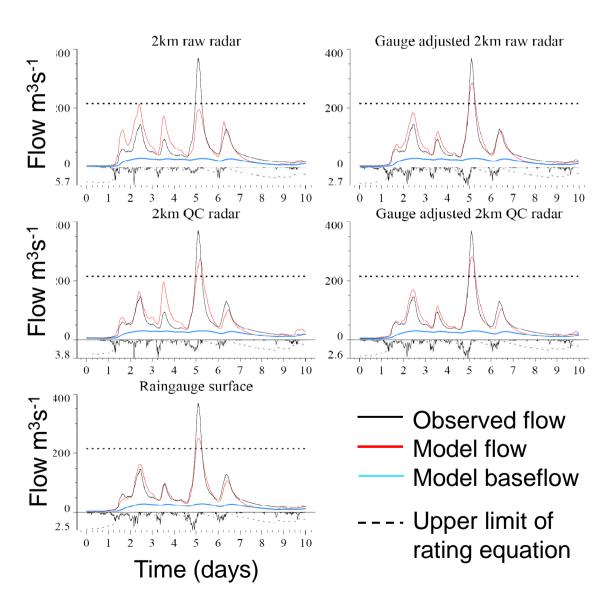


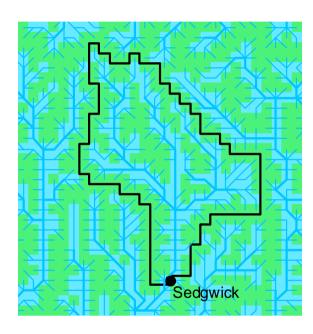
River Darwen catchment, convective event, 14 June 2002

Grid-to-Grid distributed model (G2G)

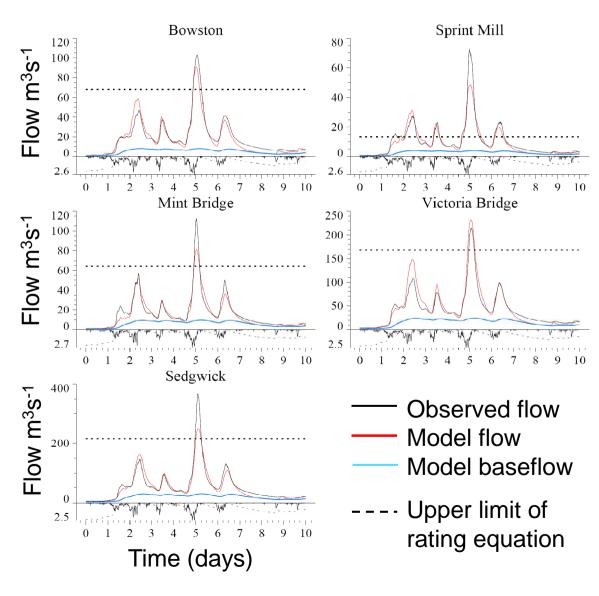


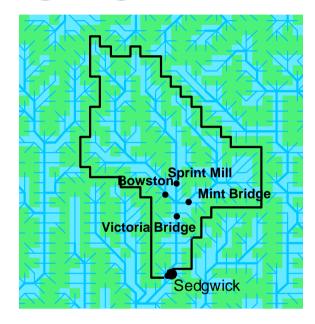
- Uses digital spatial datasets (e.g. terrain)
- Responds to spatial variation of rainfall input
- Grid-to-Grid routing using Kinematic Wave scheme


G2G routing: use of terrain data


- 1. Flow directions:
 apply automated
 method to 50m DTM to
 infer 1km flow-paths
- 2. Catchment boundary delineation: inferred from flow-path directions
- 3. Land/river designation: drainage area + river length threshold
- 4. Select forecast locations: gauged or ungauged

G2G model assessment of rainfall estimators





- G2G model calibrated at Sedgwick only
- Combining radar and raingauge gives comparable results to raingauge-only surface

G2G model assessment at 'ungauged' sites

- G2G model calibrated at Sedgwick only
- 15-min raingauge data used
- Comparable results at unguaged sites

River Kent Case Study: conclusions

Radar Based Rainfall Estimation

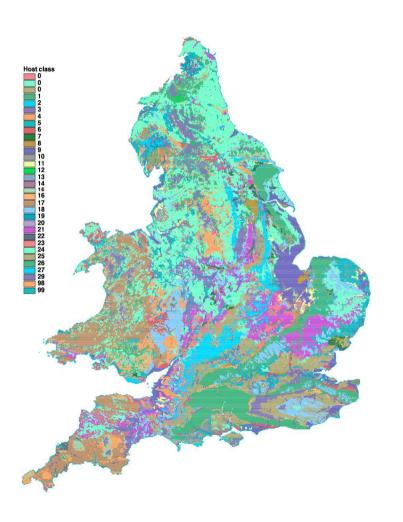
- Raw and Nimrod radar products suffer from transient errors which propagate through to hydrological modelling
- Frequent (15 min) and spatially-varying gauge-adjustment provides "hydrologically useful" gridded rainfall estimates

Distributed modelling

- Simple physical-conceptual distributed models have real value for flood modelling at gauged and ungauged areas
- Grid-to-Grid models provide area-wide forecasts of good quality in upland areas

National application of G2G

- Several EA/Defra R&D projects recommended nationwide operational trial of G2G for flood forecasting
 - 2004-06: Extreme Event Recognition Phase 2 (FD2208)
 - 2005-07: Rainfall-runoff and other modelling for ungauged/lowbenefit locations (SC030227)
 - 2007-10: Hydrological modelling using convective scale rainfall modelling (SC060087)
- Pitt Review of the Summer 2007 floods
 - Recommended joint Environment Agency/Met Office Flood Forecasting Centre (FFC) for England & Wales
 - FFC opened 1 April 2009 and commissioned operational implementation of G2G
 FLOODFORECASTINGCENTRE



G2G runoff production: use of soil property associations

Runoff production key element – needs to reflect heterogeneous soil properties

Use of Soil Survey data (HOST, Seismic, other...) to obtain 1km grids of:

- water content at field capacity
- residual soil water content
- porosity
- saturation hydraulic conductivity
- horizon depth

Issues:

Scale
Effective values
Lateral properties

Association table links HOST soil classes to soil properties

Runoff production scheme

Mass balance of soil water:

$$\frac{\partial V}{\partial t} = (p - E)\Delta x^2 + q_I - q_L - q_p - q_s$$

Soil column depth: L

Soil water content: θ (residual, θ_r) 'Available' water depth: $S = (\theta - \theta_r) L$ 'Available' soil water volume: $V = \Delta x^2 S$

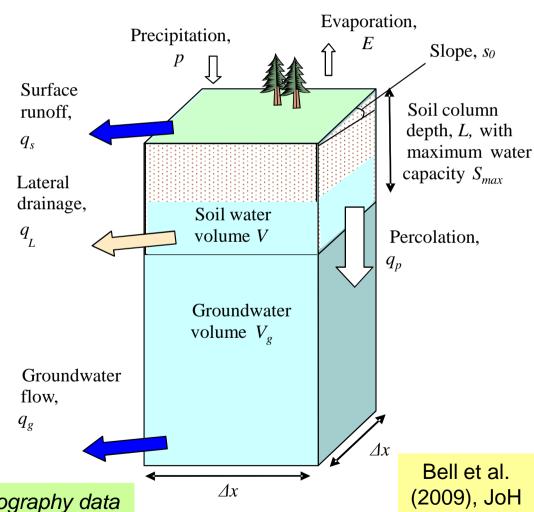
Inputs:

 $(p-E) \Delta x^2$ Rainfall less evaporation

 q_I Inflow from upstream cells

Outputs:

 q_L Lateral drainage (interflow)


horizontal saturated hydraulic conductivity terrain slope pore size distribution factor

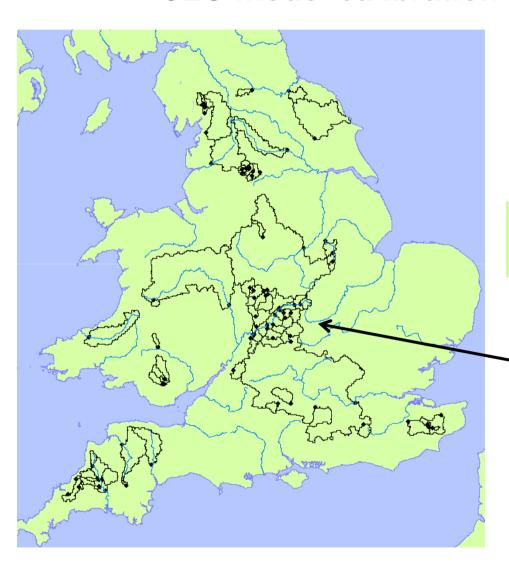
 q_n Downward percolation

vertical saturated hydraulic conductivity

 q_s Surface runoff

max. total soil water storage & shape parameter

Makes use of basic soil property and topography data


How to calibrate the national G2G model?

- Which river gauging stations do we use?
 - In excess of 1000 available in the National Flood Forecasting System (NFFS)
- Calibration and assessment approach?
 - Length of period to use, run-time and warm-up time of model
 - Split sample testing in time and/or space
- Source of hydrometric (river and raingauge) data?
 - NFFS real-time telemetry archive or EA archives?
- Consistent national rainfall input?
 - Radar, raingauge or combination?

Following is from Phase 3 of 'Hydrological modelling using convective scale rainfall modelling' (SC060087)

G2G model calibration and assessment

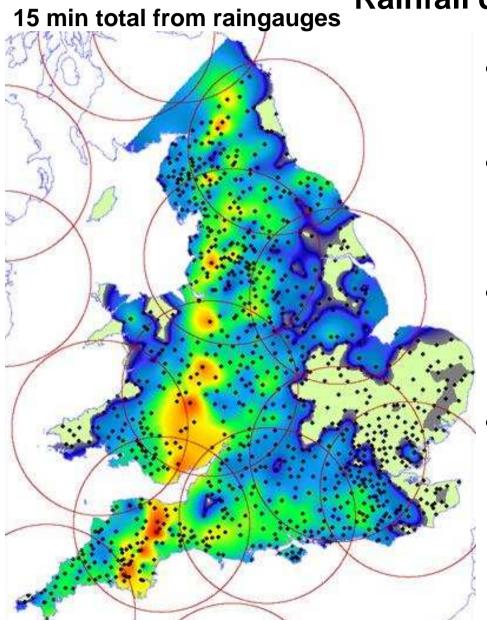
Phase 3 of project focused on Urban/lowland areas

Expanded to national calibration following Pitt Review

67 gauge sites for calibration

9 further sites for validation

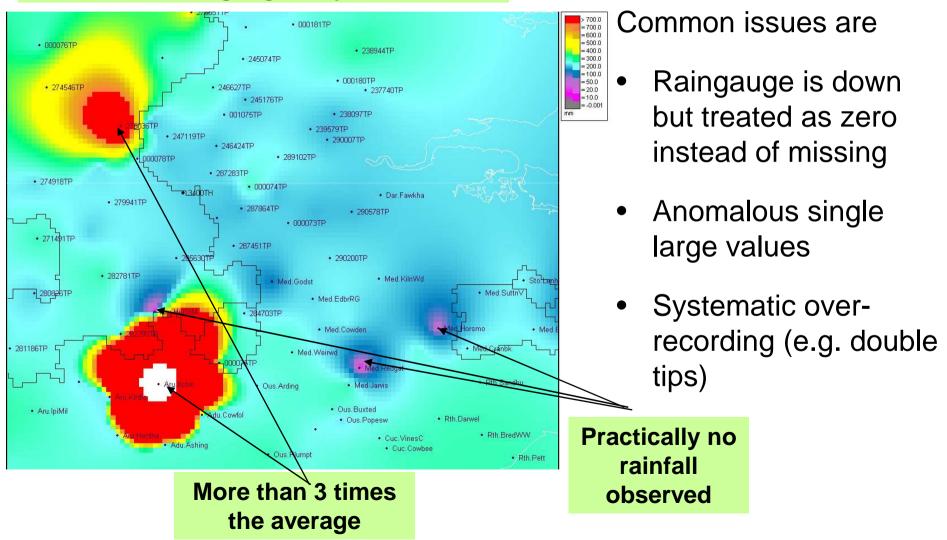
Greater density of sites over Midlands study area


Data for Jan 2007 to Oct 2008

Focused on 2008 for calibration

Hydrometric data from NFFS realtime archives – problems!

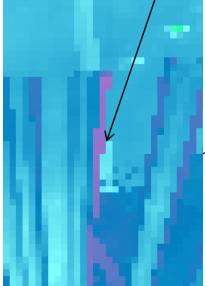
Rainfall data

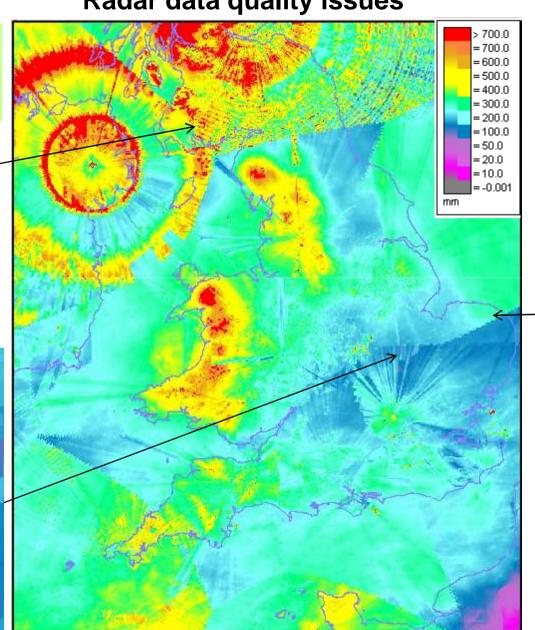


- Around 981 EA tipping-bucket raingauges are available
- Density of raingauges varies, high elevations under represented
- Radar coverage and performance varies in space (and time)
- Variable quality of rainfall data must be considered in assessing G2G results

NFFS tipping-bucket raingauge data quality issues

Three month raingauge-only rainfall totals

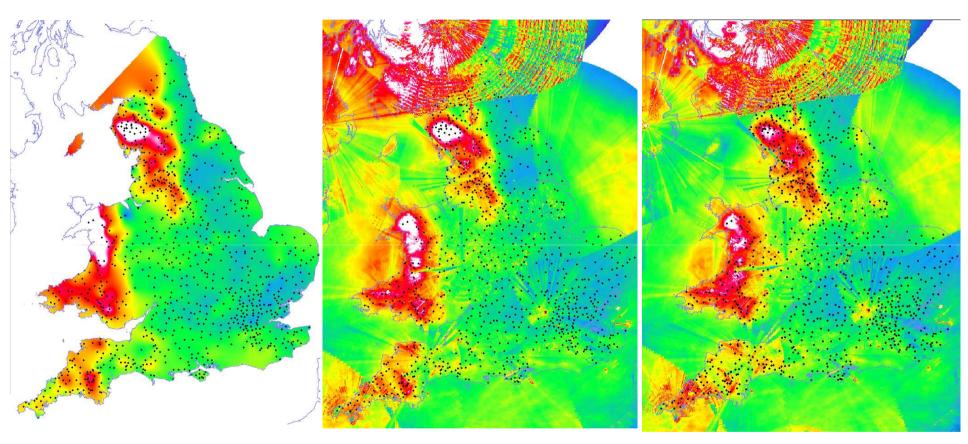



Radar data quality issues

Totalled over 90 days - Mid Sep-Mid Dec 2008

Patterns from "duff" image(s)

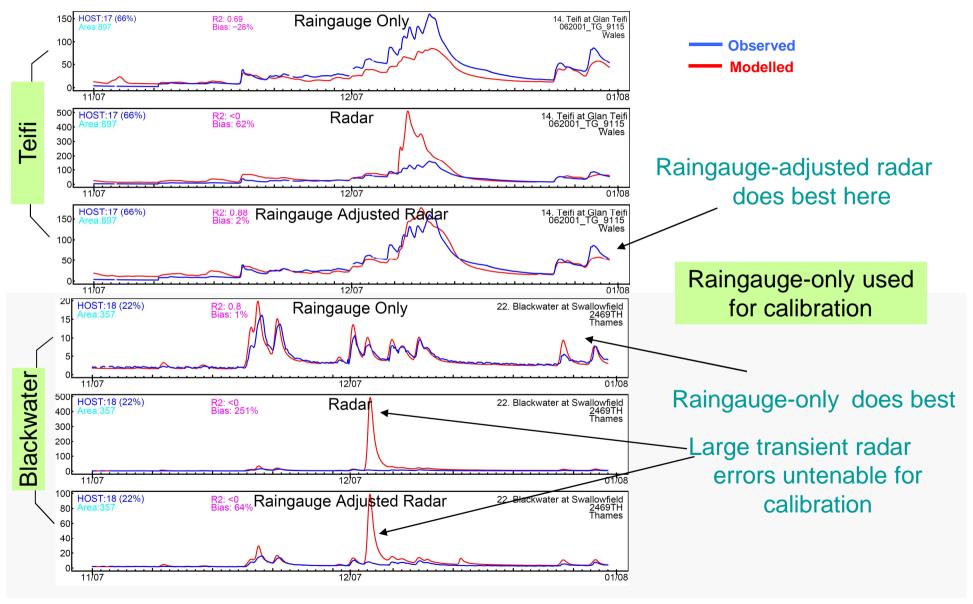
> **Blockages produce** adjacent pixels of 60 and 180mm



Radar boundary line produces 200-300% more rainfall to North (250mm vs 100mm)

90-day rainfall totals

HyradK Raingauge-only


HyradK adjusted radar

Radar

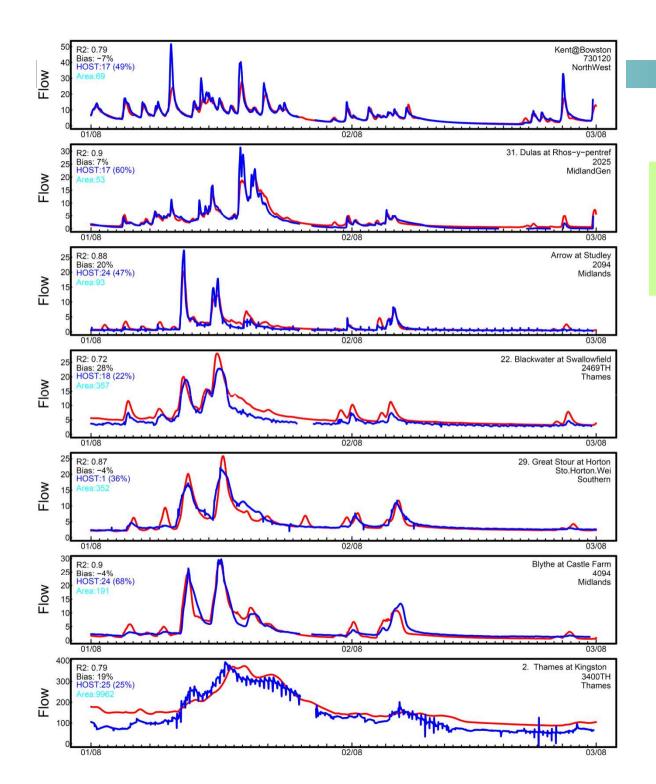
Three rainfall options considered for model calibration

Choice of rainfall estimator for use with G2G?

				R2 2007	R2 2008	R2 2008	R2 2008	R2 2008	Bias 2007	Bias 2008	Bias 2008	Bias 2008
Name	NFFS Id F	lost	Region	(rg)	(rg)	(ra)	(ro)	(nl)	(rg)	(rg)	(ra)	(ro)
Brown Mill	Sto.BroMil	1	Southern	0			0.48	0			5	
29. Great Stour at Horton	Sto.Horton.Wei		Southern	0.63	0.83		0.63	0			-4	-26
28. Dun at Hungerford	2239TH		Thames	0.44	0		0	0			57	54
7. Lambourn at Shaw	2269TH		Thames	0.1	0.37		0.21	0			1	-8
Witham@Colsterworth Witham@Claypole Mill	E1652		Anglian	0.47 0.72	0.24 0.83		0	0			62	127 56
24. Frome at Ebley Mill	E2901 2027		Anglian MidlandGen		0.83		0.2	0			-15	-31
Aylesford Stream	Sto.AylStr		Southern	0.71	0.37		0.41	0			33	-11
27. Dove at Izaak Walton	4046		MidlandGen	0.04	0.47		0.47	0			7	1
De Lank	49129		SouthWest	0.54	0.48		0.47	0.59			-11	-23
Rhondda@Trehafod:	057006_TG_515		Wales	0.58	0.73		0.54	0.81	-1		-19	-24
31. Dulas at Rhos-y-pentref	2025		MidlandGen	0.86	0.85		0.75	0.69			28	18
Sprint@Sprint Mill	730203		NorthWest	0.72	0.73		0.42	0.63			-15	-29
Kent@Bowston	730120		NorthWest	0.81	0.83		0.49	0.76			-16	-29
Kent@Victoria Bridge	730507		NorthWest	0.81	0.77		0.53	0.65			1	-12
Kent@Sedgwick	730511		NorthWest	0.71	0.64		0.43	0.58			-7	-18
Beales Mill	47139	17	SouthWest	0.82	0.71		0.46	0.61	-15		-15	-24
Lifton Park	47116	17	SouthWest	0.7	0.64	0.56	0.57	0.33	10	6	17	-5
18. Exe at Thorverton	45118	17	SouthWest	0.65	0.36	0.52	0.5	0.55	-22	-43	-35	-34
19. Taw at Umberleigh	50140	17	SouthWest	0.69	0.58	0.59	0.53	0.5	-10	-11	3	-5
Tamar@Gunnislake	47117	17	SouthWest	0.68	0.54	0.53	0.47	0.49	-12	-10	-8	-20
14. Teifi at Glan Teifi	062001_TG_9115	17	Wales	0.8	0.74	0.81	0	0.76	-9	-26	-4	19
22. Blackwater at Swallowfield	2469TH		Thames	0.49	0.74		0	0			54	143
Ottery@Werrington Park	47129		SouthWest	0.71	0.62		0.49	0.44			-27	-37
Badsey Brook	2023		Midlands	0.26	0.33		0.27	0.21			4	-19
Severn at Bewdley	2001		MidlandGen	0.75	0.72		0.57	0.29			17	30
17. Trent at Colwick	4009		MidlandGen	0.74	0.8		0.61	0			19	25
Arrow at Studley	2094		Midlands	0.8	0.81		0.65	0.26			31	39
Tame at Bescot	4081		Midlands	0.09	0		0	0.04			-26	-13
Blythe at Castle Farm	4094		Midlands	0.75	0.71		0.75	0.68			-7	-10
Swift at Rugby	2090		Midlands	0.58	0.62		0	0.21	-23		93	101
Sowe at Stoneleigh	2004		Midlands	0.67	0.72		0.5	0.35			-6 -7	-5
Arrow at Broom Avon at Stareton	2104		Midlands	0.74	0.68		0.69	0.26			7	6
	2019 4080		Midlands	0.69 0.64	0.74 0.35		0.09	0 0.46			62 -6	67 -1
Tame at Lea Marston Lakes 16. Leven at Leven Bridge	LEVENB1		Midlands NorthEast	0.64	0.33		0.09	0.40			-15	-11
4. Wharfe at Flint Mill Weir	FLINTM1		NorthEast	0.43	0.74		0.44	0.55			-20	-15
Derwent at Buttercrambe	BUTTCR1		NorthEast	0.57	0.78		0.65	0			-6	-13
15. Lune at Caton	724629		NorthWest	0.51	0.38		0.38	0.45			-17	-16
34. Ribble at Samlesbury	713019		NorthWest	0.45	0.32		0.22	0.43			6	16
Crowford Bridge	47133		SouthWest	0.63	0.73		0.72	0.68			-12	-17
Polson Bridge	47115		SouthWest	0.74	0.72		0.66	0.45			-5	-15
Dene at Wellesbourne	2048		Midlands	0.66	0.48		0.38	0			-1	-22
Avon at Lilbourne	2088	25	Midlands	0.63	0.6	0.06	0	0.27	-21	9	87	90
Itchen at Southam	2613	25	Midlands	0.33	0.43	0.38	0.3	0.44	-25	-1	17	-1
Leam at Kites Hardwick	2609	25	Midlands	0.17	0.27	. 0	0	0.1	16	17	96	83
Stour at Shipston	2092	25	Midlands	0.79	0.42	0.72	0.61	0	1	6	10	-18
Leam at Eathorpe	2050	25	Midlands	0.71	0.54	0.39	0.25	0.23	11	13	63	45
Stour at Alscot Park	2010	25	Midlands	0.64	0.43	0.67	0.57	0	37	36	34	-1
Avon at Warwick	2091	25	Midlands	0.78	0.81		0.47	0.06			35	31
Avon at Stratford	2093		Midlands	0.72	0.72		0.62	0.37	-30		-2	-7
Avon at Evesham	2002		Midlands	0.79	0.7		0.64	0			27	16
Mole at Kinnersley Manor	3240TH		Thames	0	0.5		0	0.38			-2	46
Cherwell@Banbury	1420TH		Thames	0.59	0.51		0	0			67	60
2. Thames at Kingston	3400TH		Thames	0	0.59		0	0			71	122
Taff@Fiddlers Elbow	057007_TG_504		Wales	0.63	0.47		0.33	0.49			32	22
25. Taff at Pontypridd	057005_TG_513		Wales	0.66	0.65		0.51	0.74			-9	-15
Walsden Water@Walsden	WALSDN1		NorthEast	0.53	0.29		0	0.32			32	37
Calder@Todmorden	TODMDN1		NorthEast	0.55	0.73		0.73	0.74			-17	-13
Ripponden	RIPPND1		NorthEast	0	0.55		0 00	0.17			70	82
Hebden Water@Nutclough	NTCLGH1		NorthEast	0.7	0.76		0.69	0.77			30	40
Hebden Bridge 26. Greta at Rutherford Bridge	HEBDBR1		NorthEast	0.7	0.69			0.72			-5	-1 37
	RUTHBR1		NorthEast	0.54	0.46			0.44			-36	-37 99
Calder@Mytholmroyd Sowerby Bridge	CLDENE1 SOWRBY1		NorthEast NorthEast	0.47 0.56	0.49 0.53			0.57 0.64			87	
30. East Dart at Bellever	46123		SouthWest	0.56				0.64			-11 -29	-7 -49
30. Last Dait at Delievel	70123	29	Countryest		0.5573				-1.0597		14.582	
				0.5015	0.0073	0.49	0.373	0.321	-1.0097	1.3204	17.002	14.134

rg: raingauge-only R²=0.56

ra: radar-adjusted R²=0.49


ro: radar-only $R^2=0.37$

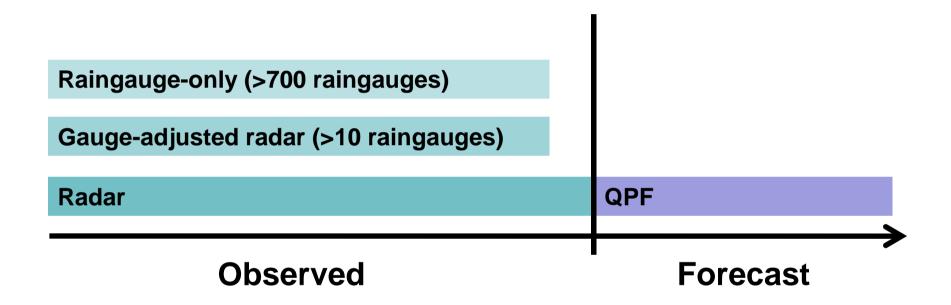
Bias: 1% with raingauges (14% with radar)

Different R² across 2007 & 2008 - indicates data problems

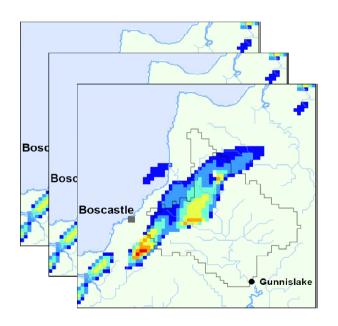
Summer 2007 events can dominate R²

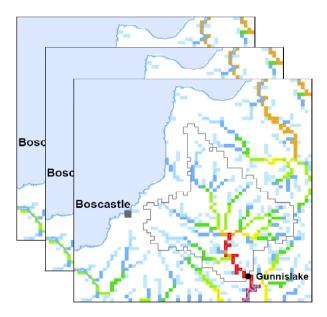
R² Efficiency (truncated to 0) Bias is % volume overestimation

Examples of catchments with generally good G2G performance

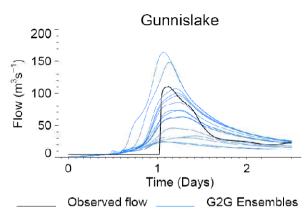

January & February 2008

Demonstrates modelling of different flow regimes with the G2G Model


Precipitation hierarchy in NFFS



Ensemble Flood Forecasting

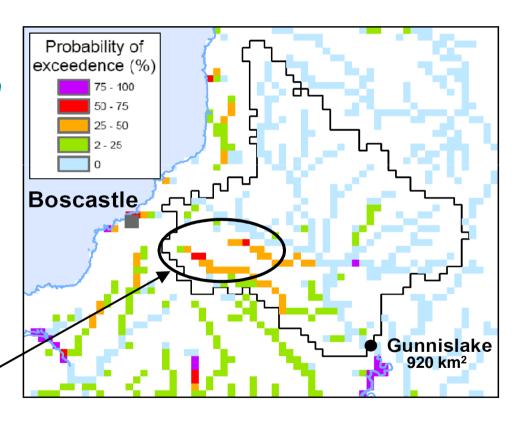

1km NWP pseudo-ensemble

G2G Model 1km river flow ensemble

Comparison with river flow observations

Acknowledgements:
Collaboration with JCMM (Met Office)

Risk Map of flood exceedance using G2G ensembles and Q(T) grids


Probability of **exceeding** a given **flow threshold**, for a given **forecast horizon**

This example employs: NWP 1km rainfall pseudoensemble

10 year return period flow thresholds

24 hour forecast horizon

Potential to identify flood risk *hotspots*

Acknowledgements:
Collaboration with JCMM (Met Office)

Possible benefits to national G2G from future radar developments?

Quantitative Precipitation Estimates (QPE)

- Improved rain-rate and rain accumulation products
- Better coverage through additional radars
- Improved data quality indicator information
- Uncertainty products and ensembles
- Precipitation classification (e.g. rain or snow)

Quantitative Precipitation Forecasts (QPF)

- Improved STEPS nowcasts
- Improved NWP rainfall through data assimilation