Architecture and Planning Journal (APJ)

Volume 28 Issue 3 ASCAAD 2022 - Architecture
in the Age of the Metaverse — Opportunities and
Potentials

ISSN: 2789-8547

Article 12

March 2023

PROGENY: A GRASSHOPPER PLUG-IN THAT AUGMENTS
CELLULAR AUTOMATA ALGORITHMS FOR 3D FORM
EXPLORATIONS

INANG SENCAN
Istanbul Technical University, Turkey, sencani@it.edu.tr

Follow this and additional works at: https://digitalcommons.bau.edu.lb/apj

b Part of the Architecture Commons, Arts and Humanities Commons, Education Commons, and the
Engineering Commons

Recommended Citation

SENCAN, iNANC (2023) "PROGENY: A GRASSHOPPER PLUG-IN THAT AUGMENTS CELLULAR AUTOMATA
ALGORITHMS FOR 3D FORM EXPLORATIONS," Architecture and Planning Journal (APJ). Vol. 28: Iss. 3,
Article 12.

DOI: https://doi.org/10.54729/2789-8547.1207


https://digitalcommons.bau.edu.lb/apj
https://digitalcommons.bau.edu.lb/apj/vol28
https://digitalcommons.bau.edu.lb/apj/vol28/iss3
https://digitalcommons.bau.edu.lb/apj/vol28/iss3
https://digitalcommons.bau.edu.lb/apj/vol28/iss3
https://digitalcommons.bau.edu.lb/apj/vol28/iss3/12
https://digitalcommons.bau.edu.lb/apj?utm_source=digitalcommons.bau.edu.lb%2Fapj%2Fvol28%2Fiss3%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/773?utm_source=digitalcommons.bau.edu.lb%2Fapj%2Fvol28%2Fiss3%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/438?utm_source=digitalcommons.bau.edu.lb%2Fapj%2Fvol28%2Fiss3%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/784?utm_source=digitalcommons.bau.edu.lb%2Fapj%2Fvol28%2Fiss3%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=digitalcommons.bau.edu.lb%2Fapj%2Fvol28%2Fiss3%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.54729/2789-8547.1207

PROGENY: A GRASSHOPPER PLUG-IN THAT AUGMENTS CELLULAR AUTOMATA
ALGORITHMS FOR 3D FORM EXPLORATIONS

Abstract

Cellular automata (CA) is a well-known computation method introduced by John von Neumann and
Stanislaw Ulam in the 1940s. Since then, it has been studied in various fields such as computer science,
biology, physics, chemistry, and art. The Classic CA algorithm is a calculation of a grid of cells' binary
states based on neighboring cells and a set of rules. With the variation of these parameters, the CA
algorithm has evolved into alternative versions such as 3D CA, Multiple neighborhood CA, Multiple rules
CA, and Stochastic CA (Url-1). As a rule-based generative algorithm, CA has been used as a bottom-
up design approach in the architectural design process in the search for form (Frazer,1995; Dinger et
al.,, 2014), in simulating the displacement of individuals in space, and in revealing complex relations
at the urban scale (Giizelci, 2013). There are implementations of CA tools in 3D design software for
designers as additional scripts or plug-ins. However, these often have limited ability to create customized
CA algorithms by the designer. This study aims to create a customizable framework for 3D CA algorithms
to be used in 3D form explorations by designers. Grasshopper3D, which is a visual scripting environment
in Rhinoceros 3D, is used to implement the framework. The main difference between this work and the
current Grasshopper3D plug-ins for CA simulation is the customizability and the real-time control of the
framework. The parameters that allow the CA algorithm to be customized are; the initial state of the 3D
grid, neighborhood conditions, cell states and rules. CA algorithms are created for each customizable
parameter using the framework. Those algorithms are evaluated based on the ability to generate form. A
voxel-based approach is used to generate geometry from the points created by the 3D cellular automata.
In future, forms generated using this framework can be used as a form generating tool for digital
environments.

Keywords
Cellular Automata, Grasshopper, Generative Design, Framework.

This article is available in Architecture and Planning Journal (APJ): https://digitalcommons.bau.edu.lb/apj/vol28/
iss3/12


https://digitalcommons.bau.edu.lb/apj/vol28/iss3/12
https://digitalcommons.bau.edu.lb/apj/vol28/iss3/12

?ENCAN: PROGENY: A GRASSHOPPER PLUG-IN THAT AUGMENTS CELLULAR AUTOMATA AL

PROGENY
A GRASSHOPPER PLUG-IN THAT AUGMENTS CELLULAR AUTOMATA
ALGORITHMS FOR 3D FORM EXPLORATIONS

INANC SENCAN

Istanbul Technical University
sencani@itu.edu.tr

ABSTRACT

Cellular automata (CA) is a well-known computation method introduced by John von Neumann
and Stanislaw Ulam in the 1940s. Since then, it has been studied in various fields such as computer
science, biology, physics, chemistry, and art. The Classic CA algorithm is a calculation of a grid of
cells' binary states based on neighboring cells and a set of rules. With the variation of these
parameters, the CA algorithm has evolved into alternative versions such as 3D CA, Multiple
neighborhood CA, Multiple rules CA, and Stochastic CA (Url-1). As a rule-based generative
algorithm, CA has been used as a bottom-up design approach in the architectural design process in
the search for form (Frazer,1995; Dinger et al., 2014), in simulating the displacement of individuals
in space, and in revealing complex relations at the urban scale (Glzelci, 2013). There are
implementations of CA tools in 3D design software for designers as additional scripts or plug-ins.
However, these often have limited ability to create customized CA algorithms by the designer. This
study aims to create a customizable framework for 3D CA algorithms to be used in 3D form
explorations by designers. Grasshopper3D, which is a visual scripting environment in Rhinoceros
3D, is used to implement the framework. The main difference between this work and the current
Grasshopper3D plug-ins for CA simulation is the customizability and the real-time control of the
framework. The parameters that allow the CA algorithm to be customized are the initial state of the
3D grid, neighbourhood conditions, cell states and rules. CA algorithms are created for each
customizable parameter using the framework. Those algorithms are evaluated based on the ability
to generate form. A voxel-based approach is used to generate geometry from the points created by
the 3D cellular automata. In future, forms generated using this framework can be used as a form
generating tool for digital environments.

Keywords: Cellular Automata, Grasshopper, Generative Design, Framework.
oeila
o) Glld die il Y1 8 &Y ol CDlilingg lasss (58 O s L A8 5 ra D A3y 5k 4 (CA) dpstal) sy
BaY) Al d o il g el el il g elia¥ g ciladall pole Jie ddlide OV (A 4y 4lal) By Ay G
JS;\JSJ\ L)A‘\.G}AM} a‘)}l;nj\ \_1)\;.“ ‘;9 ;\.ul_l)\au‘\_ul_u” &_1\]\;.“ L)AM@L.AAA_\SAQ u.:: aJL\S; 4\_\5.\.».»)\53\ 4_'}1;.“
:\:mﬁ\]\} ‘Ala_.\Y\ A 4y Al aay) Jie Ay Al laa) ) 4 51al aaayl daa )l A gl el puaial) o2 DA S
e ) A8 — A glal) AnaY) aladiiul &5 085 A0 sdall 4y 1A ALY 5 cae ) 58l Banatie 4y SIA0) ARV g ¢ ) sal) Baantia 4y 518))
A8 lSlae b5 oSl e daad) 8 (g lanal) aaail) dilee 8 el ) Jiul (e ananal gl — ae ] il e A8 A g
el o8 Alal) ) <l oY il s i g g pandl (5 sl e Bainall el e RS g “'&\)ﬂ\ga\)é“y\
3,08 b Sall a3gd ) 6 Lo Wl clld a y Ailica) dpaas g i i€ 5l aa gacad i (A llh g (pannaall alaY) A5G apanall
Q8 Jae jUal elis) ) Al Hall 52 Caags sl Al 51 (anadill AN 4 glal) 23aY) Gl ) )i e L) o 83 53n0
Ahiiul i Cpeaaal) 8 (e la¥) 400 CELISILY) 8 Lealaaial alagV) 4300 4 glal) Aia) Gl ) A (apadill
i Al AV ey 5 Jead) Ul 285 (RAiNOCEros 3D (8 4y dpai 4aa n 44n 54 5 «Grasshopper3D gzl
) 0 oSl g anadil) 4. 8 4y 5lall A slSlal Grasshopper3D - Al ddlay) Sl Sall g Jaall 138
JMY\MLMUJ\J\Q\A}\ GAM}M\M\}]\MAJ)\PUMW&J\ &_1\).\::_\.4]\ ).u:u) m\)um)bd,«d\
) P\J;.m\_.:ua.\..aa.\ﬂd_}\ﬁ )MJSS@}M\M‘}]\ Glae )yl e L) &3 Aaayl o) 8 alAll Vs 5 Hleall o ylas
o JSE A c\.ﬁd\gvoxel LA‘; Mc@e\m\fa} Jsal Jﬂyésajdﬂ\éc ;L\.\&.ﬁ\.u))b;.“&hﬁ.\.\é.\?.\} Janll
3lalS Uy 13 aladily a5 3 ) JWSEY aladiind Sie (Says ol 43006 4 5la) Al Lalasl al L) 5,k
Al )l il - laill 5 JISEY) o 61

Jae sl sl sl maanaill ¢y el ya ey oy Slall ALY sAdsalidal) cilall)

Published by Digital Commons @ BAU, 2023



Architecture and Planning Journal (APJ), Vol. 28, Iss. 3 [2023], Art. 12

1. INTRODUCTION

The word "design" can describe the process of designing an object and the object that is
the result of this process. According to Dino (2012), a generative system is not a production
system that defines the design product but a higher-level definition, or design process, that
encodes the "making" phase of the design product. Therefore, generative systems allow the
designer to "design a design tool" as an alternative to the task of designing an object. In this
study, a design tool that uses Cellular Automata as a generative system has been produced. The
contextual relationship with the concept of "rhythm" has been examined.

2. BACKGROUND

The theme of the work is "Rhythm". The difficulty in researching the concept of rhythm
is the lack of a generally accepted, clear definition (Fraisse, 1982). Rhythm comes from the
Greek words “pvOuoc” (rythmos) and “péw” (réo)(to flow) (Fraisse, 1982). Rhythm, which is
defined as repetitive movements and symmetry (Liddell and Scott, 1996), is characterized as
"the movement defined by the organized repetition of strong and weak elements or by opposing
or different conditions™ (Anon, 1971).

The most common use of the concept of rhythm is music. Additionally, in linguistics, the
development of languages and their interaction with each other are used to describe situations.
The word rhythm is also used outside of these contexts in the language we use daily. The
concept of "Rhythm" is confused with "Tempo" in cases where a person defines the rhythm of
his activities during the day, or the rhythm of a city is explained. Tempo describes the speed of a
rhythm. In this work, while tempos are compared with each other in terms of speed, rhythms are
compared with each other structurally.

2.1. Rhythm / Form / Form Finding

According to Benveniste (1951), the semantic connection of the words rhythm and
flow was not inspired by the repetitive motion of the waves, as is supposed. "Rhytmos",
which appears as one of the keywords of lonian philosophy, is defined as a more
developed, instantaneous, and variable "form" with a generalized meaning of "form"
(Fraisse, 1982).

Form finding is one of the critical components of the design process. Different
definitions have been made over time for the concept of form-finding. Haber and Abel
(1982) define the form-finding problem as the "initial balance problem" (Veenendaal &
Block, 2012). This definition has been further discussed later on. According to Lewis
(2003), form finding is "the search for the optimal shape of a form-active structure at or
near equilibrium™. This definition has been accepted and used by most people. Looking at
more recent definitions, the definition used by Coenenders and Bosnia (2016) is "finding
the appropriate architectural and structural form". Basov e Del Grosso (2011) states that
shape finding is "a structural optimization system that uses point coordinates and
variables".

Form production methods have been applied primarily in physical and digital
environments with the development of technology. Antoni Gaudi's experiments with
hanging chains, Heinz Isler's experiments with hanging various membranes, and Frei Otto's
experiments with soap bubbles can be shown as examples of form-seeking experiments in
the physical environment (Veenendaal, D., & Block, P., 2012). With the development of
digital tools, the variety of form-finding methods has increased. Just as gravity is the form-
determining force in Gaudi's experiment by hanging chains, the laws of physics, the growth
and development mechanisms of living things, and mathematical equations, such
phenomena were recreated in the virtual environment and used in form-finding experiments
in the digital environment. Cellular Automata (CA) is one such method. Within the scope
of this study, CA methods are discussed to find form. The working logic of different CA
algorithms has been examined, reproduced, and diversified. As a result, a design tool based
on the CA algorithm has emerged.

https://digitalcommons.bau.edu.lb/apj/vol28/iss3/12
DOI: 10.54729/2789-8547.1207



?ENCAN: PROGENY: A GRASSHOPPER PLUG-IN THAT AUGMENTS CELLULAR AUTOMATA AL

2.2. Cellular Automata

Cellular Automata is a subject studied in fields such as computer science,
mathematics, physics, and theoretical biology. It was also considered a productive system
and a research topic during the design process. The cellular automata approach allows the
simulation of neighborhood relations, in the field of architecture, both in the search for
form (Frazer, 1995; Dinger et al., 2014), in simulating the displacement of individuals in
space, and in revealing complex relationships at the urban scale (Guzelci, 2013). It has
been the subject of practice and debate in the fields. It is the change of different viability
states of cells in a set based on rules depending on the relationship of cells with other cells
around them. 1, 2, 3, or more sizes of CA can be defined (Adamatzky, 2010). Although the
first studies on CA were made in the 1950s, it was not at a level that would attract the
attention of a broad audience until Conway's CA application named "Game of Life" (GoL)
was published in the "Scientific America" magazine in 1970 (Adamatzky, 2010).

In this application, some cells can be found in "alive" or "dead" states on the grid
formed by a two-dimensional matrix. For each cell, the cells which are interacting with it
are called “neighbor cells”, and the definition of this interaction is called “neighborhood”.
The "Moore" neighborhood format defined in the GoL application consists of 8 cells
located 1 unit away from the cell. A "Generation" is the set of states of all cells at a given
moment. The state of each cell in the next generation is determined by the living or dead
state of the neighboring cells, according to the rules. According to the GoL application, a
living cell can continue to live in the next generation if there are 2 or 3 cells in its
neighborhood. Otherwise, it goes dead. A dead cell becomes alive in the next generation if
three living cells are in its neighborhood. The system develops step by step depending on
these rules and produces new geometries. The gradual intergenerational progression of the
form generation process in CA can be described as rhythmic growth. In addition, the
contrast of vitality and deadness gives a contextual reference to the definition of rhythm.
Form generation methods can be diversified by differentiating the neighborhoods, rules,
and living-dead situations, which are the basic features of CA.

2.2.1. Neighborhoods

In a CA algorithm, the set of surrounding cells used to determine whether a
cell complies with the rule that will determine its status in the next generation is
called "neighboring cells". These cells are usually located near the parent cell. As
seen in Figure 2, Von Neumann and Moore's neighborhood can be shown as an
example of neighborhood forms in 2D CA. Von Neumann neighborhood considers
cells where the cell is adjacent in the horizontal and vertical directions
(Adamatzky, 2010). On the other hand, Moore's neighborhood covers eight
neighboring cells by taking the nearest cell in the diagonal direction and adjacent
cells in the horizontal and vertical directions (Adamatzky, 2010).

Fig.1: CA calculation between generations.

Published by Digital Commons @ BAU, 2023



Architecture and Planning Journal (APJ), Vol. 28, Iss. 3 [2023], Art. 12

2.2.2. Generations

In the CA algorithm, each cell has a specific state. Whether this situation
will change in each new generation is calculated according to the rule defined in
the algorithm. For example, in GoL, cells are either "alive" or "dead". Various
patterns are obtained by showing live and dead cells in different colors (live =
black, dead = white) (Figure 1).

Fig.2: Neighbor cells in different neighborhood types.

2.2.3. Rules

In the CA algorithm, each cell has a specific state. Whether this situation
will change in each new generation is calculated according to the rule defined in
the algorithm (Figure 3). For example, in GoL, cells are either "alive™ or "dead".
Various patterns are obtained by showing live and dead cells in different colors
(live = black, dead = white).

.:'-D CA Settings
Survival - Number of neighbors required for an alive cell to survive
CJo [Jr [J2 O3 ¢ [Os Ode [J7 [ [Jo
Jwo [J11 [J12 #1113 14 V15 16 V17 V18 19

M2 V21 w22 [v]2a 24 [v]a5 [V]26

Birth - Number of neighbors required for a cell to be born at an empty location
[]o 1 [J2 JE 4 [s 6 7 8 [Jo
[Jw [J11 [J1z 13 [1a [J15 [J16 17 [F18 19

[J2o [Ja1 [J22 [J2a [J24 [J2s 126

Other sattings
Meighborhood type Moore + [ Count current center cell
Maximum cell states 2

Starting pattern  Random

Random

Display Options
Cell shading RGB Cube
Cells shape Cubes

Grid size 100

[[]slice one eighth [] Auto-Rotate

[ Only show state 1 cells | | Bounding box
Display rendering engine

OpenGL Software

|| Export to Wavefront 0B file

|| create movie frames

Open Save OK Canced

Fig.3: Rules for 3D Cellular Automata (Visions of Chaos).

3. RESEARCH BACKGROUND

The first studies of the Cellular Automata algorithm were performed without computer
support by drawing each generation separately, moving objects on a grid. There are tried-and-
tested examples available, such as Rabbit (Url-2) and Vision of Chaos (Url-1). However, these
methods are slow and limited. With the development of computer technology, the number and
guality of studies in this field have increased by calculations being made by computers.

https://digitalcommons.bau.edu.lb/apj/vol28/iss3/12

DOI: 10.54729/2789-8547.1207



?ENCAN: PROGENY: A GRASSHOPPER PLUG-IN THAT AUGMENTS CELLULAR AUTOMATA AL

Today, running the CA algorithm in most programming interfaces with visual output is
possible. While it is possible to see the outputs of only specific rules in some more advanced
applications, it is possible to define rules and print out a 3D model besides the visual output.
Additionally, there are programs that allow multiple dimensional CA algorithms, different
neighborhoods, and different cell states are numbered and inserted in the text after the first
reference to it.

3.1. Processing: Game of Life

In this study, first, the "Game of Life" application, which has an essential role in the
spread of CA applications, was examined, and the working principles of the CA algorithm
were studied. In the "Processing™ (Url-3) programming interface, the GoL application was
reproduced using the "Java"™ programming language (Figure 4). This study is vital in
Iearning the CA algorithm's features to be defined in computer language.

:;ﬁ;&:

.5?!

e :xma 5idi" JEEaste

":?%"i;;ﬁ'“?iﬁ“

: "71;?: il e

S . '!i.' h.‘i::. HiSimii it : iEE T Bt e TR B 1
bl WL T alr_-n Rl el 1]

KT e T R T e T g F sy BT e

= miﬁlﬁlalﬁiiﬁii

Fig.4: A screenshot from “Game of Life” algorithm in Processing.

3.2. Visions of Chaos

This application (Url-1) runs algorithms such as Fractals, L-systems, multi-agent
systems, Cellular Automata, and Diffusion Limited Aggregation. It is a versatile program
that can run various generative algorithms (Figure 5). In addition to 1D, 2D, 3D, and 4D
applications of CA, there are methods in which different neighborhoods, different vitality
states, and different rules can be applied. There is a user interface where these features can
be defined. While it is easy to use, 3D models and video output are its positive features. Its
negative feature is that the algorithm has a limited choice of a sphere, cube, or a filled
environment as the initial form. This disadvantage makes it difficult to use the program as a
design tool. In the work to be done, it is aimed to produce an interface that allows the user
to determine not only the rules and CA type but also the initial state, and in this way, get rid
of randomness and make his design.

Published by Digital Commons @ BAU, 2023



Architecture and Planning Journal (APJ), Vol. 28, Iss. 3 [2023], Art. 12

Fig.5: Screenshots from Visions of Chaos with 3D Cellular Automata. (Url-1)

3.3. Rabbit (Grasshopper Plug-In)

It is included in the Grasshopper3D, which is a plugin of the Rhinoceros3D program
(Url-2). Running the CA algorithm inside a design program means better user control when
using this algorithm for design purposes. In addition to graphically defining the initial form
of the algorithm, it is also possible to intervene in the environment in real-time. Rabbit
plugin includes 2D CA algorithm and 3D CA algorithms Stacked Cellular Automata (SCA
- Stacked Cellular Automata). SCA is 3-dimensional geometry obtained by superimposing
each generation of 2-dimensional CA. Rabbit is a good example of using 2D CA and its 3D
extended version SCA as a design tool. However, this method is insufficient because it
does not contain other varieties of CA. This study aims to create a Grasshopper3D plugin
in which different methods of CA can be defined.

3.4. Comparison

The purpose of trying these three programs before writing a script for 3D CA
algorithm in Grasshopper is to learn how the algorithm works in multiple environments and
conditions. While writing a 2D CA algorithm in Processing was easier than the 3D version,
its aid to the research was the understanding of how the algorithm works.

“Visions of Chaos” (VoC) helped visualizing 3D cellular automata and how the
parameters of the algorithm worked. However, its downsides are also revealed while using
it, like not being able to control the initial shape. Using Grasshopper to simulate 3D CA
algorithm is thought to solve these problems. Rabbit, which is a Grasshopper plug-in, can
solve 3D CA problems. However, this 3D interaction is 2,5D, because of how the plug-in
works. As a conclusion, a 3D CA algorithm with the working system of VoC in
Grasshopper is written.

https://digitalcommons.bau.edu.lb/apj/vol28/iss3/12
DOI: 10.54729/2789-8547.1207



?ENCAN: PROGENY: A GRASSHOPPER PLUG-IN THAT AUGMENTS CELLULAR AUTOMATA AL

4. 3D CELLULAR AUTOMATA PLUG-IN AS A C# SCRIPT IN GRASSHOPPER
4.1. The Algorithm

The algorithm is defined as a Grasshoper3D plug-in (Figure 6). The plug-in written
in C# scripting language. The algorithm is planned to have user-defined parameters. These
parameters are:

Rules: Each rule defines a new format generation system in CA algorithms. While some
rule sets expand from a minor point, some rule sets can result in an entire format
diminishing to an optimum state. These rules can be discovered and serve different
purposes in design.

Neighborhood: Changing the definition of neighboring cells provides diversity in the
development of the system.

Cell states: At the basic level, there are two alternative states of cells in CA, live and dead.
The transition of a cell from a live state to a dead state occurs in a generational change.
Alternatively, the viability state of a cell can be defined by a number. For example, a cell is
dead when it is "0" and alive when it is "1". If the maximum number of states of CA is 4,
cells can be found in states "0,1,2,3". When a living cell in the "1" state dies, it first
changes to the "2" state, then to the "3" state, then to the "0" state. It can switch from a
"dead" state to an "alive" state only when it is "0". In the "2" or "3" state, it is considered
dead in the calculations of neighboring cells. Another example can be taken Rock-Paper-
Scissors CA. In this case, the rules between cells change according to the type of neighbor
cells.

Initial conditions: In classic CA applications, the startup format is usually defined. The
difference in shape finding comes from the random differentiation of the states of the cells
that define the initial shape. However, this randomness must be controllable for a designer.

E O | : Expanding Shell

Q@b
- s o .m -
1 ]

(] L0 OO0

Pyroclastic

T P
)

SEOEEEECECOEEEEEEaa

[EEEECEECEEOEE

“[D) [CLLLLOL

IEEEEEE|

Fig.6: 3D CA algorithms using the plug-in; Expanding Shell, Pyroclastic, Cloud.

Published by Digital Commons @ BAU, 2023



4.2. Using The Algorithm
The presented 3D CA plug-in can create multiple generative systems, based on the

variation in initial geometry, rules and model formation. The plug-in is tested with four
different algorithms, which are named Expanding Shell, Pyroclastic, Cloud, and Voxel
Terrain Automata.

Architecture and Planning Journal (APJ), Vol. 28, Iss. 3 [2023], Art. 12

4-7/6-8/10/M

ﬁ :

Create cell
coordinates as a list

A 4

Create list of cell
states

—

l

Define Rules

Rules are defined as two separate lists; rule for
cells going from dead to alive and from alive to
dead.

Define Neighborhood

| Neighborhood is defined as "n" amount of cells in a

defined proximity of the main cell.,

Define rules

l

Define initial states of
the celis

l

Define the type of
neighborhood

l

Count all alive

Define Initial State

Initial state of the cells are defined by a 3D object
intersecting with the cell center points. The relation
between the cells and the 3D object defines the
dead/alive state of the cell.

Save current cell

neighbor cells

A

”| states to new list "B”

Apply the rules using
list "B”

A 4

Save the new states
of the cells to a new (¢——

Copy list"A" into list |
B <

v

Visualize cells using

cell coordinates and
states

list "A"

Fig.8: 3D CA algorithm flow chart.

https://digitalcommons.bau.edu.lb/apj/vol28/iss3/12

DOI: 10.54729/2789-8547.1207



?ENCAN: PROGENY: A GRASSHOPPER PLUG-IN THAT AUGMENTS CELLULAR AUTOMATA AL

Fig.9: Resulting 3D objects. From left to right, Expanding Shell, Cloud, Pyroclastic, Voxel
Terrain Automata.

5. CONCLUSION AND FUTURE POSSIBILITIES

With the presented Grasshopper3D plug-in "proGeny", new productive systems can be
discovered by experimenting with the rules of various cellular automata algorithms, their
neighborhoods, and the viability of cells. With these systems, new form finding experiments can
be done which result in emerging forms.

The aspects of this program that are open to development can be listed under the
following main headings:

Visual interface: Although Grasshopper's visual interface is sufficient to start these
experiments, a more user-friendly interface can be added using C#.

User interaction: In Grasshopper3D, interaction with the computer, keyboard, and mouse is
defined. However, other Grasshopper3D plugins have examples (Firefly, Quokka) like Kinect or
LeapMotion. User interaction can reach a different dimension through motion sensors, Arduino,
and various sensors.

AR/VR applications: Visual outputs of the products obtained with the developed program can
be taken on the computer screen. As a design tool, AR/VR applications can help experience this
design process in the same environment as other factors affecting design.

In today's world, where digital design has become widespread, it is seen that the role of
the designer is gradually replaced by the role of "designer of tools" or "designer of systems".
Within the scope of this study, a tool called "progeny" that the designer can use in the design
process has been developed. Using the program, the user can generate a design system on
various versions of the CA with the rules, initial format, and neighborhood parameters that he
has determined and can use this system in the design process. Since it is an application with
development potential, it can provide opportunities for new research topics.

REFERENCES

ADAMATZKY, A. (2010). Game of life cellular automata (Vol. 1). London: Springer. Url:
https://link.springer.com/content/pdf/10.1007/978-1-84996-217-9.pdf Erisim Tarihi:
27.05.2019)

ANON. The Compact Edition of the Oxford English Dictionary Il. Oxford and New York:
Oxford University Press, 1971.

BASSO, P., & DEL GROSSO, A. (2011). Form-finding methods for structural frameworks: a
review. Proceedings of the International Association of Shells and Spatial Structures, London.
BENVENISTE, E. La notion de "rythme" dans son expression linguistique. Journal de
Psychologie Normale et Pathologique, 1915, 44, 401-411.

BRENNAN, A., ALHADIDI, S., KIMM, G. (2013). Quokka: Programming for Real Time
Digital Design Platform. International Conference on Computer-Aided Architectural Design
Research in Asia, 18, pp. 261-270, Hong Kong.

Published by Digital Commons @ BAU, 2023



Architecture and Planning Journal (APJ), Vol. 28, Iss. 3 [2023], Art. 12

- COENDERS, J., & BOSIA, D. (2006). Computational tools for design and engineering of
complex geometrical structures: From a theoretical and a practical point of view. Game Set and
Match 1I. On Computer Games, Advanced Geometries, and Digital Technologies. Episode
Publishers, 006.

- DINCER, A. E., CAGDAS, G., & TONG, H. (2014). A computational model for mass housing
design as a decision-support tool. Procedia Environmental Sciences, 22, 270-279.

- DINO, I. (2012). Creative design exploration by parametric generative systems in architecture.
METU Journal of Faculty of Architecture, 29(1), 207-224.

- FRAISSE, P. (1982). Rhythm and tempo. The psychology of music, 1, 149-180.

- FRAZER, J. (1995). An evolutionary architecture.

- GUZELCI, 0. (2013), Biitiinlesik Uretken Tasarim Sistemi ile MVRDV Silodam Projesi Igin

Cephe Uretken Sistem Onerisi, E.Giirer, S.Alagam, Z.Bacinoglu (Ed.), VII. Mimarlikta Sayisal
Tasarim Ulusal Sempozyumu: Sayisal Tasarim, Entropi, Yaraticilik, 2013, Istanbul.

- HABER, R. B., & Abel, J. F. (1982). Initial equilibrium solution methods for cable reinforced
membranes part I—formulations. Computer Methods in Applied Mechanics and Engineering,
30(3), 263-284.

- LEWIS, W. J. (2003). Tension structures: form and behaviour. Thomas Telford.

- LIDDELL, HENRY GEORGE, AND ROBERT SCOTT. "pvBuog", in A Greek-English
Lexicon, revised edition, combining the text of the ninth edition with an extensively revised and
expanded Supplement. Oxford and New York: Oxford University Press, 1996. Online, Perseus
Project.

- VEENENDAAL, D., & BLOCK, P. (2012). An overview and comparison of structural form
finding methods for general networks. International Journal of Solids and Structures, 49(26),
3741-3753.

- WOLFRAM, S. (1984). Universality and complexity in cellular automata. Physica D: Nonlinear
Phenomena, 10(1-2), 1-35.

- URL-1: https://softologyblog.wordpress.com/category/cellular-automata-2/
- URL -2: https://parametrichouse.com/rabbit/
- URL -3: https://processing.org/

https://digitalcommons.bau.edu.lb/apj/vol28/iss3/12
DOI: 10.54729/2789-8547.1207


https://softologyblog.wordpress.com/category/cellular-automata-2/
https://parametrichouse.com/rabbit/

	PROGENY: A GRASSHOPPER PLUG-IN THAT AUGMENTS CELLULAR AUTOMATA ALGORITHMS FOR 3D FORM EXPLORATIONS
	Recommended Citation

	PROGENY: A GRASSHOPPER PLUG-IN THAT AUGMENTS CELLULAR AUTOMATA ALGORITHMS FOR 3D FORM EXPLORATIONS
	Abstract
	Keywords

	PROGENY: A GRASSHOPPER PLUG-IN THAT AUGMENTS CELLULAR AUTOMATA ALGORITHMS FOR 3D FORM EXPLORATIONS

