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Abstract: This research introduces a new idea of (α,β)-level based strong fuzzy chromatic polynomial of intuitionistic fuzzy

graph(IFGs). In addition, some characteristics of (α,β)-level based strong fuzzy chromatic polynomials of IFGs are specified and

proven. Besides, the strong (α,β)-fundamental set and the strong (α,β)-level graphs are defined with clear examples. Moreover,

some algebraic characteristics of the strong (α,β)-level graph of IFGs and their chromatic polynomials are also projected and

shown.
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1 Introduction

Zadeh [1] introduced a fuzzy set that was intended to assign a member of a given universal set X containing a set C with
the degree of its membership value in C [1]. Based on this set Kaufmann [2] developed a fuzzy graph. Later, Rosenfeld
[3] advanced and developed many of the structures of fuzzy graph. Atanassov [4] introduced Intuitionistic fuzzy set
that is an extension of the fuzzy set. After a decade, Atanassov [5] defined IFG. Later, more properties of IFGs were
presented [6][7]. M. Akram et. al., provides method for calculating the distance matrix’s sum, eccentricity, diameter,
and radius of IFG [8]. We apply IFGs in Election process [9], cell grouping [10] and water supply [11] and also it is
used in medical diagnostics, pipeline and decision-making [12]. Mamo and Srinivasa Rao Repalle presented the fuzzy
graphs’ chromatic polynomial based on α-levels [13]. Rifayathali et.al., developed the coloring of IFGs [14]. Prasanna
et al., introduced the strong coloring of IFGs [15]. Mohideen et. al., presented IFGs’ coloring based on (α,β)-levels [16].
M. Akram developed various characteristics of level graph of the IFGs using (α,β)- [17].
Although many works were reported on the IFG and on their coloring, a study on its strong fuzzy chromatic polynomial
has not been reported yet. To fill this gap, the authors have dealt with a strong fuzzy chromatic polynomial based on
the strong (α,β)-levels. This article is structured as follows: Section two consists of the preliminaries that are necessary
for understanding the article. The third part introduces the concept of strong (α,β)-level graphs of the IFG and their
properties. And also, it introduces the idea of the strong (α,β)-fundamental set of the IFG. The fourth section defines
notion of strong fuzzy chromatic polynomial of IFGs based on (α,β)-levels and presents certain related properties.
Lastly, section five summarizes the article.

2 Preliminaries

This section provides essential definitions and propositions.

Definition 1.[19] The chromatic polynomial of a simple graph W with k given colors is represented by P (W,k) and it
counts all ways to reach a correct vertex coloring.

Proposition 1.[19] Let F be a simple graph. Then, P (F,k) = P (F − g ,k)−P (F /g ,k) where F − g is obtained by deleting

edge g from F and F /g is obtained by contacting edge g from F .
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Proposition 2.[19]. If a simple graph F =∪n
i=1

Fi and ∩n
i=1

Fi =; , then

P (F,k) = P (F1,k)×P (F2,k)×·· ·×P (Fn ,k)

Definition 2.[4] An IFS Q in W is defined as Q = {
(

w,µQ (w),γQ (w)
)

, w ∈ W }. Where ∀w ∈ W the functions, µQ : W →

[0,1] and γQ : W → [0,1] shows the membership degree and non-membership degree of the element w ∈W respectively.

Definition 3.[18] An IFG G = (V ,E ) is a graph that satisfy;

1.V = {w1, w2, · · · , wn} such that µ1 : V → [0,1] and γ1 : V → [0,1] represent the membership degree and the non-
membership degree of element wi in V respectively where 0 ≤µ1(wi )+γ1(wi ) ≤ 1 for every wi ∈V , (i = 1,2, ...,n).

2.µ2 : E → [0,1] and γ2 : E → [0,1] are in such a way that µ2(wi , w j ) ≤ min{µ1(wi ),µ1(w j )} and
γ2(wi , w j ) ≤ max{γ1(wi ),γ1(w j )} satisfy the constraint 0 ≤ µ2(wi , w j ) + γ2(wi , w j ) ≤ 1 for every
(wi , w j ) ∈ E ⊆ V ×V , (i , j = 1,2, ...,n) where µ2(wi , w j ) and γ2(wi , w j ) are the degree of membership and the degree
of non-membership of the element (wi , w j ) ∈E respectively.

Definition 4.[16], [17]. An
(

α,β
)

-level graph of an IFG, H is Hα,β =
(

Vα,β,Eα,β

)

where,

Vα,β = {v ∈V |µ1(v)≥α and γ1(v)≤β} and

Eα,β = {v, w ∈V |µ2(v, w)≥α and γ2(v, w)≤β}.

Definition 5.[16] Let H = (V ,E ) be an IFG. χ(H) = {
(

w,m(w),n(w)
)

|w ∈W } such that:

1. W = {1,2, · · · , |V |}
2. m(w)= sup{α∈ [0,1]|w ∈ Aα,β} and n(w) = inf{β ∈ [0,1]|w ∈ Aα,β} where Aα,β = {1,2, · · · ,χα,β}.

3 The strong
(

α,β
)

-levels of an IFG

This section defines a notion of
(

α,β
)

s level graphs and strong fundamental set of an IFG. Moreover, some

characterizations of the strong
(

α,β
)

-level graphs are provided with justifications.

Definition 6.Let H be an IFG and suppose that I = {αm ,βm }
q−1
m=1 satisfy αm+1 >αm and βm+1 <βm ∀m = 1,2, . . . , q −1.

Then Fs = {(0,1)}∪ I , is said to be
(

α,β
)

s-fundamental set of H and read as the strong
(

α,β
)

-fundamental set of H.

Definition 7.Let Fs be the strong fundamental set of an IFG, H = (V ,E ). Then the strong
(

α,β
)

-level graph of H denoted

by H(α,β)s
is H(α,β)s

=

(

V(α,β)s
,E(α,β)s

)

such that V(α,β)s
= {w ∈ V | µ1(w) > α and γ1(w) < β} and E(α,β)s

= {(w, x) ∈

V ×V | µ2(w, x) >α and γ2(w, x) <β} where
(

α,β
)

s ∈ [0,1].

Example 1.Take the IFG provided in figure 1 to illustrate various
(

α,β
)

s -level graphs of G.

v5(0.7,0.3)

(0.2,0.7)v4
v1(0.3,0.6)

v2(0.5,0.5)
(0.6,0.2)v3

(0.2,0.6)

(0.3,0.4)(0.2,0.5)

(0.5,0.4)

(0.3,0.4)

Fig. 1: IFG

The
(

α,β
)

s -fundamental set of G is: Fs = {(0,1)s , (0.2,0.7)s , (0.3,0.6)s , (0.5,0.5)s , (0.6,0.2)s , (0.7,0.3)s }. Based on this set,
the corresponding strong level graphs are discussed in figure 2 below:
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(1)v5

(1)v4
v1(2)

v2(1)
(2)v3

χ(G(0,1)s
)= 2

(1)v5

v1(2)

v2(1)
(2)v3

χ(G(0.2,0.7)s
) = 2

(1)v5

v2(1)
(2)v3

χ(G(0.3,0.6)s
) = 2

(1)v5

(1)v3

χ(G(0.5,0.5)s
) = 1

(1)v5

χ(G(0.6,0.2)s
) = 1

G(0.7,0.3)s
= DNE

Fig. 2: The strong level graphs of the graph in figure 1

Remark.

1. In figure 2, the number assigned to each vertex is the proper color given for the vertex.
2. Since V(0.7,0.3)s is an empty set, G(0.7,0.3)s does not exist.
3. χ(G)= {(2,(0.3,0.6)s) , (1,(0.6,0.2)s )}.

3.1 Characteristics of the strong
(

α,β
)

-level graphs of an IFG

Theorem 1.If H(αl ,βl )s
and H(αm ,βm )s

are the strong level graphs of an IFG, H with 0 ≤αl <αm ≤ 1 and 1 ≥βl >βm ≥ 0,

then V(αl ,βl )s
⊇V(αm ,βm )s

and E(αl ,βl )s
⊇ E(αm ,βm )s

.

Proof.Let H(αl ,βl )s
and H(αm ,βm )s

be two strong level graphs of an IFG, H = (V ,E ) with 0 ≤ αl < αm ≤ 1 and

1 ≥βl >βm ≥ 0. Then the strong (α,β)-level graphs of H ;H(αl ,βl )s
and H(αm ,βm )s

have the vertex sets that are given by

V(α1,βl )s
= {w ∈ V | µ1(w) > αl and γl (w) < βl } and V(αm ,βm )s

= {w ∈ V | µ1(w) > αm and γ1(w) < βm} respectively.

Now suppose w ∈ V(αm ,βm )s
. Then w ∈ V(αm ,βm )s

⇒ µ1(w) > αm and γ1(w) < βm . Since αm > αl and βm < βl . Then it
implies, µ1(w) > αm > αl and γ1(w) < βm < βl . Further, this indicates µ1(w) > αl and γ1(w) < βl . This shows,
w ∈V(αl ,βl )s

. Hence, V(αl ,βl )s
⊇V(αm ,βm )s

.
Similarly, edge sets of H(αl ,βl )s

and H(αm ,βm )s
are: E(αl ,βl )s

= {(w, y) ∈ E | µ2(w, y) > αl and γ2(w, y) < βl } and

© 2023 NSP
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E(αm ,βm )s
= {(w, y) ∈ E | µ2(w, y) > αm and γ2(w, y) < βm } respectively. Suppose that (w, y) ∈ E(αm ,βm )s

. Now

(w, y) ∈ E(αm ,βm )s
⇒ µ2(w, y) > αm and γ2(w, y) < βm . Since αm > αl and βm < βl . Then this implies,

µ2(w, y) > αm > αl and γ2(w, y) < βm < βl . Further, this indicates µ2(w, y) > αl and γ2(w, y) < βl which shows
(w, y)∈ E(αl ,βl )s

. Thus, E(αl ,βl )s
⊇ E(αm ,βm )s

.

Corollary 1.If H(αl ,βl )s
and H(αm ,βm )s

are the strong level graphs of an IFG, H such that αl < αm and βl > βm , then

|V(αm ,βm )s
| ≤ |V(αl ,βl )s

| and |E(αm ,βm )s
| ≤ |E(αl ,βl )s

|.

Proof.Take an IFG, H = (V ,E ). Let H(αl ,βl )s
and H(αm ,βm )s

be the strong level graphs of H with αl < αm and βl > βm .

Then by theorem 1, V(αl ,βl )s
⊇ V(αm ,βm )s

and E(αl ,βl )s
⊇ E(αm ,βm )s

. This shows |V(αm ,βm )s
| ≤ |V(αl ,βl )s

| and |E(αm ,βm )s
| ≤

|E(αl ,βl )s
|. Hence, the corollary holds.

Theorem 2.If H(αl ,βl )s
and H(αm ,βm )s

are the strong level graphs of an IFG, H such that αl < αm and βl > βm , then

H(αm ,βm )s
is a sub graph of H(αl ,βl )s

.

Proof.Take an IFG, H = (V ,E ). Let H(αl ,βl )s
and H(αm ,βm )s

be the strong level graphs of H and let (αl ,βl )s and (αm ,βm)s

be given. Since αl < αm and βl > βm , V(αm ,βm )s
⊆ V(αl ,βl )s

and E(αm ,βm )s
⊆ E(αl ,βl )s

. Hence, H(αm ,βm )s
is a sub graph of

H(αl ,βl )s
.

Corollary 2.If (αk ,βk )s , (αl ,βl )s and (αm ,βm )s are the strong levels of an IFG, G = (V ,E ) such thatαk <αl ,αl <αm ,βk >

βl and βl >βm , then G(αm ,βm )s
is a sub graph of G(αk ,βk )s

.

Proof.The statement holds automatically from the theorem 2 and applying the transitivity property.

Theorem 3.If H(αk ,βk )s
and H(αm ,βm )s

are the strong level graphs of an IFG, H such that αk < αm and βm < βk , then
(

H(αk ,βk )s
∪H(αm ,βm )s

)

= H(αk ,βk )s
.

Proof.Let H(αk ,βk )s
and H(αm ,βm )s

be the level graphs of an IFG, H such that αk <αm and βk > βm . Then αk <αm and
βk > βm implies that V(αm ,βm )s

⊆ V(αk ,βk )s
and E(αm ,βm )s

⊆ E(αk ,βk )s
. Now by the definition of union of sets, V(αk ,βk )s

∪

V(αm ,βm )s
=V(αk ,βk )s

and E(αk ,βk )s
∪E(αm ,βm )s

= E(αk ,βk )s
. Hence,

(

H(αk ,βk )s
∪H(αm ,βm )s

)

= H(αk ,βk )s
.

Theorem 4.If H(αl ,βl )s
and H(αk ,βk )s

are the strong level graphs of an IFG, H such that αl < αk and βl > βk , then
(

H(αl ,βl )s
∩H(αk ,βk )s

)

= H(αk ,βk )s
.

Proof.Let H(αl ,βl )s
and H(αk ,βk )s

be the level graphs of an IFG, H such that αl < αk and βl > βk . Then αl < αk and
βl > βk implies that V(αk ,βk )s

⊆ V(αl ,βl )s
and E(αk ,βk )s

⊆ E(αl ,βl )s
. By the definition of intersection of two sets, V(αl ,βl )s

∩

V(αk ,βk )s
=V(αk ,βk )s

and E(αl ,βl )s
∩E(αk ,βk )s

= E(αk ,βk )s
. Hence,

(

H(αk ,βk )s
∩H(αl ,βl )s

)

= H(αk ,βk )s
.

4 Strong fuzzy chromatic polynomial of the IFGs based on (α,β) -levels

This section defines (α,β)-level based strong fuzzy chromatic polynomial of an IFG and derive the chromatic
polynomials for illustrative example. Also it states and shows some related concepts.

Definition 8.Let k colors be given and let Fs be the strong fundamental set of an IFG, H. Then strong fuzzy chromatic
polynomial of H based on (α,β)-levels which is denoted by P I

(α,β)s
(H ,k) is defined as: P I

(α,β)s
(H ,k) = P (H(α,β)s

,k),

∀(α,β)s ∈ Fs .

Example 2.Take k distinct colors to properly color an IFG, G in figure 1. Then P I
(α,β)s

(G,k) is P (G(α,β)s
,k) ∀(α,β)s ∈ Fs

in figure 2 and computed as follows:

1.For α = 0,β = 1, P I
(0,1)s

(G,k) = P (G(0,1)s ,k) is computed using proposition 1 as in figure 3 below: P I
(0,1)s

(G,k) =

P (G(0,1)s ,k) = P (P4,k).P (N1,k)−P (K3,k).P (N1)−P (P4,k)+P (K3,k) = k × [k(k −1)3]−k × [k(k −1)(k −2)]−k(k −

1)3 +k(k −1)(k −2) = k(k −1)2(k2 −3k +3)
2.For α= 0.2,β= 0.7, the strong level graph corresponding to the level is a Path graph P4. Therefore, P I

(0.2,0.7)s
(G,k) =

P (G(0.2,0.7)s ,k) = P (P4,k) = k(k −1)3.
3.For α = 0.3,β = 0.6, the strong level graph corresponding to the level is a forest graph containing Path graphs P2

and P1. Therefore, P I
(0.3,0.6)s

(G,k) = P (G(0.3,0.6)s ,k) = P (P1,k)× (P2,k) = k3 −k2

4.For α= 0.5,β= 0.5, we have the strong level graph N2. Thus, P I
(0.5,0.5)s

(G,k) = P (G(0.5,0.5)s ,k) = P (N2,k) = k2.

5.Lastly, for α= 0.6,β= 0.2, we have the strong level graph N1. Thus, P I
(0.6,0.2)s

(G,k) = P (G(0.6,0.2)s ,k) = P (N1,k) = k.
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
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
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Fig. 3: The computation of P(G(0,1)s
,k)

Therefore, P I
(α,β)s

(G,k) of a graph in figure 1 is:

P I
(α,β)s

(G,k) =































(k(k −1)2)(k2 −3k +3) if α= 0,β= 1

k(k −1)3 if α= 0.2,β= 0.7

k3 −k2 if α= 0.3,β= 0.6

k2 if α= 0.5,β= 0.5

k ifα= 0.6,β= 0.2

Generally, the comparison of the vertex set, the edge set, the chromatic numbers, and the chromatic polynomials of
various strong levels of a graph in figure 1 are put in table 1.

Table 1: The comparison of |V(α,β)s
|, |E(α,β)s

|, χ(Gα,β)s
) and P I

(α,β)s
(G ,k).

Strong level |V(α,β)s
| |E(α,β)s

| χ(Gα,β)s
) P I

(α,β)s
(G ,k)

α= 0 β= 1 5 5 2 k(k −1)2(k2 −3k +3)

α= 0.2 β= 0.7 4 3 2 k(k −1)3

α= 0.3 β= 0.6 3 1 2 k3 −k2

α= 0.5 β= 0.5 2 0 1 k2

α= 0.6 β= 0.2 1 0 1 k
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Remark.As α increases or as β decreases:

1. Both the cardinal of vertices and the cardinal of edges of an IFG based on the strong (α,β)-level decrease.
2. Both the chromatic number and the degree of strong fuzzy chromatic polynomial of an IFG based on (α,β)-level

decrease.

4.1 The Characteristics of strong fuzzy chromatic polynomial of IFGs based on (α,β)-levels

Theorem 5.If H(α1 ,β1)s
and H(α2 ,β2)s

are the strong level graphs of an IFG, H = (V ,E ) with α1 < α2 and β1 > β2, then

deg
(

P (H(α2 ,β2)s
,k)

)

≤ deg
(

P (H(α1 ,β1)s
,k)

)

.

Proof.Assume that H = (V ,E ) is an IFG and also assume that H(α1 ,β1)s
and H(α2 ,β2)s

are the strong level graphs of H such

that α1 < α2 and β1 > β2. Since for any graph F , deg (P (F,k)) = |V (F )|, we have deg
(

P (H(α1,β1)s
,k)

)

= |V(α1,β1)s
)| and

deg
(

P (H(α2 ,β2)s
,k)

)

= |V(α2 ,β2)s
|. Since α1 < α2 and β1 > β2, by applying corollary 1, We obtain |V(α1 ,β1)s

| ≥ |V(α2 ,β2)s
|.

Thus, deg
(

P (H(α2 ,β2)s
,k)

)

≤ deg
(

P (H(α1 ,β1)s
,k)

)

.

Corollary 3.If (αl ,βl )s , (αm ,βm )s and (αn ,βn )s are the strong intuitionistic fuzzy levels of an IFG, H = (V ,E ) such that

αm >αl , αn >αm , βm <βl and βn <βm , then deg
(

P (H(αn ,βn )s
,k)

)

≤ deg
(

P (H(αl ,βl )s
,k)

)

.

Proof.Assume that H = (V ,E ) is an IFG and H(αl ,βl )s
, H(αm ,βm )s

and H(αn ,βn )s
are the strong level graphs of H with

αm >αl , αn >αm , βm <βl and βn <βm . Now the transitivity of three real numbers implies that α1 <αn and β1 >βn .
Further, by applying theorem 3, deg

(

P (H(αn ,βn )s
,k)

)

≤ deg
(

P (H(αl ,βl )s
,k)

)

.

Theorem 6.If Hc is an underlying crisp graph of an IFG, H and Fs = {(0,1)s }∪ {(αi ,βi )s}l
i=1

is the strong fundamental

set of H such that 0 <αi and βi < 1 ∀i = 1,2, · · · , l , then P I
(0,1)s

(H ,k) = P (Hc ,k).

Proof.Let H be an IFG and Fs = {(0,1)s } ∪ {(αi ,βi )s}l
i=1

be a strong fundamental set of H . Suppose that Hc is the
underlying graph and assume 0 <αi and βi < 1 ∀i = 1,2, · · · , l of (αi ,βi ) in Fs . Then by applying theorem 2, H(αi ,βi )s

is
a sub graph of H(0,1)s for each i = 1,2, · · · , l . Since every strong level graph of H is sub graph of H(0,1)s and H(0,1)s is the
underlying graph of H . H(0,1)s contains every vertex and every edge of Hc . Thus, H(0,1)s and Hc are similar graphs and
contain equal chromatic polynomial. Mathematically, P (H(0,1)s ,k) = P (Hc ,k). Hence, P I

(0,1)s
(H ,k) = P (Hc ,k).

Theorem 7.If F and H are the IFG components of an IFG G, then P I
(α,β)s

(G,k) = P I
(α,β)s

(F,k)×P I
(α,β)s

(H ,k).

Proof.Let F and H be IFG components of an IFG, G. Now suppose that G(α,β)s
,F(α,β)s

and H(α,β)s
are the strong (α,β)-

level graphs of G,F , and H in a respective manner. Since F and H are IFG components of G, F(α,β)s
and H(α,β)s

are

underlying crisp components of G(α,β)s
. Now, by applying proposition 2: P I

(α,β)s
(G,k) = P I

(α,β)s
(F,k)×P I

(α,β)s
(H ,k).

Theorem 8.If W(αl ,βl )s
and W(αm ,βm )s

are the level graphs of an IFG, W with αl < αm and βl > βm , then

P I
(

W(αl ,βl )s
∪W(αm ,βm )s

,k
)

= P I
(

W(αl ,βl )s
,k

)

.

Proof.Let W(αl ,βl )s
and W(αm ,βm )s

are the level graphs of an IFG, W with αl < αm and βl > βm . Then αl < αm and
βl > βm implies that V(αm ,βm )s

⊆ V(αl ,βl )s
and E(αm ,βm )s

⊆ E(αl ,βl )s
. Now by the definition of union of sets,

V(αl ,βl )s
∪V(αm ,βm )s

= V(αl ,βl )s
and E(αl ,βl )s

∪E(αm ,βm )s
= E(αl ,βl )s

. This implies, W(αl ,βl )s
∪W(αm ,βm )s

= W(αl ,βl )s
. Hence,

P I
(

W(αl ,βl )s
∪W(αm ,βm )s

,k
)

= P I
(

W(αl ,βl )s
,k

)

.

Theorem 9.If W(αl ,βl )s
and W(αm ,βm )s

are the level graphs of an IFG, W with αl < αm and βl > βm , then

P I
(

W(αl ,βl )s
∩W(αm ,βm )s

,k
)

= P I
(

W(αm ,βm )s
,k

)

.

Proof.Let W(αl ,βl )s
and W(αm ,βm )s

be the level graphs of an IFG, W with αl < αm and βl > βm . Then αl < αm and
βl > βm implies that V(αm ,βm )s

⊆ V(αl ,βl )s
and E(αm ,βm )s

⊆ E(αl ,βl )s
. Now by the definition of intersection of two sets,

V(αl ,βl )s
∩V(αm ,βm )s

= V(αm ,βm )s
and E(αl ,βl )s

∩E(αm ,βm )s
= E(αm ,βm )s

. This indicates W(αl ,βl )s
∩W(αm ,βm )s

= W(αm ,βm )s
.

Hence, P I
(

W(αl ,βl )s
∩W(αm ,βm )s

,k
)

= P I
(

W(αm ,βm )s
,k

)

.

5 Conclusions

In this research, the concept of the (α,β)s -fundamental set of an IFG and the idea of (α,β) -level based strong fuzzy
chromatic polynomial of an IFG has been introduced. In addition, some characterizations of (α,β)s -level graphs and
(α,β) -level based strong fuzzy chromatic polynomial of an IFG have been discussed and illustrated. Moreover, the
strong fuzzy chromatic polynomials of an IFG for the various (α,β)s -levels have been computed and associated.
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