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Abstract: This study aims to predict failure times for some units in some lifetime experiments. In some practical situations, the

experimenter may not be able to register the failure times of all units during the experiment. Recently, this situation can be described

by a new type of censored data called multiply-hybrid censored data. In this paper, the linear failure rate distribution is well-fitted to

some real-life data and hence some statistical inference approaches are applied to estimate the distribution parameters. A two-sample

prediction approach applied to extrapolate a new sample simulates the observed data for predicting the failure times for the unobserved

units.

Keywords: Lifetime experiments, multiply hybrid censored scheme, linear failure rate distribution, statistical inference, two sample

prediction

1 Introduction

Observations on all the sample components are typically not accessible in statistical inference because they are lost, not
recorded, or because of cost and time constraints. Statistical inference is a method that uses data from a randomly collected
sample to estimate the population parameters. Then, the information is referred to as a censored sample. According to
the method used to end the experiment, censoring schemes are divided into two categories: Type-I censoring schemes
and Type-II censoring schemes. If the experiment is ended after a predetermined amount of time, such as T , the test
will be guaranteed to last but the efficiency will be ignored. On the other hand, the experiment is stopped after testing a
predetermined number of components, let’s say r, if the efficiency level is more important than the experiment’s length.
This system is referred as the Type-II censoring scheme, in which a particular efficiency is maintained and the test’s
duration is determined at random. Hybrid censoring, which combines these two censoring methods, is usually applied
because it provides a more adaptable system and is more manageable. Throughout the hybrid censoring methods, a
predetermined quantity of the components being tested, r, and a predetermined time for the experiment’s conclusion, T ,
are both given. Assuming we are testing n items, let Xi,n be the ith ordered failed component. If the test ends at a time
T1 =min{Xr,n,T}, the scheme is referred to as a Type-I hybrid censored scheme, and if it ends at a time T2 =max{Xr,n,T},
the scheme is referred to as Type-II hybrid censored scheme.Numerous academic works have investigated the estimate
of unknown parameters for various distribution functions using the hybrid Type-I as well as the hybrid Type-II censored
schemes, respectively, see [3,5,8,12,15,21].

It was necessary to establish a new scheme in order to improve the effectiveness of these schemes and take these losses
into account because of the number of failures, let’s say Ri, that could happen between any two consecutive observations
without knowing the precise failure times for all of these units. The multiple Type-II hybrid censoring system is the name
of the novel technique, which was initially presented by Lee and Lee [24]. In their discussion of the multiply Type-II
hybrid censoring method, Jeon and Kang covered the estimation of parameters for two distinct distributions, see [17,18].

Due to its memory-less and constant failure rate characteristics, the exponential distribution—a specific instance of
the Weibull, Gamma, Gompertz, exponential-geometric, and linear failure rate distributions—is regarded as one of the
primary life distributions. In analyzing the characteristics of any lifetime phenomenon, it is crucial. Recent decades have
seen the introduction of some modifications to exponential distributions; see [7,28,31].
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The simplest form of the linear failure rate (LFR) distribution, which is a generalization of the exponential distribution,
is probably where it first appears in the reliability analysis literature. This distribution, which is a particular example of
the quadratic failure rate model, contains two parameters, α , and β , and it is a member of the rising failure rate class. In
contrast to the gamma as well as Weibull distributions, the LFR model fails with a positive failure rate at t = 0 whereas the
gamma and Weibull distribution fail with a failure rate of zero. Due to its frequent application to data on human survival,
the LFR distribution became well-known, and many researchers have looked into its characteristics, see [9]. In this work,
we found that the LFR distribution fitted well with real-life survival data.

The random variable X has an LFR distribution with probability density function (PDF) and cumulative distribution
function (CDF) defined as

f (x) = (α +β x)e
−
(

αx+ β
2 x2
)
, x > 0, α,β > 0. (1)

and

F(x) = 1− e
−
(

αx+
β
2 x2
)
, x > 0,α,β > 0. (2)

This research will provide the classical and Bayesian estimation methods for the unknown parameters of the multiple
Type-II hybrid censoring LFR distribution. Both the non-informative priors and the informative priors will be taken into
account for the Bayesian methods. Additionally, a simulation study is conducted to evaluate how well the previous
distributions were chosen and how this decision affected the accuracy of the outcomes. Additionally, a two-sample
prediction study is used for the two models for clinical and industrial data that are proposed. For the parameters under
discussion, Section 2 presents maximum likelihood estimates (MLEs) and estimated confidence intervals (ACIs). The
MCMC method and Bayesian estimates are covered in Section 3. Good estimators can be applied in the Bayesian
prediction study that is provided in Section 4. Section 5 explores two actual data sets as examples. The simulation
research to assess the efficacy of the derived estimators is presented in Section 6. Finally, there are conclusions at the end
of this paper.

2 Maximum-likelihood estimation

The log-likelihood functions are thought to be the foundation for determining the parameters’ estimators given the data.
Maximum likelihood estimators have numerous advantages, including the ability to satisfy invariant properties. They are
also asymptotically unbiased, asymptotically normally distributed, and have asymptotically minimum variance; for more
information on likelihood theory, see [4,31]. As illustrated in Figure 1, one can observe one of two types of censored data
under the multiply Type-II hybrid censoring scheme:

Fig. 1: Multiply Type-II hybrid censoring scheme.

The likelihood function is

Case I: L ∝
d

∏
i=1

f (xai:n)
d−1

∏
i=1

[
F(xai+1:n)−F(xai:n)

]Ri+1 [F(xa1:n)]
R1
[
1−F(xad::n

)
]n−d

,

Case II: L ∝
r

∏
i=1

f (xai :n)
r−1

∏
i=1

[
F(xai+1:n)−F(xai:n)

]Ri+1 [F(xa1:n)]
R1 [1−F(xar::n)]

n−r ,
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Joining cases I and II, we can rewrite the likelihood function as follows:

L ∝
m

∏
i=1

f (xai:n)
m−1

∏
i=1

[
F(xai+1:n)−F(xai:n)

]Ri+1 [F(xa1:n)]
R1
[
1−F(xam:n

)
]n−m

, (3)

where m is the number of failure items until the termination point occurred, Ri = ai − ai−1 − 1, a0 = 0.

The log-likelihood function is

lnL ∝
m

∑
i=1

ln f (xai :n)+
m−1

∑
i=1

Ri+1 ln
[
F(xai+1:n)−F(xai:n)

]
+R1 ln [F(xa1:n)]+ (n−m)ln

[
1−F(xam:n

)
]

(4)

Substituting by the PDF in (1) and the CDF in (2) in the log-likelihood function (4), we will get:

lnL ∝
m

∑
i=1

[
ln(α +β xai:n)−

(
αxai:n +

β

2
x2

ai:n

)]
+

m−1

∑
i=1

Ri+1 ln

[
e
−
(

αxai:n
+

β
2 x2

ai:n

)
− e

−
(

αxai+1:n+
β
2 x2

ai+1:n

)]

+ R1 ln

[
1− e

−
(

αxa1:n+
β
2 x2

a1:n

)]
+(m− n)

(
αxam:n

+
β

2
x2

am:n

)
, (5)

and thus we have the likelihood equations for α and β respectively, as

(6)

m

∑
i =1

1 − xai :n[
(α + β xai:n)−

(
αxai:n +

β
2

x2
ai:n

)] +
m−1

∑
i =1

Ri+1

[
xai+1:ne

−
(

αxai+1:n+
β
2 x2

ai+1:n

)
− xai:ne

−
(

αxai:n
+ β

2 x2
ai:n

)]

[
e
−
(

αxai:n
+

β
2 x2

ai:n

)
− e

−
(

αxai+1:n+
β
2 x2

ai+1:n

)]

+
R1xa1 :n e

−
(

αxa1:n+
β
2 x2

a1:n

)

[
1 − e

−
(

αxa1:n+
β
2 x2

a1:n

)] + (m − n)xam :n
= 0,

and

(7)

m

∑
i =1

xai :n

(
1 − 1

2
xai:n

)
[
(α + β xai:n)−

(
αxai:n +

β
2

x2
ai:n

)] +
m−1

∑
i =1

Ri+1

[
1
2
x2

ai+1:ne
−
(

αxai+1:n+
β
2 x2

ai+1:n

)
− 1

2
x2

ai:n
e
−
(

αxai:n
+

β
2 x2

ai:n

)]

[
e
−
(

αxai:n
+ β

2 x2
ai:n

)
− e

−
(

αxai+1:n+
β
2 x2

ai+1:n

)]

+
1
2
R1 x2

a1 :ne
−
(

αxa1:n+
β
2 x2

a1:n

)

[
1 − e

−
(

αxa1:n+
β
2 x2

a1:n

)] +
1

2
(m − n)x2

am ::n
= 0

Because solving the two nonlinear equations (6) and (7) in the two unknown parameters α and β simultaneously
is too difficult, it is preferable to solve them numerically using the Newton Raphson method to obtain an approximate
solution. See [14] for more information on the steps of the Newton Raphson algorithm. Finally, the Maximum Likelihood

Estimators (MLEs) for the parameters α and β will be denoted as α̂ and β̂ .

2.1 Approximate confidence intervals

The entries of the inverse matrix of the Fisher information matrix Ii j = E{−[∂ 2ℓ(Φ)/∂φi∂φ j ]} gives the asymptotic

variances and covariances of the MLEs, α̂ and β̂ , where i, j = 1,2 and Φ = (φ1,φ2) = (α,β ). Unfortunately, obtaining
the exact closed forms of the previous expectations is difficult. As a result, the observed Fisher information matrix Îi j ={
−
[
∂ 2ℓ(Φ)/∂φi ∂φ j

]}
Φ=Φ̂

, obtained by dropping the expectation operator E , will be used to construct confidence
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intervals for the parameters. The observed Fisher information matrix entries are simple second partial derivatives of the
log-likelihood function. As a result,

Î (α,β ) =

(
− ∂ 2ℓ

∂α2 − ∂ 2ℓ
∂α∂β

− ∂ 2ℓ
∂β ∂α − ∂ 2ℓ

∂β 2

)

(α ,β )=(α̂ ,β̂)

(8)

As a result, for the MLEs, the approximate (or observed) asymptotic variance-covariance matrix [V̂ ] is obtained by
inverting the observed information matrix Î(α,β ). Alternatively, equivalent

[V̂ ] = Î−1(α,β ) =

(
V̂ar(α̂) cov(α̂, β̂ )

cov(α̂, β̂ ) V̂ar(β̂ )

)
(9)

Under certain regularity conditions, (α̂, β̂ ) is well known to be approximately distributed as multivariate normal with
mean (α,β ) and covariance matrix I−1(α,β ), see [23]. The 100(1− γ)% two-sided confidence intervals for α and β can
then be calculated as follows, where Z γ

2
is the standard normal distribution’s percentile with right-tail probability

γ
2
.

α̂ ±Z γ
2

√
V̂ar(α̂) and β̂ ±Z γ

2

√
V̂ar(β̂ ), (10)

3 Bayes estimation

The Bayesian estimates of the two unknown parameters α and β are obtained in this section using the squared error loss
function. Assume the two parameters α and β are independent and follow the jeffrey prior distributions.

π1 (α) = α−1 , α > 0,

π2 (β ) = β−1 , β > 0. (11)

Most statistical inference researchers use Bayesian estimation for unknown parameters because it reduces the posterior
expected value for loss functions, see [1,2,10,25,27]. The posterior distribution of the parameters α and β , denoted by
π∗(α,β | data), can be obtained using Bayes’ theorem and up to proportionality by combining the likelihood function (3)
with the prior (11) and will be written as

π∗(α,β | data) =
π1(α) π2(β ) L(α,β | data)

∞∫
0

∞∫
0

π1(α) π2(β ) L(α,β | data) dαdβ
. (12)

A square error loss (SEL) function, which is commonly used, is a symmetric loss function because it assigns equal
losses to over and under estimation. The square error loss function will be defined if φ̂ is the estimator for the parameter
φ .

L
(
φ , φ̂

)
=
(
φ̂ −φ

)2
, (13)

As a result, for any function in α and β , say g(α,β ), we can obtain the Bayes estimate using the SEL function as

ĝBS (α,β | data) = Eα ,β |data [g(α,β )] , (14)

where

Eα ,β |x
¯
[g(α,β )] =

∞∫
0

∞∫
0

g(α,β ) π1 (α) π2 (β ) L(α,β | data)dαdβ

∞∫
0

∞∫
0

π1 (α) π2 (β ) L(α,β | data) dαdβ
. (15)

Concerning the difficulty of solving the multiple integrals in Equation (15) analytically, the MCMC approximation
method is proposed for generating samples from the joint posterior density function in Equation (12) and then using them
to compute the Bayes estimate of α and β and construct the associated credible intervals. The joint posterior can be
written as follows from Equation (12) up to proportionality.
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π∗ (α,β | data) ∝ α−1β−1
m

∏
i=1

(α +β xai:n)e
−
(

αxai:n
+ β

2 x2
ai:n

)
×

m−1

∏
i=1

[
e
−
(

αxai:n
+ β

2 x2
ai:n

)
− e

−
(

αxai+1:n+
β
2 x2

ai+1:n

)]Ri+1

×

[
1− e

−
(

αxa1:n+
β
2 x2

a1:n

)]R1
[

e
(m−n)

(
αxam:n+

β
2 x2

am:n

)]
(16)

Up to proportionality, the full conditionals for α and β can be written as

π∗
1 (α | β ,data) ∝ α−1

m

∏
i=1

(α +β xai:n)e
−
(

αxai:n
+ β

2 x2
ai:n

)
m−1

∏
i=1

[
e
−
(

αxai:n
+ β

2 x2
ai:n

)
− e

−
(

αxai+1:n+
β
2 x2

ai+1:n

)]Ri+1

×

[
1− e

−
(

αxa1:n+
β
2 x2

a1:n

)]R1 [
e(m−n)αxam:n

]
(17)

and

π∗
2 (β | α,data) ∝ β−1

m

∏
i=1

(α +β xai:n)e
−
(

αxai:n
+ β

2 x2
ai:n

)
m−1

∏
i=1

[
e
−
(

αxai:n
+ β

2 x2
ai:n

)
− e

−
(

αxai+1:n+
β
2 x2

ai+1:n

)]Ri+1

×

[
1− e

−
(

αxa1:n+
β
2 x2

a1:n

)]R1
[

e
β(m−n)

2 x2
am:n

]
(18)

It should be noted that the conditional posteriors of α and β in Equations (17) and (18) are not in standard forms,
making Gibbs sampling difficult. As a result, the Metropolis-Hastings (M-H) sampler is used in MCMC algorithm
implementations. [26] presents a hybrid algorithm with M-H steps for updating α and β given the conditional
distributions in Equations (17) and (18).

Because the initial value selections may affect convergence, we will discard M simulated points during the burn-in

period. For sufficiently large N, the selected samples, α( j) and β ( j), j =M+1, ...,N, will then form approximate posterior
samples from which Bayesian inferences will be developed.

In reference to the SEL function in equation (15), the approximate Bayes estimates of ϕ = α,β will be written as

ϕ̂BS =
1

N −M

N

∑
j=M+1

ϕ( j), (19)

4 Two sample prediction

In this section, we will be working on deriving the interval prediction of the future order statistics from a random sample
following a LFR distribution based on multiply Type-II hybrid censoring scheme as it may be interested to get the failure
times for some observations from a future sample.

Assume that the order statistics of a future random sample of size m are Y1:m ≤ Y2:m ≤ ...≤ Ym:m. Given a probability
density function f (x) and a continuous distribution’s cumulative distribution function F(x). The marginal density function
of the sth order statistic is then given for a random sample of size m from this distribution.

gYs:m(ys|θ ) =
m!

(s− 1)!(m− s)!
[F(ys)]

s−1 [1−F(ys)]
m−s

f (ys) =
m−s

∑
q=0

(−1)q
(

m−s
q

)
m!

(s− 1)!(m− s)!
[F(ys)]

s+q−1
f (ys), (20)

where ys ≥ 0 and θ = (α,β ), see [11]. Substituting by equations (1) and (2) in (20), the marginal density function of
Ys:m becomes

gYs:m(ys | α,β ) = (α +β ys)e
−(αys+

β
2 y2

s )
m−s

∑
q=0

(−1)q
(

m−s
q

)
m!

(s− 1)!(m− s)!

[
1− e

−
(

αys+
β
2 y2

s

)]s+q−1

(21)
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Multiplying the marginal density function in equation (21) and the joint posterior in equation (16), then integrating this
product over the set {(α,β ); 0 < α < ∞, 0 < β < ∞} we can get the predictive posterior density of future observations
under Type-II multiply hybrid censoring scheme as follows:

g∗(ys | x) =

∫ ∞

0

∫ ∞

0
gYs:m(ys | x)π∗(α,β | x)dαdβ . (22)

One can note that equation (22) is difficult to be solved analytically. Therefore, we will use MCMC samples through
Gibbs algorithm to obtain an estimator for the predictive posterior g∗(ys | x). Assume that {(αi,βi), i = 1,2, ...,N} be the
MCMC samples derived from π∗(α,β | x), then we can get the consistent estimate of g∗(ys | x) as follows

g∗(ys | x
¯
) =

1

N −M

N

∑
i=M+1

(α(i)+β (i)ys)e
−(α(i)ys+

β(i)

2 y2
s )

×
m−s

∑
q=0

(−1)q
(

m−s
q

)
m!

(s− 1)!(m− s)!
[1− e−(α(i)ys+

β(i)

2 y2
s )]s+q−1. (23)

In addition to their applications in Bayesian parameter estimation, loss functions also play a vital role in Bayesian
prediction. Using a loss function, we will find a point predictor which minimizes risk among all other predictors, known
as the Bayesian point predictor. To forecast a future observation, we will use an SEL function as well as the Bayesian
point predictors of Ys,1 ≤ s ≤ N, denoted as ŶSELP under the SEL function.

ŶSELP =

∫ ∞

0
ysg

∗(ys|x
¯
)dys =

1

N −M

N

∑
i=M+1

∫ ∞

0
ys g(ys|α

(i),β (i),x
¯
)dys. (24)

A prediction interval is an interval that relies on information from a sample provided to generate leads for a future
sample out of a fixed population with a predetermined probability. Considering the density function g(ys | α,β ,x), the
distribution function is given as

G(ys | α,β ,x
¯
) =

∫ ys

0

m−s

∑
q=0

(−1)q
(

m−s
q

)
m!

(s− 1)!(m− s)!
[F(ys)]

s+q−1 f (ys) =
m−s

∑
q=0

(−1)q
(

m−s
q

)
m!

(s− 1)!(m− s)!

∫ ys

0
[F(ys)]

s+q−1 f (ys). (25)

Let G∗
Ys:m

denotes the predictive distribution estimator for ys, then a simulation consistent estimator of G∗
Ys:m

(ys | x)
could be written as follows

G∗(ys | α,β ,x
¯
) =

1

N −M

N

∑
i=M+1

G(ys|α
(i),β (i),x

¯
). (26)

Therefore, the 100(1− γ)% confidence interval for the Bayesian predictive interval can be derived after solving the
following two equations simultaneously:

G∗
Ys:m

(Lys:m |x
¯
) = 1−

γ

2
and G∗

Ys:m
(Uys:m |x

¯
) =

γ

2
, (27)

where Lys:m and Uys:m indicate the lower and upper bounds, respectively. It is evident that is not possible to compute
the two equations in (27) analytically. Then, the MCMC method is suggested for constructing the Bayesian prediction
intervals.

5 Application to real-life data

In this section, two real data sets will be discussed to explain the general methods in the previous sections. The first refer
to failure times to some industrial data and the second is an application on some clinical data.
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5.1 Example on Industrial data

First, we consider the classical real data-set in [20] on the times, in operating days, between successive failures of air
conditioning equipment in an aircraft. This data is recorded as shown in Table 1. Comparing the empirical distribution
for the failure data and the CDF for the LFR distribution as shown in Figure 2, it was found that the Kolmogorov
Smirnov (K-S) distance between them is 0.102272 with a P-value equal to 0.891983. Therefore, the LFR distribution is
fitting well to the mentioned data.

Table 1: Times between failures of air conditioning equipment in an aircraft

0.417 0.583 0.833 0.958 1.000 1.042 1.083 1.208 1.833 1.833

2.042 2.333 2.458 2.500 2.542 2.583 2.917 3.167 3.292 3.500

3.750 4.208 4.917 5.417 6.500 7.750 8.667 8.667 12.917

Fig. 2: Empirical and fitted survival functions of data-set in Table 1.

Then a multiply Type-II hybrid censored sample of effective size m = 23 was randomly selected from the 29 failure
observations in Table 1 with the multiply Type-II hybrid censored scheme
R = (0,1,0,0,1,0,0,0,1,0,0,0,2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0) as shown in Table 2.

Table 2: Multiply Type-II hybrid failures data

0.417 0.833 0.958 1.042 1.083 1.208 1.833 2.042 2.333 2.542

2.583 3.167 3.292 3.500 3.750 4.208 4.917 5.417 6.500 7.750

8.667 8.667 12.917

The MLEs for the parameters, α and β , based on Multiply Type-II hybrid censored data in addition to the Bayes
estimates relative to SEL function for the same parameters are displayed in Table 3. Also the 95% approximate confidence
intervals and credible intervals for the parameters α and β are calculated and the results are also displayed in Table 3.

Table 3: The point estimates and 95% CIs for α and β
Point estimate 95% CIs

MLE SEL MLE MCMC

α 0.215785 0.214591 [0.0317858,0.399783] [0.212914,0.216269]

β 0.0255161 0.0246476 [-0.0424651,0.0934974] [0.0244673,0.0248278]

From Table 3, we see that the values of estimates are close together which indicates the good performance of the
estimators.
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Using the MCMC method, a two-sample Bayesian prediction is then computed and the corresponding summary
statistics are presented in Table 4. It is noted that as s increases, the standard error as well as the confidence intervals
widths increase which means that predictive densities get more and more larger as the order statistics become larger.

Table 4: The values of point predictions and 95% PIs for ys.

95% PIs 95% PIs
s SEL Lower Upper Length s SEL Lower Upper Length

1 0.251806 0.00655 0.90774 0.90118 10 3.04697 1.5711 4.8969 3.3258

2 0.51109 -0.05572 1.37661 1.43233 11 3.46596 1.86211 5.45045 3.58833

3 0.778955 0.1682 1.8007 1.6325 12 3.92753 2.18426 6.06427 3.88001

4 1.01567 0.3034 2.21117 1.90777 13 4.44512 2.5447 6.76104 4.21634

5 1.34586 0.46293 2.62059 2.15766 14 5.03974 2.95444 7.57723 4.62279

6 1.64831 0.6436 3.03674 2.39314 15 5.74726 3.43147 8.57767 5.14621

7 1.96635 0.8442 3.46591 2.62171 16 6.63705 4.00814 9.89545 5.8873

8 2.30283 1.06478 3.91421 2.84943 17 7.87495 4.75343 11.876 7.12256

9 2.66143 1.3064 4.38845 3.08205 18 10.746 5.87414 15.9654 10.0913

5.2 Example on Clinical data

The second data-set to be considered here is the survival times (in years) after diagnosis of 43 patients with a certain kind
of leukemia as shown in Table 5, see [19]. The Kolmogorov Smirnov (K-S) distance between the empirical distribution
for the failure data and the CDF for the LFR distribution, as shown in Figure 3, is 0.0816726 with a P-value of 0.914159.
Therefore, the LFR distribution is a reasonable choice for this data.

Table 5: Survival times after diagnosis of 43 patients with a kind of leukemia

0.019 0.129 0.159 0.203 0.485 0.636 0.748 0.781 0.869 1.175

1.206 1.219 1.219 1.282 1.356 1.362 1.458 1.564 1.586 1.592

1.781 1.923 1.959 2.134 2.413 2.466 2.548 2.652 2.951 3.038

3.600 3.655 3.745 4.203 4.690 4.888 5.143 5.167 5.603 5.633

6.192 6.655 6.874

Fig. 3: Empirical and fitted survival functions of data-set in Table 5.

The 43 failure observations in Table 5 are then randomly selected for a multiply Type-II hybrid censored sample of
effective size m = 33 using the multiply Type-II hybrid censored scheme
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R = (0,0,3,0,2,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) as shown in Table 6.

Table 6: Multiply Type-II hybrid failures data

0.019 0.129 0.636 0.748 1.175 1.219 1.282 1.362 1.564 1.586

1.781 1.923 1.959 2.134 2.413 2.466 2.548 2.652 2.951 3.038

3.600 3.655 3.745 4.203 4.690 4.888 5.143 5.167 5.603 5.633

6.192 6.655 6.874

Table 7 shows the MLEs for the parameters α and β based on Multiply Type-II hybrid censored data, as well as the
Bayes estimates relative to the SEL function for the same parameters. The approximate confidence intervals and credible
intervals for the parameters α and β are also calculated and displayed in Table 7.

Table 7: The point estimates and 95% CIs for α and β
Point estimate 95% CIs

MLE SEL MLE MCMC

α 0.24474 0.265739 [0.0363186,0.453161] [0.248641,0.28227]

β 0.075861 0079844 [-0.0617529,0.213475] [0.0766457,0.0841982]

The values of the estimates in Table 7 are close together, indicating that the estimators performed well.

A two-sample Bayesian prediction is then computed using the MCMC method, and its summary statistics are shown
in Table 8. It is worth noting that as s increases, so do the standard error and confidence interval widths, implying that
predictive densities grow larger and larger as the order statistics increase.

Table 8: The values of point predictions and 95% PIs for ys.

95% PIs 95% PIs
s SEL Lower Upper Length s SEL Lower Upper Length

1 0.182964 0.0049 0.64442 0.639522 12 2.3435 1.37295 3.4791 2.10615

2 0.364917 -0.04168 0.95305 0.994733 13 2.58715 1.56126 3.77906 2.2178

3 0.546774 0.1234 1.22096 1.09755 14 2.84894 1.76337 3.56278 1.79941

4 0.729419 0.21969 1.47136 1.25167 15 3.13419 1.98226 4.79029 2.80803

5 0.913746 0.33041 1.71323 1.38282 16 3.45066 2.22227 3.64974 1.42747

6 1.10068 0.45237 1.9516 1.49923 17 3.8104 2.48999 7.17473 4.68474

7 1.29122 0.58385 2.18994 1.60609 18 4.23389 2.79605 7.36996 4.57391

8 1.48646 0.72403 2.43111 1.70708 19 4.76065 3.15952 6.67321 3.51369

9 1.68766 0.87265 2.67773 1.80509 20 5.48471 3.62082 7.7991 4.17828

10 1.8963 1.02988 2.9325 1.90262 21 6.75234 4.30081 5.90783 1.60702

11 2.11417 1.19631 3.19843 2.00212

6 Simulation Study

In this section, a simulation is performed to compare the estimators of the parameters on the basis of the samples generated
from the LFR distribution. According to the Mean Square Errors (MSEs), average confidence interval lengths (ACILs)
and the coverage probabilities (CPs), the performance of the competitive estimators have been compared.

Accordingly, a random sample of size n has been generated from the LFR distribution for fixed values of its parameters
α and β . To study the effect of the hybrid censoring scheme on the performance of the estimators, different combinations
of the censoring parameters (R,T ) have been considered and simulation results are then summarized in Table 9 and Table
10.
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Table 9. MSE of MLEs and Bayesian estimates for the parameter α,β with α◦ = 2,β◦ = 5.
α β

n T Ri ar MLE SEL MLE SEL

30 3 R2 = 2, R5 = 1 10
2.3855
(0.4031)

2.3855
(0.4031)

5.3006
(0.8326)

5.3007
(0.8323)

Ri = 0, i 6= 2,5 18
2.3491
(0.3897)

2.3491
(0.3898)

5.3329
(0.803)

5.3329
(0.8032)

25
2.3789
(0.4183)

2.379
(0.4183)

5.2453
(0.7485)

5.2453
(0.7484)

5 R2 = 2, R5 = 1 10
2.3743
(0.4287)

2.3743
(0.4287)

5.2584
(0.7683)

5.2583
(0.7685)

Ri = 0, i 6= 2,5 18
2.3768
(0.4211)

2.3768
(0.4211)

5.2689
(0.7412)

5.269
(0.7412)

25
2.3799
(0.3873)

2.3798
(0.3873)

5.3006
(0.8011)

5.3005
(0.8011)

40 3 R4 = 2, R9 = 1 18
2.2745
(0.2968)

2.2745
(0.2968)

5.2792
(0.7653)

5.2792
(0.7656)

Ri = 0, i 6= 2,9 30
2.2849
(0.2944)

2.2848
(0.2944)

5.2671
(0.7794)

5.2673
(0.7795)

35
2.2443
(0.2731)

2.2443
(0.2731)

5.329
(0.8159)

5.329
(0.816)

5 R4 = 2, R9 = 1 18
2.2781
(0.2949)

2.2781
(0.2949)

5.3002
(0.8198)

5.3001
(0.8198)

Ri = 0, i 6= 2,9 30
2.255

(0.2914)
2.255

(0.2915)
5.3123
(0.7931)

5.3124
(0.7931)

35
2.2821
(0.3118)

2.2821
(0.3118)

5.2793
(0.7458)

5.2793
(0.7458)

Table 10. ACL and CP of 95% CIs for the parameters α and β
α β

MLE MCMC MLE MCMC
n T Ri ar

30 3 R2 = 2, R5 = 1 10
3.397

(0.9456)
0.0015
(0.9358)

13.9187
(0.9312)

0.0061
(0.9294)

Ri = 0, i 6= 2,5 18
3.3796
(0.9433)

0.0014
(0.9329)

13.8409
(0.971)

0.0058
(0.9606)

25
3.3822
(0.9738)

0.0015
(0.9666)

13.8007
(0.9538)

0.0059
(0.9483)

5 R2 = 2, R5 = 1 10
3.3913
(0.9329)

0.0015
(0.9316)

13.8519
(0.9489)

0.006
(0.9508)

Ri = 0, i 6= 2,5 18
3.3932
(0.9377)

0.0014
(0.9713)

13.8733
(0.9568)

0.006
(0.9436)

25
3.3956
(0.9400)

0.0015
(0.9406)

13.9008
(0.9576)

0.0059
(0.9695)

40 3 R4 = 2, R9 = 1 18
2.9366
(0.9303)

0.0013
(0.9571)

11.8872
(0.9504)

0.005
(0.9483)

Ri = 0, i 6= 2,9 30
2.9514
(0.9273)

0.0013
(0.9513)

11.9389
(0.9533)

0.0051
(0.9269)

35
2.929

(0.9694)
0.0012
(0.9742)

11.8674
(0.9462)

0.005
(0.9666)

5 R4 = 2, R9 = 1 18
2.9452
(0.9688)

0.0013
(0.9746)

11.9416
(0.9648)

0.0051
(0.9324)

Ri = 0, i 6= 2,9 30
2.9269
(0.9690)

0.0013
(0.9637)

11.8574
(0.9538)

0.005
(0.9512)

35
2.9454
(0.9732)

0.0013
(0.9461)

11.9353
(0.9467)

0.0051
(0.9373)

From the reported values, we observed the following:

–As the sample size increases, the MSEs for most of the estimators decreases, for the same values of α and β .
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–For different values of n, T and ar, the MSEs of Bayes estimators and MLEs are nearly the same.
–The Bayes estimators obtained are nearly the same to the MLEs. Also it is noticed that providing prior information
gives more accurate results for the Bayesian estimates of the parameters.

–The credible intervals width is less than that of the asymptotic confidence intervals in all the cases. However, it is
noted that the confidence intervals width decreases as the sample size increases.

7 Conclusion

The Linear failure rate distribution is well-fitted to some real-life data which leads to obtaining good estimators for its
parameters. Multiply Type-II hybrid censoring scheme is a good description model for experiments that lack the exact
registration of the failure times for some units. A prediction study is applied and proven that the predictive sample
simulates the observed sample. It is recommended to apply the Multiply hybrid censoring scheme to clinical data
especially in cases of pandemics when it is difficult for researchers to register all the failure times exactly.
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