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Abstract
In the present paper, we investigate differential geometric properties the soliton surface M
associated with Betchov-Da Rios equation. Then, we give derivative formulas of Frenet
frame of unit speed curve Φ = Φ(s, t) for all t. Also, we discuss the linear map of
Weingarten type in the tangent space of the surface that generates two invariants: k
and h. Moreover, we obtain the necessary and sufficient conditions for the soliton surface
associated with Betchov-Da Rios equation to be a minimal surface. Finally, we examine
a soliton surface associated with Betchov-Da Rios equation as an application.
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1. Introduction
Analytical solution of nonlinear partial differential equations plays an important role

in mathematics and all applications of mathematics. Many methods have been developed
to obtain solutions to these equations. However, due to the continuous renewal of science
with developing technology, different solution methods are being investigated. Among
these solutions, solitary wave solutions which attract the most attention especially due
to their physical applications. For the solution of such partial differential equations, the
term soliton is generally used in cases involving more than one wave. Soliton theory has
an important place in mathematics, physics and biology, continues to be researched in
scientific studies, it is also related to the field of differential geometry.

In classical differential geometry, the study of motion of a vortex filament is one of the
important problems of mathematical physics. Hasimoto’s work in 1972 is a pioneering
study on this subject. The aforementioned work considered the self-induced motion of a
thin isolated vortex filament travelling without stretching in an incompressible fluid. If
the position vector of vortex filament is denoted by Φ = Φ(s, t), then the equation

Φt = Φs × Φss
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is hold [8]. This equation is known as smoke ring or vortex filament equation. Also,
the relationship between the propagating wave solutions of Nonlinear Schrodinger (NLS)
equation of these motions without form change is a well-known fact, [4–6,8, 11,13].

In the work [12], it has been obtained that the binormal motion of the constant curvature
curves causes integrable extensions of Dym equations. It is also shown that the binormal
motion of curves of constant torsion leads to integrable extensions of classical sine–Gordon
equations. NLS equation is examined in a general intrinsic geometric setting as introduced
earlier in a kinematic analysis of certain hydrodynamic motions by [9]. Furthermore,
differential geometric properties of the soliton surfaces associated with NLS equation are
obtained and the connection between Hasimoto derivation is stated in [10].

The thin filament is expressed, smooth and without self-intersection. The velocity
induced by vortex line at an external point is expressed by Da Rios via so-called localized
induction approximation (LIA). The movement of a thin vortex in a thin inviscid fluid by
the motion of a curve propagating in R4 is described by the following equation

Φt = Φs × Φss × Φsss. (1)

This is called Betchov-Da Rios equation or localized induction equation, and can be viewed
as a dynamical system on the space of curves in R4. In [2], the explicit solutions of Betchov-
Da Rios soliton equation in three-dimensional Lorentzian space forms are investigated.
Also, the explicit examples of surfaces are given in L3, S3

1 and H3
1 , where the solutions are

lying in [2]. On the other hand, the parametrization of Hopf cylinders, which are solutions
of Betchov-Da Rios soliton equation in H3

1 (−1) are investigated in [1]. Moreover, it is
obtained that the soliton solutions are the null geodesics of Lorentzian Hopf cylinders in
[1]. Additionally, the solutions of Betchov-Da Rios soliton equation are investigated in the
three-dimensional anti-De Sitter space and it is proved that the solutions are the helices
which are sweeping out a B-scroll i.e., the null geodesics of that B-scroll in [3].

The paper is organized as follows. In section 2, we examine differential geometric prop-
erties the soliton surface M : Φ = Φ(s, t) associated with Betchov-Da Rios equation. It is
proved that s-parameter curve Φ(s, t) is parametrized by arclength for all t when Φ(s, 0)
is a unit speed curve. Then, we give derivative formulas of Frenet frame {T, N, B1, B2} of
unit speed s-parameter curve Φ = Φ(s, t) for all t. In section 3, we discuss the linear map
of Weingarten type in the tangent space of the surface. In accordance with this scope, we
obtain the geometric invariants k and h. Moreover, the necessary and sufficient conditions
for the soliton surface associated with Betchov-Da Rios equation to be a minimal surface.
And, a new result is obtained on existence of flat points of the soliton surface associated
with Betchov-Da Rios equation. Furthermore, we obtain the mean curvature vector field
and Gaussian curvature of soliton surface. Then, we investigate this kind of soliton surface
as a numerical example.

2. Betchov-Da Rios soliton equation in four dimensional euclidean space
In this section, the soliton surface M : Φ = Φ(s, t) associated with Betchov-Da Rios

equation is investigated by using derivative formulas of Frenet frame of unit speed s-
parameter curve Φ = Φ(s, t) for all t.

Proposition 2.1. Assume that Φ = Φ(s, t) is a solution of Betchov-Da Rios equation in
R4. If Φ(s, 0) is a unit speed curve then other s-parameter curve Φ = Φ(s, t) is also unit
speed for all t.
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Proof. We need to prove that ⟨Φs, Φs⟩t = 0 for the solutions of equation (1). Then we
have

⟨Φs, Φs⟩t = 2 ⟨(Φs)t, Φs⟩
= 2 ⟨(Φt)s, Φs⟩
= 2 ⟨Φss × Φss×Φsss + Φs × Φsss×Φsss + Φs × Φss×Φssss, Φs⟩
= 2 ⟨Φs × Φss×Φssss, Φs⟩ = 0.

Therefore, for a solution of Betchov-Da Rios equation, we obtain that Φ = Φ(s, t) is
parametrized by arclength for all t. □

Theorem 2.2. Let Φ = Φ(s, t) be a solution of Betchov-Da Rios equation such that s-
parameter curve Φ = Φ(s, t) is unit speed curve for all t. Then we have the following
equations:
(i)

d

ds


T
N
B1
B2

 =


0 κ 0 0

−κ 0 τ 0
0 −τ 0 σ
0 0 −σ 0




T
N
B1
B2

 (2)

(ii)

d

dt


T
N
B1
B2

 =


0 0 ξ13 ξ14
0 0 ξ23 ξ24

−ξ13 −ξ23 0 ξ34
−ξ14 −ξ24 −ξ34 0




T
N
B1
B2

 (3)

where
ξ13(s, t) = κ2(s, t)τ(s, t)σ(s, t), (4)

ξ14(s, t) = (−κ2(s, t)τ(s, t))s, (5)

ξ23(s, t) = 1
κ(s, t)

[(κ2(s, t)τ(s, t)σ(s, t))s + (κ2(s, t)τ(s, t))sσ(s, t)], (6)

ξ24(s, t) = 1
κ(s, t)

[κ2(s, t)τ(s, t)σ2(s, t) + (−κ2(s, t)τ(s, t))ss], (7)

ξ34(s, t) = 1
τ(s, t)


(−κ2(s, t)τ(s, t))sκ(s, t)

+σ(s, t)
κ(s, t)

[(κ2(s, t)τ(s, t)σ(s, t))s + (κ2(s, t)τ(s, t))sσ(s, t)]

+( 1
κ(s, t)

[κ2(s, t)τ(s, t)σ2(s, t) + (−κ2(s, t)τ(s, t))ss])s

 . (8)

Here {T, N, B1, B2} denote Frenet frame field, κ is the curvature function, τ is the first
torsion function and σ is the second torsion of the s-parameter curve Φ = Φ(s, t) for all t.

Proof. (i) This equation is Frenet formula of a unit speed curve in four dimensional
Euclidean space.
(ii) We need to find smooth functions ξ12, ξ13, ξ14, ξ23, ξ24, and ξ34 such that

d

dt


T
N
B1
B2

 =


0 ξ12 ξ13 ξ14

−ξ12 0 ξ23 ξ24
−ξ13 −ξ23 0 ξ34
−ξ14 −ξ24 −ξ34 0




T
N
B1
B2


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in terms of κ, τ and σ. We know that
Φs(s, t) = T (s, t),

Φss(s, t) = κ(s, t)N(s, t),

Φsss(s, t) = κs(s, t)N(s, t) + κ(s, t)Ns(s, t),

= κs(s, t)N(s, t) + κ(s, t)[−κ(s, t)T (s, t) + τ(s, t)B1(s, t)]

= −κ2(s, t)T (s, t) + κs(s, t)N(s, t) + κ(s, t)τ(s, t)B1(s, t).
By using Betchov-Da Rios equation, we get

Φt(s, t) = Φs(s, t) × Φss(s, t)×Φsss(s, t)

= det


T (s, t) N(s, t) B1(s, t) B2(s, t)

1 0 0 0
0 κ(s, t) 0 0

−κ2(s, t) κs(s, t) κ(s, t)τ(s, t) 0


= −κ2(s, t)τ(s, t)B2(s, t).

Then by compatibility condition Φst = Φts, we obtain
∂

∂s
(Φt(s, t)) = ∂

∂s
(−κ2(s, t)τ(s, t)B2(s, t))

= κ2(s, t)τ(s, t)σ(s, t)B1(s, t)
+ [−2κ(s, t)κs(s, t)τ(s, t) − κ2(s, t)τs(s, t)]B2(s, t).

On the other hand, we have
∂

∂t
(Φs(s, t)) = ∂

∂t
(T (s, t))

= ξ12(s, t)N(s, t) + ξ13(s, t)B1(s, t) + ξ14(s, t)B2(s, t).
Therefore we get

ξ12(s, t) = 0,

ξ13(s, t) = κ2(s, t)τ(s, t)σ(s, t),

ξ14(s, t) = −2κ(s, t)κs(s, t)τ(s, t) − κ2(s, t)τs(s, t) = (−κ2(s, t)τ(s, t))s.

Then by compatibility condition Tst = Tts, we get
∂

∂s
(Tt(s, t)) = ∂

∂s
(ξ13(s, t)B1(s, t) + ξ14(s, t)B2(s, t))

= (ξ13)s (s, t)B1(s, t) + ξ13(s, t)(−τ(s, t)N(s, t) + σ(s, t)B2(s, t))
+ (ξ14)s (s, t)B2(s, t) + ξ14(s, t)(−σ(s, t)B1(s, t))

= (−ξ13(s, t)κ(s, t))N(s, t) + ((ξ13)s (s, t) − ξ14(s, t)σ(s, t))B1(s, t)
+ (ξ13(s, t)σ(s, t) + (ξ14)s (s, t))B2(s, t).
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Furthermore, we also have
∂

∂t
(Ts(s, t)) = ∂

∂t
(κ(s, t)N(s, t))

= κt(s, t)N(s, t) + κ(s, t)(ξ23(s, t)B1(s, t) + ξ24(s, t)B2(s, t))

= κt(s, t)N(s, t) + κ(s, t)ξ23(s, t)B1(s, t) + κ(s, t)ξ24(s, t)B2(s, t).

This implies that
κt(s, t) = −ξ13(s, t)τ(s, t) = −κ2(s, t)τ2(s, t)σ(s, t),

κ(s, t)ξ23(s, t) = (ξ13)s (s, t) − ξ14(s, t)σ(s, t) = (κ2(s, t)τ(s, t)σ(s, t))s + (κ2(s, t)τ(s, t))sσ(s, t),
κ(s, t)ξ24(s, t) = ξ13(s, t)σ(s, t) + (ξ14)s (s, t) = κ2(s, t)τ(s, t)σ2(s, t) + (−κ2(s, t)τ(s, t))ss.

By last two equations we obtain

ξ23(s, t) = 1
κ(s, t)

[(κ2(s, t)τ(s, t)σ(s, t))s + (κ2(s, t)τ(s, t))sσ(s, t)],

ξ24(s, t) = 1
κ(s, t)

[κ2(s, t)τ(s, t)σ2(s, t) + (−κ2(s, t)τ(s, t))ss].

From compatibility condition of Nst = Nts, we find the following equalities

−κ(s, t)ξ13(s, t) + τt(s, t) = (ξ23)s (s, t) − σ(s, t)ξ24(s, t),

−κ(s, t)ξ14(s, t) + τ(s, t)ξ34(s, t) = ξ23(s, t)σ(s, t) + (ξ24)s (s, t).

And we have

τt(s, t) = κ3(s, t)τ(s, t)σ(s, t)

+ ( 1
κ(s, t)

[(κ2(s, t)τ(s, t)σ(s, t))s + (κ2(s, t)τ(s, t))sσ(s, t)]s)s

− σ(s, t)
κ(s, t)

[κ2(s, t)τ(s, t)σ2(s, t) + (−κ2(s, t)τ(s, t))ss],

ξ34(s, t) = 1
τ(s, t)


(−κ2(s, t)τ(s, t))sκ(s, t)

+σ(s, t)
κ(s, t)

[(κ2(s, t)τ(s, t)σ(s, t))s + (κ2(s, t)τ(s, t))sσ(s, t)]

+( 1
κ(s, t)

[κ2(s, t)τ(s, t)σ2(s, t) + (−κ2(s, t)τ(s, t))ss])s

 .

Finally, by compatibility condition B1st = B1ts, we get

σt(s, t) = (ξ34)s (s, t) + τ(s, t)ξ24(s, t).

□

3. Investigation of Betchov-Da Rios soliton surface
For a two-dimensional surface M : Φ = Φ(s, t) in four dimensional Euclidean space,

an invariant linear map of Weingarten type in the tangent space of the surface can be
introduced that generates two invariants: k and h [7]. In this section, these invariants of
the soliton surface are discussed. The conditions, where these surfaces are minimal and
consist of flat points, are discussed.
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Theorem 3.1. Let Φ = Φ(s, t) be a solution of Betchov-Da Rios equation. The linear
map γ : TpM → TpM of Weingarten type in the tangent space of the soliton surface
M : Φ = Φ(s, t) is obtained as follows:

γ (Φs(s, t)) = −2κ(s, t)σ(s, t)T (s, t) + ξ34(s, t)
κ(s, t)τ(s, t)

B2(s, t),

γ (Φt(s, t)) = −κ(s, t)ξ34(s, t)T (s, t) − 2σ(s, t)ξ24(s, t)B2(s, t).

Here, the tangent space to M at an arbitrary point P of M is span {Φs, Φt}.

Proof. For a two-dimensional surface in four dimensional Euclidean space, we use the
standard notations in [7]. First of all, we get

g11(s, t) = ⟨Φs(s, t), Φs(s, t)⟩ = ⟨T (s, t), T (s, t)⟩ = 1,

g12(s, t) = ⟨Φs(s, t), Φt(s, t)⟩ =
⟨
T (s, t), −κ2(s, t)τ(s, t)B2(s, t)

⟩
= 0,

g22(s, t) = ⟨Φt(s, t), Φt(s, t)⟩ =
⟨
−κ2(s, t)τ(s, t)B2(s, t), −κ2(s, t)τ(s, t)B2(s, t)

⟩
= κ4(s, t)τ2(s, t).

Then we set

W =
√

g11g22 − g2
12 = κ2τ.

For orthonormal normal frame field {N, B1} of M , we have the second derivative formulas

Φss = Γ1
11Φs + Γ2

11Φt + c1
11N + c2

11B1,

Φst = Γ1
12Φs + Γ2

12Φt + c1
12N + c2

12B1, (9)

Φtt = Γ1
22Φs + Γ2

22Φt + c1
22N + c2

22B1

where Γk
ij are Christoffel’s symbols and ck

ij are functions on M for i, j, k = 1, 2. On the
other hand, we have

Φss(s, t) = κ(s, t)N(s, t),

Φst(s, t) = κ2(s, t)τ(s, t)σ(s, t)B1(s, t) + (−2κ(s, t)κs(s, t)τ(s, t) − κ2(s, t)τs(s, t))B2(s, t),

Φtt(s, t) = κ2(s, t)τ(s, t)ξ14(s, t)T (s, t) + κ2(s, t)τ(s, t)ξ24(s, t)N(s, t)
+ κ2(s, t)τ(s, t)ξ34(s, t)B1(s, t) + (−2κ(s, t)κt(s, t)τ(s, t) − κ2(s, t)τt(s, t))B2(s, t).
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Then we calculate
c1

11(s, t) = ⟨Φss(s, t), N(s, t)⟩ = κ(s, t),

c2
11(s, t) = ⟨Φss(s, t), B1(s, t)⟩ = 0,

c1
12(s, t) = ⟨Φst(s, t), N(s, t)⟩ = 0,

c1
22(s, t) = ⟨Φtt(s, t), B1(s, t)⟩ = κ2(s, t)τ(s, t)ξ24(s, t),

c2
12(s, t) = ⟨Φst(s, t), N(s, t)⟩ = κ2(s, t)τ(s, t)σ(s, t),

c2
22(s, t) = ⟨Φtt(s, t), B1(s, t)⟩ = κ2(s, t)τ(s, t)ξ34(s, t).

We introduce the functions as follows:
∆1(s, t) = κ3(s, t)τ(s, t)σ(s, t),

∆2(s, t) = κ3(s, t)τ(s, t)ξ34(s, t),

∆3(s, t) = −κ4(s, t)τ2(s, t)σ(s, t)ξ24(s, t).
After computations, one can easily obtain coefficients l11, l12 and l22 of the second funda-
mental form as follows:

l11(s, t) = 2κ(s, t)σ(s, t),

l12(s, t) = κ(s, t)ξ34(s, t),

l22(s, t) = −2κ2(s, t)τ(s, t)σ(s, t)ξ24(s, t).
Now, consider the linear map γ : TpM → TpM of Weingarten type in the tangent space
of the soliton surface M determined by the conditions

γ(Φs) = γ1
1Φs + γ2

1Φt,

γ(Φt) = γ1
2Φs + γ2

2Φt

where
γ1

1(s, t) = −2κ(s, t)σ(s, t),

γ2
1(s, t) = − ξ34(s, t)

κ3(s, t)τ2(s, t)
,

γ1
2(s, t) = −κ(s, t)ξ34(s, t),

and
γ2

2(s, t) = 2σ(s, t)ξ24(s, t)
κ2(s, t)τ(s, t)

.

So we obtain following equalities

γ (Φs(s, t)) = −2κ(s, t)σ(s, t)T (s, t) + ξ34(s, t)
κ(s, t)τ(s, t)

B2(s, t),
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γ (Φt(s, t)) = −κ(s, t)ξ34(s, t)T (s, t) − 2σ(s, t)ξ24(s, t)B2(s, t).

Clearly, the soliton surface M lies in a 2−plane if and only if M is totally geodesic, i.e.,
ck

ij = 0. At least one of the coefficients ck
ij is not zero, since the metric induced on M is

nondegenerate, i.e., κ(s, t) ̸= 0. The second fundamental tensor of the soliton surface M
is expressed as follows:

Π(Φs, Φs) = κN,

Π(Φs, Φt) = κ2τσB1,

Π(Φt, Φt) = κ2τξ24N + κ2τξ34B1.

□

Theorem 3.2. If Φ = Φ(s, t) is a solution of Betchov-Da Rios equation, then the invari-
ants of the soliton surface M : Φ = Φ(s, t) are

k(s, t) = −4κ(s, t)σ2(s, t)τ(s, t)ξ24(s, t) − ξ2
34(s, t)

κ2(s, t)τ2(s, t)
,

h(s, t) = −σ(s, t)ξ24(s, t) + κ3(s, t)τ(s, t)σ(s, t)
κ2(s, t)τ(s, t)

respectively.

Proof. We have found the coefficients of first fundamental form of M as g11 = 1, g12 =
0 and g22 = κ4(s, t)τ2(s, t). And the coefficients l11, l12 and l22 of the second funda-
mental form of M are given as l11 = 2κ(s, t)σ(s, t), l12 = κ(s, t)ξ34(s, t) and l22 =
−2κ2(s, t)τ(s, t)σ(s, t)ξ24(s, t). Thus, the invariant k of the soliton surface M is given
by

k(s, t) = det γ(s, t) = −4κ(s, t)σ2(s, t)τ(s, t)ξ24(s, t) − ξ2
34(s, t)

κ2(s, t)τ2(s, t)
,

and the invariant h of the soliton surface Φ(s, t) is obtain as follows:

h(s, t) = −1
2

tr γ(s, t) = −σ(s, t)ξ24(s, t) + κ3(s, t)τ(s, t)σ(s, t)
κ2(s, t)τ(s, t)

.

The orthonormal frame field of the tangent space to M are obtained as

X = Φs

∥Φs∥
= T

∥T∥
= T,

Y = Φt

∥Φt∥
= −κ2τB2

∥−κ2τB2∥
= B2.

Thus, we may write

γ(T (s, t)) = −2κ(s, t)σ(s, t)T (s, t) + ξ34(s, t)
κ(s, t)τ(s, t)

B2(s, t),

γ(B2(s, t)) = ξ34(s, t)
κ(s, t)τ(s, t)

T (s, t) + 2σ(s, t)ξ24(s, t)
κ2(s, t)τ(s, t)

B2(s, t).
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According to orthonormal frame field {X, Y } of the tangent space to M, we may rewrite

γ(X) = γ1
1X + γ2

1Y,

γ(Y ) = γ1
2X + γ2

2Y

where

γ1
1(s, t) = −2κ(s, t)σ(s, t), γ2

1(s, t) = ξ34(s, t)
κ(s, t)τ(s, t)

,

γ1
2(s, t) = ξ34(s, t)

κ(s, t)τ(s, t)
, γ2

2(s, t) = 2σ(s, t)ξ24(s, t)
κ2(s, t)τ(s, t)

.

Then, we can easily see that γT = γ. This means that γ is a symmetric linear operator.
If X and Y are two tangent vectors of the tangent space to M at an arbitrary point P,
then we have

⟨γ(X), Y ⟩ = ⟨γ(Y ), X⟩ .

Hence, with the help of the orthonormal tangent vectors X and Y , the second fundamental
tensor of the soliton surface M is expressed as follows:

Π(X, X) = h1
11N + h2

11B1,

Π(X, Y ) = h1
12N + h2

12B1,

Π(Y, Y ) = h1
22N + h2

22B1

where

hk
11 = ck

11,

hk
12 = − ck

12
κ2τ

,

hk
22 = ck

22
κ4τ2

for k = 1, 2. We obtain the characteristic equation of the linear map γ as follows:

v2 + 2hv + k = 0.

Therefore, we get
h2 − k ⩾ 0.

Then, it follows that

4(h2 − k) = (2σξ24 + 2κ3τσ)2 + (ξ34κ)2

κ4τ2 .

This equality implies that the condition h2 − k = 0 is equivalent to the equalities

2σξ24 + κ3τσ = 0, ξ34κ = 0.

□

Corollary 3.3. Suppose Φ = Φ(s, t) is a solution of Betchov-Da Rios equation. The
soliton surface M : Φ = Φ(s, t) is minimal if and only if

(κ2τ)ss = κ2τ(σ2 + τ2),(
−κ2τ

)
s

κ + σ

κ
[
(
κ2τσ

)
s

+
(
κ2τ

)
s

σ] + ( 1
κ

(
κ2τσ2 + (−κ2τ)ss

)
)s = 0.
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Proof. The necessary and sufficient condition of soliton surface M to be a minimal soliton
surface is that h2 − k = 0. Above remark shows that h2 − k = 0 if and only if

ξ24 = −κ3τ, ξ34 = 0.

By substituting the values of ξ24 and ξ34, we get the proof. □

Corollary 3.4. Suppose Φ = Φ(s, t) is a solution of Betchov-Da Rios equation. If

−4κσ2τξ24 − ξ2
34 = 0 and − σξ24 + κ3τσ = 0,

then the soliton surface M : Φ = Φ(s, t) consists of flat points.

Proof. We know that if h = k = 0, then the soliton surface M consists of flat points. The
equation h = k = 0 implies that

−4κσ2τξ24 − ξ2
34 = 0 and − σξ24 + κ3τσ = 0.

Thus, we get the proof. □

Remark 3.5. On the other hand, we also get the following equality

∆2
1 + ∆2

2 + ∆2
3 = κ6τ2

(
σ2 + ξ2

34 + κ2σ2τ2ξ2
24

)
.

If ∆1 = ∆2 = ∆3 = 0, then these points are flat points of the soliton surface. This implies
that if σ = ξ34 = 0, then the soliton surface M : Φ = Φ(s, t) consists of flat points. If
σ = ξ34 = 0, then we obtain the same results given in above corollary.

Theorem 3.6. If Φ = Φ(s, t) is a solution of Betchov-Da Rios equation, then the mean
curvature vector field of the soliton surface M : Φ = Φ(s, t) is obtained by

H = 1
2

(κ + ξ24
κ2τ

)N + ξ34
2κ2τ

B1.

Proof. By using the equations in obtained results, we find the mean curvature vector field
of the soliton surface M as follows:

H = 1
2

(Π(X, X) + Π(Y, Y ))

= 1
2

(κN + κ2τξ24
κ4τ2 N + κ2τξ34

κ4τ2 B1)

= 1
2

(κ + ξ24
κ2τ

)N + ξ34
2κ2τ

B1.

□

Theorem 3.7. If Φ = Φ(s, t) is a solution of Betchov-Da Rios equation, then Gaussian
curvature of the soliton surface M : Φ = Φ(s, t) is given by

K = ξ24
κτ

− σ2.

Proof. By using obtained values of hk
ij , Gaussian curvature of the soliton surface M is

derived as follows:

K =
2∑

k=1
hk

11hk
22 − (hk

12)2 = κ
ξ24
κ2τ

− (−σ)2 = ξ24
κτ

− σ2.

□
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4. Application
In this section, we investigate an soliton surface associated with Betchov-Da Rios equa-

tion as an application. Consider the soliton surface with the following parametrization

Φ(s, t) = (3 cos s

5
, 3 sin s

5
,
4s

5
, − 36

625
t + 5).

And Frenet frames of the curves Φ = Φ(s, t) for all t ∈ R on Betchov-Da Rios soliton
surface are given as follows:

T (s, t) = (−3
5

sin s

5
,
3
5

cos s

5
,
4
5

, 0),

N(s, t) = (− cos s

5
, − sin s

5
, 0, 0),

B1(s, t) = (4
5

sin s

5
, −4

5
cos s

5
,
3
5

, 0),

B2(s, t) = (0, 0, 0, 1).

Then, we obtain the curvature functions as

κ(s, t) = 3
25

, τ(s, t) = 4
25

, σ(s, t) = 0.

Furthermore, we get the geometric invariants of the soliton surface

k = 0 and h = 0.

Thus, the given soliton surface consists of flat points. Figure 1 illustrates Betchov-Da Rios
soliton surface with projection on the plane (x + y, z, w).

Figure 1. Betchov-Da Rios soliton surface with projection on plane (x + y, z, w)

Figure 2 illustrates Betchov-Da Rios soliton surface with projection on plane (x, y, z+w).
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Figure 2. Betchov-Da Rios soliton surface with projection on plane (x, y, z + w)
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