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Abstract: In this article, some general reproducing kernel Sobolev spaces was constructed. We find the general 
functions in these reproducing kernel Sobolev spaces. Many higher order boundary value problems can be investigated 
by these special functions. 
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1 Introduction 

Sobolev spaces are the basis of the theory of weak or variational forms of partial differential equations. They are very 
important spaces in the mathematical analysis. The knowledge of the reproducing kernels is very valuable in the analysis 
of many problems. In literature explicit formulas for the reproducing kernels of the Sobolev spaces is hard to obtained 
[1].  

     Reproducing kernel space is a special Sobolev space and there are many works on the solution of the nonlinear 
problems with reproducing kernel method [2]. Daniel [3] has studied the reproducing kernel spaces and applications. On 
the other hand, Niu et al. [4] have investigated the numerical solution of nonlinear singular boundary value problems and 
Chen et al. [5] have obtained the exact solution of a class of fractional integro-differential equations with the weakly 
singular kernel by the reproducing kernel method. Furthermore, Xu et al. [6] have worked the simplified reproducing 
kernel method for fractional differential equations with delay. Also, Mei et al. [7] have researched the simplified 
reproducing kernel method for impulsive delay differential equations. Whereas, Geng et al.  [8] have investigated the 
piecewise shooting reproducing kernel method for linear singularly perturbed boundary value problems. In addition, Li et 
al. [9] have studied the space--time spectral method for the Cattaneo equation with time fractional derivative. The 
reproducing kernel method for the numerical solution of the Brinkman–Forchheimer momentum equation have been 
researched by Abbasbandy et al. [10] and Li et al. [11] have investigated the novel method for nonlinear singular fourth 
order four-point boundary value problems. Li et al. [12] have worked the continuous method for nonlocal functional 
differential equations with delayed or advanced arguments. Mohammadi et al. [13] have given the reproducing kernel 
method for solving a class of nonlinear system of partial differential equations. Finally, Mohammadi et al. [14] have 
studied the Galerkin-reproducing kernel method. For more details see [15-23]. 

2 Preliminaries 

Definition 2.1. Let 𝑚 ∈ ℕ ∪ {0}.	We set: 
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〈𝑢, 𝑣〉!!(#) = 2 3 𝐷%𝑢(𝑥)𝐷^𝛼	𝑣(𝑥)::::::::::::
|%|'(

𝑑𝑥.
Ω

 

The pair (𝐻((𝛺), 〈. , . 〉) is a Hilbert space. 
Definition 2.2. We define the reproducing kernel Sobolev space 𝑆*([𝑎, 𝑏]	as [2]:   
 

𝑆*([𝑎, 𝑏] = 	 C
𝑓|𝑓((+,)is	absolutely	continuous	function,

𝑓(() ∈ 𝐿*[𝑎, 𝑏], 𝑥 ∈ [𝑎, 𝑏]
T 

 
We define the inner product and norm for this space as:  

〈𝑓, 𝑔〉-"! = 2V3𝑓(.)(𝑥)𝑔(.)(𝑥)
(

./0

W𝑑𝑥
1

2

. 

And 

‖𝑓‖-"! = Y〈𝑓, 𝑓〉-"! . 

Definition 2.3. Let 𝑚 ∈ ℕ	and 𝐼 = [𝑎, 𝑏] an interval in ℝ. The reproducing kernel of the space 𝑆*((𝐼)	is a function 𝑅3: 𝐼 →
ℝ	such that:	
	〈𝑓, 𝑅3〉-"! = 𝑓(𝑦), for	almost	a. e. 𝑦 ∈ 𝐼. 

3 Reproducing Kernel Functions in the Special Cases 

In this section we introduce the reproducing kernel functions for 𝑚 = 1,2, which have been discussed in [19]. 

 For  𝑚 = 1 the reproducing kernel function: 

𝑅3(𝑥) =

⎩
⎨

⎧ 1
2
(𝑒,+3 + 𝑒+,43)(𝑒,45 + 𝑒,+5)

𝑒* − 1 , 𝑥 ≤ 𝑦

1
2
(𝑒,43 + 𝑒,+3)(𝑒+,45 + 𝑒,+5)

𝑒* − 1 , 𝑥 > 𝑦.
 

For  𝑚 = 2  we have the reproducing kernel function when   𝑥 ≤ 𝑦: 

𝑅3(𝑥) =
1
6

1
𝑒√7 − 1

𝑒
√$
" mcos n

𝑦
2o 𝑒

√$
" (5+34,)𝑐𝑜𝑠 n

𝑥
2o √3 + 2 𝑐𝑜𝑠 n

𝑦
2o𝑒

+√$" (543+,)𝑐𝑜𝑠 n
𝑥
2o√3

+ 2 𝑐𝑜𝑠 n
𝑦
2o 𝑒

√$
" (543+,)𝑐𝑜𝑠 n

𝑥
2o √3 + 𝑐𝑜𝑠 n

𝑦
2o 𝑒

+√$" (5+34,)𝑐𝑜𝑠 n
𝑥
2o √3 + 𝑠𝑖𝑛 n

𝑦
2o 𝑒

√$
" (5+34,)𝑠𝑖𝑛 n

𝑥
2o√3

+ 2 𝑠𝑖𝑛 n
𝑦
2o 𝑒

+√$" (543+,)𝑠𝑖𝑛 n
𝑥
2o√3 + 2 𝑠𝑖𝑛 n

𝑦
2o 𝑒

√$
" (543+,)𝑠𝑖𝑛 n

𝑥
2o√3 + 𝑠𝑖𝑛 n

𝑦
2o 𝑒

+√$" (5+34,)𝑠𝑖𝑛 n
𝑥
2o√3

− 3 𝑐𝑜𝑠 n
𝑦
2o 𝑒

√$
" (5+34,)𝑠𝑖𝑛 n

𝑥
2o + 3 𝑐𝑜𝑠 n

𝑦
2o 𝑒

+√$" (5+34,)𝑠𝑖𝑛 n
𝑥
2o + 3 𝑠𝑖𝑛 n

𝑦
2o 𝑒

√$
" (5+34,)𝑐𝑜𝑠 n

𝑥
2o

− 3 𝑠𝑖𝑛 n
𝑦
2o 𝑒

+√$" (5+34,)𝑐𝑜𝑠 n
𝑥
2ow. 

 The reproducing kernel function for 𝑥 > 𝑦	is obtained as: 	

𝑅3(𝑥) =
1
6

1
𝑒√7 − 1

𝑒
√$
" mcos n

𝑦
2o 𝑒

√$
" (5+3+,)𝑐𝑜𝑠 n

𝑥
2o √3 + 2 𝑐𝑜𝑠 n

𝑦
2o𝑒

+√$" (543+,)𝑐𝑜𝑠 n
𝑥
2o√3

+ 2 𝑐𝑜𝑠 n
𝑦
2o 𝑒

√$
" (543+,)𝑐𝑜𝑠 n

𝑥
2o √3 + 𝑐𝑜𝑠 n

𝑦
2o 𝑒

+√$" (5+3+,)𝑐𝑜𝑠 n
𝑥
2o √3 + 𝑠𝑖𝑛 n

𝑦
2o 𝑒

√$
" (5+3+,)𝑠𝑖𝑛 n

𝑥
2o√3

+ 2 𝑠𝑖𝑛 n
𝑦
2o 𝑒

+√$" (543+,)𝑠𝑖𝑛 n
𝑥
2o√3 + 2 𝑠𝑖𝑛 n

𝑦
2o 𝑒

√$
" (543+,)𝑠𝑖𝑛 n

𝑥
2o√3 + 𝑠𝑖𝑛 n

𝑦
2o 𝑒

+√$" (5+3+,)𝑠𝑖𝑛 n
𝑥
2o√3

− 3 𝑐𝑜𝑠 n
𝑦
2o 𝑒

√$
" (5+3+,)𝑠𝑖𝑛 n

𝑥
2o + 3 𝑐𝑜𝑠 n

𝑦
2o 𝑒

+√$" (5+3+,)𝑠𝑖𝑛 n
𝑥
2o + 3 𝑠𝑖𝑛 n

𝑦
2o 𝑒

√$
" (5+3+,)𝑐𝑜𝑠 n

𝑥
2o

− 3 𝑠𝑖𝑛 n
𝑦
2o 𝑒

+√$" (5+3+,)𝑐𝑜𝑠 n
𝑥
2ow. 

4 Some Special Functions in the General Case 

We obtain the general functions of the reproducing kernel Sobolev spaces in this section. These special functions are new 
in the literature. 
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Theorem 4.1. We obtain the reproducing kernel function of the reproducing kernel Sobolev space 𝑆*8[0,1]	as: 
 	

𝐵3(𝑥) = C
𝑎3(𝑥),				𝑥 ≤ 𝑦
𝑏3(𝑥),			𝑥 > 𝑦,	

 
Where 𝑏3(𝑥) = 𝑎5(𝑦) and 𝑎5(𝑦) is given in the appendix. Proof. We have  
〈𝑢, 𝐵3〉-"%[0,,] = ∫ z𝑢(𝑥)𝐵3(𝑥) + 𝑢<(5)=

&
'(5) + 𝑢<<(5)=&&'(5) + 𝑢<<<(5)=&&&'(5) + 𝑢(8)(𝑥)𝐵3

(8)(𝑥){,
0 𝑑𝑥,   

By the definition of the inner product. We use integration by parts and obtain: 
  〈𝑢, 𝐵3〉-"%[0,,] = ∫ 𝑢(𝑥)𝐵3(𝑥)𝑑𝑥

,
0 + 𝑢(𝑥)𝐵3(𝑥)𝑑𝑥 + 𝑢(1)𝐵<3(1) − 𝑢(0)𝐵<3(0) − ∫ 𝑢(𝑥)𝐵<<3(𝑥)𝑑𝑥

,
0 + 𝑢′(1)𝐵<′3(1) −

𝑢′(0)𝐵<′3(0) − 𝑢(1)𝐵<<<3(1) + 𝑢(0)𝐵<<<3(0) + ∫ 𝑢(𝑥)𝐵3
(8)(𝑥)𝑑𝑥,

0 + 𝑢′′(1)𝐵<<<3(1) − 𝑢′′(0)𝐵<
<<
3(0) − 𝑢′(1)𝐵(8)3(1) +

𝑢′(0)𝐵(8)3(0) + 𝑢(1)𝐵(>)3(1) − 𝑢(0)𝐵(>)3(0) − ∫ 𝑢(𝑥)𝐵3
(?)(𝑥)𝑑𝑥,

0 + 𝑢′′′(1)𝐵(8)3(1) − 𝑢′′′(0)𝐵(8)3(0) −
𝑢′′(1)𝐵(>)3(1) + 𝑢′′(0)𝐵(>)3(0) + 𝑢′(1)𝐵(?)3(1) − 𝑢′(0)𝐵(?)3(0) − 𝑢(1)𝐵(@)3(1) + 𝑢(0)𝐵(@)3(0) +
∫ 𝑢(𝑥)𝐵3

(A)(𝑥)𝑑𝑥,
0 .    

If we choose the coefficients of 𝑢(.)(0), 𝑢(.)(1), 𝑖 = 0,1,2,3	to be zeros we get the following equations: 
1) −𝐵3< (0) + 𝐵3<<<(0) − 𝐵3

(>)(0) + 𝐵3
(@)(0) = 0, 

2)  −𝐵3<<(0) + 𝐵3
(8)(0) − 𝐵3

(?)(0) = 0, 
3) −𝐵3<<<(0) + 𝐵3

(>)(0) = 0, 
4) 𝐵3

(8)(0) = 0, 
5) 𝐵3< (1) − 𝐵3<<<(1) + 𝐵3

(>)(1) − 𝐵3
(@)(1) = 0, 

6)  𝐵3<<(1) − 𝐵3
(8)(1) + 𝐵3

(?)(1) = 0, 
7) 𝐵3<<<(1) − 𝐵3

(>)(1) = 0, 
8) 𝐵3

(8)(1) = 0. 
Then, we get  
〈𝑢, 𝐵3〉-"%[0,,] = ∫ 𝑢(𝑥)z𝐵3(𝑥) − 𝐵<<3(𝑥) + 𝐵(8)3(𝑥) − 𝐵(?)3(𝑥) + 𝐵3

(A)(𝑥){,
0 𝑑𝑥. 

From the reproducing property we have: 
〈𝑢, 𝐵3〉-"%[0,,] = 𝑢(𝑦). 
Therefore, we get  
〈𝑢, 𝐵3〉-"%[0,,] = ∫ 𝑢(𝑥)z𝐵3(𝑥) − 𝐵<<3(𝑥) + 𝐵(8)3(𝑥) − 𝐵(?)3(𝑥) + 𝐵3

(A)(𝑥){,
0 𝑑𝑥 = 𝑢(𝑦). 

Then, by Dirac-Delta function we obtain 
𝐵3(𝑥) − 𝐵<<3(𝑥) + 𝐵(8)3(𝑥) − 𝐵(?)3(𝑥) + 𝐵3

(A)(𝑥)									 
= 𝛿(𝑥 − 𝑦). 
When 𝑥 ≠ 𝑦, we reach to the following homogeneous differential equation  
𝐵3(𝑥) − 𝐵<<3(𝑥) + 𝐵(8)3(𝑥) − 𝐵(?)3(𝑥) + 𝐵3

(A)(𝑥) = 0, 
which has the characteristic equation: 

1 − 𝜆* + 𝜆8 − 𝜆? + 𝜆A = 0, 
whose roots are: 

𝛼 ± 𝑖𝛽,−𝛼 ± 𝑖𝛽, 𝛾 ± 𝑖𝜇,−𝛾 ± 𝑖𝜇, 
where 𝛼 = ,

8
�1 + 2√5,			𝛽 = ,

8
�√5 − 1, 𝛾 = ,

8
�10 − 2√5,			𝜇 = ,

8
�√5 + 1. 

So, we obtain the reproducing kernel function of this space as: 
 

𝐵3(𝑥) =

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧

𝐴,𝑒%5 cos(𝛽𝑥) + 𝐴*𝑒%5 𝑠𝑖𝑛(𝛽𝑥)															
+𝐴7𝑒+%5 𝑐𝑜𝑠(𝛽𝑥) + 𝐴8𝑒+%5 𝑠𝑖𝑛(𝛽𝑥)													
+𝐴>𝑒B5 𝑐𝑜𝑠(𝜇𝑥) + 𝐴?𝑒B5 𝑠𝑖𝑛(𝜇𝑥)																			
+𝐴@𝑒+B5 𝑐𝑜𝑠(𝜇𝑥) + 𝐴A𝑒+B5 𝑠𝑖𝑛(𝜇𝑥) , 𝑥 ≤ 𝑦	
𝐵,𝑒%5 𝑐𝑜𝑠(𝛽𝑥) + 𝐵*𝑒%5 𝑠𝑖𝑛(𝛽𝑥)														

+𝐵7𝑒+%5 𝑐𝑜𝑠(𝛽𝑥) + 𝐵8𝑒+%5 𝑠𝑖𝑛(𝛽𝑥)													
+𝐵>𝑒B5 𝑐𝑜𝑠(𝜇𝑥) + 𝐵?𝑒B5 𝑠𝑖𝑛(𝜇𝑥)																			
+𝐵@𝑒+B5 𝑐𝑜𝑠(𝜇𝑥) + 𝐵A𝑒+B5 𝑠𝑖𝑛(𝜇𝑥) , 𝑥 > 𝑦.

 

 
 

We have sixteen unknown coefficients and eight equations. Eight more equations can be obtained by the properties of the 
Dirac-Delta function. Therefore, the unknown coefficients can be obtained easily. This completes the proof. 
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Theorem 4.2. We obtain the reproducing kernel function of the reproducing Sobolev space 𝑆*([𝑎, 𝑏]	as: 

𝑊3(𝑥) = C
𝑢3(𝑥),			𝑥 ≤ 𝑦
𝑣3(𝑥),			𝑥 > 𝑦. 

Proof. We have  

〈𝑝,𝑊3〉-"! = 2V3𝑝(C)(𝑥)𝑊3
(C)(𝑥)

(

C/0

W𝑑𝑥
1

2

 

by the Definition 2.2. Then, we use integration by parts 𝑚 times and obtain: 

〈𝑝,𝑊3〉-"! = 𝐴 + (−1)(2𝑝(𝑥)𝑊3
(*()(𝑥)𝑑𝑥

1

2

. 

Thus, 𝑚 equations are obtained by letting 𝐴 = 0. Therefore, we reach 
                       (−1)(𝑊3

(*()(𝑥) = 𝛿(𝑥 − 𝑦). 
When 𝑥 ≠ 𝑦, we have 

𝑊3
(*() = 0, 

whose solution is: 
 

𝑊3(𝑥) = C
𝑢3(𝑥),			𝑥 ≤ 𝑦
𝑣3(𝑥),			𝑥 > 𝑦. 

By Dirac-Delta function, we will get  𝑚 more equations. Then we can find the unknown coefficients. This will give us the 
reproducing kernel function of the reproducing kernel function of the reproducing kernel Sobolev space 𝑆*([𝑎, 𝑏]. In this 
reproducing kernel function, we know that 𝑢3(𝑥) = 𝑣5(𝑦). this completes the proof.  
 

5 Numerical Examples  

In this section, we will give some basic experiments related to our new reproducing kernel functions. Many problems can 
be used by the obtained reproducing kernel functions. We consider the following general Cauchy problem: 
 

y^'=f(t,y)                                                                                        (5.1) 
with the initial condition  

y(0)=y_0.                                                                                        (5.2) 
We need to homogenize the initial condition to obtain the solutions in the reproducing kernel Sobolev spaces. Therefore, 
we use the following transformation: 

u(t)=y(t)-y_0 .                                                                                  (5.3) 
Then we get: 
{■(u^'=g(t,u),@u(0)=0 .     )┤ 
Consider the above problem in the reproducing kernel Sobolev space S_2^2 [0,1]. Use the bounded linear operator P as: 

Pu=g(t,u)                                                                                          (5.4) 
with the initial condition 

u(0)=0                                                                                              (5.5) 
To construct an orthogonal system {ψ_i (t)}_(i=1)^∞of S_2^2 [0,1], let  
ψ_i (t)=P^* R_(t_i ) (t), where P^*is conjugate operator of P. The orthonormal system  {ψ ̂_i (t)}_(i=1)^∞of  S_2^2 [0,1] 
can be obtained by Gram-Schmidt orthogonalization operator of {ψ_i (t)}_(i=1)^∞ as follows: 
ψ ̂_i (t)=k=1iγ_ikψkt,   (γ_ii>0,i=1,2,…),              (5.6)  
where γ_ik are the orthogonalization coefficients. Now, {ψ_i (t)}_(i=1)^∞ is the complete system in S_2^2 [0,1] which 
means that  {ψ ̂_i (t)}_(i=1)^∞is the complete orthonormal system in S_2^2 [0,1], then the exact solution u(t) of (5.4) can 
be written as: 

u(t)= i=1∞ut,ψi(t)S_2^2ψi(t)                                                                (5.7) 
=i=1∞ut,k=1iγikψktS_2^2ψ ̂_i (t)                                                          (5.8) 

=∑_(i=1)^∞▒∑_(k=1)^i▒〖γ_ik 〈u(t),ψ_k (t)〉_(S_2^2 ) ψ ̂_i (t)〗                                            (5.9) 
=∑_(i=1)^∞▒∑_(k=1)^i▒〖γ_ik 〈u(t),P^* R_(t_k ) (t)〉_(S_2^2 ) ψ ̂_i (t)〗                             (5.10) 
=∑_(i=1)^∞▒∑_(k=1)^i▒〖γ_ik 〈Pu(t),R_(t_k ) (t)〉_(S_2^2 ) ψ ̂_i (t)〗                                  (5.11) 
=∑_(i=1)^∞▒∑_(k=1)^i▒〖γ_ik 〈g(t,u(t)),R_(t_k ) (t)〉_(S_2^2 ) ψ ̂_i (t)〗                              (5.12) 
=∑_(i=1)^∞▒∑_(k=1)^i▒〖γ_ik g(t_k,u_k (t_k ))ψ ̂_i (t)〗                                                       (5.13) 
where {t_i }_(i=1)^∞is dense in [0,1]. 
For numerical computation, we define the n-term numerical solution of (5.4) by truncating the series in (5.13) as: 
u_n (t)=∑_(i=1)^n▒∑_(k=1)^i▒〖γ_ik g(t_k,u_(k-1) (t_k )) ψ ̂_i (t),〗                     (5.14) 
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with initial function u_0 (t_k )=u(t_k ).  
Remark 5.1. There is a relation between the order of the problem and the reproducing kernel Sobolev spaces. Since our 
problem is first order, we use the reproducing kernel Sobolev space S_2^2 [0,1] in this work. We can generalize this 
relation. Let's choose the order of the problem m. Then, we need to investigate the solutions of the problem in the  
reproducing kernel Sobolev space 𝑆*(4,[0,1]. 
 

6 Conclusions 

In this work, we constructed the general reproducing kernel Sobolev spaces. New reproducing kernel functions have 
obtained in these spaces. The reproducing kernel functions can be used to solve higher order boundary value problems in 
the reproducing kernel Sobolev spaces. 
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𝑎3(𝑥) =																																																																											
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