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Abstract: Statistical methodologies have broad applications in sports and other exercise sciences. These methods can be used to

predict the winning probability of a team or individual in a match. Due to the applicability of the statistical methods in sports, this paper

introduces a new method of obtaining statistical distributions. The new method is called a novel beta power-L family of distributions.

Some mathematical characteristics of the new family are obtained. Based on the novel beta power-L family, a special model, namely, a

novel beta power Weibull model is studied. Finally, the applicability/usefulness of the novel beta power Weibull distribution is shown by

analyzing the time-to-even data taken from different football matches during 1964-2018. The data consist of seventy-eight observations

and is representing the waiting time duration of the fastest goal scored ever in the history of football. The fitting results of the novel beta

power Weibull distribution are compared with other models. Based on three model selection criteria, it is observed that the proposed

novel beta power Weibull model provides a close fit to the waiting time data.

Keywords: Power transformation; Statistical model; Hazard function; Aging; Statistics and numerical data; Simulation; Comparative

study.

1 Introduction

Sports refer to the competitive physical activity or game in which an individual or whole team competes against others.
Among the sports games, football is an interesting game with a rich and long history. It is believed that the development
of this game dates back to the 12th century, which originated from England. In this game, two teams, each with 11
players, play against each other with a spherical ball. Football is controlled and governed by FIFA (International
Federation of Association Football) which conducts world cups for women and men after every four years. For more
information about football and FIFA, we refer to [1] and [2]. The theory and practice of statistics are widely used in
sports, particularly, the statistical analyses of sport have become popular in the professional setting. Appropriate
implementation of statistical methods is becoming more and more important in sports. There is consensus that the
inappropriate implementation of the statistical methodology and study design leads to incorrect results, poor
interpretation of the research/study findings, and wrong conclusions. For more information about the applications of
statistical methods in sports, we refer to [3,4,5,6,7,8]. There are now numerous peer-reviewed journals that welcome
innovative statistical methodologies for dealing with or analyzing data in sports and other exercise fields. Furthermore, a
number of high-profile conferences are organized each year for presenting statistical methodologies in sports research. In
addition, a new growing Section on statistics in sports within the ASA (American Statistical Association) encouraging
researchers to look for new statistical methodologies [9]. In statistical distributions theory, the two-parameter Weibull
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model is an interesting model. It has been widely implemented to handle time-to-event data. The Weibull CDF, say
A(x;φφφ ), can be proposed as

A(x;φφφ ) = 1− e−ηxλ
; x ≥ 0, (1)

where φφφ = (λ ,η), λ > 0 and η > 0. This model can be applied to discuss various data in different sectors such as:
Medical sciences [10,11], reliability engineering [12,13,14], and finance sector [15]. For more detailed information about
the modifications and usefulness of the Weibull distribution [16,17,18,19]. The PDF, say a(x;φφφ ), of the Weibull model
can be formulated as

a(x;φφφ ) = ηλ xλ−1e−ηxλ
; x > 0, (2)

with failure/hazard function (HF) h(x;φφφ ) given by

h(x;φφφ ) = ηλ xλ−1; x > 0. (3)

The HF can be increasing for λ > 1, decreasing for λ < 1, or constant for λ = 1. Thus, the Weibull model is an impressive
model for analyzing data whose HF is either increasing, decreasing, or constant. However, in most cases, the HF of the
data behaves non-monotonically [20]. Therefore, in such cases, the Weibull is not a suitable candidate model to apply
[21]. To obtain more flexible forms of the Weibull distribution, numerous contributions have been done in the literature.
For example, [22] introduced the BE-Weibull (beta extended Weibull) family, [23] proposed the Weibull-G family, [24]
proposed the (TW-G) transmuted Weibull-G family, [25] studied the ExW-G (extended Weibull-G) family, [26] listed odd
flexible Weibull-H class, [27] introduced the bivariate odd Weibull-G family, [28] proposed a discrete analogue of odd
Weibull-G family, odd LoL Weibull-G family by [29], and [30] introduced the additive odd log-logistic (LoL) odd Weibull-
G family. On the other hand, various probability classes based on different models were proposed and discussed in-detail,
for instance, odd LoL and Burr-X transmuted-G families by[31,32], LoL tan generalized family by [33], Gudermannian
generated family by [34], exponentiated-G family [35], and generalized heavy-tailed family by [36].

In this paper, we introduce a new method for obtaining modified and flexible versions of the available distributions in
the so-called NBP-L (novel beta power-L) family. Let X have the NBP-L family, then its CDF K (x;θ ,φφφ ) is given by

K (x;θ ,β ,φφφ ) = 1−

(

1−
A(x;φφφ )

β 1−A(x;φφφ)

)θ

; x ∈ R, (4)

where θ > 0,β > 0,φφφ ∈ R, and A(x;φφφ ) is a CDF of any sub-model. In order to prove that the CDF is a valid CDF, we
have two propositions.

Proposition 1. For the expression K (x;θ ,β ,φφφ ) obtained in Eq. (4), we must prove that

lim
x→−∞

K (x;θ ,β ,φφφ ) = 0 and lim
x→∞

K (x;θ ,β ,φφφ ) = 1.

Proof.

lim
x→−∞

K (x;θ ,β ,φφφ ) = lim
x→−∞

{

1−

(

1−
A(x;φφφ )

β 1−A(x;φφφ)

)θ
}

= 1−

(

1−
A(−∞;φφφ )

β 1−A(−∞;φφφ)

)θ

= 0

and

lim
x→∞

K (x;θ ,β ,φφφ ) = lim
x→∞

{

1−

(

1−
A(x;φφφ )

β 1−A(x;φφφ )

)θ
}

= 1−

(

1−
A(∞;φφφ )

β 1−A(∞;φφφ)

)θ

= 1.

Proposition 2. The CDF K (x;θ ,β ,φφφ ) is differentiable and RC (right continuous).
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Proof.
d

dx
K (x;θ ,β ,φφφ ) = k (x;θ ,β ,φφφ ) .

From propositions 1 and 2, we observe that the function provided in Eq. (4) is a valid CDF. For θ > 0,β > 0,x ∈R,φφφ ∈R,
the PDF k (x;θ ,φφφ ) and HF h(x;θ ,φφφ ) associating to Eq. (4), are respectively, given by

k (x;θ ,β ,φφφ ) =V (x;θ ,β ,φφφ )

(

1−
A(x;φφφ )

β 1−A(x;φφφ)

)θ−1

(5)

and

h(x;θ ,β ,φφφ ) =V (x;θ ,β ,φφφ )

(

1−
A(x;φφφ )

β 1−A(x;φφφ)

)−1

,

where d
dx

A(x;φφφ ) = a(x;φφφ) and

V (x;θ ,β ,φφφ ) =
θa(x;φφφ ) [1+(logβ )A(x;φφφ )]

β 1−A(x;φφφ )
.

Our motivations to report the NBP-L family are: To propose asymmetric and symmetric distributions which are capable
of modeling skewed and normal data. Further, it can also be utilized in a variety of applied problems in many fields like
sports, survival analysis, astronomy, agriculture, medicine, economics, among others; to generate special distributions
including heavy-tailed which are capable of analyzing different kinds of failure rates; and to create consistently better fits
than other created distributions under the same baseline distribution.

The outline of the reported paper can be listed as follows: In Section 2, some statistical features of the NBP-L class are
derived including the identifiability, rth moment, lifecycle predictions, and order statistics. In Section 3, a special model
of the new class, NBP-Weibull, is discussed in detail. In Section 4, the maximum likelihood technique is derived to report
the class estimators, and the behavior of these estimators is tested and evaluated in Section 5 based on the NBP-Weibull
model as an example. In Section 6, the popularity of the NBP-Weibull model is tested. Finally, some concluding remarks
are listed in Section 7.

2 Mathematical Properties

2.1 Identifiability property (IP)

Here, we derive the identifiability properties of the NBP-X family using the additional parameters θ and β . Let θ1 has the
CDF K (x;θ1,β ,φφφ ) and θ2 has the CDF K (x;θ2,β ,φφφ ). Then, the parameter θ is identifiable due to θ1 = θ2 for

K (x;θ1,β ,φφφ ) = K (x;θ2,β ,φφφ ) , (6)

where

1−

(

1−
A(x;φφφ )

β 1−A(x;φφφ )

)θ1

= 1−

(

1−
A(x;φφφ )

β 1−A(x;φφφ )

)θ2

,

θ1 log

(

1−
A(x;φφφ )

β 1−A(x;φφφ)

)

= θ2 log

(

1−
A(x;φφφ )

β 1−A(x;φφφ)

)

,

after some algebraic simplifications, we find that θ1 = θ2. Similarly, the derivation of IP using the parameter β can be
reported as follows: Assume β1 has the CDF K (x;θ ,β1,φφφ) and β2 has the CDF K (x;θ ,β2,φφφ ). Based on the IP concept,
let

K (x;θ ,β1,φφφ ) = K (x;θ ,β2,φφφ) , (7)

then β
1−A(x;φφφ )
1 = β

1−A(x;φφφ)
2 , after some simplifications, we get elog(β1) = elog(β2) which is lead to β1 = β2.
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2.2 Moments

In this passage, rth moment is derived. Depending on these moments, different statistical concepts such as mean,
variance, skewness, kurtosis, and index of dispersion can be reported. These measures can be used as a statistical tool for
discussing and evaluating the data under study. Determining the shape of the data requires at least three metrics,
including skewness ”positively skewed, negatively skewed, symmetric”, kurtosis ”leptokurtic, platykurtic, mesokurtic”,
and scattering/dispersion index ”over-dispersed, under-dispersed, equi-dispersed” coefficients. Based on the previous
reasons, the authors discussed the rth moment of the NBP-L class. Let X follows the NBP-L family with parameters
(θ ,β ,φφφ ), then the rth moment of X is derived as

µ
/
r =

∫

Ω
xr θa(x;φφφ ) [1+(logβ )A(x;φφφ )]

β 1−A(x;φφφ)

(

1−
A(x;φφφ )

β 1−A(x;φφφ)

)θ−1

dx,

after using the binomial expansion, we have

µ
/
r =

∞

∑
i=0

(−1)i

(

θ − 1

i

)

∫

Ω
xn V ∗(x;θ ,β ,φφφ ) [A(x;φφφ )]i

[

β 1−A(x;φφφ)
]i+1

dx

=
∞

∑
i, j=0

ϒ
(i, j)
(θ ,β )

∫

Ω
xnV ∗(x;θ ,β ,φφφ ) [A(x;φφφ )]i [1−A(x;φφφ )] j

dx

=
∞

∑
i, j,k=0

ϒ
(i, j,u)
(θ ,β )

∫

Ω
xn V ∗(x;θ ,β ,φφφ )

θ
[A(x;φφφ )]i+u

dx

=
∞

∑
i, j,k=0

ϒ
(i, j,u)
(θ ,β )

(
∫

Ω xna(x;φφφ ) [A(x;φφφ )]i+u
dx

+(logβ )
∫

Ω xna(x;φφφ ) [A(x;φφφ )]i+u+1
dx

)

=
∞

∑
i, j,k=0

ϒ
(i, j,u)
(θ ,β )

(

1
(i+u+1)

∫

Ω xnGi+u+1 (x;φφφ )dx

+ logβ
(i+u+2)

∫

Ω xnGi+u+2 (x;φφφ )dx

)

, (8)

where
V ∗(x;θ ,β ,φφφ ) = θa(x;φφφ ) [1+(logβ )A(x;φφφ )] ,

ϒ
(i, j)
(θ ,β )

=
(−1)i+ j (i+ 1) j (logβ ) j

j!

(

θ − 1

i

)

,

ϒ
(i, j,u)
(θ ,β )

=
(−1)i+ j+u (i+ 1) j (logβ ) j θ

j!

(

θ − 1

i

)(

j

u

)

and
gi+u+s (x;φφφ ) = (i+ u+ s)a(x;φφφ ) [A(x;φφφ )](i+u+s)−1

; s = 1,2,

is the PDF of the exponentiated random variable with exponentiated parameter (i+ u+ s). To obtain the mean, variance,
skewness, kurtosis, and index of dispersion, the statistical relationships known in the literature can be used “no need to
mention these laws again”.

2.3 Lifecycle predictions

In this passage, some reliability concepts are derived including mean time between failure (MBF), mean time to failure
(MTF), and availability (AVB). For any component/system/element, MTF, MBF, and AVB must be calculated and
discussed in detail. This is due to the maintenance process for this component/system/item. Based on the first moment

around zero, say µ
/
1 , some of these measures can be derived. If X follows the NBP-L family with parameters θ1(θ2) and

β1(β2) then the MBF and MTF can be formulated as

MBF =
−x

ln(1−K (x;θ1,β1,φ1))
; x > 0 (9)

and
MTF = µ

/
1 |(θ2,β2,φ2), (10)
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respectively. Further, the probability that the component/system/item is successful at time x can be expressed as

AVB =−µ
/
1 |(θ2,β2,φ2)

ln(1−K (x;θ1,β1,φ1))

x
; x > 0. (11)

2.4 Order statistics (OS)

Consider X1, ...,Xn be a random sample from the NBP-L family, and X1:n, ...,Xn:n denotes the corresponding OS. Then, the
CDF of the ith OS can be expressed as follows

Ki:n (x;θ ,β ,φφφ ) =
n

∑
u=i

(

n

u

)

[K (x;θ ,β ,φφφ )]u [1−K (x;θ ,β ,φφφ )]n−u

=
n

∑
u=i

u

∑
j=0

(

n

u

)(

u

j

)

[1−K (x;θ ,β ,φφφ )]n−u+ j

=
n

∑
u=i

u

∑
j=0

(

n

u

)(

u

j

)(

1−
A(x;φφφ )

β 1−A(x;φφφ)

)θ(n−u+ j)

.

By taking the differentiation Ki:n (x;θ ,β ,φφφ ), we get the PDF of the ith OS ki:n (x;θ ,β ,φφφ ). Based on ki:n (x;θ ,β ,φφφ ) , we
can get the moments of Xi:n for the NBP-L family.

3 A Novel Beta Power-Weibull (Nbp-W) Distribution

Using A(x;φφφ ) = 1− e−ηxλ
in Eq. (4), we obtain a new modified version of the model defined in Eq. (1) . The new

model is called a novel beta power-Weibull (NBP-W) distribution. Let X follows the proposed NBP-W model with shape
parameters (θ ,λ ) and scale parameters (η ,β ), its CDF is given by

K (x;θ ,β ,φφφ ) = 1−

(

1−
1− e−ηxλ

β e−ηxλ

)θ

, x ≥ 0. (12)

Based on Eq. (12), a random sample cab be generated using the formula

Q(u) = 1+
1− e−ηxλ

β e−ηxλ
+(1− uq)

1
θ , (13)

where q represents the qth quantile of u and u ∈ (0,1). For x > 0, the PDF of the NBP-W distribution is given by

k (x;θ ,β ,φφφ ) = ∆(x;θ ,β ,η ,λ )

(

1−
1− e−ηxλ

β e−ηxλ

)θ−1

, (14)

where

∆(x;θ ,β ,η ,λ ) =
θηλ xλ−1e−ηxλ

[

1+(logβ )
(

1− e−ηxλ
)]

β e−ηxλ
.

Some plots of k (x;θ ,β ,φφφ ) are obtained in Figure 1. These plots are sketched for various values of the model parameters
as follows: (A) θ = 1.5,λ = 0.6,η = 1,β = 1.5 (Red-line), (B) θ = 1.2,λ = 1.2,η = 1,β = 0.5 (Blue-line), (C) θ =
1.2,λ = 3.2,η = 1,β = 2 (Green-line), and (D) θ = 0.4,λ = 4.2,η = 1,β = 2.5 (Black-line). From Figure 1, we can
observe that the PDF shape of the NBP-W can used as a probability tool to analyze asymmetric and symmetric data. For
x > 0, the HF h(x;θ ,β ,φφφ ) of the NBP-W distribution is given by

h(x;θ ,β ,φφφ ) = ∆(x;θ ,β ,η ,λ )

(

1−
1− e−ηxλ

β e−ηxλ

)−1

.
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Fig. 1: Some plots of k (x;θ ,β ,φφφ ).
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Fig. 2: Some plots of h(x;θ ,β ,φφφ).
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Some plots of h(x;θ ,β ,φφφ ) are sketched in Figure 2. These plots are sketched as follows: (A) θ = 1,λ = 0.3,η = 1,β = 1
(Red-line), (B) θ = 1,λ = 1.4,η = 1,β = 1 (Green-line), (C) θ = 1,λ = 1,η = 1,β = 1 (Blue-line), (D) θ = 0.8,λ =
0.8,η = 0.5,β = 0.3 (Black-line), and (E) θ = 0.5,λ = 0.3,η = 0.5,β = 0.08 (Pink-line). From Figure 2, we can observe
that the HF shape of the NBP-W can be either be decreasing, increasing, constant, bathtub, or unimodal.

The following models can be derived as special distributions from the NBP-W distribution:

1.NBP-W(1,1,λ ,η) follows the Weibull model with parameters λ and η .
2.NBP-W(1,1,2,η) is the Rayleigh model with parameter η > 0.
3.NBP-W(1,1,1,η) refers to the exponential model with parameter η > 0.

4 Maximum likelihood (MLH) technique

Consider a sample X1,X2, ...,Xm of size m taken from the NBP-L family with PDF k (x;θ ,β ,φφφ ). Corresponding to
k (x;θ ,β ,φφφ ), the likelihood function (LHF) can be expressed as

L(θ ,β ,φφφ |x1,x2, ...,xm) =
m

∏
r=1

k (xr;θ ,β ,φφφ ) . (15)

Using the PDF k (x;θ ,β ,φφφ ) in Eq. (15), we get

L(θ ,β ,φφφ |x1,x2, ...,xm) =
m

∏
r=1

V (xr;θ ,β ,φφφ )

(

1−
A(xr;φφφ )

β 1−A(xr;φφφ)

)θ−1

. (16)

The log LHF (LLHF) can be formulated as

ℓ(θ ,β ,φφφ ) = m logθ +
m

∑
r=1

loga(xr;φφφ)+
m

∑
r=1

log [1+(logβ )A(xr;φφφ )]

−
m

∑
r=1

[1−A(xr;φφφ )] logβ +(θ − 1)
m

∑
r=1

log

(

1−
A(xr;φφφ )

β 1−A(xr ;φφφ)

)

.

Thus, the partial derivatives of the LLHF are given by

∂

∂θ
ℓ(θ ,β ,φφφ) =

m

θ
+

m

∑
r=1

log

(

1−
A(xr;φφφ )

β 1−A(xr ;φφφ)

)

,

∂

∂β
ℓ(θ ,β ,φφφ ) =

1

β

m

∑
r=1

A(xr;φφφ)

[1+(logβ )A(xr;φφφ )]
−

1

β

m

∑
r=1

[1−A(xr;φφφ)]

+ (θ − 1)
m

∑
r=1

(A(xr;φφφ)− 1)β A(xr ;φφφ)−2A(xr;φφφ )
(

1− A(xr ;φφφ)

β 1−A(xr ;φφφ )

)

and

∂

∂φφφ
ℓ(θ ,β ,φφφ ) =

m

∑
r=1

∂
∂φφφ a(xr;φφφ )

a(xr;φφφ )
+

m

∑
r=1

(logβ ) ∂
∂φφφ A(xr;φφφ )

[1+(logβ )A(xr;φφφ )]

+ (logβ )
m

∑
r=1

∂

∂φφφ
A(xr;φφφ )− (θ − 1)

m

∑
r=1

β 1−A(xr ;φφφ)Ξ(xr;β ,φφφ )
(

1− A(xr ;φφφ)

β 1−A(xr ;φφφ )

) ,

where

Ξ(xr;β ,φφφ ) =

[(

∂

∂φφφ
A(xr;φφφ )

)

−A(xr;φφφ) (logβ )

]

.

Solving ∂
∂θ ℓ(θ ,β ,φφφ ) = 0, ∂

∂β ℓ(θ ,β ,φφφ ) = 0, and ∂
∂φφφ ℓ(θ ,β ,φφφ ) = 0, provide the MLEs

(

θ̂ , β̂ ,φ̂φφ
)

of (θ ,β ,φφφ ).
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Table 1: Simulation results based on set I.

n parameters MLEs MSEs Biass

θ 3.951200 10.454560 2.751200

25 λ 0.498070 4.411e-03 -1.929e-03

η 0.576563 0.2527386 -0.423436

β 3.868400 12.170440 2.968400

θ 3.259600 7.826480 2.059600

50 λ 0.491456 1.522e-03 -8.543e-03

η 0.678954 0.192016 -0.321045

β 3.122200 9.111020 2.222200

θ 2.834000 6.209200 1.634000

75 λ 0.490513 9.957e-04 -9.486e-03

η 0.745762 0.151108 -0.254237

β 2.663000 7.228300 1.763000

θ 2.256400 4.014320 1.056400

100 λ 0.491252 6.338e-04 -8.747e-03

η 0.834881 0.098496 -0.165118

β 2.039800 4.673180 1.139800

θ 1.511600 1.184080 0.311600

200 λ 0.497286 1.449e-04 -2.713e-03

η 0.950945 0.029404 -0.049054

β 1.236200 1.378420 0.336200

θ 1.260800 0.231040 0.060800

300 λ 0.499466 2.134e-05 -5.331e-04

η 0.990607 0.005518 -0.009392

β 0.965600 0.268960 0.065600

θ 1.222800 0.086640 0.022800

400 λ 0.499858 4.982e-06 -1.410e-04

η 0.996300 0.002280 -0.003699

β 0.924600 0.100860 0.024600

θ 1.207600 0.028880 0.007600

500 λ 0.499951 1.199e-06 -4.897e-05

η 0.998751 0.000779 -0.001248

β 0.908200 0.033620 0.008200

5 Simulation: Performance Of The Estimators

In this subsection, we test the performances of θ̂ , λ̂ , η̂ , and β̂ of the NBP-W model by organizing a brief simulation study.
To conduct this study, we use the inverse CDF technique to obtain the RNs (random numbers) from the NBP-W model.
The simulation study was carried out for three different combination sets of the model parameters as follows: schema I:
θ = 1.2,λ = 0.5,η = 1,β = 0.9, schema II: θ = 1.4,λ = 0.5,η = 1,β = 1.2, and schema III: θ = 0.8,λ = 0.5,η =
1.2,β = 1.5. For all the three sets of parameters (I-III), a random sample of sizes n = 25,50,75, ...,500 was generated
using Eq. (13). By performing the simulation study, the values of the MLEs of θ ,λ ,η , and β , are obtained for each set
of I, II, and III. Two statistical approaches, including bias and mean squared errors (MSEs) are considered to discuss the

performances of θ̂ , λ̂ , η̂ , and β̂ where

MSE (κ̂̂κ̂κ) =
1

500

500

∑
r=1

(κ̂̂κ̂κ r −κκκ)2

and

Bias(κ̂̂κ̂κ) =
1

500

500

∑
r=1

(κ̂̂κ̂κr −κκκ) ,

where κκκ = (θ ,λ ,η ,β ) . The results of this section can be listed in Tables 1-3 and visually displayed in Figures 3-5.

According to these results, the MLH can be used effectively to estimate the NBP-W parameters because when the
value of n increases, the magnitude of the bias and MSEs decrease toward zero.
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Fig. 3: Visually display of the results presented in Table 1.
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Fig. 4: Visually display of the results presented in Table 2.

6 Analyzing The Football Data

This section lists a practical elucidation of the NBP-W model by discussing and analyzing the time-to-event data. The
data is from seventy-seven various football matches played between 1964-2018. The data are: 2.1, 2.2, 2.56, 2.8, 2.8, 3,
3, 3.17, 3.55, 3.57, 3.6, 3.69, 3.9, 4, 4, 4, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7.22, 7.27, 7.3, 7.42, 7.66, 7.69, 7.7, 7.8, 8,
8, 8, 8, 8, 8, 8, 8.1, 8.1, 8.3, 8.7, 9, 9, 9, 9, 9.55, 9.6, 9.9, 10, 10, 10, 10, 10.12, 10.69, 10.8, 11, 11, 11, 12, 12, 12, 12, 12,
12, 12, 13, 13, 14, 14. Figure 6 shows some nonparametric plots for this data. Some observations of the data set represent
the time waiting of the fastest goal ever scored in the history of football. For example, in 2017, Gavin Stokes scored the
quickest goal in the history of football. He scored this goal in a match between Mary hill vs Clyde bank in 2.1 seconds.
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Table 2: Simulation results based on set II.

n parameters MLEs MSEs Biass

θ 4.042400 9.512640 2.642400

25 λ 0.515444 5.107e-03 1.544e-02

η 0.567914 0.259840 -0.432085

β 3.989200 10.598960 2.789200

θ 3.365600 7.076160 1.965600

50 λ 0.503581 1.803e-03 3.581e-03

η 0.671478 0.199025 -0.328521

β 3.274800 7.884240 2.074800

θ 2.897600 5.391360 1.497600

75 λ 0.501250 96.238e-04 1.250e-03

η 0.752346 0.148293 -0.247653

β 2.780800 6.007040 1.580800

θ 2.559200 4.173120 1.159200

100 λ 0.501561 5.695e-04 1.561e-03

η 0.806398 0.116935 -0.193601

β 2.423600 4.649680 1.223600

θ 1.724000 1.166400 0.324000

200 λ 0.499841 7.232e-05 -1.584e-04

η 0.944875 0.033822 -0.055124

β 1.542000 1.299600 0.342000

θ 1.472000 0.259200 0.0720

300 λ 0.499998 5.606e-06 -1.969e-06

η 0.987911 0.007310 -0.012088

β 1.276000 0.288800 0.076000

θ 1.450400 0.181440 0.050400

400 λ 0.500053 3.188e-06 5.337e-05

η 0.991671 0.004960 -0.008328

β 1.253200 0.202160 0.053200

θ 1.407200 0.025920 0.007200

500 λ 0.500024 2.931e-07 2.421e-05

η 0.998748 0.000783 -0.001251

β 1.207600 0.028880 0.007600

In 2003, Frederico Chaves (a Brazilian footballer) scored the fastest goal in 3.17 seconds in the match between Amrica
Minerio vs Vila Nova. It was the fastest goal scored in the history of Brazilian football. In 1979, Colin Cowperthwaite
(an English footballer) scored a goal in 3.55 seconds in a match between Barrow v Kettering Town. At that time, it
was believed to be the fastest goal in AF (association football). In 1979, Carlos DantAn Seppaquercia (an Argentinian
footballer) scored a goal in 5 seconds in a match between Gimnasia y Esgrima LP vs HuracAn. It is considered the fastest
goal at the APD (Argentine Primera DivisiAn). In 2017, Ghazi Ayadi (a Tunisian footballer) scored a goal in a match
between Club Africain vs CS Sfaxien. He scored this goal in 6 seconds, which is the fastest goal in the TSL (Tunisian
Super Ligue). In 2012, Ji Xiang (a Chinese footballer) scored a goal in 7 seconds in a match between Jiangsu Sainty v
Guangzhou Evergrande. It was the fastest goal in CSL (Chinese Super League). In 2018, AntAnio Xavier (a Portuguese
footballer) scored a goal in 14 seconds in a match between Tondela vs Portimonense. It was the fastest goal in the history
of PL (Primeira Liga).

Using the data related to the waiting time till the first goal in different football games, we compare the performance
of the NBP-Weibull distribution with the Weibull model with parameters λ > 0 and η > 0, exponentiated Weibull (E-
Weibull) distribution with parameters a > 0,λ > 0 and η > 0, and Kumaraswamy Weibull (K-Weibull) distribution with
parameters a > 0,b > 0,λ > 0, and η > 0. The SFs (survival functions) of the competing distributions are

–The Weibull distribution

S (x;λ ,η) = e−ηxλ
, x ≥ 0.

–The E-Weibull distribution

S (x;a,λ ,η) = 1−
(

1− e−ηxλ
)a

, x ≥ 0.
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Table 3: Simulation results based on set III.

n parameters MLEs MSEs Biass

θ 4.084400 13.794480 3.284400

25 λ 0.536848 9.089e-03 0.036848

η 0.463453 0.696151 -0.736546

β 4.237000 9.579500 2.737000

θ 3.647600 11.959920 2.847600

50 λ 0.525351 3.150e-03 0.025351

η 0.558370 0.6083025 -0.641629

β 3.873000 8.305500 2.373000

θ 3.168800 9.948960 2.368800

75 λ 0.515343 1.739e-03 0.015343

η 0.667927 0.50253187 -0.532072

β 3.474000 6.909000 1.974000

θ 2.505200 7.161840 1.705200

100 λ 0.509171 9.871e-04 0.009171

η .8153475 0.364714 -0.384652

β 2.921000 4.973500 1.421000

θ 1.446800 2.716560 0.646800

200 λ 0.501845 1.185e-04 0.001845

η 1.054672 0.137187 -0.145327

β 2.039000 1.886500 0.539000

θ 1.119200 1.340640 0.319200

300 λ 0.501050 7.319e-05 0.001053

η 1.128365 0.067545 -0.0716347

β 1.766000 0.931000 0.266000

θ 1.035200 0.987840 0.235200

400 λ 0.500853 3.060e-05 0.000853

η 1.146966 0.050235 -0.053033

β 1.696000 0.686000 0.196000

θ 0.875600 0.317520 0.075600

500 λ 0.500388 1.328e-05 0.000388

η 1.182921 0.016207 -0.017078

β 1.563000 0.220500 0.063000

–The K-Weibull distribution

S (x;a,b,λ ,η) =
(

1−
[

1− e−ηxλ
]a)b

, x ≥ 0.

Next, to see which model provides the close fit to data, three analytical quantities ”Anderson-Darling (AD), Cramer-
von Mises (CM), Kolmogorov-Smirnov (KS)” with its p-value are discussed. The word “close fit” means that a model
whose values for the analytical quantities are smaller. The values of these quantities can be derived as

AD =−m−
1

m

m

∑
r=1

(2r− 1)Φ(r,m),

CM =
1

12m
+

m

∑
r=1

[

2r− 1

2m
−K (xr)

]2

,

KS = supx [Kr (x)−K (x)] ,

where
Φ(r,m) = [logK (xr)+ log{1−K (xm−r+1)}] .

We use the R software with the “method= SANN” algorithm for the analysis of the data. For the time-to-event data, the
MLEs of the NBP-Weibull and other models are presented in Table 4, and values of the analytical quantities are reported
in Table 5.

Based on the results reported in Table 5, we can observe that the NBP-Weibull distribution provides a close fit to the
data. To support the close fit capability of the NBP-Weibull distribution, a visual display based on the numerical results
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Fig. 5: Visually display of the results presented in Table 3.
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Table 4: The MLEs of the models.

Models θ η λ β a b

NBP-

Weibull

2.1869 0.0050 2.3365 2.5972 - -

Weibull - 0.0023 2.8122 - - -

E-Weibull - 0.0064 2.4055 - 1.1416 -

K-Weibull - 0.0075 1.9164 - 1.6756 4.1447
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Table 5: The goodness of fit measures of the models.

Models CM AD KS p-value

NBP-Weibull 0.0850 0.5972 0.0953 0.4773

Weibull 0.1038 0.6947 0.1042 0.3653

E-Weibull 0.1227 0.8021 0.1331 0.1259

K-Weibull 0.1307 0.8496 0.1173 0.2333
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Fig. 7: The estimated CDF, KM, and PP plots of the NBP-Weibull distribution.

is provided in Figure 6. For this purpose, we consider the fitted CDF, SF, and PP (probability-probability) plots of the
NBP-Weibull distribution. Figure 7 shows that the NBP-Weibull follows the empirical CDF and (KM) Kaplan-Meier SF
very closely.

7 Concluding Remarks

Statistical methodologies are very crucial for modeling and analyzing time-to-event data. With the help of statistical
methods, we can predict the performance of a team and its winning chances. This paper introduced a new approach to
generate new statistical models, namely, a NBP-L family of distributions. Some mathematical and statistical properties
were derived and discussed. After listing the general generator, a special member of the NBP-L family called, a NBP-
Weibull distribution was reported. It was found that the NBP-Weibull model can be utilized to discuss asymmetric data
under bi-modal shape. Moreover, the NBP-Weibull distribution can be applied to model different shapes/kinds of failure
rates including increasing, decreasing, unimodal, bathtub, and constant. Thus, the generated model is flexible enough to
read different types of data. The MLH approach was used to estimate the parameters of the NBP-Weibull model. Finally,
the proposed NBP-Weibull distribution was implemented to model real-time data, and it was observed that the NBP-
Weibull was best model for analyzing the waiting time data. In the future, the bivariate extension of this family will be
discussed. Moreover, the discrete analogue will be derived with its features.
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