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Abstract: The research aims at achieving the best linear model to distinguish between two types of Bowels and Esophageal cancer in

Jordan, using the methodofdiscriminant analysis, the SPSS program was used to analyze the data. The study concluded a number of

results, the most prominent of which were: the variables sex (x1), weight (x3), and Platelets Count P.C (x8) which have a significant

impact in constructing the discriminatory function. The probability of correct classification of a disease belonging to the first group

was equal to (62.8%) and to the second group was equal to (77%). The probability of misclassification in the first group, was equal

to (37.2%), and for the second group was (23%), the overall correct classification ratio (71.6%) and the false classification ratio

(28.4%),the probability of correct classification of a disease belonging to the first group was equal to (66.4%) and the second group

was equal to (77.6%). It was noted that the discriminant analysis method was able to identify the most important independent variables

in the diagnosis of both types of Bowel and Esophageal cancer.
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1 Introduction

Discriminant analysis is one of the most important multivariate statistical analysis methods used in the field of analyzing
classified data. The use of discriminant analysis requires that the data of explanatory variables have a multivariate normal
distribution. The discriminant analysis aims at categorizing the observations into their correct groups with the lowest
possible classification error. The research aims achieving the best linear model, using the method of discriminant analysis
to distinguish between two types of cancer, which are:
- Bowel cancer
- Esophageal cancer

2 A linear discriminant function for two populations that follow a multivariate normal

distribution

Assuming we have two populations (G0,G1) and each has a probability density function f (x/G0), f (x/G1) respectively,
and assuming that (π0,π1) is Prior probability and that observation (x) comes from (G0,G1) respectively, assuming that
the probability density functions follow a multivariate normal distribution under the condition of equal variance and
covariance matrices(Σ0,Σ1)(x− µ0) [1,2].
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Also, the ratio of the two probability density functions:
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Where the first term of the equation 4 Represents the Fisher linear discrimination function, the second term is at
the point of separation between the two groups (G0,G1) as for the unknown parameters (µ

0
,µ

1
,Σ) in equation 4, it is

estimated from the sample data using the maximum likelihood method where the best estimate of µ
0

is x̄0 and µ
1

is x̄1.

Based on that:

x̄0 =
∑

n0
i=1 x0i

n0

(5)

x̄1 =
∑

n1
i=1 x1i

n1

(6)

As for the combined variance and covariance matrixΣ , it is estimated by the combined variance and covariance matrix
of the sampleSp according to the following formula [3,4]

Sp =
(n0 − 1)S0 +(n1 − 1)S1

n0 + n1 − 2
(7)

Where: S0,S1: The estimated variance and covariance matrices for the two groups G0,G1. π0,π1: are estimated in two
ways, or they are assumed to be equal (π0 = π1) to the two populations or estimated as follows: [5,6]

π̂0 =
n0

n
, π̂1 =

n1

n
(8)

Where: n0: the size of the sample drawn from the population G0, n1: the size of the sample drawn from the population
G1, n = n0 + n1. Substituting the unknown parameters into equation 4, we get the statistic:

W = (x̄0 − x̄1)́S
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2
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And in case (π0 = π1), then the equation 9 becomes:

W ∗ = (x̄0 − x̄1)́S
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2
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−1
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The classification rule would be to classify the observation (x) to the group (G0) if W> zero or W ∗ > zero and to the
group (G1) if W≤ zero or W ∗ ≤ zero

3 A linear discriminant function according to Mahalanobis distance

There is a possibility to find a linear discriminant function if we have (K) of groups by expanding Mahalanobis distance
(D2

i ), where: [7,8]

D2
i (x) = (x− x̄i)́S

−1
p (x− x̄i) (11)

where: i = 1,2,3, ...,K
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Equation 11 can be rewritten as follows:

x́S−1
p x− 2x̄iS

−1
p x+ x̄iS

−1
p x̄i (12)

The first term on the right side of the equation 12, it is constant for all groups,the second term is a linear function in the
vector (x) as for the last term it does not depend on the vector (x). Therefore, the first term of equation 11 can be neglected
and a linear classification function can be obtained and expressed as d2

i (x) in order for this formula to be compatible with

the linear discrimination function, this function is multiplied by the expression (− 1
2
)so, the linear discriminant function

is as follows [9]
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Assuming that the probability density functions for each group follow a multivariate normal distribution under the
condition of equal variance and covariance matrices and with initial probabilities (π1,π2, ...,πk).

d∗
i (x) = Lnπ̂i + ¯́
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The rule of classification is to classify the observation (x) to set (i) if the value of the function di(x) as big as possible
from the rest of the other groups and using the same method in the case of the probability density functions, they follow
a multivariate normal distribution then the observation (x). It is classified as belonging to group (i) if the value of the
function d∗

i (x) as big as possible from the rest of the other groups.

4 Probabilistic formula for a linear discriminant function

An alternative formula for the linear discrimination function can be derived, known as the probabilistic formula, according
to the following formula [8,10]:

Assuming we have two groups (p.d. f ) has a probability density function (G0,G1) p(x/G0), p(x/G1) and assuming
that (π0, pi1) these are initial probabilities and that is the vector of the observation (x) come from the population (G0,G1)
respectively, then the subsequent distribution that vector (x) comes from the group (G1) be: [11,12]
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Assuming that the probability density functions f (x/G0), f (x/G1) they are normally distributed multivariate,
assuming the covariance and covariance matrices are equal (Σ0,Σ1)
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Using algebraic methods then:
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Note that the equation 16 can be rewritten as follows:
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(µ
0
,µ

1
,Σ ,π0,π1), are unknown parameters, are estimated from the sample data through formulas 5, 6, 7, 8

respectively.
Based on the above the estimate of the probability of observation (x) belong to group (G1) is:

p̂(G1/x) =
1

1+ {eα̂+β̂x}−1
(20)

The estimation of the probability of observations belong to group (G0) is:

p̂(G0/x) = 1− p̂(G1/x) (21)

The classification rule based on the formula of the probability function in the event that we have two groups is as
follows:[13,14]

The observation x belongs to group G0 if p̂(G0/x)> p̂(G1/x)
The observation underlinex belongs to group G0 if p̂(G0/x)< p̂(G1/x)

5 The practical side

This study was based on a sample of (200) cancer patients, including (100) patients with bowel cancer and (100) patients
with esophageal cancer from a hospital in Jordan, the incidence of this disease was considered a dependent variable, and
coding was adopted (1) for a patient with bowel cancer and (2) for a patient with esophageal cancer as for the related
independent variables, the following variables were adopted:

Sex (x1): (1) for male and (2) for female. Age (x2): (1) for <49 and (2) for ≥50. Weigh (x3): (1) for <39 and (2)
for≥39. Packed Cell Volume (x4) : (1) for ≤35, and (2) for >35. Hemoglobin (x5): (1) for ≤11.5 and (2) for >11.5.
White Blood Cell Count (x6): (1) for ≤7.5 and (2) for >7.5. Erythrocyte Sedimentation Rate (x7): (1) for ≤22.5 and (2)
for >22.5. Platelets Count (x8): (1) for ≤150 and (2) for >150.

Table 1: The results of the Kolmogorov-Smirnov test for a normal distribution of data

Kolmogorov-Smirnov

Statistic d.f Sig.

Sex (x1) 2.311 200 0.000

Age (x2) 0.161 200 1.010

Weigh (x3) 1.601 200 0.015

Packed Cell Volume P.C.V (x4) 0.152 200 1.013

Hemoglobin H.B (x5) 0.001 200 1.012

White Blood Cell Count W.B.C (x6) 0.481 200 0.861

Erythrocyte Sedimentation Rate E.S.R (x7) 0.327 200 1.014

Platelets Count P.C (x8) 1.735 200 0.096

It is noted from the results in Table 1 that most of the variables are distributed normally, except for the variables of
sex (x1) and weight (x3), because the sample size is large (n > 30) the sample data can be considered to follow a normal
distribution based on the central limit theorem. In order to form a discriminatory function with statistical significance, the
significance of the differences between the averages of the two groups related to the study was tested, as follows:

H0 : µ0 = µ1

H1 : µ0 6= µ1

According to the Wilk scale and chi-square statistic (χ2),the results highlighted, as shown in Table 2, there are
significant differences between the two means, which means the emergence of two groups of patients, and this means
that the discriminatory function has the ability to separate the two groups and thus classify any new observation into one
of these two groups.

Table 2: Discriminant function significance test

Test Function Wilks’ (Lambda) Chi-Square df Sig.

1 0.71 60.413 8 0.000
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The homogeneity test between the two groups.

H0 : Σ0 = Σ1

H1 : Σ0 6= Σ1

Table 3: Homogeneity Test between the two groups

Box’s M 28.211

F Approx 1.401

Df1 36

Sig 0.158

It can be seen from the results of table 3 that Sig.>0.05. Therefore, the decision is rejected H1 and accepted H0 That
is, the condition for using the linear discriminant function is fulfilled. In order to obtain two distinguishing functions for
the two groups, the significance of the independent variables was tested to know the importance of each variable and its
impact on the dependent variable. This is evident from the results in Table 4

Table 4: The significance of the independent variables test

Wilks’ Lambda F df1 df1 Sig.

Sex (x1) 0.738 38.604 1 198 0.013

Age (x2) 0.893 0.113 1 198 0.732

Weigh (x3) 0.916 11.992 1 198 0.004

Packed Cell Volume P.C.V (x4) 0.935 0.119 1 198 1.644

Hemoglobin H.B (x5) 1.003 0.000 1 198 1.053

White Blood Cell Count W.B.C (x6) 0.976 1.227 1 198 0.287

Erythrocyte Sedimentation Rate E.S.R (x7) 0.989 4.001 1 198 0.492

Platelets Count P.C (x8) 0.93.6 11.996 1 198 0.003

It is noted from the results presented in table 4 that the variables sex (x1), weight (x3), and Platelets Count P.C (x8)
have a significant impact in constructing the discriminatory function, while the rest of the variables did not show any
significant impact.

The two samples mean vectors and the combined variance and covariance matrix were estimated using Maximum
Likelihood estimators according to formulas 5, 6, and 7. The two linear discrimination functions for the two groups were
estimated according to the formula 14 and the following results are in Table 5

Table 5: linear discriminant functions

First discriminant Second discriminant

function function

Constant -56.847 -67.204

Sex (x1) 17.993 22.003

Age (x2) 9.701 10.119

Weigh (x3) 7.788 8.993

Packed Cell Volume P.C.V (x4) 11.533 14.345

Hemoglobin H.B (x5) -1.092 -1.873

White Blood Cell Count W.B.C (x6) 11.567 12.002

Erythrocyte Sedimentation Rate E.S.R (x7) 9.001 8.997

Platelets Count P.C (x8) 6.488 5.008

It is noted from the results in Table 5 that the following variables are: Age, Hemoglobin, and White Blood Cell Count
have the same coefficient values in both functions, which means that the three variables mentioned will not have a role in
the process of classifying the variables. The results of data classification are shown below by the sensory functions of the
linear discrimination functions, as shown in Table 6
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Table 6: The results of classifying the observations by the classification of the linear classification functions

Case classification

The patient belongs to the first group The patient belongs to the second group Correct classification ratio

The patient belongs to the first group 55 25 62.80%

The patient belongs to the second group 18 60 77%

Overall classification ratio 44.70% 56.30% 71.60%

It is evident from Table 6 that the probability of correct classification of a disease belonging to the first group was
equal (62.8%) and belonging to the second group was equal (77%).As for the probability of misclassification into the first
group, it is equal (37.2%),for the second group (23%). It was observed that the overall correct classification ratio (71.6%)
and the false classification ratio (28.4%). The data was also classified using the probabilistic formulas with numbers 20,
and 21 as an alternative method for classification, and the results were as shown in Table 7

Table 7: Shows the classification of data according to the probabilistic formula of the linear discriminant function

Case classification

The patient belongs to the first group The patient belongs to the second group Correct classification ratio

The patient belongs to the first group 56 23 66.40%

The patient belongs to the second group 21 59 77.60%

Overall classification ratio 45.20% 53.80% 72.10%

In Table 7 the results have shown that the probability of correct classification of a disease belonging to the first group
was equal to (66.4%) and to the second group was equal to (77.6%).As for the probability of misclassification into the
first group, it is equal (33.6%),andto the second group (27.9%).

6 Results

1.The variables sex (x1), weigh (x3), Platelets Count P.C (x8) have a significant impact in constructing the discriminatory
function.

2.The following variables: Age, Hemoglobin, and White Blood Cell Count have the same coefficient values in both
functions, which means that the three variables mentioned will not have a role in the process of classifying the
variables.

3.The probability of correct classification of a disease belonging to the first group was equal to (62.8%) and belonging
to the second group was equal to (77%).

4.The probability of misclassification into the first group, is equal to (37.2%), to the second group (23%).
5.The overall correct classification ratio was (71.6%) and the false classification ratio was (28.4%).
6.The probability of correct classification of a disease belonging to the first group was equal to (66.4%) and belonging

to the second group was equal to (77.6%).
7.The probability of misclassification into the first group, was equal to (33.6%), and to the second group was equal to

(27.9%).
8.It was noted that the discriminant analysis method was able to identify the most important independent variables in

the diagnosis of both types of Bowel and Esophageal cancer in Jordan.

Recommendations

1.Expanding the use of the discriminatory analysis method to classify data due to the effectiveness of this method.
2.Conducting extensive studies on cancer due to the high death rates caused by this disease of all kinds.
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