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Explanation of Contents 

The materials in this text are a collection of lecture notes for a course entitled “Applied Predictive 

Analytics” offered at Arkansas Tech University.  The purpose of this text is to provide all of the necessary 

written material to students in this course free of charge.  The work to compile the material was 

supported by a zero-textbook cost / open education resource grant provided by Arkansas Tech 

University.  The text uses R software which is open source and also available to students at no cost.  

Anyone with interest in additional information regarding this text or in the accompanying data sets may 

contact the author, Matt Brown, at hbrown11@atu.edu. 

 

About the Author 

Dr. Matt Brown is a Professor of Business Data Analytics at Arkansas Tech University where he has 

taught since 2008. Dr. Matt Brown has taught a variety of data analytics/data science related courses at 

Arkansas Tech, including classes in predictive modeling, database, data mining, artificial intelligence, 

statistics, process improvement, application development, Information Systems, using technologies such 

as SAS, R, Python, Excel, and SQL. Prior to Arkansas Tech, Dr. Brown has nine years’ experience working 

in industry in the field of data analytics for the Wal-Mart Home Office and Tyson Foods World 

Headquarters. Dr. Brown's research interests include a variety applied data analytics topics.  Dr. Brown 

has over fifteen peer-reviewed publications in this field, and he continues to provide data analysis 

consulting to industry. 

 

Course Structure 

The course is organized into nine modules.  As it was originally taught, each module corresponded to 

approximately a week’s worth of material for students.  This allowed for one week of review projects 

and exams three times in the semester and two weeks of group projects.  For each predictive modeling 

technique, the module pattern will typically be a basic example showing how the predictive modeling 

technique works and two R examples with data sets.  The assignment for each module consists of a third 

data set.  Some data sets are used in multiple modules to allow students to compare model results.   

 

Course Prerequisites 

Students entering this course were required to have a course in statistics and at least one additional 

course covering the basics of data analytics. 
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Data Set Information 

The following data sets are referenced in this text: 

 Data set Modules 

1 Football2023OffStats.csv  1 

2 project.csv 2 

3 dataForEDA.csv 2 

4 retail EDA.csv 2 

5 SeniorSurveyQuestion.csv 2 

6 AssignmentdataforEDA.csv 2 

7 housing.csv 3, 4 

8 tenders.csv 3 

9 housing2.csv 3 

10 APCuv.csv 3 

11 halloweenCandy.csv 3 

12 payment.csv 4 

13 housing3.csv 4 

14 US University Data.csv 4 

15 student success.csv 5, 6, 7 

16 appt.csv 5, 6 

17 titanic.csv 5, 6 

18 irs.csv 7 

19 product survey.csv 8 

20 irs2.csv 8 

21 nflcombine.csv 8 

22 empRet.csv 9 

23 storeCard.csv 9 

24 happinessSurvey.csv 9 

 

 

 

All data sets were simulated (although often based on real information), with the exception of “US 

University Data.csv” (data.gov), “titanic.csv” (Kaggle.com), and “happinessSurvey.csv” (data.gov). 
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Introduction to Applied Predictive Analytics 

What does the term “business data analytics” mean? 

“Business data analytics”, “data analytics”, or “analytics”, is a term used to describe applied data 

analysis.  Generally, if it goes by the name “business data analytics” it is referring to practical data 

analysis that has direct applications to help businesses and, as a field of study, would be housed in a 

university’s business curriculum. Data science is almost synonymous, focusing on essentially the exact 

same tools and techniques.  However, data science is typically found in engineering, computing or 

mathematics curriculum and thus will focus more on theoretical computing and mathematics than the 

closely related field of analytics.  As far as being defined as their own fields of study, analytics and data 

science are new, emerging shortly after the start of the 21st century.  As emerging fields, the scope and 

definition of these terms is still evolving.    

Business data analytics may be best defined by the methodologies used by the field.  However, this also 

creates a difficultly, many of the tools and techniques in analytics are technical and would likely be 

unknown to someone asking for a definition of “business data analytics”.  Regardless, this is still the 

most accurate way to describe analytics.  The following is not a comprehensive list, but should provide a 

representation of what is meant by the term “business data analytics”.   

Knowledge, Tools, and Techniques of Business Data Analytics: 
 
Data 

• Collection of data 

• Evaluation of data 

• Policies and ethical use of data 

• Databases 
 

Basic Data Analysis 

• Summary statistics 

• Visualization 

• Exploratory data analysis 

• Dashboards 
 

Management Science Techniques  

• Optimization 
o Linear programming 
o Genetic algorithms 

• Statistical process control 
o Shewhart 
o CUSUM 
o EWMA 

• Discrete event simulation 

• Expert systems 
 

Hypothesis Tests 

• Traditional inferential statistics 
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• Experiments (designed or observational) 

• Continuous/categorical/nonparametric 
 
Predictive modeling 

• Methods of model evaluation 

• Classification and regression 

• Traditional statistics models 
o Regression 
o Logistic Regression 

• Machine learning techniques 
o Decision Trees 
o Artificial neural networks 
o Random Forests 
o Support vector machines 
o Naïve Bayes classification 

 
Factor analysis 

• Exploratory and confirmatory 

• Principle component analysis 

• Canonical discriminant analysis 

• Structural equation modeling 
 
Data mining 

• Many of the previously listed techniques, such as predictive modeling, only for massive 
quantities of data 

• Association analysis 

• Clustering 

• Anomaly detection 
 
Computing 

• Spreadsheets 

• Database programming (SQL, non-relational) 

• Analytics programming, e.g., R, Python, SAS 
 
Business Context 

• Knowledge of basic business terminology and theory 

• Writing relevant and ethical data analysis reports 
 

Predictive Modeling 

Predictive modeling is the subfield of analytics that focuses on building statistical and machine learning 

models to make numerical or categorical predictions.  Business examples include forecasting sales, 

predicting the most likely potential customers, determining the correct billing address, examining 

potential manufacturing changes, among many others.  Models often attempt to predict the future or 

fill in missing information in complex and uncertain situations.  This leads to the truism “all models are 

incorrect”.  Indeed, all models have error (if perfect accuracy was possible for a problem, we wouldn’t 
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use an analytics model), but by using analytics techniques correctly the uncertainty should be accurately 

quantified for decision makers.  Further, not all models perform the same, some models are better than 

others and often multiple models should be tried and compared to determine the best approach for a 

problem. For some business problems, the goal is to use a model to improve over a current method of 

decision making; for others, the goal is to build a model better than what is used by competitors.    

Predictive modeling uses techniques from statistics and artificial intelligence’s machine learning.  While 

many statistics techniques may be used directly in predictive modeling, it is important to note the 

differences between statistical hypothesis tests and predictive modeling.  In traditional hypothesis tests, 

the goal is to test a hypothesis using a sample (often as small a sample as possible), controlling for 

extraneous factors to determine cause and effect.  In predictive modeling, while the same techniques 

may be used, the goal is to make as accurate a prediction as possible.  Often in predictive modeling 

problems, data are more readily available, but there is little or no control over the environment in which 

the data were collected.  In predictive modeling, emphasis is placed on metrics that measure predictive 

accuracy on data that was not used to build the model; often hypothesis tests or metrics calculated 

using the data used to build the model are of little practical importance to a predictive modeling 

problem. 

Examples of predictive model techniques include:  Linear and Multiple Regression, Logistic Regression, 

Regression Trees, Classification Trees, Random Forests, Artificial Neural Networks, Support Vector 

Machines, Naïve Bayes classification, Time Series Models, and Spatial Models. 
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Introduction to R 

What is R? 

R is an open source implementation of the S language, which was originally created at Bell labs by John 

Chambers and his colleagues. Ross Ihaka and Robert Gentleman at the University of Auckland in New 

Zealand initially wrote R. The name "R" comes from the first letter of their names mimicking the one 

letter title of "S." R is a high-level language designed to make mathematical, statistical, and artificial 

intelligence algorithms, data mining, data analytics, and graphical techniques easy to implement. Its 

design goals include being a user-friendly language for data analysis and visualization, and it is widely 

used in academia, industry, and research. With a vast library of packages and functions, R has become 

one of the most popular languages for data analysis and visualization, and it has a large and active user 

community. 

 

Why use R for predictive analytics? 

R is a highly effective tool for predictive analytics, offering several advantages over other software 

packages. The fact that R is a free and open-source product makes it an attractive choice for users of all 

levels. In addition, the large and active R user community, as well as the abundance of documentation 

available, ensure that users have access to the resources and support needed to use R. Furthermore, 

due to the extensive developer base, which primarily comprises well-qualified academic contributors, R 

often includes state-of-the-art techniques before they are incorporated into proprietary software. In 

contrast to Python, which is another popular open source option for analytics, R was created by data 

analysts for data analysts; Python was created by computer scientists for computer scientists to be a 

general-purpose programming language.  Additionally, R possesses the capability to process substantial 

amounts of data, and various packages are available for interfacing with databases. In summary, R's 

accessibility, extensive user base, cutting-edge techniques, and data processing capabilities make it a 

highly recommended choice for predictive analytics. 

R is a programming language that supports both functional and object-oriented programming 

paradigms, as well as imperative and procedural programming. R is an interpreted programming 

language where very concise programs can lead to quick results.  For example, the following R code 

simulates 300,000 data points from the normal distribution and then plots them using a histogram 

 hist(rnorm(300000)) 

R is designed to be highly extensible: you can define new functions and routines. 

 

Reasons not to use R for predictive analytics 

While R is a popular language for data analysis and visualization, some individuals may choose not to use 

it due to certain limitations. One such limitation is the absence of central support, which means that 

users do not have access to a dedicated support team. This can be problematic if users encounter issues 

that they are unable to resolve on their own. Additionally, some R packages are licensed only for non-

commercial use, which can restrict the way businesses can utilize the software. Further, if the goal is to 
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automate or incorporate the predictive analytics into a larger information system, Python may be a 

better choice since it can also perform many of the same analytics techniques as R yet is also a general-

purpose programming language that is already widely used in application development. Ultimately, the 

choice of language for data analysis will depend on the specific needs and preferences of individual 

users. 

 

Obtaining and Using R 

R can be downloaded and installed from the web at http://cran.r-project.org/ .  R versions exist for 

Linux, Mac, and Windows operating systems.  To install R on a local machine (administrator permissions 

for the machine are necessary), the steps are as follows: select the appropriate operating system, 

download the version of R that you need, open the installation file, and follow the instructions—the 

default options during installations will work for the majority of users. The material presented in this 

text uses R for Windows.  Some differences will exist between versions of R for different operating 

systems, such as the way files are brought into R since different operating systems reference files 

differently. Figure 1.1 shows a R session after a successful installation.  R commands can be given at the 

“>” prompt. 

R studio is a development environment for R that attempts to make certain tasks easier for R users.  R 

studio can also be downloaded for free.  Since R programming commands do not change regardless of 

whether R studio is used, R studio can certainly be used with this course.  However, all examples and 

assignments made in this text will not require R studio. 

R can also be used on the cloud at https://posit.cloud/ .  To use R on the cloud through posit, an 

account, such as google, is required.  A free account is limited to 15 hours of “compute time” each 

month, which should be enough to complete the requirements for this course.  Using posit.cloud is 

certainly not necessary for this course, but students with difficulty installing or using R on a local 

machine may prefer this alternative.   

  

http://cran.r-project.org/
https://posit.cloud/
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Figure 1.1 The R User Interface 

 

Installing Packages in R 

If you are new to programming, it should be noted that most programming languages have a limited 

number of basic commands and capabilities available that are extended through available libraries.  This 

allows storage and memory to be used more effectively since at a given time a user is unlikely to need 

all of the available features of any given language.  As a certain set of programming capabilities are 

needed, a command to load that library of capabilities is given.  R uses this convention as well and 

installing and loading packages prior to an analysis is a standard part of working with R for analytics. 

R comes installed with many capabilities.  In addition, numerous “packages” have been developed to 

extend the capabilities of R.  Provided your machine is connected to the Internet, packages (add-on 

libraries of routines) can be added by typing: 

install.packages() 

The first time you do this each session, you will be asked to pick a mirror (an R code repository) to install 

from, you can simply choose “0-cloud” for this option each time.  A list of available packages is made 

available after running the install.packages() command.  A description of available packages can be 
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found at: https://cran.r-project.org/ .  Alternatively, you can specify the package you want to install with 

a command like the following: 

install.packages("nnet") 

The preceding command installs a package for creating artificial neural networks entitled “nnet”.  

Installing a package downloads the package locally to your machine, so the installation will only need to 

be done once for that machine.  Note that installing a package does not make it available for a particular 

R session. An additional library command is needed to load the package into memory so that it is 

available for use: 

library(nnet) 

The nnet package is now loaded and commands from the nnet package will be available until the R 

session ends.  So, if R is closed and reopened, the package will need to be reloaded with an additional 

library command (but the package will not need to be reinstalled).  Note that nnet is enclosed in 

quotation marks in the install.packages command, but is not enclosed in quotation marks for the library 

command. 

Some R packages require other packages to be loaded in order to be used.  When installing a package, 

you may be prompted to approve additional package dependencies if they are not installed.  You may 

also explicitly install all required dependencies with the following command: 

install.packages('nnet', dependencies = TRUE)  

  

https://cran.r-project.org/


15 
 

Getting Started in R 

R commands can be directly given at a prompt.  For a quick calculation or a quick check of data, the R 

prompt is the most efficient way of interacting with R.  However, for working with larger programs that 

may need to be edited or debugged, the R script editor is a better way of programming R.  For most data 

analytics projects in this course, you will want to use scripts.  To open the script R editor, go to “File” on 

the R menu and select “New script”, see Figure 1.2 and Figure 1.3: 

Figure 1.2 Opening a Script 

 

 

Commands given at the R prompt (>), will be immediately executed by R when the user hits enter.  

Commands typed in the script will not be executed until you tell R to execute them, allowing for editing 

and the execution of several commands at once.  To execute a command or several commands in a 

script, highlight the commands and click on the third icon from the left at the top of the RGui (circled in 

red in Figure 1.3).  
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Figure 1.3 An R Session with R Script Editor Open 

 

 

In the following pages numerous R commands will be given that you should try as you work through this 

material.  To get started with R, try typing the following commands at the prompt, “>” pressing enter 

after each command: 

3*4 

12/4 

2^2 

x<-5 

y<-3 

z<-x+y 

z 

#note, anything following a pound symbol is ignored (a way to provide program comments) 

The R prompt can be used as a calculator and variables can be assigned with the “<-“ symbols 

(representing an arrow) or with a “=”.  The results of running the above commands is displayed in Figure 

1.4.   

  



17 
 

Figure 1.4 Example R Session Using the Command Prompt 

 

R has built in help that can be accessed by a question mark followed by the command as in 

?hist 

The above command displays information on the histogram function.  If you don’t know the exact name 

of the command you want to use, you can search as follows: 

help.search("histogram")  

Built-in help and documentation for programming languages such as R have a reputation of being 

technical and not written for beginners.   However, R has a large user base and many example programs 

and tutorials exist online.  An internet search may provide more helpful results for specific questions you 

have regarding R code.  Because a large number of universities use R, for beginning level R information it 

may also be useful to narrow down your search to .edu sites.  This can be done in google by a search 

such as “Example R program to create a histogram site:.edu”.  Additionally, there are numerous good 

general tutorials for R online, for example https://www.w3schools.com/r/ .  Also, large language models 

recently made available to the public online, such as ChatGPT, can provide R code examples and 

explanation interactively.  However, be aware ChatGPT can make mistakes in R code and R information. 

Typing the following command in R, will create a set of data called “testData” with 7 values in it. 

testData<-c(88,77,99,55,84,99,83) 

This creates a data structure in R that we named “testData”.  testData is a vector in R terminology, 

meaning it is a structure of data consisting of all the same type of data, testData is also called an object 

in R.  Functions like the following can then be used on the data: 

summary(testData) 

mean(testData) 

sd(testData) 

plot(testData) 

 

https://www.w3schools.com/r/
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For data objects there are five basic classes: numeric, integer, character, logical, factor.  Try the 

following commands: 

a<-17 

class(a) 

a<-"Matt" 

class(a) 

class(testData) 

The class function will identify the class of data in R. 

When building models in R, variables are typically either numeric (treated as numbers) or factor (treated 

as data with categories). Numeric variables are created by default; factors are a special kind of character 

data structure that must be specified.  Try the following commands: 

testFactor<-c("a", "b", "c", "b", "a", "a", "a") 

#the following tells R to treat testFactor as a factor 

testFactor<-as.factor(testFactor) 

#the following displays the different categories or “levels” in our factor 

levels(testFactor) 

 

Common Programming Mistakes to Avoid 

R is case-sensitive (capitalization matters), from the previous examples the following commands would 

have caused errors:  

#causes an error because “levels” is capitalized: 

Levels(testFactor)  

#causes an error because “Factor” in “testfactor” is not capitalized: 

levels(testfactor) 

R expects simple quotes, either single or double quotes can be used, but they cannot be the default 

“fancy” quotations marks that Windows applications use.  The following would cause errors:  

a<-"Matt” #notice the second quotation mark is not a simple quotation mark 

a<-“Matt” #both quotation marks are not simple 

Spaces cannot appear in the names of data structures, example error:  

test Data<-c(88,77,99,55) #there cannot be a space between test and Data 
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An equal sign has three uses in R: 

1. assignment: 

x=6   

which is the same as  

x<-6  

(either can be used). 

2. specifying arguments or options in a function: 

read.csv( … ,header=TRUE) #this is not the full function, a file path and file name are needed in the … 

3. As a logical operator (to check for equality—notice two equal signs are required in this case): 

a==b (this would check if variable a is equal variable b) 

A common mistake would be to type a=b, expecting a comparison, but instead reassigning the value of a 

to the value of b. 

 

Importing and Using a File in R 

Data can be read into R in a variety of ways from a variety of formats.  In this course we will use comma 

separated values (.csv) files.  This is a common data type that can easily be created from spreadsheet 

software just by saving the spreadsheet as a csv file.  To read a csv file into R entitled 

Football2023OffStats.csv (note, by default the .csv portion of the file name will not be visible in 

Windows), you would need to fist save the file to a location on your machine where you will be able to 

locate it.  (If you are using a cloud version of R, you will need to upload your file to the cloud.) 

For a Windows machine this should appear as follows: 

NFL <-read.csv("C:/Users/hbrown11/Desktop/Football2023OffStats.csv",header=TRUE) 

The portion of the code highlighted in yellow would change based on the location you specifically saved 

your file.  Not specifying the location and file name correctly when attempting to read a file into R is a 

common mistake when first learning to use R.  Attention must be paid to details like the direction of the 

“slashes” (which are reversed from the manner in which Windows gives displays a path), capitalization, 

spaces, etc. If running the above code result in no message being displayed, the R object “NFL” was 

likely successfully created.   

The full file that was read into R could be viewed by the following command (just the name of the R 

object): 

NFL 
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See Figure 1.5.  If the file that was read in is large, it may be much more prudent to only view the first 

few rows of the file, this can be accomplished with the following command: 

head(NFL) 

Figure 1.5.  Reading a CSV File into R 

 

 

Reading a File into R Studio Cloud (Optional) 

If you are using R through posit’s R studio cloud, the following steps can be used to read in the CSV file: 

1. Log into R studio cloud 

2. Create a new project 

3. Locate the “Files Tab” in the pane at the bottom right of the screen 

4. Create a “New Folder” (see Figure 1.6) (you can name it anything) 
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Figure 1.6 Creating a Folder in R Studio Cloud 

 

5. Click on “Upload” and find the file you saved on your machine “Football2023OffStats.csv” 

6. Save the uploaded file in the folder you just created, when completed it should appear as 

follows in Figure 1.7 

Figure 1.7 Uploading a File to R Cloud 

 

7. The file can now be loaded into R with the following command typed in the console: 

NFL<-read.table("/cloud/project/data for pred analytics/Football2023OffStats.csv",header=TRUE) 

 

Working with R Data Frames 

In predictive modeling we will most often be working with a data structure in R called a data frame (or 

data.frame).  Data frames are basically tables, each column represents a different variable that is 

typically either numeric or a factor.  By default, a data frame is created when reading in a file using 

read.csv. 

Try the following (after you have read in the Football2023OffStats.csv file): 

str(NFL) #examines the data structure 

head(NFL) #shows the first 6 rows 

View(NFL) #spreadsheet like view of data 

summary(NFL) #five number summary with mean 

NFL$TotTD #return just the column TotTD 
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mean(NFL$TotTD) #calculate the mean of TotTD 

 

A common requirement after creating a data frame prior to beginning predictive modeling in R is to 

specify the columns that are factors, example: 

NFL$Team<-as.factor(NFL$Team) 

This does not noticeably change the way the data appear, but behind the scenes in R it designates the 

column “Team” as a particular data structure that is necessary for some analysis. 

 

Summary of a Few Basic R Commands 

The remainder of this module are lists of a few basic R commands.  These lists are not comprehensive, 

but intended to be an introduction to commonly used commands.  To “know” a programming language 

is less about memorizing commands and more about practice and experience writing programs in that 

language.  While not a necessity for being able to build predict analytic models, if you have interest in 

becoming proficient in R, it is recommended that you try several, if not all, of these commands and 

perhaps others that you find online. 

Commands to work with packages and functions: 

install.packages() #install a package 

library(package) #load a package 

sessionInfo() #see what packages are currently loaded 

?function #get help on a specific function 

help.search("topic ") #get help on a specific topic 

objects() #list the current objects in memory 

ls() #list the current objects in memory (same as  objects()) 

Sys.time() #display current data and time 

 

Combining data: 

c(data,data,data) #combines elements separated by commas 

paste(data,data,data) #concatenates character vectors 

cbind(data,data,data) #bind vectors by column 

rbind(data,data,data) #bind vectors by rows 
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Explore the structure of data 

head(data) #return first 6 rows 

tail(data) #return last 6 rows 

str(data) #examines the data structure 

View(data) #display data as spreadsheet 

length(data) #give the number of elements in a vector 

dim(data) #give the number of rows and columns (in a data frame or matrix) 

summary(data) #mean and five number summary or a count of the unique levels of a factor 

 

Math/stat functions 

sqrt(n) #square root of n, n^.5 also works  

log(n) #natural logarithm 

exp(n) #anti natural logarithm 

mean(data) #calculate the mean 

var(data) #calculate the sample variance 

sd(data) #calculate the same standard deviation 

max(data) #return the maximum value 

min(data) #return the minimum value 

median(data) #return the median 

round(x,n) #round the numbers in x to n places 

 

Ordering and sequences 

sort(n) #sort from least to greatest 

rev(n) #reverse order of elements 

rep(x,n) #repeat x n times 

seq(a, b, c) #create a sequence starting at a and ending at b by c 

a:b #create an integer sequence from a to b 
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Miscellaneous  

read.csv(file) #read a csv file into a data frame 

read.table(file) #read a text file (tab delimited) into a data frame 

write.csv(dataframe) #write a data frame to a csv file 

ifelse(condition,a,b) #process each element  of a data structure, if the condition is meet 

output a, otherwise output b 

#for (i in range){action} loop, example 

or (i in 1:10){print("hi")} 

sample(data) #create a random sample 

#Arithmetic Operations: 

#+, -, *, /, ^ are the standard arithmetic operators. 

#Matrix Arithmetic. 

# * is element wise multiplication 

# %*% is matrix multiplication 

#Assignment 

# To assign a value to a variable use “<-” 

# Common logical operators in R include:   

# != (not equal to), < (less than), > (greater than), <= (less than or equal to), >= (greater than or 

equal to), | (or), & (and), %in% (in). 
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Module 1 Assignment 

 

This assignment is given as a discussion board. 

1. Briefly introduce yourself.  Please give your name and a short professional bio. 

2. After reviewing the material for week 1, create a simple R program.   The program must 

create a variable, create a vector, or create a data frame and do something with that variable, 

vector, or data frame.  Describe what you did using comments in R. 

3. Respond to one other student's post by adding to their program, using the variable, vector, or 

data frame they created, add another feature to their program. 
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Module 2: Exploratory Data Analysis Using R 
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What is Exploratory Data Analysis? 

Exploratory data analysis (EDA) is a crucial step in the data analysis process that involves examining and 

understanding the characteristics of the data before formal inference or modeling is performed. In EDA, 

a primary goal is to gain insights and an understanding of the data by investigating its key features, such 

as the variation and distribution of the variables, outliers, and missing values. By analyzing the variation 

in the data, we can determine what is expected and what is not expected, and identify any potential 

sources of variability. Additionally, by exploring the relationships or potential relationships between 

variables, we can gain a deeper understanding of the underlying structure of the data and uncover any 

patterns or trends that may be of interest. EDA helps to inform the choice of statistical methods and 

models that can be used to analyze the data and can also provide insights for formulating hypotheses 

for further investigation 

Another important use of EDA is to uncover potential information quality issues. Information quality 

issues can arise in a variety of ways, from manual data entry errors to sensor malfunction or software 

errors.  As a data analyst, finding information quality issues is inevitable.  These issues must be dealt 

with—the adage “garbage in, garbage out” certainly applies to the creation of predictive models.  

Further, dealing with information quality does not mean simply deleting outliers.  In fact, deleting an 

outlier that legitimately belongs to a set of data can do as much harm to a model as failing to address an 

information quality issue.  Information quality issues are addressed through investigation.  EDA may be 

used to identify suspicious data; an analyst must track down the source and determine if the data arise 

from an error or are a legitimate record. 

In summary, when asked to build a predictive model as an analyst, EDA should be the first step to both 

get a feel for the data to determine what analysis can be done and to determine if there are potential 

information quality issues that could impact the validity of the model.     

 

Summary Statistics for EDA 

Simple summary statistics are a standard tool for EDA.  Commonly used summary statistics include 

measures for central tendency, including the mean, median, and mode; measures of variability, 

including, max, min, quantiles/quartiles, standard deviation/variation; and the correlation coefficient as 

a measure of linear similarity.  For categorical data, frequency is used in the calculation mean, standard 

deviation, and correlation.  These simple statistics are extensively documented, and their details can be 

found in any number of online sources for more information. 

The mean and standard deviation and correlation coefficient are three of the most common summary 

statistics: 

𝒎𝒆𝒂𝒏(𝒙) = �̅� =
𝟏

𝒏
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𝒄𝒐𝒓𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏(𝒙, 𝒚) = 𝑟𝑥𝑦 =
∑(𝒙𝒊 − �̅�)(𝒚𝒊 − �̅�)

√∑(𝒙𝒊 − �̅�)𝟐 ∑(𝒚𝒊 − 𝒚)𝟐
 

 

The mean and standard deviation can provide a quick identification of potential outliers.   For a variety 

of reasons, approximately three standard deviations from the mean for a given variable generally 

provides a good decision boundary for flagging potential outliers.  Specifically, any point exceeding three 

standard deviations may warrant further investigation; the further away from three standard deviations 

the more unusual.  However, the size and distribution of the data also should be taken into 

consideration.  The more data points, the less concern for points exceeding three standard deviations 

from the mean (for 100,000 values from even a very stable normally distributed process, it would be 

unusual not to have a few points exceeding three standard deviations).  Also, for very skewed data, such 

as exponentially distributed data, more points would be expected to exceed three standard deviations.  

For this reason, EDA discoveries are usually based on several facts observed in the data and may involve 

both summary statistics and visualization of the data. 

The correlation coefficient is calculated on data pairs and there must be a natural paring of the data to 

calculate correlation.  Correlation is a measure of the linear relationship between two variables.  Values 

close to -1 or 1 indicate a strong linear relationship; values close to 0 indicate no linear relationship.  

Positive correlation indicates as one variable increases, the other variable also increases.  Negative 

correlation indicates as one variable increases, the other variable decreases. Correlation may be 

visualized with a scatter plot (see Figures 2.1 and 2.2). 

Figure 2.1 A Scatterplot Where r = 0.87 
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Figure 2.1 A Scatterplot Where r = 0.08 

 

 

Correlation can be misunderstood and misused in many ways.  In EDA, correlation does not imply one 

variable causes the other; such determinations must be made with carefully controlled experiments.  In 

addition, correlation only measures linear relationships and will miss other more complex patterns in 

data.  Further, correlation is a relative measure without absolutes.  In the context of one business 

problem, a correlation coefficient of 0.39 may be a substantial and potentially profitable relationship; in 

the context of another, a correlation coefficient of 0.78 may not be strong enough to act upon.  

Statistical significance of correlation coefficients can likewise be misleading, for larger quantities of data 

(which are typical for many business data sets) all correlation coefficients, even those close to zero, will 

be found statistically significant.  Finally, decisions about whether to include a variable in a model should 

generally not be made based on correlation alone due to the potential interaction between variables.  

Despite these potential issues, correlation coefficients can provide valuable insight into the nature of 

the relationships that exist in the data. 

 

Data Visualization for EDA 

There are numerous data visualizations that are useful for EDA.  In fact, entire books and courses are 

often dedicated to data visualization.  However, for the purpose of exploring data (and not creating eye-

catching reports for the purpose of attracting customer attention) using just a handful of tools can be 

quite effective.  Run charts, histograms, scatter plots, and box whisker plots are briefly detailed in this 

section. 
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A run chart (sometimes called a line chart) is a plot of a variable over time or in the order the data were 

collected.  It is useful for determining patterns over time and should only be used if there is a sequence 

or time element to the order data appear in a column.  The run chart can make discoveries other 

visualization tools cannot.  The run chart can identify non-random patterns over time, patterns 

indicating seasonal or time trends or potential information quality issues (see Figure 2.3). 

Figure 2.3 A Run Chart Showing a Period of Time with a Non-Random Pattern 

 

 

A histogram is a bar char of a variable showing the frequency of values in given ranges.  The histogram is 

useful for showing the overall statistical distribution of data.  It can also be used to diagnose problems in 

data, such as missing values or non-typical distributions (see Figure 2.4). 

Figure 2.4 A Histogram Showing an Unexpected Peak and Gap in Data 

 

 

The statistical distributions that are identified in histograms are important to understand for data 

analysis. A distribution describes how data are spread or distributed across different values. 

Incorporating summary statistics, a distribution is typically characterized by a measure of central 

tendency, such as the mean or median, along with a measure of variability, such as the standard 

deviation or variance. By understanding the distribution of data, we can gain insights into the patterns 

and characteristics of the data, including any outliers or extreme values. Most statistical distributions 
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are described using a probability density function, which represents the theoretical line that would 

appear on top of a histogram of the data. Knowing the underlying distribution of data can be important 

for many analytics tasks, such as hypothesis testing, predictive modeling, and simulation modeling. By 

understanding the distribution of the data, more accurate predictions and more meaningful conclusions 

can be drawn from predictive modeling.  There are numerous statistical distributions.  Figures 2.5 and 

2.6 show a Normal distribution and Exponential distribution by way of example. 

Figure 2.5 Example of a Histogram Depicting a Normal Distribution 

 

Figure 2.6 Example of a Histogram Depicting an Exponential Distribution 

 

 

A scatterplot shows the relationship between two variables.  The scatterplot can identify more complex 

relationships than correlation coefficients alone.  Further, scatterplots can identify outliers in two 

dimensions that cannot be identified in either run charts or histograms (see Figure 2.7). 
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Figure 2.7 A Scatterplot Showing a Linear Relationship and Unexpected Points That Do Not Follow the 

Relationship 

 

A box plot, also known as a box-and-whisker plot, is a graphical representation of the distribution of a 

dataset that is commonly used in EDA. It displays the median, quartiles, and range of the data. The box 

in the plot represents the middle 50% of the data, with the bottom and top edges of the box 

representing the first and third quartiles (25% and 75% quantiles of the data), respectively. The line 

inside the box represents the median of the data. The whiskers extend from the box to show a relative 

measure of the “range” of the data, typically defined as 1.5 times the interquartile range. Box plots are 

useful for comparing the distributions of different datasets and for identifying outliers.  Note that 

outliers are more aggressively identified by the box plot than other techniques and may not accurately 

represent unexpected values.  Figures 2.8 and 2.9 show a single box plot and a boxplot chart that 

compares groups.  Figure 2.8 shows a box plot of an exponential distribution and identifies many 

“outliers” that are actually expected values for an exponentially distributed variable. 

Figure 2.8 A Single Box Plot Showing Skewed Data  
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Figure 2.9 Box Plots That Compare Different Groups of Data 

 

 

There are issues with using data visualizations for EDA.  Unless annotated with additional statistical 

calculations, graphs do not show statistical significance and can often be misinterpreted as if they do.  

Further, for the large quantities of data that are increasingly common in data analysis, many otherwise 

effective visualizations can become ineffective or difficult to create due to amount of data involved.  It 

may become necessary to sample data to effectively visualize it, but sampling potentially masks outliers 

and information quality issues.  Using both a combination of both summary stats, visualizations, and 

using and understanding statistical hypothesis tests can overcome these limitations. 

 

EDA in R 

R has numerous functions and packages for exploratory data analysis.  In this section, a sampling of 

these feature will be described.  Note, many of these R commands were introduced in Module 1; here 

they are revisited in context of EDA. 

The first set of R EDA examples use the file “project.csv”.  The project data set can be loaded into R as 

follows 

project <-read.csv("C:/Users/hbrown11/Desktop/project.csv",header=TRUE) 

#confirm the file loaded correctly and see what the file looks like: 

head(project) 

The highlighted code will change based on the location that you saved the project csv file.  Included in 

the project data set (Figure 2.10) are business project data with the following columns:  

Event, a numerical identifier uniquely identifying each project, 
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emp_id, a numerical identifier uniquely identifying each employee, 

days_duration, the number of days each project lasted, 

project_cost, the total cost of the project 

 

Figure 2.10 The Project Data Set 

 

 

Summary Statistics in R 

To summarize all columns in project: 

summary(project) 

Note this includes columns “Event” and “emp_id”, for which numerical summary statistics are nonsense 

as these are identifiers without numerical interpretation.  To just summarize the columns of interest, 

each can be specified as follows: 

summary(project$days_duration) 

summary(project$project_cost) 

To calculate the mean and standard deviation of all columns the following code can be used: 

apply(project,2,mean) 

apply(project,2,sd) 

The code above tells R to apply the mean functions to the table project for all columns.  Note in the 

second argument of the “apply” function: 2=columns, 1=rows.  Again, this gives stats for the “id” 

columns of Event and emp_id, alternatively each column can be specified: 

mean(project$days_duration) 

sd(project$days_duration) 

mean(project$project_cost) 

sd(project$project_cost) 

Correlations of all columns can be found by the following command: 

cor(project) 
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Correlation of just days_duration and project_cost can be found as follows: 

cor(project$days_duration,project$project_cost) 

 

Histograms in R 

Histograms may be created as follows: 

hist(project$days_duration) 

#note run the code to create a single histogram one at a time, or you will only see the last histogram 

hist(project$project_cost) 

There are many options to improve the appearance of data visualizations in R.  (Often when performing 

EDA prior to starting a predictive modeling project the visualizations will not be shared and improving 

the appearance is not a priority).  The following code adds labels and recolors the histogram, creating 

the histogram seen in Figure 2.11: 

hist(project$days_duration,  

main="Histogram of Days Duration", 

xlab="Days Duration", ylab ="Frequency", col="blue") 

Figure 2.11 Histogram of Days Duration with Labels and Color Change 
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Box plots in R 

Single box plots may be created as follows (see Figure 2.12): 

boxplot(project$days_duration) 

boxplot(project$project_cost) 

To create boxplots by emp_id that allows a comparison of days_duration by employee use: 

boxplot(project$days_duration~project$emp_id) 

 

Figure 2.12 Box Plot of “days_duration” 

 

Run Charts in R 

The following code creates a run chart and a line at the mean (see Figure 2.13): 

plot(project$days_duration,type="b") 

abline(h=mean(project$days_duration)) 

For the project cost column: 

plot(project$project_cost,type="b") 

abline(h=mean(project$project_cost)) 

 



37 
 

Figure 2.13 Run Chart of “project_cost” 

 

Scatterplot in R 

The following code creates a scatterplot (see Figure 2.14). 

plot(project$days_duration,project$project_cost) 

 

Figure 2.14 Scatter Plot of days_duration and project_cost 
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Full R Code for EDA of “project” Data Set: 

project <-read.csv("C:/Users/hbrown11/Desktop/project.csv",header=TRUE) 

head(project) 

summary(project$days_duration) 

summary(project$project_cost) 

mean(project$days_duration) 

sd(project$days_duration) 

mean(project$project_cost) 

sd(project$project_cost) 

cor(project$days_duration,project$project_cost) 

hist(project$days_duration) 

hist(project$project_cost) 

boxplot(project$days_duration) 

boxplot(project$project_cost) 

plot(project$days_duration,type="b") 

abline(h=mean(project$days_duration)) 

plot(project$project_cost,type="b") 

abline(h=mean(project$project_cost)) 

plot(project$days_duration,project$project_cost) 

 

Conclusions from the EDA of the “project” Data Set 

After running the above code in R, the following conclusions can be made: 

• Both Days_duration and project_cost appear approximately exponentially distributed (from the 

histogram) 

• No real outliers or datapoints of concern in tdriv.project (from all plots and summaries, 

considering the data are exponentially distributed) 

• Days_duration and project_cost are not correlated and do not seem to be related (from the 

correlation and scatterplot) 

See Figure 2.15 for the output that led to these conclusions. 
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Figure 2.15 Selected Output from the EDA of the “project” Data Set 

 

 

Drawing Conclusions from EDA 

With a basic understanding of descriptive statistics and data visualization, understanding the nature of 

the data by looking at graphs and summary statistics is straight forward.  For the project data, we can 

conclude the days_duration and project_cost columns are exponentially distributed, which is not 

unexpected given the nature of such business data (long expensive projects are less likely to happen, but 

do occur).  Also, interestingly, the length of the project and cost of the project are not correlated.  

Are there potential information quality issues in the project data set?  Identifying outliers is one 

indication of data needing investigation.  An outlier is not a firmly defined concept, one general rule of 

thumb is any point falling outside of three standard deviations from the mean (however, this can 

happen for large sample sizes without being an outlier, or for skewed distributions).  The interquartile 

range (the difference between the 75th percentile and 25th percentile) multiplied by 1.5, as is used in 

the box and whiskers plot, is also often used—note that this is even more likely to find false outliers 

than plus or minus three standard deviations. Understanding the underlying data and its context is key 

to correctly identifying outliers.  In addition, graphs (with experience), when possible, are generally 

better for identifying what does not look typical and should be further investigated.  Practice is key to 

recognizing what doesn’t look correct in a set of data.  From an experienced data analyst’s view, there 

are no outliers or potential information quality issues in the project data set we just examined. 

There are several potential pitfalls involved with trying to identify potential information quality issues.  

Those new to EDA will often over-identify patterns or points in data as concerning when, in fact, what is 

observed is expected variation in the data.  Depending on where you work and the kinds of data you 

receive professionally, you may be much more likely to receive data with no issues—dozens of data sets 
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may be analyzed before an issue is found.  In other analyst situations, data may need to be routinely 

“cleaned” before every analysis (variables recoded, errors addressed, missing values dealt with, etc.). 

Finally, if questionable data are identified, data points should never be removed from data without an 

investigation that leads to justifiable reason for removal (such as an identified data entry error).   

 

Example 2 EDA 

The csv file dataforEDA contains four simulated columns of data (W, X, Y, and Z) and an id column.  

Without context to what processes these data represent, we will see what conclusion we can make 

purely from EDA. 

Figure 2.16 Contents of the File “dataforEDA” 

 

 

R Code for EDA of “dataforEDA” 

EDA <-read.csv("C:/Users/hbrown11/Desktop/dataForEDA.csv",header=TRUE) 

#don’t forget to change the path to match your file path 

head(EDA) 

summary(EDA) 

mean(EDA$W) 

sd(EDA$W) 

mean(EDA$X) 

sd(EDA$X) 

mean(EDA$Y) 

sd(EDA$Y) 

mean(EDA$Z) 

sd(EDA$Z) 

cor(EDA) 

hist(EDA$W) 
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hist(EDA$X) 

hist(EDA$Y) 

hist(EDA$Z) 

plot(EDA$W,type="b") 

abline(h=mean(EDA$W)) 

plot(EDA$X,type="b") 

plot(EDA$Y,type="b") 

plot(EDA$Z,type="b") 

plot(EDA$W,EDA$X) 

plot(EDA$W,EDA$Y) 

plot(EDA$W,EDA$Z) 

plot(EDA$X,EDA$Y) 

plot(EDA$X,EDA$Z) 

plot(EDA$Y,EDA$Z) 

 

Figure 2.17 Selected Output from the EDA of the “dataforEDA” Data Set 
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Conclusions EDA of “dataforEDA”  

After running the R code and reviewing the output (see Figure 2.17), the following conclusions can be 

made: 

• Z and Y are fairly highly correlated; X and Z somewhat so; no other variables appear correlated 

• W is approximately exponentially distributed (from the histogram); X, Y, and Z are normally 

distributed 

• No real outliers or datapoints of concern in dataForEDA (from all plots and summaries) 

 

Exercise Practice EDA  

The csv file “retail” contains daily sales values for four items at a particular retail location. Included in 

the retail data set (Figure 2.18) are the following columns:  

Day, sequential identifies the day of sales recorded for this time period (Day =1 is the first recorded day 

of says, Day=2 is the second, etc.) 

The columns Coke2Liter, Advil30CntGel, BountyPaperTowel2pk, BountyPaperTowel2pk, and 

IvorySoap6pk are daily sales values for the given product. 

Figure 2.18 Contents of the File “retail” 

  

 

Perform EDA on the retail file on your own (solution will follow) by doing the following: 

1. Calculate summary stats: max, min, median, mean, standard deviation, correlation 
2. Create Histograms 
3. Create Run Charts  
4. Create Scatterplots 
5. Provide a few sentences that explain what you discovered 
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Solution to Practice EDA Exercise 

R Commands: 

retail<-read.csv("C:/Users/hbrown11/Desktop/retail EDA.csv",header=TRUE) 

head(retail) 

summary(retail) 

mean(retail$Coke2Liter) 

sd(retail$Coke2Liter) 

mean(retail$Advil30CntGel) 

sd(retail$Advil30CntGel) 

mean(retail$BountyPaperTowel2pk) 

sd(retail$BountyPaperTowel2pk) 

mean(retail$IvorySoap6pk) 

sd(retail$IvorySoap6pk) 

cor(retail) 

hist(retail$Coke2Liter) 

hist(retail$Advil30CntGel) 

hist(retail$BountyPaperTowel2pk) 

hist(retail$IvorySoap6pk) 

plot(retail$Coke2Liter,type="b") 

plot(retail$Advil30CntGel,type="b") 

plot(retail$BountyPaperTowel2pk,type="b") 

plot(retail$IvorySoap6pk,type="b") 

plot(retail$Coke2Liter,retail$Advil30CntGel) 

plot(retail$Coke2Liter,retail$BountyPaperTowel2pk) 

plot(retail$Coke2Liter,retail$IvorySoap6pk) 

plot(retail$Advil30CntGel,retail$BountyPaperTowel2pk) 

plot(retail$Advil30CntGel,retail$IvorySoap6pk) 

plot(retail$BountyPaperTowel2pk,retail$IvorySoap6pk) 
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Figure 2.19 Selected Output from the EDA of the “retail” Data Set 

 

Conclusions EDA of “retail” Data Set 

After running the R code and reviewing the output (see Figure 2.19), the following conclusions can be 

made: 

• Bounty Towel has an outlier of 97.04 that should be investigated (to make sure there is not a 
data entry error; or in the case of better than expected sales, find out what was going on that 
day…a sale or other promotion? etc.) 

• Ivory Soap had an unusual pattern near the end of time period found on the run chart.  This also 
needs investigation (was it a data entry error, was there a stocking or facing issue in the retail 
store? etc.) 

• Otherwise the data were pretty unremarkable, no strong relationships, no other issues 
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Exploring Categorical Data 

Categorical data (or discrete data) are data with columns that contain nonnumeric data such as text 

data.  Categorical data cannot be explored in the same manner as continuous data.  Tables and bar plots 

are quick ways to explore categorical data.  

The csv file “SeniorSurveyQuestion” contains results from the following question asked to senior 

business students in a survey:  “Rate your level of satisfaction with your attainment of skills and 

knowledge that transfer to the workplace”.  Included in the data set (Figure 2.20) are only two columns, 

an “ID” column uniquely identifying the student answering the question and the “Attainment” column 

with the student response (possible values include “Dissatisfied”, “SomewhatDissatisfied”, “NoOpinion”, 

“SomewhatSatisfied”, and “Satisfied”). 

 

Figure 2.20 Contents of the File “SeniorSurveyQuestion” 

 

R Code: 

sr<-read.csv("C:/Users/hbrown11/Desktop/SeniorSurveyQuestion.csv",header=TRUE) 

head(sr) 

table(sr$Attainment) 

t=table(sr$Attainment) 

barplot(t) 

barplot(t,las=2) 

par(mar = c(10, 5, 10, 5))  

barplot(t,las=2) 

 

Note, the last three lines optionally improve the plot a little.  One label is crowded out in the original 

plot, so the las=2 option, places the labels vertically to fit them all in.  Because the names are longer, to 

see the entire response we need to change the default margins to display the full words with the 

par(mar=c(10,5,10,5)) statement.  In the four numbers, the first number is the bottom margin, the 

second number is the left margin, third top, fourth right).  Figure 2.21 displays the resulting bar chart. 
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Figure 2.21 Bar Chart of Attainment from “SeniorSurveyQuestion” 
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Module 2 Assignment 

The data set AssignmentdataforEDA.csv are data from a food industry experiment that is seeking to use 

a UV instrument to predict log10 APC levels in raw meat food samples. The UV instrument is a new 

method of ultraviolet bacteria detection; log 10 APC refers to a log 10 transformation of areobic plate 

count (a type of bacteria).  Raw meat product must be sampled to make sure bacteria levels are below 

what would indicate spoilage or potential safety concerns. Traditional bacteria testing techniques are 

destructive to the product and requires a plating and incubation period of approximately 48 hours (a 

long time when trying to ship food products).  The UV instrument attempts to instantly estimate the 

amount of bacteria on the raw meat. However, a relationship between the UV reading and the tried and 

trusted log10 APC results must be established via a regression model.  Building a good model would 

potentially speed up and improve the process of determining if there are any food safety issues in raw 

food.  We will build a model for these data later; now we just want to perform exploratory data analysis. 

For the data set, "AssignmentdataforEDA.csv", perform the following exploratory data analysis in R: 

1. Calculate a median, min, max, mean, standard deviation for each column 
2. Calculate correlation 
3. Create a run chart and histogram for each column 
4. Create a scatterplot 
5. In a short paragraph, note anything in the data that seems unusual (outliers, etc.) 

 

Couple of reminders:  make sure you include your R commands (R code or program) that you used to 

generate your graphs and output, make sure you use the correct table. 

Turn the assignment in as a single word document (or something equivalent) with your program, any 

pertinent output or plots you want to include, and your brief explanation of anything you found. 
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Module 3: Building Predictive Models with Regression and 

Multiple Regression 
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Regression for Predictive Modeling 

In this module, we finally get to the subject of this course:  building predictive models.  Note, as we 

begin predictive modeling and leave EDA behind, we will no longer perform EDA before analyzing data.  

However, EDA should routinely be done for “real life” data analysis projects.  The EDA portion of our 

predictive analysis examples is left out to focus on the models we are learning in each module. 

Regression is a logical first analytics modeling technique on which to begin a course on predictive 

modeling.  It is very likely that you have had exposure to regression numerous times before reaching this 

course.  However, as we will discuss and demonstrate in this module, building a regression model for 

professional use at a business may be a significantly different experience from how regression is taught 

in an introduction to statistics course.   

 

Why use Regression for Predictive Modeling? 

Regression models offer several advantages. They are well-developed theoretically, with ample 

documentation and numerous software options available. This ensures that data analysts have access to 

resources to support their analysis process. In addition, regression models generally enhance the 

understanding of a problem by providing insights into the relationships between variables. By examining 

the coefficients and significance levels, one can gain valuable insights into the factors that influence the 

outcome of interest. Further, when assumptions and inferences are correctly made, regression models 

allow for the precise quantification of uncertainty through the use of confidence intervals. This provides 

a measure of the reliability and accuracy of the model's predictions. Moreover, regression models are 

flexible and can be applied to a wide range of problems across various domains. They offer procedures 

for variable selection, allowing for the identification of the most relevant features that contribute to the 

outcome. Last but not least, regression models are often perceived as simpler than other modeling 

methods such as Artificial Neural Networks (ANN) for similar predictive modeling tasks. This simplicity 

can make them more accessible to businesses, especially when interpretability and transparency are 

needed. In summary, regression models provide a robust and versatile approach to understanding and 

predicting relationships in data. 

 

Disadvantages of Regression Models 

Despite their advantages, regression models also come with several disadvantages. As is the case with 

many analytics techniques, they are easy to use incorrectly. Without a proper understanding of the 

underlying theory and assumptions, analysts may make serious mistakes in model specification, 

interpretation, and inference. Regression models have traditionally been developed through careful 

iterative processes by the analyst, which can be time-consuming and labor-intensive. Another issue is 

the potential for overfitting. Regression models can be prone to capturing noise and idiosyncrasies in 

the data, leading to an overly complex model that fails to generalize well to new observations. 

Moreover, while regression models offer flexibility, they are not suitable for every situation. Different 

problems may require alternative modeling techniques that better capture nonlinear relationships or 

handle high-dimensional data. Regression models may be outperformed by other analytics techniques, 

such as machine learning algorithms or deep learning models, especially in scenarios where complex 
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patterns and interactions exist within the data. While regression analysis is still widely used and a good 

choice for many predictive modeling problems, it is necessary to be aware of its limitations and consider 

alternative approaches when warranted. 

 

Origins of Regression Analysis 

The history of regression analysis involves early contributions by Carl Friedrich Gauss.  During his career, 

Gauss worked at an observatory, where he made notable contributions to astronomy and celestial 

mechanics. In 1801 astronomers discovered Ceres, a dwarf planet located between Mars and Jupiter. 

However, due to its relatively short observation period, Ceres was subsequently lost and its exact orbit 

became uncertain.  In an effort to locate Ceres again, Gauss employed his method of least squares linear 

regression. By analyzing the available data points and minimizing the sum of squared errors, Gauss was 

able to accurately estimate the orbital parameters of Ceres and predict its location. Thus, in 1809 

regression analysis was demonstrated as an effective predictive technique.  Gauss's work on regression 

and the method of least squares laid the foundation for modern regression analysis, which has since 

become a fundamental tool in statistics and data analysis.  Adrien Marie Legendre made similar 

discoveries at about the same time as Gauss.  Sir Walter Galton would more thoroughly add 

contributions, followed by Karl Pearson and others. (For more details on the history of regression see 

Fahrmeir et al., 2022, among other sources.) 

 

The Many Forms of Regression 

The term “regression” refers to numerous modeling techniques that take the basic ideas of Gauss and 

incorporate them in various types of models.  Each form of regression is tailored to different scenarios 

and data types. The following is an overview of some commonly used types of regression: 

• Linear Regression: Linear regression is the most basic and widely used form of regression. In 
mathematics it is described as ordinary least squares linear regression with one predictor.  It 
models the relationship between a dependent variable and a single independent variable using 
a linear equation. The goal is to find the best-fitting line that minimizes the sum of squared 
residuals.  We will start with this form of regression. 

• Multiple Regression: Multiple regression extends linear regression to include multiple 
independent variables. It allows for the analysis of the simultaneous effect of several predictors 
on the dependent variable. The model estimates the coefficients of each independent variable 
while considering their relationships with the outcome variable.  After completely linear 
regression, we will cover multiple regression. 

• Polynomial Regression: Polynomial regression involves fitting a polynomial equation to the data 
instead of a straight line. It is useful when the relationship between the independent and 
dependent variables appears to be nonlinear. Polynomial regression can capture curvilinear 
patterns by including higher-order polynomial terms.  More generally, transformations of 
variables allow various nonlinear relationships to be captured by regression. 

• Logistic Regression: Logistic regression is employed when the dependent variable is binary or 
categorical. It models the probability of an event occurring by fitting a logistic function to the 
data. Logistic regression is commonly used for classification tasks and can handle both binary 
and multi-class problems. 
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• Ridge Regression: Ridge regression is a regularized form of linear regression that addresses the 
issue of multicollinearity (high correlation among predictors). It adds a penalty term to the loss 
function, which shrinks the regression coefficients, thereby reducing their variability. 

• LASSO Regression: LASSO regression, like ridge regression, is a regularized regression technique. 
It not only addresses multicollinearity but also performs variable selection by forcing some 
coefficients to become exactly zero. LASSO regression can be useful when dealing with datasets 
with a large number of predictors. 

• Time Series Regression: Time series regression is used when the data exhibits temporal 
dependence. It models the relationship between the dependent variable and one or more 
lagged values of itself or other relevant time series variables. Time series regression is 
commonly employed in forecasting and trend analysis. 

• Spatial Regression: Spatial regression or geographically weighted regression is used when the 
data exhibits location dependence. It models the relationship between the dependent variable 
and one or more spatially lagged values of itself or other relevant geographical variables. Spatial 
regression is commonly used in regional economics, environmental studies, geology, mining, 
and epidemiology. 

 

These are just a few examples of regression models, and there are many other specialized variations of 

regression. The selection of regression modeling technique depends on the nature of the data, the 

predictive modeling question, and the underlying assumptions of the analysis.   

 

How does Linear Regression Work? 

For the purposes of giving a conceptual understanding of how regression works an overly simple 

example is presented.  Be aware, this is an unrealistically small amount of data, regression should never 

be done based on only three observations (roughly anything less than 30 observations is suspect for 

statistical purposes; building a regression model for professional purposes, analysts will want much 

more data than 30 observations).  This first example is a demonstration of the calculations of regression 

where the arithmetic can be kept simple. 

Develop a model to predict Y given X using linear regression on the following table (see Figure 3.1 for a 

plot of these points): 
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Figure 3.1 A Plot of X and Y in a First Regression Example 

 

Linear regression estimates a slope, 1, and an intercept, 0 to fit the optimal equation to the data: 

y = 0 + 1x +  

Note,  refers to the error or residuals of the model.  The formulas to determine the slope and intercept 

for linear regression are given as follows: 

𝑠𝑙𝑜𝑝𝑒 =  𝛽1 =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑛

𝑖=1

∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1

 

 

𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 =  𝛽0 = �̅� − 𝛽1�̅� 

For our simple example: 

 

The final regression model can be seen in Figure 3.2.  The model can be used to take values of X an 

predict values of Y.  For example, if x = 4, the regression line would predict 2.25 as the value of y: 

 y = 0.75*4 – 0.75 

y = 2.25 
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Figure 3.2 A Simple Regression Model 

 

Now that we have looked at the basics of the mathematics behind building a regression model, we will 

look at the process of how to use regression correctly to build a predictive model that could be used by 

businesses. 

 

A More Realistic Regression Problem 

A real estate agency wants to create a system to help agents estimate house sale prices based on square 

footage.  The table (Figure 3.3) and graph (Figure 3.4) below detail the first 15 data points in a table of 

recent house sales: 

Figure 3.3 The First 15 Rows of a Real Estate Data Set 
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Figure 3.4 A Scatterplot of Points from the Real Estate Data Set 

 

 

A linear regression model can be used in this case, because the relationship between square-footage 

and house price, especially for houses in a particular area, is a linear relationship, i.e. as square footage 

increases, house price increases.  In this case, the dependent variable or response variable (the output 

of our model, identified as y in our regression formulas, and sometimes called the “target variable”) is 

house sale price.  The independent variable or predictor variable (the input of our model, identified as x 

in our regression formulas) is square footage.  Before completing this example in R, the process of 

building a predictive regression model will be briefly discussed. 

 

Hypothesis Testing Versus Predictive Modeling 

In a first class on statistics, regression is often introduced primarily as a method of hypothesis testing.  In 

regression for hypothesis testing, all of the available data are used to test if the slope is significantly 

different from zero: 

H0: slope = 0 

HA: slope ≠ 0 

In our example, this would be a test to see if square footage significantly impacts the a house sale price 

(obviously this is a well-known fact and does not need to be tested).  If the absolute value of test 

statistic is large enough (i.e. the probability of the data belonging to the null hypothesis small enough), 

we reject the null hypothesis and conclude square footage does impact home sale price. 

In predictive modeling, we might check the hypothesis test (it should be significant for a good model to 

exist), but emphasis is on the ability of our model to accurately make predictions for data that was NOT 

used to build the model.  For this reason, we divide our data available for building a model into training 

and testing data sets.  The training data are used to build the model; the testing data are withheld and 
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only used to test the model.  This provides a more realistic measure of how well our model will actually 

work.  Also, generally, we need more data for building predictive models than hypothesis tests (more 

data improves predictive accuracy).  If we only evaluate the model with the data that were used to train 

the model, the evaluation will be biased since the modeling technique used attempted to optimally fit to 

the training data (and may have overfit the data). 

Dividing your data into a training and testing data sets and trying out your model on the test data is a 

minimum expectation for all predictive modeling problems (regardless of the technique used, 

regression, Random Forests, artificial neural networks, etc.).  The idea is you only use a portion of the 

available data to build or “train” your model (or other data mining technique).  The other portion of the 

data is withheld and then used to test the model to provide a non-biased view of how the model 

performs.  The test data set is also sometimes called a “validation” data set.  It is also common for 

multiple training and test data sets to be used when large amounts of data are available.  

Generally, we want to divide the data randomly.  This can be done by using pseudo-random number 

generation and then sorting the data based on the random numbers.  How we divide the data into 

testing and training sets can vary, typically you want more data in the training data set than the test 

data set.  A common practice is to use 50 to 80% of the data for building the model and 50 to 20% of the 

data for training. 

 

Cross-Validation with Folding 

An innovative way of dividing data into training and test data that is now commonly used for model 

building is “cross-validation with folding” or k-fold cross-validation.  Using this method, we create 

multiple training data and test data sets from the data available to build a model (with clever 

replacement to get the most out of our data).  The training data are still used to build the model and the 

test data are still used to evaluate the model’s performance.  In cross-validation, the test data are called 

“out of sample” data, and the error calculated on the test data will be called “out of sample error” or 

“OOS error”.  The number of “folds” must be selected, typical values for the number of folds are 

between 5 and 10, as these are believed to balance between bias and variance (see Nti et al., 2021) 

Figures 3.5 to Figure 3.8 detail an example of how 5-fold cross-validation with folds works on an 

unrealistically small data set (so that we can see the details).  The data are approximately randomly and 

evenly divided into 5 groups (or folds).  The regression model will be fit 5 times, the first time, folds 1-4 

will be used to build the regression model to predict saleprice from sqft and fold 5 will be used as the 

test data (OOS error will be calculated for the test data). The second time, folds 1,2,3, and 5 will be used 

to build the regression model and fold 4 will be used as the test data (OOS error again only calculated 

from fold 4).  This process is repeated until each fold has been used as the test data once.  The OOS 

error is then averaged to provide an estimate of how the model will make predictions on data not used 

to build the model.  The regression model parameters can then be estimated with the full set of data. 
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Figure 3.5 Step 1 of Cross-Validation with 5 Folds: 

 

 

Figure 3.6 Step 2 of Cross-Validation with 5 Folds: 
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Figure 3.7 Step 3 of Cross-Validation with 5 Folds 

 

 

Figure 3.8 Final Steps of Cross-Validation with 5 Folds 

 

Fortunately, the messy details of estimating parameters and dividing data into training and test data 

sets for using k-fold cross-validation are handled by R.  In the next section, we will analyze the real 

estate data using R.  
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Regression with R 

R is a very good analytics option for building predictive regression models.  More than one package is 

available and can be used to build accurate linear regression models.  To demonstrate one way in which 

R can be used to build a predictive regression model using k-fold cross-validation, we will look at the 

real-estate example. 

The csv file housing contains real estate data from a particular area of a city (see Figure 3.9).  It includes 

the columns “sqft”, the house square footage, and “saleprice”, the sale price of the house. The goal of 

our regression analysis will be to build a linear model using sqft to predict saleprice.  Additionally, we 

will use cross-validation to accurately determine the expected error when using the model. 

Figure 3.9 Contents of the File “housing.csv” 

 

 

The R code for Building a Linear Regression Model with 5-fold Cross-Validation is as Follows: 

house <-read. csv("C:/Users/hbrown11/Desktop/housing.csv", header=TRUE) 

#reminder the file path will need to be changed to match where you saved the housing file 

head(house) 

install.packages("caret") #a reminder this only needs to be installed once 

library(caret) 

#Note we set a seed for the random number generation so that the random sampling will be 

repeatable 

set.seed(42) 

 # Set up 5-fold cross-validation 

train_control <- trainControl(method = "cv",number = 5) 

 # fit the model 

model <- train(saleprice ~sqft, data = house, method = "lm", trControl = train_control) 

# view the model output 

summary(model) 

model 
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The summary(model) statement produces the output in Figure 2.21, which has been annotated.  From 

this output, we have information about residuals, the model’s parameter estimates, and hypothesis 

tests.  In a traditional statistical experiment where regression is used to test a hypothesis, the t-tests and 

F-test play the key role.  However, in predictive modeling, while we generally want to see a significant F-

test/significant slope, we place more emphasis on evaluating the model with the test data set.  From the 

summary, we can get the parameter estimates used to create the linear model: 

house price estimate = -31246.873 + 78.812 *(square footage) 

To use the model, for example for a 1200 square-foot house, we could estimate a sale price as follows: 

House price estimate = -31246.873 + 78.812 *(1200) 

House price estimate = $63,327.53 

It is important to note that we should only make predictions for values of square-footage that were 

within the range of square-footages that were used to build the model (you can use summary(house) to 

find the max and min).  Making a prediction for a value outside the range used to build the model is 

extrapolation and will give untested and unreliable results (for example, plugging 300 in for sqft in our 

model gives a negative selling price), 

 

Figure 2.21 R Output for Viewing the Model and Hypothesis tests 

 

 

The R model output for out of sample error is given in Figure 2.22.  R provides three measures of the 

predictive accuracy using the out of sample data (the OOS data or test data), root mean square error 

(RMSE), R-squared (R2), and mean absolute error (MAE).  Again, calculating these values using only the 

data used to build the model would have produced inaccurate error estimates. 
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Figure 2.22 R Output for Building the Regression Model for “housing” 

 

 

RMSE 

The RMSE error is analogous to the “standard deviation” of prediction errors.  Many professional data 

analysts will prefer this measure of error because it can be quickly used for a rough estimate of 

prediction intervals (e.g. multiplying it by 2 and adding it to a prediction and subtracting it from a 

prediction roughly gives a 95% prediction interval).  The RMSE for the test data is calculated as  

RMSE = square root of ((observed –predicted)2/n) 

where each predicted value from the test data is subtracted from the observed (true) value, squared, 

averaged and then a square root applied.  For our example, the root mean square error is $8,162, and 

we could roughly expect our model to predict a housing price within +/-$16,324 of the true value 95% of 

the time. 

 

R-squared 

The R-squared is the correlation coefficient squared.  It is calculated by dividing the sum of the squares 

of the residuals by the sum of the squares of the observations: 

R-squared = 1 - ((observed –predicted)2/ (observed –mean of observed))2 

The closer the value of R-squared is to 1 the higher proportion of the variation in the data is explained 

by the model (a value of 1 means 100% of variation is explained by the model; a value of 0 means 0% of 

variation is explained by the model).  Note again, this is the R-squared value for the test data (not the 

training data).  The R-squared for our housing price example is 0.96, meaning roughly 96% of the 

variation in the test data was explained by the model.   
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MAE 

The mean absolute error is calculated by subtracting each predicted value of the test data from the 

observed (true) value, taking the absolute value, and then taking the average: 

MAE = (|observed –predicted|)/n 

The MAE can be interpreted as the expected average error for a single prediction from the model.  In 

our example the MAE is $6,015.  On average, a prediction for a house sale price made by our model will 

miss the true sale price by $6,015.  Note, mean absolute percent error is a closely related metric to MAE 

this is sometimes used that simply converts the expected error to a percent. 

 

Does Our OOS Error Indicate Our Model Good? 

What is considered a “good” model is relative—it depends on the business context.  There is nothing in 

our hypothesis tests or OOS error to indicate this model should not be used, but determining if it is a 

“good” model depends on questions such as:  What is the business currently using to make predictions 

of home sale prices?  Is this better?  How good are our competitors at making these kinds of 

predictions?  What kind of error rates can our decision makers live with?  Said another way, your model 

should be better than a random guess, but other than that, there are no “absolutes” when it comes 

using MSE, R-squared, and MAE to evaluate a model.  For one situation an OOS R-square of 0.96 may be 

too inaccurate to be a useful model; in another completely different situation, using a model with an 

OOS R-squared of 0.39 might significantly improve profits for a company. 

 

Visualizing Linear Regression and Prediction Intervals 

Linear regression with just one predictor is easily visualized.  Figure 3.23 visually demonstrates how a 

regression line is calculated so that the distance from each point to the line is minimized. 

Figure 3.23 Visualizing the Process of Linear Regression 
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Exact prediction intervals (confidence intervals for individual predicted values), in contrast to using 

RMSE to roughly estimate a prediction interval, can be calculated for a prediction made with the 

regression model using the following formula: 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑜𝑓 𝑥 =  ±𝑡𝑐𝑟𝑖𝑡(𝑅𝑀𝑆𝐸)√1 +
1

𝑛
+

(𝑥 − �̅�)2

∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1

 

Conceptually, prediction intervals for individual predictions made by the regression model can be 

thought of as normal distributions (t distributions because the standard deviation is estimated) with 

mean at the regression line and RMSE used to estimate the standard deviation (see Figure 3.24) 

Figure 3.24 Visualizing How Prediction Intervals are Calculated 

 

The following R code allows the regression line for the house example to be plotted with 95% prediction 

intervals.  The prediction could be changed to 99% intervals (or any other confidence level) by changing 

the option on predict to level=0.99. 

R Code for Visualizing the Regression Model with 95% Prediction Intervals 

regmodel<-lm(saleprice~sqft,data=house) 

plot(house$sqft,house$saleprice) 

abline(model) 

pred_interval <- predict(regmodel, newdata=house, interval="prediction",level = 0.95) 

lines(house$sqft, pred_interval[,2]) 

lines(house$sqft, pred_interval[,3]) 
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So, for our house sale price/square footage example, the lines surrounding the linear regression model 

in Figure 3.25 would be the 95% prediction limits.  Quantifying uncertainty in this way is always better 

for supporting decisions.  Instead of just saying, “We predict a 1400 square foot house will sale for 

$62,900”, we can say “we expect 95% of 1400 square foot houses to sell between $79,100 and 

$95,300”, providing a decision maker with much more accurate information. 

Figure 3.25 Regression Line with 95% Prediction Intervals for the “house” Data Set 

 

To use the model we created to make a prediction, we create a data frame with the value of square feet 

for the house and then use the predict function.  A prediction with 95% prediction intervals for a house 

of 1400 square feet can be found with the following R code (with output shown in Figure 3.26). 

R Code for Using Our Model to Make a Prediction 

newdata=data.frame(sqft=1400) 

predict(regmodel,newdata=newdata,interval="prediction",level=0.95) 

 

Figure 3.26 Prediction with 95% Prediction Intervals for a 1400 Square-Foot House 

 

Despite the fact that the prediction gives values down to a cent, in practice rounding the predicted 

house price would be best practice (to not imply our model is accurate down to the fraction of a cent).  

A responsible way to report a prediction for a 1400 square-foot house using this model would be:  Based 

on the data used to train the model, the predicted house sale price will be $79,100.  However, we are 

approximately 95% sure that the house will sell for between $62,900 and $95,300.  Also, keep in mind 

predictions are only valid from a range of 620 to 3,410 square-feet (the range of values used to train the 

model). 
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Summary for housing.csv Example 

Full R Program 

house <-read.csv("C:/Users/hbrown11/Desktop/housing.csv", header=TRUE) 

head(house) 

#install.packages("caret") #only needs to be ran once 

library(caret) 

set.seed(42) 

train_control <- trainControl(method = "cv",number = 5) 

model <- train(saleprice ~sqft, data = house, method = "lm",  trControl = train_control) 

print(model) 

summary(model) 

regmodel<-lm(saleprice~sqft,data=house) 

plot(house$sqft,house$saleprice) 

abline(regmodel) 

pred_interval <- predict(regmodel, newdata=house, interval="prediction",level = 0.95) 

lines(house$sqft, pred_interval[,2]) 

lines(house$sqft, pred_interval[,3]) 

newdata=data.frame(sqft=1400) 

predict(regmodel,newdata=newdata,interval="prediction",level=0.95) 

 

Summary of Results  

• A predictive model using ordinary least squares linear regression was built to predict house sale 
price using square footage 

• Selected output is given in Figure 3.27 

• The model may be written as 
house price estimate = -31246.873 + 78.812 *(square footage) 

• The model is valid for square footages from 620 to 3,410 

• The model was highly significant (p-value <0.0001) 

• For out of sample predictions, the RMSE is $8,081, the R-Square is 0.96, and the MAE is $6,204.  
On average, we can expect a prediction made by this model to be wrong by $6024. 
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Figure 3.27 Selected Output for the home Regression Example 

 
Note, the model was highly significant p-value of <2.2e-16, which is R scientific notation for 2.2x10-16 or 

0.000000000000000022.  
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Regression Practice Exercise 

The csv file “tenders” contains data from the food industry.  The poultry company wants to be able to 

predict tender weight (an expensive piece of chicken breast meat) by measuring live weights, which can 

be done in advance on a farm.  This will give the company advance knowledge on how much product 

they will have between certain weight ranges to meet customer orders.  The tenders file has a column 

“tenders” containing tender weights in grams and a column “live” containing live weights in grams (see 

Figure 3.28).   

Figure 3.28 Contents of the File “tenders.csv” 

 

 

Use the example program for housing.csv and complete the following (a solution will follow): 

• Predict the tender weight from the live weight column 
• Set-up 5-fold cross-validation 
• Calculate MSE, R-square, and MAE for the out of sample data 
• Check statistical hypothesis tests 
• Create a plot of the regression line that includes 95% prediction intervals  
• Use the model to make a prediction 
• Briefly discuss the results 
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R Program for the “tenders.csv” Regression Exercise 

tenders <-read.csv("C:/Users/hbrown11/Desktop/tenders.csv", header=TRUE) 

head(tenders) 

#install.packages("caret") #only needs to be ran once 

#library(caret) #still loaded if you did the house ex in the same session 

set.seed(42) 

train_control <- trainControl(method = "cv",number = 5) 

model <- train(tenders ~live, data = tenders, method = "lm",  trControl = train_control) 

model 

summary(model) 

regmodel<-lm(tenders~live,data=tenders) 

plot(tenders$live,tenders$tenders) 

abline(regmodel) 

pred_interval <- predict(regmodel, newdata=tenders, interval="prediction",level = 0.95) 

lines(tenders$live, pred_interval[,2]) 

lines(tenders$live, pred_interval[,3]) 

newdata=data.frame(live=3500) #don't make predictions for x outside the range used to build the 

model, the summary command can be used to check the max and min for x 

predict(regmodel,newdata=newdata,interval="prediction",level=0.95) 

Figure 3.29 What Had to be Changed in the R Code from the “house” Example: 
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Figure 3.30 Relevant Output for “tenders.csv” Regression Exercise 

 

Discussion of Results 

• A predictive model using linear regression was built to predict tender weight using live weight 

• The model may be written as 

tender = 14.519579+ 0.035215 *(live) 

• The model is valid for live weights from 2160 to 4031 (grams) 

• The model was highly significant (p-value <0.0001) 

• For a live weight of 3500g, the model predicts a tender weight of 138g (with 95% prediction 

intervals of 119 and 156, i.e. our best guess of a tender weight for a 3500g live weight is 138g, 

but we are approximately 95% certain it will be between 119g and 156g) 

• For out of sample predictions, the RMSE is 9.2, the R-Squared is 0.80, and the MAE is 7.4.  On 

average, we can expect a prediction made by this model to be wrong by 7.4g. 

Reminder, even though the R-Squared is lower and the MAE takes up a larger percentage of the 

prediction than our previous housing example, it does not necessarily imply this model is a “worse” 

model.  Model efficacy (and profitability) is determined by business context, is this a better method of 

making a prediction than what is currently being used? 
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Multiple Regression 

Multiple regression is regression with two or more predictor variables (or independent variables).  It 

extends linear regression to a more complex scenario where multiple predictors are considered 

simultaneously. Since we no longer have just a slope and intercept, the parts of the regression model 

are called “parameters”.  In multiple regression, the relationship between the dependent variable (often 

denoted as Y) and the independent variables (typically denoted as X₁, X₂, ..., Xₚ) is represented by the 

following equation:  

Y = β₀ + β₁X₁ + β₂X₂ + ... + βₚXₚ + ε 

In this equation: Y is the dependent variable we want to predict or explain, X₁, X₂, ..., Xₚ are the 

independent variables, β₀, β₁, β₂, ..., βₚ are the regression coefficients that represent the relationship 

between each independent variable and the dependent variable. They indicate the change in the 

dependent variable for a unit change in the corresponding independent variable holding all other 

variables constant, ε represents the residual or error term, which captures the unexplained variation in 

the dependent variable. The multiple regression model estimates the values of the regression 

coefficients based on a given dataset, aiming to find the best-fitting line or hyperplane that minimizes 

the sum of squared residuals. 

Computer algorithms for multiple regression models work by solving equations in matrix form, the 

solution (which gives the parameter estimates) can be written as follows: 

B = (X’X)-1X’Y 

Where B are the parameter estimates, X is the matrix of input variables (predictors), Y is a vector of 

outputs (responses).   

Notice fitting statistical models involves the matrix algebra operations of transpose and inversion.  Recall 

not all matrices can be inverted—however, this turns out to not be a major limitation for most statistical 

models (we avoid this by not using correlated input variables by feature selection or by dimension 

reduction, which will be covered later in this course).  Also note, matrix inversion will not work on 

missing values (rows have to be deleted or missing values estimated). 

If we are going to allow multiple predictors (inputs), the next question that might arise is how do we 

decide which inputs should be allowed to predict a particular output?  This is called “model selection”, 

“feature selection”, or “variable selection.  There are multiple methods of variable selection related to 

different techniques we will cover, so we will cover variable selection in Module 8 of this text.  Until 

then, when given multiple variable to use in a model, you can assume all the predictors are needed for 

the model. 

 

Multiple Regression in R 

The csv file housing2 contains a new set of real estate data (these data are from a larger geographical 

area than housing).  See Figure 3.31.  It includes the columns “SqFt”, the house square footage, “Age”, 

the age of the house in years, “Lotsize”, the size of the lot the house sits on in acres, and “SalePrice”, the 

sale price of the house. The goal of our regression analysis will be to build a multiple regression model 
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using Age, Lotsize, and SqFt to predict the target variable SalePrice.  Additionally, we will use cross-

validation to accurately determine the expected error when using the model. 

Figure 3.31 “housing2.csv” Contents (First Few Rows) 

 

 

The R code for Building the Multiple Regression Model with 5-fold Cross-Validation is as Follows: 

house2 <-read.csv("C:/Users/hbrown11/Desktop/housing2.csv", header=TRUE) 

#reminder the file path will need to be changed to match where you saved the housing file 

head(house2) 

#install.packages("caret") #a reminder this only needs to be installed once 

library(caret) 

#Note we set a seed for the random number generation so that the random sampling will be 

repeatable 

set.seed(42) 

set.seed(42) 

train_control <- trainControl(method = "cv",number = 5) 

model <- train(SalePrice ~., data = house2, method = "lm",  trControl = train_control) 

#model <- train(SalePrice ~Age+Lotsize+SqFt, data = house2, method = "lm",  trControl = 

train_control) 

summary(model) 

model 

 

Note there are two ways the model can be specified in R:   

SalePrice ~.   

The “.” tells R to use all other columns in the table as predictors of SalePrice. Or alternatively, 

SalePrice ~Age+Lotsize+SqFt  
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which tells R exactly which columns to use.  The “.” is provided as a method to ease programming 

typing.  However, be careful about using this for every modeling problem…if you have extra columns 

that should not be used in the model, such as an ID column, you cannot use this shortcut without 

creating a subset of the data that removes the unnecessary columns. 

The performance of the model can be seen in Figure 3.32.  The same error metrics are used for multiple 

regression and may be interpreted in the same manner.  As with linear regression, RMSE, R-squared, 

and MAE are calculated for the out of sample data (not used to build the model).  Once again, these 

measures are relative, and depend on business context to conclude if the model is valuable.  These 

metrics also can be used to compare potential models. 

Figure 3.32 Multiple Regression OOS Error for housing2.csv Example 

 

 

 As can be seen in Figure 3.33, the model can be written with the following coefficients: 

SalePrice=16629.736+77.852*SqFt-2836.042*Age+8661.828*Lotsize 

This equation can be used to plug in values for square footage, age, and lot size, to predict house sale 

price. The model was highly significant p-value of <2.2e-16, which is R scientific notation for 2.2x10-16 or 

0.000000000000000022. 

Figure 3.33 Coefficient Estimates and Hypothesis Tests for the housing2.csv Example 

 

Notice a plot of the multiple regression model cannot be made.  However, the model can be used to 

make predictions (for values within the range of the predictors used to the build the model).  For 

example, to make a prediction with 95% prediction intervals for a square footage of 1400, a 4-year-old 

house, on a 0.5-acre lot, use the following R Code: 

regmodel<-lm(SalePrice~.,data=house2) 

summary(house2) #to see max and min of inputs 

newdata=data.frame(SqFt=1400,Age=4,Lotsize=.5) 

predict(regmodel,newdata=newdata,interval="prediction",level=0.95) 
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Figure 3.34 A Prediction Using the Multiple Regression Model for “housing2” 

 

The prediction may be interpreted as, the predicted house sale price is $118,609 and we are 95% 

confident it will be between $67,3478 to $169,871. 

Summary of “housing2” Example 

Full R Program: 

house2 <-read.csv("C:/Users/hbrown11/Desktop/housing2.csv", header=TRUE) 

head(house2) 

library(caret) 

set.seed(42) 

train_control <- trainControl(method = "cv",number = 5) 

model <- train(SalePrice ~., data = house2, method = "lm",  trControl = train_control) 

model 

summary(model) 

regmodel<-lm(SalePrice~.,data=house2) 

summary(house2) #to see max and min of inputs 

newdata=data.frame(SqFt=1400,Age=4,Lotsize=.5) 

predict(regmodel,newdata=newdata,interval="prediction",level=0.95) 

Figure 3.35 Selected Output “housing2”: 
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Discussion of Results: 

• A predictive model using ordinary least squares linear regression was built to predict house sale 
price using square footage, house age, and lot size 

• The model may be written as 
SalePrice=16629.736+77.852*SqFt-2836.042*Age+8661.828*Lotsize 

• It is valid for square footages from 790 to 5800; ages from 1 to 42; and lot sizes from 0.03 to 
3.52. 

• The model was highly significant (p-value <0.0001) 
• For out of sample predictions, the RMSE is 26834, the R-Squared is 0.96, and the MAE is 21467.  

On average, we can expect a prediction made by this model to be wrong by $21,467. 
 

Comparing models 

The error for out of sample data is useful for comparing different candidate models.  For example, if we 

used only square footage as a predictor for the housing2.csv example, we would have the following 

program and results: 

set.seed(42) 

train_control <- trainControl(method = "cv",number = 5) 

model <- train(SalePrice ~SqFt, data = house2, method = "lm",  trControl = train_control) 

model 

Figure 3.36 OOS Error Using only Square Footage as a Predictor for the housing2 Data 

 

Comparing the results from Figure 3.35 to Figure 3.36, the model using all three inputs performs much 

better than using SqFt alone. 

 



74 
 

Module 3 Assignment 

Part 1: 

The data found in the csv file “APCuv” are data from a food industry experiment that is seeking to use a 

UV instrument to predict log10 APC levels in raw meat food samples (you explored this data last module 

to address information quality, so you DO NOT need to do EDA). The UV instrument is a new method of 

ultraviolet bacteria detection; log 10 APC refers to a log 10 transformation of areobic plate count (a type 

of bacteria).  Raw meat product must be sampled to make sure bacteria levels are below what would 

indicate spoilage or potential safety concerns. Traditional bacteria testing techniques are destructive to 

the product and requires a plating and incubation period of approximately 48 hours (a long time when 

trying to ship food products).  The UV instrument attempts to instantly estimate the amount of bacteria 

on the raw meat. However, a relationship between the UV reading and the tried and trusted log10 APC 

results must be established via a regression model.  Building a good model would potentially speed up 

and improve the process of determining if there are any food safety issues in raw food. 

Using R, build a linear regression model for the attached data to predict Log10APC results using the UV 

light readings as a predictor.  Using 5-fold cross-validation, build a regression model, give the RMSE, R-

squared, and MAE, check that the F-test is significant, build 95% prediction intervals and plot the model 

and prediction intervals, and make a valid prediction for a new UV value (not extrapolation). 

Create a document that briefly summarizes what you did, what you found, any key graphs or calculation 

etc., and includes your full R program (R commands). 

Part 2: 

The csv file halloweenCandy contains retail sales data for stores in a large retail chain in the weeks 

nearing Halloween.  Some stores ran out of Halloween candy in a previous year, using the attached data 

from stores that did not run out of candy, we want to build a model to predict Halloween candy sales 

based on the sales of other items (so that predictions can be made on how much candy should be 

ordered for this year for stores that ran out last year).  The file halloweenCandy, contains sales data in 

columns for Candy (Halloween Candy sales), Costume (Halloween costume sales), Decorations 

(Halloween decoration sales), and Pumpkin (sales of pumpkin).   You do NOT need to do exploratory 

data analysis on these data (in real life you would).  Build a model to predict Candy Sales (assume 

Costume, Decorations, and Pumpkin Sales are all needed--you do NOT have to do variable selection), 

use 5-fold cross-validation, give the RMSE, R-squared, and MAE, check that the F-test is significant, and 

to demonstrate the model by making a valid new prediction of Candy Sales for new values of costume, 

decorations, pumpkin sales.  Add the results to your document from Part 1, briefly summarizing what 

you did, what you found, any key graphs or calculation etc., and include your full R program (R 

commands). 
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Module 4: Building Predictive Models with Regression Trees 

and Random Forests for Regression 
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Introduction to Regression Trees 

Regression trees, also known as "decision trees," are an intuitive approach to predictive modeling. 

When employed to forecast continuous variables or numeric data, they are referred to as "regression 

trees." A trained regression tree creates a tree-like structures where the path to making a prediction can 

be visualized. The construction of regression trees involves algorithms that attempt to optimally 

partition the predictor variables, forming branches and nodes, by minimizing errors in the response 

variable at each node. By recursively branching based on different features, these trees can offer a 

systematic and interpretable framework for analyzing data, enabling accurate predictions while also 

providing valuable insights into the underlying relationships within the dataset (see Figure 4.1). 

Figure 4.1 An Example Regression Tree to Predict House Selling Price Using Square Footage 

 

Regression and classification trees originated in the field of data analysis and machine learning. The 

concept of decision trees can be traced back to the 1960s, with the work of Arthur Samuel and Edward 

Feigenbaum on the development of computer programs capable of learning from data. However, the 

formalization and popularization of decision trees as a standalone technique can be attributed to the 

work of Leo Breiman, Jerome Friedman, Charles Stone, and Richard Olshen in the early 1980s. In their 

seminal book "Classification and Regression Trees," published in 1984, they presented a comprehensive 

framework for constructing decision trees and introduced innovative algorithms for recursive 

partitioning. This book laid the foundation for the widespread adoption and further advancement of 

decision trees, leading to the development of more sophisticated tree-based algorithms, such as 

Random Forests and gradient boosting, in subsequent years.  
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Advantages of Regression Trees 

As a modeling technique, regression trees offer several advantages.  Regression trees are more intuitive 

to use than many techniques.  They are relatively computationally inexpensive to create and use.  

Further, the tree-like structures provide a visual interpretation of the model.  While regression trees are 

known to be one of the less accurate machine learning approaches, their performance can be improved 

by strategies involving multiple trees (e.g. Random Forests).  Finally, tree models handle categorical 

predictor variables more naturally then other techniques in which categories must often be turned into 

indicator variables (recoded as 0s and 1s). 

 

Disadvantages of Regression Trees 

There are likewise several disadvantages to regression trees as a predictive model technique.  

Regression trees are prone to overfitting data (for this reason “good” software that builds regression 

trees will have built in cross-validation, use a complexity parameter, and other techniques, such as a 

minimum number of values in a leaf node, to prevent overfitting).  Further, for large amounts of data 

and a large number of predictors, a tree would become too large to be visualized.  Finally, because of an 

inability to model complex relationships between predictor variables, unless multiple trees are 

combined, single regression trees do not perform as well as other techniques. 

 

How a Regression Tree Works 

An unrealistically small example is presented to help conceptualize how a regression tree is trained.  For 

the table presented in Figure 4.2, we will build a regression tree to predict Y from X. 

Figure 4.2 Small Sample of Data to Demonstrate Regression Tree Training 

 

Begin by sorting by X as seen in Figure 4.3. 

 

  



78 
 

Figure 4.3 The Data Sorted by X 

 

Divide the data into all possible splits using X.  The first possible split could be made at X<3, X>3 (the 

average of the first two rows of X (Figure 4.4).  The average of Y for each split becomes the predicted 

value of Y for that split.  For example, the average of Y for the top split in Figure 4.4 would be 10; the 

average of Y for the bottom split would be 21.33.  The mean square error (MSE) can then be calculated 

as the average of (Actual Y – Predicted Y)2.  For the first possible split the MSE can be calculated as: 

( (10-10)2 + (20-21.33)2 + (16-21.33)2 + (28-21.33)2 ) / 4 

Thus, the MSE = 18.67 for possible split 1. 

 

Figure 4.4 The First Possible Split 

 

 

This process is repeated for each possible split.  The second possible split, split 2, is given in Figure 4.5 

and would be made at X<5, X>5.  The average of Y for the top split in Figure 4.5 would be 15; the 

average of Y for the bottom split would be 22.  For the second possible split the MSE can be calculated 

as: 

( (10-15)2 + (20-15)2 + (16-22)2 + (28-22)2 ) / 4 

MSE = 30.5 for possible split 2. 
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Figure 4.5 The Second Possible Split 

 

 

The third possible split, split 3, is given in Figure 4.6 and would be made at X<7, X>7.  The average of Y 

for the top split in Figure 4.6 would be 15.33; the average of Y for the bottom split would be 28.  For the 

second possible split the MSE can be calculated as: 

( (10-15.33)2 + (20-15.33)2 + (16-15.33)2 + (28-28)2 ) / 4 

MSE = 12.7 for possible split 3. 

Figure 4.6 The Third Possible Split 
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After considering all possible splits, split three would be chosen (Figure 4.7) because it minimizes MSE. 

Figure 4.7 The Selection of Possible Tree Splits 

 

In the selected regression tree, if X<7 then the regression tree predicts Y will be 15.33; if X>7, the 

regression tree predicts Y will be 28. 

If we had more rows of data, we would consider a second split for each of our nodes.  The process we 

just completed would be repeated for the subset of data at each node.  If we have multiple predictors, 

the same process is repeated for each predictor, the predictor minimizing MSE is used at each node. 

Overfitting is a problem for regression trees.  MSE can always be made 0 by continuing the regression 

tree until each node only has one value, but the resulting tree is likely unrealistically fit to the training 

data.  Good regression tree algorithms (such as the one used in R) will use built-in cross-validation to 

prevent overfitting.  Other settings, such as a minimum number of values in each leaf node, are also 

used to prevent overfitting. 

 

Regression Trees with R 

Regression trees can be easily constructed and visualized in R.  To demonstrate a regression tree, we will 

begin by looking at the house real-estate example. 

The csv file housing contains real estate data from a particular area of a city (see Figure 4.8).  It includes 

the columns “sqft”, the house square footage, and “saleprice”, the sale price of the house. The goal of 

our regression tree will be to build a model using sqft to predict saleprice.  Additionally, we will use 

cross-validation to accurately determine the expected error when using the model. 
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Figure 4.8 Contents of the File “housing” 

 

 

As a change from last module, we will use training and testing data sets instead of cross-validation to 

demonstrate an alternative to cross-validation.  Note, both regression trees and Random Forest in R use 

cross-validation as a part of their algorithms in the model fitting process.  Using training and testing sets 

will allow us to demonstrate another method of evaluating models with out of sample data. 

There is more than one was to split data into training and testing data sets.  In the following data set, we 

will do this manually using the features available in base R without installing additional libraries.  We will 

set a random seed, create a column of pseudo-random values between 0 and 1 in our data set, split the 

data based on the random values into subsets of about 60% for training and 40% for testing, and finally 

remove the random column.  These steps can be seen in the following R code. 

 

The R code for Dividing Data into Training and Testing Data Sets: 

house <-read. csv("C:/Users/hbrown11/Desktop/housing.csv", header=TRUE) 

#reminder the file path will need to be changed to match where you saved the housing file 

head(house) 

set.seed(19) #make the split repeatable 

R=runif(nrow(house)) #create a column of random values between 0 and 1 that is the length of our 

table (from the random uniform distribution) 

house$R=R #add the random numbers to our table 

train<-house[house$R<=.6,] #select roughly 60% for training 

test<-house[house$R>.6,] #the other 40% gets placed in test 

train<-subset(train,select=-c(R)) #remove the column R 

test<-subset(test,select=-c(R)) #remove the column R 

 

Once the data are divided into training and test data sets, we can build the regression tree. 
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The R code for Building the Regression Tree: 

install.packages('rpart', dependencies = TRUE) #once installed, this will not need to be ran again 

install.packages('rpart.plot', dependencies = TRUE) #once installed, this will not need to be ran again 

library(rpart) 

library(rpart.plot) 

tree<-rpart(saleprice~sqft,data=train) 

#if you want to see details about the tree fitting process use summary and print 

#summary(tree)  

rpart.plot(tree, type = 4, extra = 101, digits=-4) 

 

In the plot command to graphically display the tree, the following options were used: type=4 labels the 

splits and the nodes in the tree, extra=101 adds extra statistics to each node, digits=-4 prevents R from 

using scientific notation.  The regression tree fit by R is displayed in Figure 4.9. 

Figure 4.9 Regression Tree to Predict Sale Price From the “housing” Data 

 

 

Note: Your tree may look a little different, if you used a different starting seed for dividing the data into 

training and test datasets, or if you are using a different version of R (or different operating system), our 

training data may be different (this doesn’t mean it is wrong).The tree could be used as follows: to make 

a prediction for a house that is 1300 square feet, start at the root node and move to the left, since 1300 
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is less than 1556; then, move to the right, since 1300 is more than 1205.  The leaf node predicts the 

1300 square-foot house to sell for $73,671. 

Running summary(tree) will show, among other things, a behind the scenes statistic, CP, that it used to 

“prune” the tree.  CP is the “Complexity Parameter” which is calculated as the sum of the error and the 

number of nodes times a tuning parameter; it is used to determine when to stop splitting a tree to avoid 

over-fitting.  CP is not useful for comparing model results (for example, to compare trees to regression, 

because it is not used in other techniques).  Cross-validation is used with CP to reduce over-fitting as a 

part of the rpart algorithm. 

To evaluate the regression tree with the test data, the following code is used. 

R Code for Evaluating the Regression Tree: 

predicted <- predict(tree,newdata=test) #apply tree to test data 

mae<-mean(abs(test$saleprice-predicted)) #calculate mae 

cat("MAE",mae,"\n") #just prints the name and the value of mae 

rmse<-(mean((test$saleprice-predicted)**2))**.5 

cat("RMSE",rmse,"\n") 

rsquared=1-( sum((predicted-test$saleprice)^2))/(sum((test$saleprice-mean(test$saleprice))^2)) 

cat("Rsquared",rsquared,"\n") 

 

The regression tree produces OOS error estimates of a MAE of 13889.34, a RMSE of 16449.89, and an R-

squared valued of 0.7411603.   

Compared to the Module 3 results for linear regression of a MAE of 6015.2, a RMSE of 8162.942, and an 

R-squared valued of 0.960561, the regression model is a better technique to use for these data than the 

decision tree.  In general, ordinary least-square regression should perform better than a tree when there 

is a simple linear relationship between two continuous variables 
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Summary of Example 1 “housing” 

The Full R Program 

house <-read.csv("C:/Users/hbrown11/Desktop/housing.csv", header=TRUE) 

head(house) 

set.seed(19 

R=runif(nrow(house))  

house$R=R  

train<-house[house$R<=.6,] 

test<-house[house$R>.6,] 

train<-subset(train,select=-c(R))  

test<-subset(test,select=-c(R)) 

library(rpart) 

library(rpart.plot) 

tree<-rpart(saleprice~sqft,data=train) 

rpart.plot(tree, type = 4, extra = 101, digits=-4) 

predicted <- predict(tree,newdata=test)  

mae<-mean(abs(test$saleprice-predicted))  

cat("MAE",mae,"\n")  

rmse<-(mean((test$saleprice-predicted)**2))**.5 

cat("RMSE",rmse,"\n") 

rsquared=1-( sum((predicted-test$saleprice)^2))/(sum((test$saleprice-mean(test$saleprice))^2)) 

cat("Rsquared",rsquared,"\n") 
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The tree and OOS error estimates are the primary output of interest for the regression tree. 

Conclusions for the Regression Tree are Given as Follows: 

Figure 4.9 Regression Tree to Predict Sale Price From the “housing” Data 

 

• The regression tree error: 

o MAE = $13,889.34  

o RMSE = $16,449.89  

o R-squared = 0.7411603 
• On average a prediction for house price using this model will be wrong by $13,889. 
• Unless there is a need to have a tree structure, the regression model should be used because it 

resulted in less error. 
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Regression Tree Practice Exercise 

The csv file “payment” (see Figure 4.10) contains information for patients that have a balance on a 

procedure not covered by insurance (or the government) that is eventually paid: 

DaysUntilPaid – number of days until a procedure is paid for in full 

PrivateInsurance  – Does the patient have private insurance (yes or no)? 

OutPatient – Was the procedure out-patient (yes or no)? 

Employed – Is the patient currently employed (yes or no)? 

ProcedureCost – cost of the procedure 

   

Figure 4.10 Contents of the File payment (First Few Rows) 

 

 

Use the example program for house and complete the following (a solution will follow):  Read 

payment.csv into R, divide the data into training and test data sets, construct a decision tree to predict 

how long it will take a patient to pay for their procedure (the target variable is DaysUntilPaid), plot the 

tree, calculate MAE, RMSE, and R-squared.   
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Solution to Practice Exercise 

R code: 

payment<-read.csv("C:/Users/hbrown11/Desktop/payment.csv", header=TRUE) 

head(payment) 

set.seed(19) 

R=runif(nrow(payment))  

payment$R=R  

train<-payment[payment$R<=.6,]  

test<-payment[payment$R>.6,]  

train<-subset(train,select=-c(R))  

test<-subset(test,select=-c(R))  

library(rpart) 

library(rpart.plot) 

tree<-rpart(DaysUntilPaid~.,data=train) 

rpart.plot(tree, type = 4, extra = 101, digits=-4) 

predicted <- predict(tree,newdata=test) 

mae<-mean(abs(test$DaysUntilPaid-predicted)) 

cat("MAE",mae,"\n") 

rmse<-(mean((test$DaysUntilPaid-predicted)**2))**.5 

cat("RMSE",rmse,"\n") 

rsquared=1-( sum((predicted-test$DaysUntilPaid)^2))/(sum((test$DaysUntilPaid-

mean(test$DaysUntilPaid))^2)) 

cat("Rsquared",rsquared,"\n") 
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The resulting tree: 

Figure 4.11 Tree to Predict Payment Days from the payment Example 

 

Using the tree: A patient with private insurance, who is employed, and has an out-patient procedure 

would be predicted to pay in 62 days.   

 

Conclusions: 

The regression tree error: 

MAE = 13.73276  

RMSE = 18.65054  

R-squared = 0.6791615  

On average a prediction for number of days until payment will be wrong by approximately 14 days 

Is this a good model?  Again, it depends. The three error numbers above cannot tell us this by 

themselves.  Is this a better method than what is currently being used?  Do we need a simple model 

where someone can just check the tree to make a prediction? 
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Random Forests 

Random Forests are a high preforming ensemble machine learning method that combines the 

predictions of multiple decision trees to improve the accuracy and robustness of the predictions. 

(Ensemble methods combine the results from multiple models.)  It was first introduced by Leo Breiman 

in 2001 as an extension of decision trees. Random Forests have gained significant popularity and 

become a widely used predictive modeling technique. 

Random Forests work by creating an ensemble of decision trees, each trained on a random subset of the 

training data and using a random subset of the features (predictor variables). During the prediction 

phase, each tree in the forest independently generates a prediction, and the final prediction is 

determined by aggregating the individual predictions through averaging for regression Random Forests. 

Leo Breiman's introduced Random Forests in his paper titled "Random Forests" published in 2001. In this 

paper, Breiman introduced the concept of Random Forests and highlighted their ability to reduce 

overfitting, handle high-dimensional data, and provide reliable predictions. The paper demonstrated the 

effectiveness of Random Forests through various experiments and comparisons with other classification 

algorithms. Since then, there has been a widespread adoption and diverse applications of Random 

Forest. 

Random Forests address many of the issues of a single regression tree.  When constructing a regression 

tree, there are potentially numerous ways to split trees, and no one way of creating a tree guarantees 

an optimal tree (small changes can result in drastically different trees being created).  Further, 

determining all possible trees for a large regression problem is unfeasible.  In a solution to these issues, 

Random Forests, create numerous “random” trees (each is potentially a “good” tree by using criteria 

such as MSE), each tree makes a prediction for a particular set of predictors, the average of the 

predictions is used as the final prediction.  

 

Advantages of Random Forests 

Random Forests have several advantages as a method of predictive modeling.  Random Forests are 

intuitive since they are based on regression trees.  However, they can handle much more complexity 

than a single regression tree.  Like regression trees, Random Forests handles categorical inputs more 

naturally than other techniques.  For some problems, Random Forests can outperform many other 

popular machine learning and statistical techniques.  They are considered one of the better modern 

machine learning techniques.  Random Forests have the advantage of producing variable importance 

measures that can be useful for feature selection or other decisions (we will cover this in Module 8).  As 

we will also see, Random Forests can be used for regression problems or classification problems (causing 

a little confusion, both are called “Random Forests”). 

 

Disadvantages of Random Forests 

Random Forests also have several disadvantages as a method of predictive modeling.  Random Forests 

are a “black-box” technique. Since numerous trees are created, there is not a single tree plot that can be 

visualized and this desirable quality of regression trees is lost.  For large amounts of data and large 
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numbers of predictors, Random Forests become computationally expensive.  Although there are 

suggestion for how many variables to consider, Random Forests can be sensitive to the “mtry” option.  

Despite these limitations, Random Forests are a popular and effective approach for predictive modeling. 

 

Details of How a Random Forest Algorithm Works 

In a Random Forest, a regression tree algorithm (as presented earlier in this module) is used to build a 

large number of trees, each tree will look at some subset of the predictor variables (all variables are not 

used at one time).  The default values for R are floor (number of predictors/3) predictors per tree (i.e. 

take the number of predictors divide it by three and truncate it to the nearest integer).  This can be 

changed with the mtry option.  500 trees are created by default in R (this can be changed with the 

ntrees option).   To make a prediction, specific values of the predictors will be input into the 500 trees.  

A prediction will be made by averaging the result of all 500 trees. 

 

Random Forests in R 

We will begin by using the housing data again.  Recall, the csv file housing contains real estate data from 

a particular area of a city (see Figure 4.11).  It includes the columns “sqft”, the house square footage, 

and “saleprice”, the sale price of the house. The goal of our Random Forest will be to build a linear 

model using sqft to predict saleprice.  Additionally, we will use cross-validation to accurately determine 

the expected error when using the model. 

Figure 4.11 Contents of the File “housing” 

 

 

The following code randomly divides the data into training and test data sets.  It creates the same 

subsets we just used for regression trees, so the following code would not need to be ran twice if both 

the regression tree and Random Forest were created at the same time. 
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The R Code for Dividing Data into Training and Testing Data Sets: 

house <-read. csv("C:/Users/hbrown11/Desktop/housing.csv", header=TRUE) 

#reminder the file path will need to be changed to match where you saved the housing file 

head(house) 

set.seed(19) #make the split repeatable 

R=runif(nrow(house)) #create a column of random values between 0 and 1 that is the length of our 

table (from the random uniform distribution) 

house$R=R #add the random numbers to our table 

train<-house[house$R<=.6,] #select roughly 60% for training 

test<-house[house$R>.6,] #the other 40% gets placed in test 

train<-subset(train,select=-c(R)) #remove the column R 

test<-subset(test,select=-c(R)) #remove the column R 

 

Once the data is divided into training and testing data sets, we can build the Random Forest. 

 

R Code for Random Forest for “house” Data Set: 

install.packages('randomForest', dependencies = TRUE) 

library(randomForest) 

RFM=randomForest(saleprice~sqft,data=train) 

#summary(RFM) 

predicted <- predict(RFM,newdata=test) 

mae<-mean(abs(test$saleprice-predicted)) 

cat("MAE",mae,"\n") 

rmse<-(mean((test$saleprice-predicted)**2))**.5 

cat("RMSE",rmse,"\n") 

rsquared=1-( sum((predicted-test$saleprice)^2))/(sum((test$saleprice-mean(test$saleprice))^2)) 

cat("Rsquared",rsquared,"\n") 
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Results 

The Random Forest model results in the following error for the test data: 

MAE 7770.567  

RMSE 18060.23  

R-squared 0.823324  

Compare these to the single regression tree and we can see the improvement of the forest: 

The regression tree error: 

MAE 13889.34  

RMSE 16449.89  

R-squared 0.7411603 

Note, the regression model from the previous module still performs best for these data. 

 

Full R Code for “house” Random Forest Example  

house <-read.csv("C:/Users/hbrown11/Desktop/housing.csv", header=TRUE) 

head(house) 

set.seed(19 

R=runif(nrow(house))  

house$R=R  

train<-house[house$R<=.6,] 

test<-house[house$R>.6,] 

train<-subset(train,select=-c(R))  

test<-subset(test,select=-c(R)) 

install.packages('randomForest', dependencies = TRUE) 

library(randomForest) 

RFM=randomForest(saleprice~sqft,data=train) 

predicted <- predict(RFM,newdata=test) 

mae<-mean(abs(test$saleprice-predicted)) 

cat("MAE",mae,"\n") 

rmse<-(mean((test$saleprice-predicted)**2))**.5 
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cat("RMSE",rmse,"\n") 

rsquared=1-( sum((predicted-test$saleprice)^2))/(sum((test$saleprice-mean(test$saleprice))^2)) 

cat("Rsquared",rsquared,"\n") 

 

Conclusions for Random Forest “house” Example 

• The regression tree error: 
o MAE 7770.567  
o RMSE 18060.23  
o R-squared 0.823324  

• On average a prediction for house price using the Random Forest model will be wrong by 
$7,770. 

• The regression model should still be used because it resulted in less error. 
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Random Forest for Regression Practice Exercise 

The csv file “payment” (see Figure 4.12) contains information for patients that have a balance on a 

procedure not covered by insurance (or the government) that is eventually paid: 

DaysUntilPaid – number of days until a procedure is paid for in full 

PrivateInsurance  – Does the patient have private insurance (yes or no)? 

OutPatient – Was the procedure out-patient (yes or no)? 

Employed – Is the patient currently employed (yes or no)? 

ProcedureCost – cost of the procedure 

   

Figure 4.12 Contents of the File “payment” (First Few Rows) 

 

 

Use the example program for house and complete the following (a solution will follow):  Read 

payment.csv into R, divide the data into training and test data sets, construct a Random Forest to 

predict how long it will take a patient to pay for their procedure (the target variable is DaysUntilPaid), 

plot the tree, calculate MAE, RMSE, and R-squared. 
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Solution Random Forest Exercise 

R code for payment Random Forest example (default Random Forest settings): 

payment<-read.csv("C:/Users/hbrown11/Desktop/payment.csv", header=TRUE) 

head(payment) 

set.seed(19) 

R=runif(nrow(payment))  

payment$R=R  

train<-payment[payment$R<=.6,]  

test<-payment[payment$R>.6,]  

train<-subset(train,select=-c(R))  

test<-subset(test,select=-c(R))  

library(randomForest)  

RFM=randomForest(DaysUntilPaid~.,data=train) 

predicted <- predict(RFM,newdata=test) 

mae<-mean(abs(test$DaysUntilPaid-predicted)) 

cat("MAE",mae,"\n") 

rmse<-(mean((test$DaysUntilPaid-predicted)**2))**.5 

cat("RMSE",rmse,"\n") 

rsquared=1-( sum((predicted-test$DaysUntilPaid)^2))/(sum((test$DaysUntilPaid-

mean(test$DaysUntilPaid))^2)) 

cat("Rsquared",rsquared,"\n" 

 

Results 

The Random Forest OOS errors were, MAE=17.77911, RMSE=21.219, and R-squared=0.5847079.  

Compared to the regression tree OOS errors of MAE=13.73276, RMSE=18.65054 , R-squared=0.6791615.  

Because the regression tree out-performed the Random Forest, it is a clear sign the parameters of the 

Random Forest need to be adjusted.  Trying different values of mtry (to force each tree to try a different 

number of columns as predictors) and a larger than 500 number of trees are typical actions to improve a 

Random Forest.  mtry can be anything between 1 and the number of predictor columns minus 1.  

Usually more than 1000 trees are not needed.  
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Fine Tuning a Random Forest Model: 

RFM=randomForest(DaysUntilPaid~.,data=train,mtry=2, ntrees=1000) 

predicted <- predict(RFM,newdata=test) 

mae<-mean(abs(test$DaysUntilPaid-predicted)) 

cat("MAE",mae,"\n") 

rmse<-(mean((test$DaysUntilPaid-predicted)**2))**.5 

cat("RMSE",rmse,"\n") 

rsquared=1-( sum((predicted-test$DaysUntilPaid)^2))/(sum((test$DaysUntilPaid-

mean(test$DaysUntilPaid))^2)) 

cat("Rsquared",rsquared,"\n") 

 

Conclusions 

Trying out different values for mtry and increasing the number of trees to 1000, results in better results: 

MAE=13.91291, RMSE=18.34712, R-squared=0.6895159.  On average, a prediction for the number of 

days until payment will be wrong by approximately 14 days. 

  



97 
 

The Dangers of Not Using Test/Validation Data 

Now that we have tried a few different methods of predictive analytics, we will demonstrate why data 

must always be split into test/validation data to develop a predictive model.  As we have already stated, 

when fitting models for the purpose of predication, we should always use some form of model 

validation that examines the effectiveness of the model on data that was not used to build the model.  

The simplest way of doing this is to randomly divide data into training and test data sets.  Cross-

validation with folds is another popular way.  Regardless of which particular method is used, the key 

idea is that data that are used to build the model are not used to evaluate the model.  If we only use the 

data that were used to construct the model to evaluate the model, we will get an unrealistic view of our 

model’s performance (the model was optimally fit to those data). 

 

Overfit example 

The csv dataset entitled “exOverfit” contains six predictor variables (x1 to x6) and the target variable of 

y.  The data have already been partitioned into train and test sets (Figure 4.13).   

Figure 4.13 The First Few Rows of the Data Set exOverfit 

 

 

The following R program constructs a multiple regression model from training data, evaluates the model 

with only the training data, and then evaluates the model with the test data to illustrate the importance 

of using test data or cross-validation 
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R Program for the Training Data: 

overfit <-read.csv("C:/Users/hbrown11/Desktop/exOverfit.csv", header=TRUE) 

head(overfit) 

train<-overfit[overfit$type=='train',] 

test<-overfit[overfit$type=='test',] 

train<-subset(train,select=-c(type)) #remove the column type 

test<-subset(test,select=-c(type)) #remove the column type 

head(train) 

head(test) 

regmodel<-lm(y~.,data=train) 

summary(regmodel) 

#calculate MAE, RMSE, and Rsquare for the training data 

predicted <- predict.lm(regmodel,newdata=train) 

mae<-mean(abs(train$y-predicted)) 

cat("MAE",mae,"\n") 

rmse<-(mean((train$y-predicted)**2))**.5 

cat("RMSE",rmse,"\n") 

rsquared=1-( sum((predicted-train$y)^2))/(sum((train$y-mean(train$y))^2)) 

cat("Rsquared",rsquared,"\n") 

 

Just to reiterate, what we are doing is to demonstrate the incorrect notion of evaluating a model only 

using the data that was used to build the model.   (So far this semester we have been calculating MAE, 

RMSE, and R-squared for the test data or out of sample data, which is the correct thing to do; in this 

example, we are calculating MAE, RMSE, and R-squared for the training data.) 

Results of Evaluating the Model Only with the Training Data 

As can be seen in Figure 4.14, using only the training data, everything looks very promising for the 

model.  All predictors are significant.  The MAE is 8.1, the RMSE is 10.4, and the R-squared is 0.88. 
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Figure 4.14 Results of Evaluating the Model Only with the Training Data 

 

 

Now let’s try evaluating the model with the test data: 

R Program for Correctly Evaluating with the Test Data: 

predicted <- predict.lm(regmodel,newdata=test) 

mae<-mean(abs(test$y-predicted)) 

cat("MAE",mae,"\n") 

rmse<-(mean((test$y-predicted)**2))**.5 

cat("RMSE",rmse,"\n") 

rsquared=1-( sum((predicted-test$y)^2))/(sum((test$y-mean(test$y))^2)) 

cat("Rsquared",rsquared,"\n") 
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Results of Evaluating the Model with the Test Data 

As can be seen in Figure 4.15, from evaluating the test data, the MAE is 25.3, the RMSE is 45.4, and the 

R-squared is -6.569 (Note, R-square can be negative for test data, if the model fits very poorly).  When 

compared to the MAE of 8.1, the RMSE of 10.4, and the R-squared of 0.88 for the test data; the test data 

tell us the reality of our model…it is much much worse than the training data would lead us to believe. 

Figure 4.14 Results of Evaluating the Model with the Test Data 

 

 

Conclusions 

A model’s evaluation can go from promising using only the data that the model was trained on to 

evaluate the model, to unusable based on the correct application of test data (or cross-validation).  

Professionally, predictive models should not be used or trusted if they have not been validated with test 

data or cross-validation out of sample data.  Professional data analysts must diligently report 

uncertainty and limitations of their analysis—actions that have even a chance of misleading can lead to 

horrendous decision-making mistakes (and new career paths for the offending data analysts). 

 

Model Selection and the Rule of Parsimony 

A widely accepted heuristic in selecting between modeling techniques is the Rule of Parsimony, 

sometimes also called Occam’s Razor Rule.  The Rule of Parsimony for models says use the model or 

technique that produces comparable results that uses the simplest technique or has the fewest inputs.  

For example, if deciding between a regression tree model and a Random Forest model that give 

approximately the same error rates, use the regression tree model because it is a simpler technique.  

There are a couple of reasons for this.  First, simpler models have less chance for errors (fewer inputs 

and fewer steps means less chance for errors or impact from an information quality issue).  Moreover, 

simpler models are easier to explain.  In a business or organization, it is often easier to get buy in to 

using a model if details of how the model work are understood.  
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Module 4 Assignment 

 

The csv file housing3 data contains SalePrice (house sale price, what we are trying to predict), and the 

following predictor variables: Sqft (square footage), Location (is the location “good”, yes or no), 

Condition (is the condition of the house “good”, yes or no), Yard (size of the yard), and NbrAvg (the 

average selling price for the neighborhood the house is in). 

• Read the housing3.csv file into R 
• Divide the data into training and testing data sets. 
• Build a regression tree to predict house Sale Price from the other variables 
• Plot the regression tree. 
• Calculate MAE, RMSE, and R-squared for the regression tree. 
• For the same training and test data sets, build a Random Forest to predict house Sales 
• Calculate MAE, RMSE, and R-squared for the Random Forest. 
• Discuss the performance of your two models, including which model performed the best. 
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Group Review Project 1 

 

The csv file “US University Data” is a subset of the College Scorecard data found at data.gov from a few 

years ago.  As a group, prepare a presentation that presents the most interesting discoveries from the 

US University data using exploratory data analysis and predictive models (regression, multiple 

regression, regression trees, and Random Forests).  It can be assumed that there are no information 

quality issues in the data.  However, exploratory data analysis can be used to find unexpected 

observations or relationships.  Different predictive models can be built using different combinations of 

variables as predictor and dependent variables.  Note, there are potentially many “correct” answers to 

this project, it is an open ended “what can you find” assignment.  You can take different points of view 

in your analysis, e.g. discoveries can be of interest to universities from a marketing or retention 

standpoint, from a university consumer standpoint (students), from a state or region’s perspective, etc.   

Included in the table are the following columns: 

• Id = a unique identifier for each university 

• University = name of the university 

• CITY = city location of the university 

• State = state location of the university 

• AdmissionRate = admission rate (proportion accepted) 

• PercentBusinessDegreesAwarded = proportion of degrees awarded that are business degrees 

• NbrofDegreeSeekingStudents = degree seeking student enrollment  

• AvgCostPerYear = average cost of attendance per year 

• AvgFacultySalaryPerMonth = average faculty salary per month 

• PercentFullTimeFaculty = proportion of faculty that are full time 

• RetentionRate = proportion of students retained until graduation 

• AvgAgeEntry = average age of entering students 

• PercentFEMALE = proportion of students that are female 

• PercentFirstGenStudents = proportion of students that are first generation students 

• MedianHouseHoldIncome = median household income of students 

Your group’s final presentation must conform to the following: 

• It must be a single, cohesive and professional presentation 

• At least one graph or table that presents a discovery from the data.  

• At least one predictive model that analyzes the data.  

• At least one meaningful contribution from data analysis using R for each member of the group.  

• Assume you are making the presentations for a non-data analyst audience.  Include an 

interpretation of what each analysis means and why it is interesting in terms of practical 

information in terms that are easily understood.  

• An appendix containing the R programs used, labeling each member’s R program contribution.  
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Module 5: Introduction to Classification and Logistic 

Regression 
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Introduction to Classification  

Classification involves the construction of models to predict categories or groups, as opposed to the 

models discussed in previous modules that focus on predicting continuous or numeric outcomes. It 

serves as a fundamental technique in predictive analytics, specifically within the subfields of artificial 

intelligence and data mining. There are a wide range of techniques available for classification tasks, all 

with the common objective of assigning unknown labeled data to one or more predefined classes. In 

classification, the response variable (also known as the dependent variable, target variable, or "y") is a 

categorical variable that lacks numerical interpretation. The values this variable assumes are referred to 

as its "levels." In contrast, the predictor variables (also known as independent variables, input variables, 

or "x") can encompass both numeric and categorical types. 

Similar to regression models, a classification model may appear as follows: 

y = x1 + x2 + … + xi 

As an example, we may build a model to help the IRS predict if someone is likely to cheat on their taxes 

(so that audit resources are applied more efficiently): 

Cheated = maritalStatus + refund + income + fileDate 

Cheated has levels “yes” or “no” and is based on the results of historical tax audits, maritalStatus and 

refund are categorical predictors, income and fileDate are numerical predictors.   

Just as when building regression models, data must be validated by cross-validation or dividing data into 

test and training data sets.  Error is measured on out of sample or test data.  However, different metrics 

for error are used for classification, error rate / accuracy, confusion matrices, and receiver operating 

characteristic (ROC) curves are common methods 

Examples of techniques used for classification include, classification trees, Random Forests, nearest 

neighbor method, logistic regression, naïve Bayes classifiers, artificial neural networks, and support 

vector machines. These techniques are used for a variety of business and science applications, such as 

classifying a new retail store into an existing group of stores; natural language processing; entity 

resolution (information quality); predicting tumor cells as benign or malignant; and categorizing news 

stories as finance, weather, entertainment, sports, etc.   

A confusion matrix is a standard metric for evaluating the performance of a classification predictive 

model.  Figure 5.1 shows an example confusion matrix where a model was trained to predict “yes” or 

“no” (for example, to predict tax fraud).  In the example, 50 times the model correctly predicted “yes”, 

12 times the model incorrectly predicted “yes”; 13 times the model incorrectly predicted “no”; 25 times 

the model correctly predicted “no”.  The structure of a confusion matrix is labeled in Figure 5.2. 
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Figure 5.1 An Example Confusion Matrix 

 

 

Figure 5.2 Confusion Matrix Structure 

 

 

Several widely used metrics can be directly calculated from the confusion matrix. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑎 + 𝑑

𝑎 + 𝑏 + 𝑐 + 𝑑
=

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
=

50 + 25

50 + 13 + 12 + 25
= 0.75 

 

𝐸𝑟𝑟𝑜𝑟 = (1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦) =
𝑏 + 𝑐

𝑎 + 𝑏 + 𝑐 + 𝑑
=

𝐹𝑁 + 𝐹𝑃

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
=

13 + 12

50 + 13 + 12 + 25
= 0.25 

 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑎

𝑎 + 𝑐
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

50

50 + 12
= 0.81 

 

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑑

𝑏 + 𝑑
=

𝑇𝑁

𝐹𝑁 + 𝑇𝑁
=

25

13 + 25
= 0.66 
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The Problem of Class Imbalance 

Class imbalance is the situation when a class we are attempting to predict occurs very rarely.  There are 

numerous examples of important classification applications where class imbalance occurs, for example, 

identifying network attacks, detecting rare diseases, and anomaly detection.  A confusion matrix and the 

subsequent calculation made from the confusion matrix can be ineffective in the case of class 

imbalance.  In Figure 5.3, an elementary model that always picks “yes” no matter the input would have 

an accuracy of 99%, seemingly very high. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
99 + 0

99 + 0 + 1 + 0
= 0.99 

 

Figure 5.3 A Confusion Matrix for a Sample of Data Exhibiting Class Imbalance 

 

 

For classification problems exhibiting class imbalance, the receiver operating characteristic (ROC) curve 

provides an alternative metric of model performance.  The curve is a plot of one minus the specificity 

(false positive rate) versus sensitivity (true positive rate) using different classification thresholds for a 

particular model.  As the ROC curve approaches the top of the graph the model is more accurate.  A 

model that follows the diagonal line shows no improvement over a “random guess”.  The performance 

of the ROC can be summarized with the area under the curve (AUC).  An AUC of 1 indicates perfect 

model performance; a value of 0.5 has no improvement over random guessing.  Figure 5.4 shows an 

example ROC curve for a promising model.  Figure 5.5 shows an example ROC curve for a poorly 

performing model that should not be used. 

In general, the confusion matrix is preferred over the ROC curve because it is a more easily understood 

practical explanation of model performance.  However, in cases of extreme class imbalance, the ROC 

curve is necessary to examine true performance.  ROC curves can also help choose a decision level for a 

classification model.  For example, the typical threshold to change classes for logistic regression is at the 

0.5 threshold; the ROC curve allows other thresholds to be considered to see if performance could be 

improved. 
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Figure 5.4 Example ROC Curve 

 

 

Figure 5.5 Example of a ROC Curve Showing a Poorly Performing Model 
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Introduction to Logistic Regression for Classification 

Logistic regression is a statistical modeling technique used to analyze the relationship between a binary 

dependent variable and one or more independent variables. It is widely employed for classification 

tasks, where the goal is to predict the probability of an event or the likelihood of belonging to a specific 

category.  Logistic regression has its historical origins in the field of statistics and was developed as an 

extension of linear regression. The technique was first introduced by statistician David Cox in 1958, 

building on the work of Karl Pearson and Ronald Fisher. The name "logistic regression" is attributed to 

David Cox, and it refers to the underlying mathematical function used in this regression model, which is 

the logistic function.  (See Hosmer, Lemeshow & Sturdivant, 2013, among others, for a more detailed 

introduction to logistic regression and its history.) 

 

Advantages of Logistic Regression 

The advantages of logistic regression are much the same as linear and multiple regression.  Logistic 

regression has been around for decades and thus is well-developed theoretically with plentiful 

documentation and many software options.  Logistic regression generally increases the understanding of 

a problem by creating a model showing the nature of the relationship of the predictor variables to the 

target variable.  Further, if assumptions and inferences are correctly made, uncertainty is exactly 

quantified through confidence intervals and tests for significance can be conducted. In addition, logistic 

regression is flexible for a wide range of problems.  It is generally easier to explain than other 

classification methods such as Artificial Neural Networks (ANN) or Support Vector Machines (SVM), 

which may be used for similar predictive analytics problems. 

 

Disadvantages of Logistic Regression 

There are likewise disadvantages to using logistic regression as a classification technique. Although a 

global optimum solution is found—the optimum is for one set of assumptions about the problem, other 

ways of looking at the problem may result in better performance.  Further, although they are flexible, 

they aren’t appropriate for every situation.  In addition, they are traditionally are “supervised” 

techniques that require careful iterative development by the person creating the regression model.  

Finally, in practice they are computationally more complex than linear and multiple regression models 

due to a need to use approaches other than ordinary least squares. 

 

Details of How Logistic Regression Works 

Conceptually, logistic regression is the same approach as linear regression covered in Module 3.  In 

statistical models the “link” function is a transformation on the response variable that extends statistical 

regression to additional types (distributions) of target data.  Ordinary least squares linear regression has 

a link function of “1” (essentially there is no special link function needed for the linear and multiple 

regression models we covered in Module 3).  Logistic regression assumes the response variable is 

binomially distribution instead of the normal distribution and as a result the logit link function is used, 

log(p/(1-p)), this allows us to model the probability of an observation belonging to one of two 
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categories.  After logit transformation, the method of ordinary least square linear regression could 

conceptually then be applied to the data.  However, difficulty with this approach to logistic regression 

occurs when you have estimated proportions of zero.  The logit function is undefined in those situations 

(which ends of being often in practice), so we change methods and use maximum likelihood probability 

estimates for the parameters.  There is more than one way to do this and the mathematics is more 

complex (the algorithms used in analytics software such as R make numerical approximations for the 

maximum likelihood estimates).  Methods such as the Fisher scoring method or Newton-Raphson 

technique are used for the estimation of logistic regression (see Schworer & Hovey, 2004, among others 

for more details). 

For predictive modeling, logistic regression can be extended to more than binary problems (more than 

two categories). The multiple categories can be recoded into binary predictors and multiple logistic 

regression models created for each binary split.  For example, if we have a target variable with levels of 

“RED”, “GREEN”, “BLUE”, and “YELLOW”, we would fit a logistic regression model with a target of “RED” 

and “not RED” (grouping the other three categories together).  Then we would fit a logistic regression 

model for “GREEN” and “not GREEN” and so on (note, the last category would not need to be explicitly 

fit as it would already be accounted for in all other groupings). 

 

R for Logistic Regression 

To demonstrate logistic regression for classification in R we will begin with a classification problem to 

predict student success.  The file “student success.csv” contains records for 2,000 students enrolled in a 

university’s computer science department. “FinalGrade1403” is the final grade in a first class in 

computing.  “Transfer” is whether the student transferred into the university or not.  “ACT_Score” is the 

student’s composite ACT (college entrance exam) score.  “ACT_Math” is the student’s score on the Math 

portion of the ACT.  “HS_GPA” is the student’s high school grade point average.  “success” is the target 

(or response) variable, what we are trying to predict—if the student successfully completed a computer 

science degree within 6 years.  Figure 5.6 shows the first few rows of the student success data. 

Figure 5.6 First Few Rows of the “student success.csv” Data 

 

 

The data may be read in as usual in R. 

R Code for Reading in Data 

stu <-read.csv("C:/Users/hbrown11/Desktop/student success.csv", header=TRUE) 

head(stu) 
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Note for classification problems we will need to identify our target variable as a factor (recall this 

process from Module 1).   

R Code for Setting Success as a Factor 

stu$success<-factor(stu$success) 

 

The data are now ready to be divided into training and testing data sets.  This process is identical to 

what was done in Module 4.  Note, cross-validation could also alternatively be used.   

R Code for Dividing Data into Training and Testing Data Sets 

set.seed(23) 

R=runif(nrow(stu)) #create a random uniform column the length of our table 

stu$R=R #add the random numbers to our table 

train<-stu[stu$R<=.6,] #select roughly 60% for training 

test<-stu[stu$R>.6,] #the other 40% gets placed in test 

train<-subset(train,select=-c(R)) #remove the column R 

test<-subset(test,select=-c(R)) #remove the column R 

 

The glm function in R is now used to estimate the logistic regression model.  In this case, we cannot 

specify the model with “success~.” because there is an id column, “Student”.  Addition of this student id 

as a predictor to the model would nonsense (as it is an arbitrary label uniquely identifying rows in the 

table).  For this reason, the five predictors are listed out, separated by a “+”.   

 

R Code for Building the Logistic Regression Model 

lreg<-glm(success~FinalGrade1403+Transfer+ACT_Score+ACT_Math+HS_GPA, data=train, 

family=binomial) 

summary(lreg) 

 

The fit logistic regression model with significance tests is given in Figure 5.7.  We can see that the 

majority of model inputs are significant.  Note, we will NOT remove variables that are not significant; 

there are much more appropriate approaches to variable selection that we will cover in Module 8.  The 

final model can be expressed as:  

P(success=yes) = -20.9 + 0.150*FinalGrade1403 + 0.339*TransferYes + 0.228*ACT_Score + 

0.244*ACT_Math + 0.638*HS_GPA 
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The model can be used to make a prediction (just as was done with a multiple regression equation).  

However, the result is a probability, in this example the probability that student success = “yes” (the 

student successfully completed a computing degree within six years).  The typical classification threshold 

is 0.5 for logistic regression, i.e. any predicted probability greater than 0.5 would be classified as “yes”.  

(Not to be confused with an alpha level of 0.05 used for 95% statistical confidence.) 

Figure 5.7 Parameter Estimates and Hypothesis Tests for the “student success” Logistic Regression 

Example 

 

 

The model can then be fit to the testing data and evaluated with a confusion matrix, Figure 5.8. 

R Code for Evaluating the Logistic Regression Model with the Test Data 

pmodel<- predict(lreg,newdata=test, type = "response") 

model<- ifelse(pmodel > 0.5, "yes", "no") #turn the probability into a pred 

known<-test["success"] #extract the actual value of success for comparing 

knownt<-t(known) #transpose the data for the confusion matrix 

table(knownt,model) #create the confusion matrix 

 

Figure 5.8 Confusion Matrix “student success” for OOS Data 

 

Metrics that can be calculated from the confusion matrix are given in Figure 5.9. 
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Figure 5.9 Interpreting the Confusion Matrix 

 

Is this a good model?  Similar to regression models, the answer depends on business context.  It is a 

viable model (certainly better than guessing or not using a model), but whether it is “good” depends on 

the context, and the question, is there something better that could be used? 

The model can be used to make a prediction as is demonstrated in the R code below.  Note, 

extrapolation (using values for the predictor variables outside the range used to train the model), should 

still be avoided. 

R Code to Make a Prediction 

newdata=data.frame(FinalGrade1403=87,Transfer="yes",ACT_Score=26,ACT_Math=25,HS_GPA=3.9) 

predict(lreg,newdata=newdata , type = "response") 

For this student, the model output is 0.9990741, which is greater than 0.5 and indicates the student 

would be predicted to be successful (success = “yes”).   

 

Full R Program 

stu <-read.csv("C:/Users/hbrown11/Desktop/student success.csv", header=TRUE) 

head(stu) 

stu$success<-factor(stu$success) 

set.seed(23) 

R=runif(nrow(stu)) #create a random uniform column the length of our table 

stu$R=R #add the random numbers to our table 

train<-stu[stu$R<=.6,] #select roughly 60% for training 

test<-stu[stu$R>.6,] #the other 40% gets placed in test 

train<-subset(train,select=-c(R)) #remove the column R 
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test<-subset(test,select=-c(R)) #remove the column R 

lreg<-glm(success~FinalGrade1403+Transfer+ACT_Score+ACT_Math+HS_GPA, data=train, 

family=binomial) 

summary(lreg) 

pmodel<- predict(lreg,newdata=test, type = "response") 

model<- ifelse(pmodel > 0.5, "yes", "no") #turn the probability into a pred 

known<-test["success"] 

knownt<-t(known) 

table(knownt,model) 

newdata=data.frame(FinalGrade1403=87,Transfer="yes",ACT_Score=26, 

ACT_Math=25,HS_GPA=3.9) 

predict(lreg,newdata=newdata, type = "response") 

 

Additional Information on Logistic Regression in R 

As we have introduced in this module, logistic regression makes a binary prediction into one of two 

categories.  In our first example, our target variable was “success”, that distinguishes if a student was 

successful, denoted with “yes” if the row of data belongs to a student successfully completing the 

computer science program within six years; or “no” for a student unsuccessful.  We would say the factor 

“customer” has two levels, “no” and “yes”.  The logistic regression algorithm in R must choose one of 

the two levels to be a reference level.  By default, R assigns the reference level alphabetically.  The level 

alphabetically first becomes the reference level. So, for a factor with levels, “no” and “yes”, “no” would 

be the reference level.  Logistic regression always works by predicting the probability of the non-

reference level.  So, for a factor with levels “no” and “yes”, the logistic regression model would make a 

prediction on the probability the target variable is “yes”.  Then, to turn a logistic regression probability 

into a category prediction, we use the probability threshold of 0.5, meaning any value greater than 0.5 

would be classified as “yes”.    If you wanted to change the reference level in R, the following code could 

be executed (this is not necessary, just a demonstration of how to change the level being modeled, if 

you wanted the model to predict the probability of “no” instead of “yes” in this example): 

R Code for Changing the Reference Level (This Code is Optional and not a Part of the Example) 

stu$success <- factor(stu$success, levels = c("yes","no")) 

str(stu$success) 

summary(stu$success) 
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A ROC and AUC can be created in R using the following code.  The resulting plot is given in Figure 5.10. 

R Code for ROC and AUC for Logistic Regression 

install.packages("pROC",dependencies=TRUE) #only needs to be ran once 

library(pROC) 

test_prob = predict(lreg, newdata = test, type = "response") 

test_roc = roc(test$success ~ test_prob, plot = TRUE, print.auc = TRUE) 

 

Figure 5.10 ROC Curve for “student success” Example 
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Logistic Regression Practice Exercise 

The file "appt.csv" contains information regarding patients missing appointments in the healthcare 

setting.  Patient no-show leads to inefficient resource allocation and limits access to care. A way to 

counteract no-show is over-booking; however, poor over-booking can lead to equally negative 

outcomes.  To aid in the most efficient use of resources, can we accurately predict if a patient is likely to 

be a no-show for their appointment?   

In the data set, each row represents a patient, the column " MissedAppt" indicates which patient missed 

an appointment (“yes”=missed). PrevMissedAppt=if the patient missed a previous appointment, 

SameDayAppt=was the appointment made on the same day,  Age=age of patient, Male=gender of 

patient, White =nationality of patient, WaitTime=average wait time the day of the appointment, 

Monday etc. = day of week of appointment.   

Figure 5.11 Contents of the File appt (First Few Rows) 

 

 

Use the example program for student success and complete the following (a solution will follow):  Build 

a logistic regression model to predict MissedApt from the other columns. (Divide into training and test 

data sets, created a confusion matrix, calculate accuracy, create a ROC curve and AUC calculation, make 

a prediction that is not extrapolation). 
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R Code Solution  

appt <-read.csv("C:/Users/hbrown11/Desktop/appt.csv", header=TRUE) 

head(appt) 

appt$MissedAppt<-factor(appt$MissedAppt) 

set.seed(23) 

R=runif(nrow(appt))  

appt$R=R  

train<-appt[appt$R<=.6,]  

test<-appt[appt$R>.6,]  

train<-subset(train,select=-c(R))  

test<-subset(test,select=-c(R))  

lreg<-glm(MissedAppt~., data=train, family=binomial) 

summary(lreg) 

pmodel<- predict(lreg,newdata=test, type = "response") 

model<- ifelse(pmodel > 0.5, "yes", "no")  

known<-test["MissedAppt"] 

knownt<-t(known) 

table(knownt,model) 

library(pROC) 

test_prob = predict(lreg, newdata = test, type = "response") 

test_roc = roc(test$MissedAppt ~ test_prob, plot = TRUE, print.auc = TRUE) 

newdata=data.frame(PrevMissedAppt="no",SameDayAppt="yes", Age=47, Male="yes",  

White="yes", WaitTime=30, Monday="yes", Tuesday="no", Thursday="no", 

Friday="no", Saturday="no") 

predict(lreg,newdata=newdata, type = "response") 

 

Figure 5.12 highlights the changes that need to be made from one logistic regression problem to 

another. 
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Figure 5.12 What Changed from Example 1 to Example 2 

 

Output and Conclusions for the “appt” Example 

The fit model can be seen in Figure 5.13.  The final model can be written as: 

P(MissedAppt=yes) = -0.16 + 0.096*PrevMissedAppt + 0.38*SameDayAppt + 0.030*Age + 0.38*Male + 

0.16*White – 0.053*WaitTime – 0.28*Monday + 0.18*Tuesday + 0.28*Thursday – 0.037*Friday + 

0.013*Saturday 

The confusion matrix and accuracy are given in Figure 5.14; The ROC Curve and AUC are given in Figure 

5.15.  Based on our OOS calculations, we would expect our model to correctly predict if a patient will 

keep or miss their appointment 77% of the time. 

 

 

 



118 
 

Figure 5.13 The Fit Logistic Regression Model for “appt” 

 

Figure 5.14 The Confusion Matrix and Accuracy for the “appt” Example 

 

 

Figure 5.15 The ROC Curve and AUC for the “appt” Example 
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Creating Indicator Variables for Models 

In modeling it is often necessary to recode categorical data (both predictor and response variables) into 

indicator variables.  In the appt example, the original data had a column with day of week of the 

appointment (Monday-Saturday, the clinic was closed on Sundays).  In order to be used by a model, 

columns with multiple categories often have to be recoded as indicator variables (instead of “yes” and 

“no” many software packages will require 1 and 0 for indicator variables), see Figure 5.16.  Recoded 

there is a column for each possible day of the week, except for one day (because if all the other values 

are “no”s we know it must be the day that is not included); in these appointment data, Wednesday is 

not included, if all other days are “no”s, we know the appointment happened on a Wednesday. 

 

Figure 5.16 Recoding Data into Indicator Variables for Models 

 

 

  



120 
 

Module 5 Assignment 

 

The csv file titanic.csv contains data on the survivors and casualties of the 1912 titanic disaster.  The 

data can be found online at Kaggle.com (2021). 

Class refers to the type ticket that was purchased, 1, 2 or 3 (1st being the most expensive). 

Age is the age in years of the passenger. 

Gender is the gender of the passenger. 

Survived is the target (response) variable, it is “yes” if the passenger survived and “no” if they did not. 

Build a logistic regression model to predict if a passenger would have survived the titanic based on their 

age, gender, and class of ticket.  Divide the data into training and testing data sets, construct a confusion 

matrix from the out of sample (test) data, calculate the accuracy of the model.  Give the coefficients for 

final model that was built.    Create a ROC curve and include a calculation of the area under the curve.  

Make a prediction using your data to predict your hypothetical survival on the titanic (you can decide if 

you would have purchased a 1st, 2nd, or 3rd class ticket; and if you don’t want to use your information, 

just make some up for a hypothetical person).  Briefly summarize what you did in this assignment, 

include any key graphs, etc.  As always, include your full R program. 
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Module 6: Introduction to Classification Trees and Random 

Forests for Classification  
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Introduction to Classification Trees 

Classification trees, also known as "decision trees," are an intuitive approach to classification analogous 

to regression trees.  When decision trees are used for classification they are called “classification trees”.  

Similar to regression trees, classification trees create tree-like structures that can be used to make a 

prediction.  The trees are constructed by making splits in the predictor variables that minimize error in 

the response variable at each node.  Like regression trees, classification trees originated with Breiman, 

Friedman, Stone, and Olshen early 1980s. 

 

Figure 6.1 Example Classification Tree 
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Advantages of Regression Trees 

As a modeling technique, classification trees offer several advantages that mirror regression trees.  

Classification trees are more intuitive to use than many techniques.  They are relatively computationally 

inexpensive to create and use.  Further, the tree-like structures provide a visual interpretation of the 

model.  While classification trees are known to be one of the more inaccurate approaches, to improve 

performance, strategies involving multiple trees can be used (e.g. Random Forests).  Also, tree models 

handle categorical predictor variables more naturally then other techniques where categories must 

often be turned into indicator variables (recoded as 0s and 1s).  Finally, it should be noted that 

classification trees are generally a better predictive modeling technique than regression trees because 

root nodes in classification are discrete (providing a better match for the task of classification). 

 

Disadvantages of Regression Trees 

Disadvantages to classification trees as a predictive model technique include being prone to overfitting 

data (for this reason “good” software that builds classification trees will have built in cross-validation, 

use a complexity parameter, and other techniques, such as a minimum number of values in a leaf node, 

to prevent overfitting).  Further, for large amounts of data and a large number of predictors, a tree 

would become too large to be visualized.  Finally, because of an inability to model complex relationships 

between predictor variables, unless multiple trees are combined, single classification trees do not 

perform as well as other techniques. 

 

How a Classification Tree Works 

An unrealistically small example is presented to help conceptualize how a classification tree is trained.  

For the table presented in Figure 6.2, we will build a regression tree to predict Y from X.  Instead of MSE, 

a common measure for best split is the Gini index.  The Gini is a measure of “impurity”, the effectiveness 

of a split in separating classes.  

𝑮𝒊𝒏𝒊 = 𝟏 − ∑(𝒑𝒊)
𝟐

𝑪

𝒊=𝟏

 

Where C is the number of classes, and p is the proportion of target classes made by the split.  The 

classification tree algorithm works to minimize the Gini at each split. 
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Figure 6.2 Small Sample of Data to Demonstrate Classification Tree Training 

 

Begin by sorting by X as seen in Figure 6.3. 

Figure 6.3 The Data Sorted by X 

 

Divide the data into all possible splits using X.  The first possible split could be made at X<3, X>3 (the 

average of the first two rows of X) (Figure 6.4).  The Gini can then be calculated as: 

top split, 0/1 yeses, 1/1 no’s:  Gini = 1 - ( (0)2 + (1)2) = 0, 

bottom split, 2/4 yeses, 2/4 no’s:  Gini = 1 - ( (0.5)2 + (0.5)2) = 0.5. 

The combined weighted Gini = 1/5*(0) + 4/5*(.5) = 0.4 

Thus, the Gini = 0.4 for possible split 1. 

Figure 6.4 The First Possible Split 

 

 



125 
 

This process is repeated for each possible split.  The second possible split, split 2, is given in Figure 6.5 

and would be made at X<5, X>5.  The Gini can then be calculated as: 

top split, 0/2 yeses, 2/2 no’s:  Gini = 1 - ( (0)2 + (1)2) = 0, 

bottom split, 2/3 yeses, 1/3 no’s:  Gini = 1 - ( (0.67)2 + (0.33)2) = 0.444. 

The combined weighted Gini = 2/5*(0) + 3/5*(.444) = 0.27 

Thus, the Gini = 0.27 for possible split 2. 

Figure 6.5 The Second Possible Split 

 

 

The third possible split, split 3, is given in Figure 6.6 and would be made at X<7, X>7.  The Gini can then 

be calculated as: 

top split, 0/3 yeses, 3/3 no’s:  Gini = 1 - ( (0)2 + (1)2) = 0, 

bottom split, 2/2 yeses, 0/2 no’s:  Gini = 1 - ( (0)2 + (1)2) = 0. 

The combined weighted Gini = 3/5*(0) + 2/5*(0) = 0 

Thus, the Gini = 0 for possible split 3. 

Figure 6.6 The Third Possible Split 
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The fourth and final possible split, split 4, is given in Figure 6.7 and would be made at X<8.5, X>8.5.  The 

Gini can then be calculated as: 

top split, 1/4 yeses, 3/4 no’s:  Gini = 1 - ( (.25)2 + (.75)2) = 0.375, 

bottom split, 1/1 yeses, 0/0 no’s:  Gini = 1 - ( (0)2 + (1)2) = 0. 

The combined weighted Gini = 4/5*(0.375) + 1/5*(0) = 0.3 

Thus, the Gini = 0.3 for possible split 3. 

Figure 6.7 The Fourth Possible Split 

 

Split 3 is chosen, as seen in Figure 6.8, because is minimizes the Gini index.   

Figure 6.8 Selecting a Split

 

 

In the selected tree if X<7, then the classification tree predicts Y will be “no”; if X>7, the regression tree 

predicts Y will be “yes”. 

If we had more rows of data, we would consider a second split for each of our nodes.  The process we 

just completed would be repeat for just the subset of data at each node.  If we have multiple predictors, 

the same process is repeated for each predictor, the predictor minimizing the combined Gini index is 

used at each node. 
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Overfitting is also problem for classification trees.  The Gini can be made 0 by continuing the tree until 

each node only has one value, but the resulting tree is likely unrealistically fit to the training data.  Good 

tree algorithms (such as the one used in R) will use built-in cross-validation to prevent overfitting.  

Similar to regression trees, other settings, such as a minimum number of values in each leaf node, are 

also used to prevent overfitting. 

 

Classification Trees in R 

The student success and appointment examples will be repeated so that the results of the models can 

be compared.  The file “student success.csv” contains records for 2,000 students enrolled in a 

university’s computer science department. “FinalGrade1403” is the final grade in a first class in 

computing.  “Transfer” is whether the student transferred into the university or not.  “ACT_Score” is the 

student’s composite ACT (college entrance exam) score.  “ACT_Math” is the student’s score on the Math 

portion of the ACT.  “HS_GPA” is the student’s high school grade point average.  “success” is the target 

(or response) variable, what we are trying to predict—if the student successfully completed a computer 

science degree within 6 years.  Figure 6.9 shows the first few rows of the student success data. 

Figure 6.9 First Few Rows of the “student success” Data 

 

 

The data may be read in as usual in R. 

R Code for Reading in Data 

stu <-read.csv("C:/Users/hbrown11/Desktop/student success.csv", header=TRUE) 

head(stu) 

Note for classification problems we will need to identify our target variable as a factor (recall this 

process from Module 5).   

R Code for Setting “success” as a Factor 

stu$success<-factor(stu$success) 

 

The data are now ready to be divided into training and testing data sets.  This process is identical to 

what was done in Module 5.  Note, cross-validation could also alternatively be used.   
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R Code for Dividing Data into Training and Testing Data Sets 

set.seed(23) 

R=runif(nrow(stu)) #create a random uniform column the length of our table 

stu$R=R #add the random numbers to our table 

train<-stu[stu$R<=.6,] #select roughly 60% for training 

test<-stu[stu$R>.6,] #the other 40% gets placed in test 

train<-subset(train,select=-c(R)) #remove the column R 

test<-subset(test,select=-c(R)) #remove the column R 

 

We are now ready to train the classification tree from the training data.  Note, the packages rpart and 

rpart.plot may aleady be installed from working with regression trees in Module 4.  In this case, we 

cannot specify the model with “success~.” because there is an id column, “Student”.  Addition of this 

student id as a predictor to the model would be nonsense, as it is an arbitrary label uniquely identifying 

rows in the table.  For this reason, the five predictors are listed out, separated by a “+”.   

 

R Code for Building the Classification Tree 

#install.packages('rpart', dependencies = TRUE) #this should be done from earlier this semester  

#install.packages('rpart.plot', dependencies = TRUE) #this should be done from earlier this semester  

library(rpart) 

library(rpart.plot) 

ctree<-rpart(success~FinalGrade1403+Transfer+ACT_Score+ACT_Math+HS_GPA,data=train) 

#summary(ctree) 

rpart.plot(ctree, type = 4, extra = 101) 

 

The fit tree is given in Figure 6.10 
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Figure 6.10 Classification Tree for “student success” Example 

 

Figure 6.11 demonstrates how to use the model for a student with an ACT math score of 24, Final Grade 

in COMS1403 of 59, overall ACT composite score of 23, and high school GPA of 2.7.  This student would 

be predicted to not successfully complete a computer science degree. 
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Figure 6.11 Example Using A Classification Tree to Make a Prediction 

 

 

The classification tree can be applied to the test data to create the confusion matrix in Figure 6.12. 

R Code for Applying the Model to the Test Data 

model<- predict(ctree, newdata=test, type = "class") 

known<-test["success"] #extract the actual value of success for comparing 

knownt<-t(known) #transpose the data for the confusion matrix 

table(knownt,model) #create the confusion matrix 

 

Figure 6.12 Confusion Matrix for Classification Tree to Predict Student Success 
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Metrics that can be calculated from the confusion matrix are given in Figure 6.13. 

 

Figure 6.13 Interpreting the Confusion Matrix 

 

Is this a good model?  Again, the answer depends on business context.  However, we now have the 

context of the logistic regression model to better decide; the logistic regression model with a 89% 

accuracy rate would appear to be a better choice for these data, unless the ease of using tree for 

prediction was needed.  

 

Full R Program for Classification Tree Example 1 

stu <-read.csv("C:/Users/hbrown11/Desktop/student success.csv", header=TRUE) 

head(stu) 

stu$success<-factor(stu$success) 

set.seed(23) 

R=runif(nrow(stu)) 

stu$R=R  

train<-stu[stu$R<=.6,] 

test<-stu[stu$R>.6,] 

train<-subset(train,select=-c(R)) 

test<-subset(test,select=-c(R)) 

#install.packages('rpart', dependencies = TRUE) #this should be done from earlier this semester  

#install.packages('rpart.plot', dependencies = TRUE) #this should be done from earlier this semester  

library(rpart) 

library(rpart.plot) 
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ctree<-rpart(success~FinalGrade1403+Transfer+ACT_Score+ACT_Math+HS_GPA,data=train) 

rpart.plot(ctree, type = 4, extra = 101) 

model<- predict(ctree, newdata=test, type = "class") 

known<-test["success"] 

knownt<-t(known) 

table(knownt,model) 

 

 

Random Forests 

Random Forests for classification are very similar to Random Forests for regression.  Recall, Random 

Forests are a high preforming ensemble machine learning method that combines the predictions of 

multiple decision trees to improve the accuracy and robustness of the predictions. (Ensemble methods 

combine the results from multiple models.)  It was first introduced by Leo Breiman in 2001 as an 

extension of decision trees. Random Forests have gained significant popularity and become a widely 

used predictive modeling technique. 

Random Forests work by creating an ensemble of decision trees, each trained on a random subset of the 

training data and using a random subset of the features (predictor variables). During the prediction 

phase, each tree in the forest independently generates a prediction, and the final prediction is 

determined by aggregating the individual predictions through consensus voting for classification 

Random Forests.  (Each classification tree gets a “vote” on the category, the category with the most 

votes is the category predicted by the Random Forest.) 

Leo Breiman's introduced Random Forests in his paper titled "Random Forests" published in 2001. In this 

paper, Breiman introduced the concept of Random Forests and highlighted their ability to reduce 

overfitting, handle high-dimensional data, and provide reliable predictions. The paper demonstrated the 

effectiveness of Random Forests through various experiments and comparisons with other classification 

algorithms. Since then, there has been a widespread adoption and diverse applications of Random 

Forest. 

Random Forests address many of the issues of a single classification tree.  When constructing a 

classification tree, there are potentially numerous ways to split trees, and no one way of creating a tree 

guarantees an optimal tree (small changes can result in drastically different trees being created).  

Further, determining all possible trees for a large classification problem is unfeasible.  In a solution to 

these issues, Random Forests, create numerous “random” trees (each is potentially a “good” tree by 

using criteria such as the Gini index), each tree makes a prediction for a particular set of predictors (that 

prediction is treated like a vote), the category that was voted for the most by the trees is used as the 

final prediction.   
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Advantages of Random Forests 

Random Forests have several advantages as a method of predictive modeling.  Random Forests are 

intuitive since they are based on classification trees.  However, they can handle much more complexity 

than a single classification tree.  Like classification trees, Random Forest handles categorical inputs more 

naturally than other techniques.  For some problems, Random Forests can outperform many other 

popular machine learning and statistical techniques.  They are considered one of the better modern 

machine learning techniques.  Random Forests have the advantage of producing variable importance 

measures that can be useful for feature selection or other decisions (see Module 8).  As we saw in 

Module 4, Random Forests can be used for regression problems or classification problems (both are 

called “Random Forests”). 

 

Disadvantages of Random Forests 

Random Forests also have several disadvantages as a method of predictive modeling.  Random Forests 

are a “black-box” technique. Since numerous trees are created, there is not a single tree plot that can be 

visualized, and this desirable quality of classification trees is lost.  For large amounts of data and large 

numbers of predictors, Random Forest become computationally expensive.  Although there are 

suggestion for how many variables to consider, Random Forests can be sensitive to the “mtry” option.  

Despite these limitations, Random Forests are a popular and effective approach for predictive modeling. 

 

Details of How a Random Forest Algorithm Works 

In a Random Forest, the classification tree algorithm (as presented earlier in this module) is used to build 

a large number of trees, each tree will look at some subset of the predictor variables (all variables are 

not used at one time).  The default value for R is to use the floor of the square root of the total number 

of predictors as the number of predictors to include per tree (i.e. take the square root of the number of 

predictors and truncate it to the nearest integer).  Notice this is different than the default values for 

Random Forests for regression.  This can be changed with the mtry option.  500 trees are created by 

default in R (this can be changed with the ntrees option).   To make a prediction, specific values of the 

predictors will be input into the 500 trees.  A final prediction will be made by using each prediction 

made by the individual trees as a “vote”, the category receiving the majority vote is used as the final 

prediction for the Random Forest. 

 

Random Forests in R 

We will use the student success data again.  The file “student success.csv” contains records for 2,000 

students enrolled in a university’s computer science department. “FinalGrade1403” is the final grade in 

a first class in computing.  “Transfer” is whether the student transferred into the university or not.  

“ACT_Score” is the student’s composite ACT (college entrance exam) score.  “ACT_Math” is the 

student’s score on the Math portion of the ACT.  “HS_GPA” is the student’s high school grade point 

average.  “success” is the target (or response) variable, what we are trying to predict—if the student 
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successfully completed a computer science degree within 6 years.  Figure 6.14 shows the first few rows 

of the student success data. 

Figure 6.14 First Few Rows of the “student success.csv” Data 

 

 

The data may be read in as usual in R. 

R Code for Reading in Data 

stu <-read.csv("C:/Users/hbrown11/Desktop/student success.csv", header=TRUE) 

head(stu) 

Again, for classification problems we will need to identify our target variable as a factor.   

R Code for Setting “success” as a Factor 

stu$success<-factor(stu$success) 

 

The data are now ready to be divided into training and testing data sets.  This process is identical to 

what was done in previous examples.  Note, cross-validation could also alternatively be used.   

 

R Code for Dividing Data into Training and Testing Data Sets 

set.seed(23) 

R=runif(nrow(stu)) #create a random uniform column the length of our table 

stu$R=R #add the random numbers to our table 

train<-stu[stu$R<=.6,] #select roughly 60% for training 

test<-stu[stu$R>.6,] #the other 40% gets placed in test 

train<-subset(train,select=-c(R)) #remove the column R 

test<-subset(test,select=-c(R)) #remove the column R 

 

We are now ready to build the Random Forest from the training data.  The randomForest package may 

already be installed from working with regression trees in Module 4.  In this case, we cannot specify the 

model with “success~.” because there is an id column, “Student”.  Adding this student id as a predictor 
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to the model would nonsense (as it is an arbitrary label uniquely identifying rows in the table).  For this 

reason, the five predictors are listed out, separated by a “+”.   

R Code for Creating the Random Forest 

#install.packages('randomForest', dependencies = TRUE) 

library(randomForest) 

set.seed(23) #needed to make the RF repeatable 

RFM=randomForest(success~FinalGrade1403+Transfer+ACT_Score+ACT_Math+HS_GPA,data=train) 

#summary(RFM) 

model<- predict(RFM, newdata=test, type = "class") 

known<-test["success"] #extract the actual value of success for comparing 

knownt<-t(known) #transpose the data for the confusion matrix 

table(knownt,model) #create the confusion matrix 

 

Figure 6.15 Resulting Confusion Matrix 

 

Efforts can again be made to try and fine tune the model for different values of mtry and ntrees.  After a 

few attempts, mtry of 4 and ntrees=1000, resulted in slightly better results. 

 

R Code After Fine Tuning the Random Forest 

set.seed(23) 

RFM=randomForest(success~FinalGrade1403+Transfer+ACT_Score+ACT_Math+HS_GPA,data=train,  

mtry=4,ntrees=1000) 

model<- predict(RFM, newdata=test, type = "class") 

known<-test["success"] #extract the actual value of success for comparing 

knownt<-t(known) #transpose the data for the confusion matrix 

table(knownt,model) #create the confusion matrix 

table(knownt,model) #create the confusion matrix 
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Figure 6.16 Resulting Confusion Matrix 

 

 

Figure 6.17 Interpreting the Confusion Matrix 

 

We now have three models we can compare (Figure 6.18).  Based on accuracy (and the overall confusion 

matrix error calculations), logistic regression would be preferred.  However, all three models are not far 

apart in performance if there was a particular reason to use one of the others. 

Figure 6.18 Comparing the Results of the Logistic Regression, Classification, and Random Forest 

Models 
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Full Random Forest Code 

stu <-read.csv("C:/Users/hbrown11/Desktop/student success.csv", header=TRUE) 

stu$success<-factor(stu$success) 

set.seed(23) 

R=runif(nrow(stu)) #create a random uniform column the length of our table 

stu$R=R  

train<-stu[stu$R<=.6,] 

test<-stu[stu$R>.6,] 

train<-subset(train,select=-c(R)) 

test<-subset(test,select=-c(R)) 

#install.packages('randomForest', dependencies = TRUE) 

library(randomForest) 

set.seed(23) 

RFM=randomForest(success~FinalGrade1403+Transfer+ACT_Score+ACT_Math+HS_GPA,data=train, 

mtry=4,ntrees=1000) 

model<- predict(RFM, newdata=test, type = "class") 

known<-test["success"] 

knownt<-t(known)  

table(knownt,model) 
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Classification Tree and Random Forest Practice Exercise 

The file "appt.csv" contains information regarding patients missing appointments in the healthcare 

setting.  Patient no-show leads to inefficient resource allocation and limits access to care. A way to 

counteract no-show is over-booking; however, poor over-booking can lead to equally negative 

outcomes.  To aid in the most efficient use of resources, can we accurately predict if a patient is likely to 

be a no-show for their appointment?   

In the data set, each row represents a patient, the column " MissedAppt" indicates which patient missed 

an appointment (“yes”=missed). PrevMissedAppt=if the patient missed a previous appointment, 

SameDayAppt=was the appointment made on the same day,  Age=age of patient, Male=gender of 

patient, White =nationality of patient, WaitTime=average wait time the day of the appointment, 

Monday etc. = day of week of appointment.   

Figure 6.19 Contents of the File appt (First Few Rows) 

 

 

Build a classification tree model and a Random Forest to predict MissedApt from the other 

columns. (Divide into training and test data sets, created a confusion matrix, calculate accuracy, and 

compare the results of these two models to the logistic regression model). 
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R code for the Classification Tree 

appt <-read.csv("C:/Users/hbrown11/Desktop/appt.csv", header=TRUE) 

head(appt) 

appt$MissedAppt<-factor(appt$MissedAppt) 

set.seed(23) 

R=runif(nrow(appt))  

appt$R=R  

train<-appt[appt$R<=.6,]  

test<-appt[appt$R>.6,]  

train<-subset(train,select=-c(R))  

test<-subset(test,select=-c(R))  

#install.packages('rpart', dependencies = TRUE) #install.packages('rpart.plot', dependencies = TRUE)  

library(rpart) 

library(rpart.plot) 

ctree<-rpart(MissedAppt~.,data=train) 

rpart.plot(ctree, type = 4, extra = 101) 

model<- predict(ctree,newdata=test, type = "class") 

known<-test["MissedAppt"] 

knownt<-t(known) 

table(knownt,model) 

 

6.20 Confusion Matrix for the Classification Tree (“appt” Example) 

 

 

Accuracy of the classification tree for this example was 76%.   Using the tree in Figure 6.21, we can 

predict the following patient: PrevMissedAppt=no, SameDayApp=no, Age=42, Male=yes, White=no, 

WaitTime=46, Monday=no, Tuesday=no, Thursday=no, Friday=yes, Saturday=no would be predicted to 
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not miss the appointment.  (We would follow the tree to the left twice, using the wait time and age 

columns, to predict “no”, the appointment would not be missed) 

 

Figure 6.21 The Classification Tree 

 

Assuming we just completed the above code to create a classification tree, we can add the following 

code to add the Random Forest. 

R code to Add the Random Forest 

#install.packages('randomForest', dependencies = TRUE) 

library(randomForest) 

set.seed(23) 

RFM=randomForest(MissedAppt~.,data=train) 

model<- predict(RFM, newdata=test, type = "class") 
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known<-test["MissedAppt"] 

knownt<-t(known)  

table(knownt,model) 

 

Adjusting the values of mtry and ntrees did not result in improvement this time.  The resulting confusion 

matrix is given in Figure 6.22. 

6.22 Confusion Matrix for the Random Forest (“appt” Example) 

 

 

Accuracy of Random Forest for this example was 77%.   The results of the logistic regression (Module 5), 

classification tree, and Random Forest can now be compared (see Figure 6.23) 

Figure 6.23 Comparing the Results of the Logistic Regression, Classification, and Random Forest 

Models (“app” Example) 

 

Based on accuracy (and the overall confusion matrix error calculations), all three models were very 

similar.  Any of the three could be legitimately used. 

R code for Making a Prediction 

#create a new row of data to predict: 

newdata=data.frame(PrevMissedAppt="no",SameDayAppt="yes", Age=47, Male="yes", White="yes", 

WaitTime=30, Monday="yes", Tuesday="no", Thursday="no",Friday="no", Saturday="no") 
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#predict with the classification tree 

predict(ctree,newdata=newdata, type = "class") 

#predict with the Random Forest 

predict(RFM,newdata=newdata, type = "class") 

 

Both models predict “no”, the patient will not miss the appointment, for this input. 
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Module 6 Assignment 

 

The csv file titanic.csv contains data on the survivors and casualties of the 1912 titanic disaster.  The 

data can be found online at Kaggle.com (2021). 

Class refers to the type ticket that was purchased, 1, 2 or 3 (1st being the most expensive). 

Age is the age in years of the passenger. 

Gender is the gender of the passenger. 

Survived is the target (response) variable, it is “yes” if the passenger survived and “no” if they did not. 

Build a classification tree model and a Random Forest model to predict if a passenger would have 
survived the titanic based on their age, gender, and class of ticket.  Divide the data into training and 
testing data sets, construct a confusion matrix from the out of sample (test) data, calculate the accuracy 
of the model.  Include an image of the classification tree for the final model.    Compare the confusion 
matrix and accuracy between the logistic regression model from last week, the classification tree, and 
the Random Forest model.  
 
Using either the tree or Random Forest model, make a prediction using your data to predict your 
hypothetical survival on the titanic (you can decide if you would have purchased a 1 st, 2 nd, or 3 rd class 
ticket; and if you don’t want to use your information, just make some up for a hypothetical 
person).  Briefly summarize what you did in this assignment, include any key graphs, etc.  As always, 
include your full R program. 
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Module 7: Introduction to Artificial Neural Networks for 

Classification  
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Introduction to Artificial Neural Networks 

Artificial Neural Networks (ANN) are an artificial intelligence machine learning technique widely used for 

classification.  As with all predictive modeling techniques, to create an ANN we must have training data 

with inputs and known outputs to construct the model and test or validation data are important to 

avoid over-fitting.  Once an ANN is constructed, predictions for outputs based on a new set of inputs can 

be made.  There are many different types of ANN that implement different topologies or strategies to 

improve the predictive ability of the ANN or adjust it to a particular type of problem.  Examples of 

different types of ANN include, but are not limited to: 

– Feedforward neural networks: a single input layer, a single output layer, and one or more 

hidden layers, used for classification and regression tasks. 

– Recurrent neural networks:  process sequential data, used for natural language processing and 

speech recognition 

– Transformer neural networks: used for natural language processing, e.g. ChatGPT 

– Convolutional neural networks: designed for image processing, used for tasks such as image 

classification and object detection. 

– Autoencoders: dimensionality reduction and feature extraction, used for tasks such as image 

compression and anomaly detection. 

– Generative adversarial networks: generate new data, used for tasks such as image generation 

and text generation. 

– Deep learning: ANN with many hidden layers and parameters 

ANN are based on biological neural networks.  A biological neural network is a model of reasoning of the 

physical human brain. The brain consists of a densely interconnected set of nerve cells, or basic 

information-processing units, called neurons.  The human brain incorporates nearly 10 billion neurons 

and 60 trillion connections, synapses, between them. Each neuron has a very simple structure, but 

collectively the elements constitute an enormous processing power, referred to as a neural network. 

Artificial neural networks (ANNs) have a long history that traces back to the 1940s when the concept of 

a computational model inspired by the human brain first emerged. In 1943, Warren McCulloch and 

Walter Pitts proposed a model of artificial neurons, laying the foundation for ANNs. However, progress 

was slow until the 1950s and 1960s when researchers like Frank Rosenblatt introduced the perceptron, 

an early form of a neural network capable of learning. Despite initial enthusiasm, interest waned as 

perceptrons faced limitations in solving complex problems. The ANN approach experienced a resurgence 

in the 1980s with the development of backpropagation, a technique for training multilayer neural 

networks. This breakthrough paved the way for more sophisticated architectures, such as convolutional 

neural networks (CNNs) in the 1990s and recurrent neural networks (RNNs) in the 2000s. Recent 

advancements in computing power, big data, and algorithmic improvements have led to significant 

breakthroughs in deep learning, enabling ANNs to achieve a high level of performance in various 

domains, including large language models such as ChatGPT in 2023. (For more general information on 

ANNs and their history see Goodfellow, Bengio & Courville, 2016.) 
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Advantages of ANN 

Artificial neural networks have several advantages as a method of predictive modeling.  ANN have been 

demonstrated to be useful for a variety of problems.  They can handle complex problems, require little 

supervision, and can be combined with other techniques (for example, genetic algorithms).  Further, 

currently ANN significantly outperform other modeling approaches for certain types of problems, such 

as natural language processing. 

 

Disadvantages of ANN 

ANN also have several disadvantages as a method of predictive modeling.  Like Random Forests, ANN 

are a “black-box” technique that can be difficult to explain to business decision makers.  For a large 

ANN, specifically how a prediction is made can be difficult to ascertain. In addition, ANN do not 

guarantee optimal solutions and require fine tuning for which there is often little guidance.  Further, 

because of the enthusiasm over new ANN techniques, artificial neural networks can be overused when 

simpler (and perhaps equally or more effective) techniques could be used.  Despite these limitations, 

modern ANN are arguably one of the most promising approaches to building models for classification. 

 

Details of How Artificial Neural Networks Work 

A neural network is a computing model that has many units working together.  The connections 

between units have weights that are trained by a learning algorithm.  The behavior of an ANN is 

determined by its topology and the nature of the individual units.   To conceptually understand how 

ANN are trained, we will look at how an ANN works for an unrealistically small and simple example.  In 

this example, there will be two inputs, X1 and X2; weights, W1 and W2, that are trained for these inputs, 

a neuron that combines the weights, and a transfer function that scales the output of the neuron to give 

a predicted value of the output (Y) (see Figure 7.1).  A common transfer function for classification is the 

Sigmoid transfer function, YT=1/(1+e-Y).  However, in our first example we will simply use rounding as our 

transfer function to give our output as a 0 or 1.   

Figure 7.1 Processing Information in an ANN 

 

Training an ANN to Recognize the OR Operator 

The OR binary operator has the input and output depicted in Figure 7.2.  For example, if X1=1 and X2=0, 

the output would be 1; if the input is X1=0 and X2=0 the output would be 0.  Using these four rows 

(again this is an unrealistically small set of data to use for training), we will train a simple ANN. 
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Figure 7.2 Input and Output for the Binary OR Operator 

 

The training algorithm will begin with initial random guesses for W1 and W2 using pseudorandom 

number generation.  The initial weights will be processed by the neuron, rounded by the transfer 

function, then the error will be calculated and used to adjust the weights with a learning parameter, .  

In our example we will use  = 0.2. This process will repeat until the weights are trained to produce the 

proper output (Figure 7.3). 

Figure 7.3 Example Training Process for an ANN 

 

 

Suppose the initial random values of W1 and W2 in Figure 7.4 were chosen: 

Figure 7.4 Initial Random Weights Are Chosen for the ANN 

 

Based on the random values of W1 and W2, the output of the ANN for each row of X1 and X2 would be 

determined as follows: Y (unrounded) = X1*W1+X2*W2 and then rounded to apply the transfer function 

(as depicted in figure 7.5). 
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Figure 7.5 The Neuron and Transfer Function Are Used to Make a Prediction from the Initial Values of 

W1 and W2 

 

An error is calculated by subtracting Z-Y.  The error is multiplied by the learning parameter (0.2) and by 

the value of X1 then added to the old value of W1: NewW1 =   OldW1+**X1.  The process is repeated 

for W2: W1: NewW2 =   OldW2+**X2 as depicted in Figure 7.6. 

Figure 7.6 Adjusting the Values of W1 and W2 Based on the Error and Learning Parameter ( = 0.2). 

 

The second iteration of learning then begins with the new values of W1 and W2 as depicted in Figure 

7.7.  Notice only the weights that resulted in an error are adjusted. 

Figure 7.7 ANN Weights After One Iteration 

 

The same process is repeated as depicted in Figure 7.8 
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Figure 7.8 The Second Iteration of the ANN Training Algorithm 

 

The process would continue to repeat until the weights give the correct output.  In this case, it would 

take two more iterations (Figures 7.9 and 7.10). 

Figure 7.9 The Third Iteration of the ANN Training Algorithm 

 

Figure 7.10 The Fourth and Final Iteration of the ANN Training Algorithm 

 

If the initial weights had been different, the final weights would certainly also be different and a 

different number of steps may have been needed based on the initial weights.  The trained weights used 

in a neuron are therefore not unique (many different weights can result in a properly trained ANN that 

gives the correct outputs).  For this reason, the weights are not reported as a part of the ANN and the 

ANN is considered a “black box”. 

The ANN used for classification and available in analytics software such as R will generally be feed-

forward neural networks with hidden layers.  For example, Figure 7.11 depicts a feed-forward ANN with 

one hidden layer.  The hidden layers allow for more complex output (such as interactions between 

variables) to be modeled.  In the examples we will complete in R, we will use a similar neural network as 
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that depicted in Figure 7.11 (one hidden layer with several processing elements).  Note, this is far from 

the most advanced commercial ANN used in industry.  For example, ChatGPT3 uses an ANN with a 

reported 96 hidden layers and over 175 billion parameters. 

Figure 7.11 Feed-Forward Network with One Hidden Layer 

 

 

Artificial Neural Networks in R 

We will use the student success data again.  The file “student success.csv” contains records for 2,000 

students enrolled in a university’s computer science department. “FinalGrade1403” is the final grade in 

a first class in computing.  “Transfer” is whether the student transferred into the university or not.  

“ACT_Score” is the student’s composite ACT (college entrance exam) score.  “ACT_Math” is the 

student’s score on the Math portion of the ACT.  “HS_GPA” is the student’s high school grade point 

average.  “success” is the target (or response) variable, what we are trying to predict—if the student 

successfully completed a computer science degree within 6 years.  Figure 7.12 shows the first few rows 

of the student success data. 

Figure 7.12 First Few Rows of the Student Success Data 

 

 

The data may be read in as usual in R. 
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R Code for Reading in Data 

stu <-read.csv("C:/Users/hbrown11/Desktop/student success.csv", header=TRUE) 

head(stu) 

Again, for classification problems we will need to identify our target variable as a factor.   

R Code for Setting Success as a Factor 

stu$success<-factor(stu$success) 

 

The data are now ready to be divided into training and test data sets.  This process is identical to what 

was done in previous examples.  Note, cross-validation could also alternatively be used.   

 

R Code for Dividing Data into Training and Testing Data Sets 

set.seed(23) 

R=runif(nrow(stu)) #create a random uniform column the length of our table 

stu$R=R #add the random numbers to our table 

train<-stu[stu$R<=.6,] #select roughly 60% for training 

test<-stu[stu$R>.6,] #the other 40% gets placed in test 

train<-subset(train,select=-c(R)) #remove the column R 

test<-subset(test,select=-c(R)) #remove the column R 

 

We are now ready to build the ANN from the training data.  There are multiple packages available for 

ANN in R, we will use the nnet package.  Again, we cannot specify the model with “success~.” because 

there is an id column, “Student”.  Additionally, using the student id as a predictor to the model would be 

nonsense (as it is an arbitrary label uniquely identifying rows in the table).  For this reason, the five 

predictors are listed out, separated by a “+”.  Notice the formula stays the same regardless of whether 

we are using a logistic regression model, a decision tree, a Random Forest or an ANN.   

The set.seed controls the random weights that are used as initial guesses (makes the program 

repeatable).  Size=4 refers to the number of neurons to use in the hidden layer of the ANN. There is no 

clear consensus on the number of neurons to use in a hidden layer, one rule of thumb is two use the 2/3 

the number of inputs plus the number of outputs:   5 input columns+1 output column = 6.  Then, 

0.667*6 is approximately 4, which is why size=4 was selected.  Much like the mtry parameter in the 

Random Forest, changing the size parameter can potentially create improved performance for the ANN. 
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R Code for Creating the Artificial Neural Network 

install.packages("nnet") 

library(nnet) 

set.seed(17) 

ANN<-nnet(success~FinalGrade1403+Transfer+ACT_Score+ACT_Math+HS_GPA,data=train, size=4) 

 

Once the ANN is trained, the model can be fit to the test data. 

 

R Code for Fitting the Model to the Test Data 

model<- predict(ANN, newdata=test, type = "class") 

known<-test["success"] #extract the actual value of success for comparing 

knownt<-t(known) #transpose the data for the confusion matrix 

table(knownt,model) #create the confusion matrix 

 

The confusion matrix is given in Figure 7.13. 

Figure 7.13 ANN Confusion Matrix (“student success” Example) 

 

Figure 7.14 compares the ANN results to Logistic Regression, Classification, and Random Forests.  The 

accuracy of the ANN model is 89% and it very slightly outperforms the Logistic Regression model for this 

example.    Either the ANN or Logistic Regression would be good choices for this problem. 

 

  



153 
 

Figure 7.14 Comparing the Results of the Logistic Regression, Classification, and Random Forest 

Models (“student success” Example) 

 

 

The Full R Program for the ANN 

stu <-read.csv("C:/Users/hbrown11/Desktop/student success.csv", header=TRUE) 

head(stu) 

stu$success<-factor(stu$success) 

set.seed(23) 

R=runif(nrow(stu)) #create a random uniform column the length of our table 

stu$R=R #add the random numbers to our table 

train<-stu[stu$R<=.6,] #select roughly 60% for training 

test<-stu[stu$R>.6,] #the other 40% gets placed in test 

train<-subset(train,select=-c(R)) #remove the column R 

test<-subset(test,select=-c(R)) #remove the column R 

library(nnet) 

set.seed(17) 

ANN<-nnet(success~FinalGrade1403+Transfer+ACT_Score+ACT_Math+HS_GPA,data=train, size=4) 



154 
 

model<- predict(ANN, newdata=test, type = "class") 

known<-test["success"] #extract the actual value of success for comparing 

knownt<-t(known) #transpose the data for the confusion matrix 

table(knownt,model) #create the confusion matrix 
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Module 7 Assignment 

 

The csv file irs.csv contains data from past US Internal Revenue Service audits.  In an effort to more 

efficiently audit only those returns most likely to have violated tax laws, you have been asked to build a 

model to predicted if cheating has likely occurred for a particular tax return. 

The columns in the file irs.csv are: 

• cheated: "yes" if the audit found the return violated tax laws, otherwise "no" -- this is the target 
variable we are building the model to predict  

• married: "yes" if the return is for a married individual; "no" for single 
• incomeOver100K: "yes" if the income of the individual exceeds $100,000     
• return: "yes" if the individual received a return ("no" if the individual did not receive a return or 

had to pay in)   
• filedLate: "yes" if the return was filed late, "no" if filed early or on time    
• Over4DeductClaimed: "yes" if over 4 deductions were claimed, "no" if 4 or less 

 
Using the other 5 columns, use R to build an artificial neural network to predict if the audit resulted in 

cheated="yes" or "no".  Create a confusion matrix and calculate accuracy. 

A return comes in with the following attributes: not married, income of $120,000, received a return, 

filed late, and claimed over 4 deductions. Using your ANN, make a recommendation if the tax return 

should be audited. 
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Module 8: Variable (Model) Selection  
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Introduction to Variable/Model Selection 

When building predictive models with potentially multiple predictor variables it is important to 

determine which subset of variables will result in the best model.  Specifically, it must be determined if 

any or all variables can be used to make valid predictions. Further, if at least some predictors can be 

used, it must be determined which subset of inputs provides the greatest predictive ability. Variable 

selection or model selection (also called “feature extraction”) is the process of determining which inputs 

to use for a particular model.  Thus, in variable selection we want to choose the subset of independent 

variables (input columns) that will create the best predictive model 

The need for variable selection is somewhat counterintuitive; it may seem a model should always 

improve with the addition of legitimate predictors.  However, there are numerous issues with including 

too many predictor variables or the wrong subset of predictor variables in a model.  As was 

demonstrated at the end of module 4, using too many variables can lead to overfitting a model.  

Further, too many independent variables can prevent a model from being created by having too few 

rows to uniquely estimate the impact of each variable or due to the time required to execute the 

algorithm.  Also, independent variables that are highly correlated with other independent variables in 

the same model can create issues in the algorithms used to build models, conceptually if two predictor 

variables say the same thing about the response variable—both are not needed.  Moreover, variables 

can interact with other variables (a variable by itself may not be useful, but in the presence of another 

variable it becomes a useful predictor).  Finally, fewer input variables can result in an easier to interpret 

model.  For these reasons, selecting variables has become a routine step in the construction of 

predictive models. 

There are many incorrect approaches to variable selection.  Things NOT to do in variable selection 

include: 

• Do not simply run a regression (or logistic regression) model and remove variables that are not 
significant. 

• Do not repetitively run hypothesis tests to select variables. 
• Do not forget that selected variables should be cross-validated or be evaluated with test data. 
• Do not rely entirely on manual selection. 
• Do not include a predictor variable that does not have a justifiable relationship to the response 

variable. 
 

Conversely, there are several valid approaches to variable selection that can be used.  In this module, we 

will look at three commonly used approaches, step-wise variable selection, Random Forest importance, 

and LASSO regression.  Prior to using an algorithm for variable selection, we will also discuss certain 

preselection considerations that should also be made. 

 

Preselection 

Before using variable selection methods, exploratory data analysis and common sense should be applied 

to the process of determining candidate predictor variables.  Only independent variables that can be 

logically justified as predictors of the dependent variable should be considered for models (e.g. when 
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trying to predict store sales, store manager shoe size should not be considered). Further, some columns 

may not be suitable as predictors due to the nature of the available data (for example, a column of 

categorical data with too many levels may lead to errors in algorithm implementation).  In addition, 

simple correlation coefficient calculations can be useful for identifying highly correlated input variables 

(if two inputs are highly correlated, only one of the inputs should be chosen).  Finally, in a particular 

modeling problem, you should try to learn as much about the context of the model as possible and look 

for those independent variables that are commonly thought to impact the dependent variable. 

 

Stepwise Selection 

Stepwise selection is one of the oldest and most commonly used methods of selecting the best subset of 

predictors.  In stepwise selection, an algorithm is used to repetitively fit a regression model with 

different combinations of potential input variables, each candidate model is evaluated for its predictive 

ability and the model with the best performing subset of variables is selected.  A commonly used metric 

for stepwise selection is Akaike’s Information Criterion (AIC), AIC = 2k-2ln(L), were k is the number of 

model inputs and L is the maximized value of the likelihood function.  AIC is penalized for adding extra 

terms and attempts to estimate out of sample performance (corrected AIC, AICC, is better in some 

situations).  Note that not just any measure can be used in stepwise selection!  Common metrics, like R-

squared, always increase if more variables are added to a model. 

 

Random Forests for Variable Importance 

Random Forests that we examined in Modules 4 and 6 can be used to aid in variable selection.  Recall 

that Random Forests construct numerous decision trees using a subset of variables for each tree.  As a 

result, tree performance with and without each variable can be measured across the forest.  The 

average impact the variable has on improving decision trees when that variable is included is called its 

“importance”.  After fitting a Random Forest model, we can request the variable importance from R in 

terms of MSE or purity for regression and accuracy or Gini index for classification. 

 

LASSO Regression for Variable Selection 

LASSO regression, also known as least absolute shrinkage and selection operator, is a popular technique 

used in statistical modeling and machine learning to perform variable selection. LASSO regression 

imposes a penalty on the absolute values of the regression coefficients, shrinking some of them to zero, 

effectively performing feature selection. In ordinary least square regression the algorithm estimates 

parameters to minimize the “deviance” (difference between dependent and independent variables): 

1

𝑛
∑(𝑦𝑖 − 𝑥′

𝑖𝛽)2 

In LASSO regression the algorithm minimizes a cost function (sometimes called a penalty): 

1

𝑛
∑(𝑦𝑖 − 𝑥′

𝑖𝛽)2 + 𝜆 ∑ 𝑐(𝛽𝑗) 
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Methods such as LASSO regression are called “regularization” (penalizing complexity), and have been 

shown to be an effective way to choose an optimal model.  For a more detailed understanding of LASSO 

regression and its implementation, see Hastie, Tibshirani, and Friedman (2009) among others. 

 In the LASSO regression algorithm, we begin with penalties () that make each parameter () zero, the 

algorithm then works to find values that minimize the fit and penalty.  Parameters () that do not 

improve fit more than increasing complexity cost will stay zero. The process can be visualized with 

regularization paths.  Variables that were not selected will have a “.” next to them in the R output.  

Figure 8.1 shows an example LASSO regularization path.  

Figure 8.1 Example LASSO Regularization Path in R  

  

 

Variables need to be on the same scale in order for LASSO regression to be effective.  If variables are not 

on the same scale this can be accomplished by “standardization”.  To standardize a column, find the 

mean and standard deviation for that column, then take each value in the column subtract the mean 

and divide by the standard deviation as follows: 

Standardized of xi = 
(𝑥𝑖−�̅�)

𝑠
 

This will place all values roughly on the same scale (centered at 0, from usually ranging from around -3 

to 3) while preserving the nature of the data.  This can be done prior to loading the data into R or with 

the R function scale(). 
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Variable Selection in R 

 The csv file “product survey.csv” includes data from 40 different products from the same product 

category for a large online retail company (Figure 8.2).  The column “sales” is the average weekly sales 

of each item.  Columns, “color”, “size”, “features”, “reliability”, “warranty”, and “cost” are the average 

scores from product surveys that ask about the customers’ satisfaction with each aspect of the product.  

A score closer to 10 indicates a higher average customer satisfaction for each item; a score closer to 1 

indicates greater dissatisfaction.  Determine the best subset of variables to predict sales from the 

customer satisfaction measures. 

 

Figure 8.2 Contents of the “product survey.csv” File (First Few Rows) 

 

 

Stepwise variable selection with AIC for the product survey data can be completed as follows: 

Stepwise Variable Select Using AIC in R 

ps <-read.csv("C:/Users/hbrown11/Desktop/product survey.csv", header=TRUE) 

head(ps) 

install.packages("MASS") 

library(MASS) 

step_model <- stepAIC(lm(Sales ~ ., data = ps), direction = "both", trace = FALSE) 

# Print the selected variables 

print(step_model$anova) 

 

The output for the stepwise selection is given in Figure 8.3.  Notice the final variables selected were Size, 

Features, Reliability, and Cost; Color and Warranty were not selected.  Once the variables are selected, 

we would proceed with building our model as we have done in previous modules, using only the 

selected variables. 
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Figure 8.3 Stepwise Selection Output (“product survey” Example) 

  

 

Ranking variable importance using Random Forests for the product survey data can be completed as 

follows: 

Random Forest Variable Importance in R 

library(randomForest) 

RFM=randomForest(Sales~.,data=ps, importance=TRUE) 

importance(RFM) 

varImpPlot(RFM) 

 

The output for variable importance is given in Figure 8.4.  Importance using MSE is given in the first 

graph; importance using Node Purity is given in the second—either could be used to determine which 

variables are most useful for building a model.  Unlike stepwise and LASSO regression, when using 

Random Forests for variable selection, while variables are ranked by importance, there is no clear “cut-

off” for where to stop including variables (it is left up to analyst to say where to stop including variables).  

However, in this case, warrant and color are less than 0 on %IncMSE, clearly indicating they should not 

be used. 

  



162 
 

Figure 8.4 Variable Importance from the Random Forest Approach to Variable Selection (“product 

survey” Data) 

 

 

LASSO regression for the product survey data can be completed as follows (note these variables are all 

on the same scale, 1-10, so no standardization is needed): 

LASSO Regression in R 

install.packages("gamlr") 

library(gamlr) 

modMat<-model.matrix(~Color+Size+Features+Reliability+Warranty+Cost, data=ps) 

fit<-gamlr(x=modMat,y=ps$Sales) 

#the plot shows the coeff moving from zero to values 

plot(fit) 

#selected model 

coef(fit) 

 

The output for LASSO regression is given in Figures 8.5 and 8.6.  From the output (both the 

regularization path and table output), we can see Size, Features, Reliability, and Cost were selected; 

Color and Warranty were not selected.   
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Figure 8.5 Table Output of LASSO Regression (“product survey” Data) 

 

Figure 8.6 LASSO Regularization Path in R (“product survey” Data) 

 

 

Conclusions for Example 1 “product survey” Data 

All three methods of variable selection agreed that Color and Warranty should not be used in the model.  

However, for some sets of data the different methods of variable selection will not agree on the 

predictors that should be used.  In such instances the analyst must evaluate the recommendations made 

by each technique and make the final choice (perhaps trying a few of the different models that were 

proposed). For the product survey data, the process for building the final model would now begin using 

just the selected columns: Size, Features, Reliability, and Cost. 
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A Second Variable Selection Example 

The csv file “irs2.csv” contains data from past US Internal Revenue Service audits (Figure 8.7).  In an 

effort to more efficiently audit only those returns most likely to have violated tax laws, the columns in 

the file irs2.csv are: 

• cheated: "yes" if the audit found the return violated tax laws, otherwise "no" -- this is the target 
variable we are building the model to predict  

• married: "yes" if the return is for a married individual; "no" for single 
• dependents: "yes" if the return is for an individual claiming dependents; "no" otherwise 
• incomeOver100K: "yes" if the income of the individual exceeds $100,000     
• return: "yes" if the individual received a return ("no" if a the individual did not receive a return 

or had to pay in)   
• largedonation: “yes” if the individual made a donation in excess of 10% of their annual income, 

no otherwise 
• mathErrors: “yes”: if there were math errors in the return, “no” otherwise 
• filedLate: "yes" if the return was filed late, "no" if filed early or on time    
• Over4DeductClaimed: "yes" if over 4 deductions were claimed, "no" if 4 or less 

 
Perform variable selection for the IRS audit data using stepwise selection with AIC, Random Forest 

Importance, and LASSO regression. 

 

Figure 8.7 The “irs2.csv” Data Set (First Few Rows) 

 

 

Stepwise variable selection with AIC for the irs2 data requires an extra step for categorical data, to turn 

the “yes” and “no”s into 1’s and 0’s (called dummy variables or indicator variables): 

Preparing the Data for Stepwise Variable Selection by Creating Indicator Variables 

irs <-read.csv("C:/Users/hbrown11/Desktop/irs2.csv", header=TRUE) 

head(irs) 

# Dummy code categorical predictor variables 
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irsdum <- model.matrix(~., irs)[,-1] 

irsdum<-data.frame(irsdum) 

head(irsdum) 

library(MASS) 

step_model <- stepAIC(lm(Sales ~ ., data = ps), direction = "both", trace = FALSE) 

# Print the selected variables 

print(step_model$anova) 

Stepwise selection with AIC then proceeds as before: 

#install.packages("MASS") 

library(MASS) 

step_model <- stepAIC(lm(cheatedyes ~ ., data = irsdum, family=binomial), direction = "both", trace = 

FALSE) 

# Print the selected variables 

print(step_model$anova) 

 

The output for the stepwise selection is given in Figure 8.8.  The variables married, incomeOver100, 

return, filedLate, and Over4DeductClaim were selected.  (Depedents, mathErrors, and largedonation 

were not selected) 

Figure 8.8 Stepwise Output (“irs2” Data) 
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Ranking variable importance using Random Forests for the irs2 data can be completed as follows (note, 

there is no need to recode the data into indicator variables for Random Forests): 

Random Forest Variable Importance in R 

irs$cheated<-factor(irs$cheated) 

RFM=randomForest(cheated~.,data=irs, importance=TRUE) 

importance(RFM) 

varImpPlot(RFM) 

 

The output for variable importance is given in Figure 8.9.  Importance using accuracy is given in the first 

graph; importance using the Gini criterion is given in the second—either could be used to determine 

which variables are most useful for building a model.  In this case, there is a clear drop-off for 

largedonation, mathErrors, and dependents, indicating they should not be used. 

Figure 8.9 Random Forest Importance (“irs2” data) 
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LASSO logistic regression for the irs2 data again requires the creation of an indicator variables.  Note 

however, all the variables are again on the same scale, so standardization is not needed.  The R code for 

LASSO logistic regression is given as follows: 

LASSO Logistic Regression in R 

irs <-read.csv("C:/Users/hbrown11/Desktop/irs2.csv", header=TRUE) 

head(irs) 

# Dummy code categorical predictor variables 

irsdum <- model.matrix(~., irs)[,-1] 

irsdum<-data.frame(irsdum) 

head(irsdum) 

#LASSO regression 

#install.packages("gamlr") 

library(gamlr) 

modMat<-model.matrix(~marriedyes + dependentsyes + incomeOver100Kyes +  

    returnyes + largedonationyes + mathErrorsyes + filedLateyes +  

    Over4DeductClaimedyes, data=irsdum) 

fit<-gamlr(x=modMat,y=irsdum$cheatedyes, family = "binomial") 

#the plot shows the coeff moving from zero to values 

plot(fit) 

#selected model 

coef(fit) 

 

The output for LASSO regression is given in Figures 8.10 and 8.11.  From the output (both the 

regularization path and table output), only dependents and mathErrors were removed; however, 

largedonation departed from zero late in the process and may not be needed; in this case both stepwise 

and Random Forests can help clarify whether to include largedonations as a predictor. 
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Figure 8.10 Table Output of LASSO Logistic Regression (“irs2” Data) 

 

 

Figure 8.11 Regularization Lass Logistic Regression (“irs2” Data) 

 

Conclusions for Example 2 

For the “irs2” example, we can make the following conclusions.  All three methods of variable selection 

agreed that dependents and mathErrors should not be used in the model.  Stepwise and Random 

Forests indicated largedonation should also be removed. Further, largedonation was selected late in the 

regularization path from the LASSO logistic regression model. The final model that is built should 

therefore not use these three columns and instead be based on married, incomeOver100K, return, 

filedLate, and Over4DeductClaimedyes. 
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Module 8 Assignment 

 

The file "nflcombine.csv" contains NFL combine data.  The NFL combine is a yearly event where college 

football players that are NFL prospects are put through a series of tests. The NFL combine data 

(performance and measurement data) are provided for 267 college football players.  The columns are as 

follows: Ht is the player height, Wt is the player weight, yd40 is the player's 40 yard dash time, Vertical is 

the player's vertical jump, Bench is the number of times 225 pounds can be bench pressed, BroadJump 

is the player's broad jump, Cone3 is the time it takes the player to complete a particular drill, Shuttle is 

the time it takes a player to complete a different drill,  and “Draftedyes” indicates if the player was 

drafted (picked up by a NFL team). The file "znflcombine.csv" is the same data, only the eight potential 

predictor variables have been standardized for use with LASSO regression.  Using the stepwise, Random 

Forest importance, and LASSO methods of variable selection, determine which of the other eight 

columns, if any, would be good predictors of Draftedyes.  Note: for stepwise and Random Forests, 

"nflcombine.csv" can be used.  For LASSO regression, "znflcombine.csv" must be used.  (There is no need 

to create dummy variables or to preprocess the data in any other way as long the standardized file is 

used for LASSO regression.) 

After variable selection analysis there may not be a perfect consensus between the three methods on 

variables selected; however, clearly state which variables each method selected and give suggestions for 

how you would proceed to construct a model (you do not have to build a particular model, just choose 

the variables that would be used).  
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Module 9: Principal Component Analysis for Predictive 

Modeling 
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Introduction to Principal Component Analysis 

Principal Component Analysis (PCA) is a dimensionality reduction technique commonly used in 

regression analysis to handle multicollinearity and extract meaningful information from high-

dimensional datasets. By transforming the original set of variables into a new set of uncorrelated 

variables called principal components, PCA helps identify the most important features that explain the 

maximum amount of variance in the data. These principal components are ordered based on their 

respective eigenvalues, with the first few components capturing the majority of the variance. PCA can 

be particularly useful in regression when dealing with a large number of correlated predictors, as it 

reduces the dimensionality of the data while retaining as much information as possible.  PCA can be 

used in combination with any modeling technique to prepare the set of predictor variables.  When PCA 

is used in combination with regression, it is often called principal component regression (PCR). 

PCA finds orthogonal transformations of correlated data, creating a new smaller set of uncorrelated 

factors.  Eigenvectors and eigenvalues are found for the covariance matrix, and their relative significance 

is measured and a few vectors are selected to represent the data.  (Eigenvectors and eigenvalues are a 

linear algebra topic and numerous tutorials are available online if you are interested, we will not go 

through the mathematics.)  See Johnson & Wichern (2002) among others for a more detailed 

introduction to principal component analysis. 

 

Advantages of PCA for Predictive Modeling 

There are several advantages to using PCA for predictive modeling.  PCA combines columns into a 

smaller subset of columns that can be used for predictive modeling.  Further, PCA provides an 

alternative to variable selection to reduce the number of inputs, without losing information.  Moreover, 

PCA can increase the understand of a set of data by discovering underlying or “latent” factors.   

 

Disadvantages of PCA for Predictive Modeling 

Principal component analysis also has disadvantages for predictive modeling.  PCA adds extra complexity 

to the model building process.  It can be difficult to explain to a nontechnical audience and using 

variable selection when possible can be a simpler solution.  In addition, the new factors discovered by 

PCA lose the practical meaning of their numeric values (PCA produces numbers that are not easily 

interpreted in the original scale of the predictors). 

 

PCA Process  

Principal component analysis process starts as we typically begin a modeling process by dividing the 

data into training and testing data sets.  We determine the number of principal components to use by 

examining the eigenvalues.  A typical rule of thumb is to only use factors with eigenvalues greater than 

one.  During this phase you may also want to examine the underlying factors—each principal 

component is a latent variable that can often be “named” by how the original variables load to that 
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factor.  Using the selected principal components, a predictive a model is then constructed.  As always, 

we evaluate the final model performance on the test data in our typical manner. 

 

An Example of PCA in R for Regression 

The file “empRet.csv” contains data from 100 large companies on retention and the results of employee 

surveys on job satisfaction (Figure 9.1).  The target column is retention, which is the proportion of 

employees retained at the company after two years.  The following 20 columns are predictor variables 

with the average results from survey items where the employees were asked to rate the company on 

each of the following characteristics (1 being the employee is very dissatisfied with the company’s 

performance in this area, 5 being neutral, 10 being the employee is very satisfied with the company’s 

performance in this area): Trust, Stable, Diverse, Ethical, Opportunity, Pay, Communication, Benefits, 

HomeWorkBalance, Respected, Rewarded, Engaged, Environment, Leadership, Recognition, 

Development, Culture, Hours, TimeOff, and ProfitFocus. 

The goal is to create a model predicting retention using the other 20 columns. However, many of the 20 

columns are highly correlated.  All columns potentially impact retention, so, rather than use variable 

selection, principal components will be used to combine the 20 columns into a suitable number of 

factors that will then be used to predict retention.  

Figure 9.1 “empRet.csv” Data (First Few Rows) 

  

 

The following R code performs PCA for the empRet data.  The data are first divided into training and 

testing data sets as usual.  Note, the predictor columns are extracted from the data frame for PCA 

analysis into the data frame entitled forpca.  Data must be standardized before PCA.  However, 

standardization is built into the PCA procedure in R. 



173 
 

R Code for Principal Component Analysis 

ret <-read.csv("C:/Users/hbrown11/Desktop/empRet.csv",header=TRUE) 

head(ret) 

set.seed(42) 

R=runif(nrow(ret))  

ret$R=R  

train<-ret[ret$R<=.6,] 

test<-ret[ret$R>.6,]  

train<-subset(train,select=-c(R))  

test<-subset(test,select=-c(R))  

#install and load needed packages, installation only needs to happen once 

install.packages("FactoMineR") 

library("FactoMineR") 

install.packages("factoextra") 

library("factoextra") 

#extract the 20 predictor variables to create principal component factors (the response variable 

should never be included in the principal component analysis for principal component regression): 

forpca<-subset(train,select=-c(Retention)) 

#head(forpca) 

#use PCA to create underlying factors from the 20 predictor variables, note scale.unit=TRUE should 

always be used to tell R to standardize the variables before PCA 

pca<-PCA(forpca, scale.unit = TRUE) 

 

The PCA graph of variables (Figure 9.2) produced by R can be helpful for understanding how the original 

20 predictor variables are being combined into a handful of new latent variables.  For example, 

responses to the survey items Opportunity, Development, Stable, Reward, Pay, and Benefits all seem to 

be related and may be captured through a single latent variable.  This can more closely be examined in 

the factor pattern, see Figure 9.4. 
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Figure 9.2 PCA Graph of Variables (“empRet” data) 

 

 

The following code can be used to display the eigenvalues to determine how many principal component 

factors to use. 

R Code for Principal Component Analysis 

#examine the eigenvalues and the variation explained 

ev<-get_eigenvalue(pca) 

ev<-data.frame(ev) 

ev 

#create a scree plot (same information, visually displayed) 

plot(ev$eigenvalue, type="b", main="Scree Plot", xlab="Principal Component", ylab="Eigenvalue") 

 

The R output is displayed in Figure 9.3.   The magnitude of the eigenvalue and the cumulative percent of 

the variance explained are used to determine how many factors (dimensions) to use.  The rule of thumb 

is to only use eigenvalues over 1. The scree plot shows the same information in a plot as the table 
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provides numerically (Figure 9.4).  For these data, the first four principal components should be used (all 

have eigenvalues above 1). 

Figure 9.3 Table of Eigenvalues and Scree Plot (“empRet” Data) 

 

 

The following code can be used to display the factor pattern to see how the four principal components 

relate to the original 20 columns. 

R Code for Principal Component Factor Pattern 

fp<-get_pca_var(pca) 

fp$cor 

 

The factor pattern is displayed in Figure 9.4.   The factor pattern shows the correlation between each 

principal component and the original 20 predictor variables, it tells a similar story to the “PCA graph of 
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variables”.  Note: Dim. 1 (or dimension 1) is also called principal component 1 or PC1, Dim.2 = PC2, etc. 

Correlation close to 1 or -1 tells you about the composition of the principal component.  For example, 

Dim. 4 (PC4) is highly correlated with HomeWorkBalance, Hours, and TimeOff.  This factor pattern can 

be used to “name” a latent factor.  These three survey items are measuring the same underlying 

variable that could be named something like “employee satisfaction with workload”.  Dim. 1 is relatively 

highly correlated with Communication, Respected, Engaged, Environment, and Recognition and could be 

named something like “employees perception of being valued”.   

 

Figure 9.4 Factor Pattern (“empRet” Data) 

 

 

A regression model can be built using the four principal components with the following R code. 

The R Code for PCR 

install.packages("pls") 

library("pls") 

#The options say to use 4 principal components from the training data, scale the data 

pcr_reg<-pcr(Retention~.,data=train,ncomp=4,scale=TRUE) 

#apply the model to the test data and calculate MAE, RMSE, and RSQUARE (as we have done with 

other models) 

predicted<-predict(pcr_reg,ncomp=4,newdata=test) 
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mae<-mean(abs(test$Retention-predicted)) 

cat("MAE",mae,"\n") 

rmse<-(mean((test$Retention-predicted)**2))**.5 

cat("RMSE",rmse,"\n") 

rsquared=1-( sum((predicted-test$Retention)^2))/(sum((test$Retention-mean(test$Retention))^2)) 

cat("Rsquared",rsquared,"\n") 

 

Applying the PCR model to the test data results in a MAE of 0.018, a RMSE of 0.023, and a R-squared 

value of 0.9088.  These results are all promising, again context would be needed to say if the model was 

useful to the business.  We can, however, compare the PCR model to regression with all 20 predictors. 

 

R Code for Comparing Regular Multiple Regression to the PCR Model 

reg<-lm(Retention~.,data=train) 

predicted<-predict(reg,newdata=test) 

mae<-mean(abs(test$Retention-predicted)) 

cat("MAE",mae,"\n") 

rmse<-(mean((test$Retention-predicted)**2))**.5 

cat("RMSE",rmse,"\n") 

rsquared=1-( sum((predicted-test$Retention)^2))/(sum((test$Retention-mean(test$Retention))^2)) 

cat("Rsquared",rsquared,"\n") 

Applying the multiple regression model with all 20 predictors to the test data results in a MAE of 0.025, 

a RMSE of 0.031, and a R-squared value of 0.8414.  The PCR model clearly performs better in this 

instance. 

 

Full R Code for PCA 

ret <-read.csv("C:/Users/hbrown11/Desktop/empRet.csv",header=TRUE) 

set.seed(42) 

R=runif(nrow(ret))  

ret$R=R  

train<-ret[ret$R<=.6,] 
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test<-ret[ret$R>.6,]  

train<-subset(train,select=-c(R))  

test<-subset(test,select=-c(R))  

#install.packages("FactoMineR") 

library("FactoMineR") 

#install.packages("factoextra") 

library("factoextra") 

forpca<-subset(train,select=-c(Retention)) 

pca<-PCA(forpca, scale.unit = TRUE) 

ev<-get_eigenvalue(pca) 

ev<-data.frame(ev) 

ev 

plot(ev$eigenvalue, type="b", main="Scree Plot", xlab="Principal Component", ylab="Eigenvalue") 

fp<-get_pca_var(pca) 

fp$cor 

#install.packages("pls") 

library("pls") 

pcr_reg<-pcr(Retention~.,data=train,ncomp=4,scale=TRUE) 

predicted<-predict(pcr_reg,ncomp=4,newdata=test) 

mae<-mean(abs(test$Retention-predicted)) 

cat("MAE",mae,"\n") 

rmse<-(mean((test$Retention-predicted)**2))**.5 

cat("RMSE",rmse,"\n") 

rsquared=1-( sum((predicted-test$Retention)^2))/(sum((test$Retention-mean(test$Retention))^2)) 

cat("Rsquared",rsquared,"\n") 
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Guidelines for Variable Selection Versus Principal Component Analysis 

In many instances either variable selection or PCA may be used to reduce the number of predictors 

before creating a predictive model.  However, here are some guidelines for consideration when variable 

selection or PCA could be used.  If the some of the predictors are correlated and it is reasonable to 

assume they may be combined to form latent variables, consider using PCA.  If there is a high number of 

potential predictors and all can be justified as important to the response variable, consider using PCA.  If 

there are very few potential predictors, PCA should not be used.  If there is a potential some of the 

predictors may not predict the response variable well, and it would be beneficial to know this, variable 

selection should be used.  If there is a need to keep the model in terms of the original variables, PCA 

should not be used. 
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Module 9 Assignment 

 

A large retail company wants to predict the use of their store credit card at their different retail 

locations using sales in different departments.  Sales in all departments can be expected to contribute to 

StoreCardUse and sales between departments are correlated. The file "storeCard.csv" contains average 

daily department sales and average store card use for 200 stores.  (StoreCardUse=average amount 

placed on the store credit card, the remaining 13 columns are average daily sales for the given 

department: HealthandBeauty, PaperGoods, Toys, Pets, SportingGoods, Automotive, Hardware, 

HouseholdChemicals, KitchenandDining, LawnandGarden, HomeDecor, BooksandMagazines, and 

Electronics).   

Use principal component regression to predict "StoreCardUse" using an appropriate number of principal 

components.  Divide the data into training and testing data sets, include the PCA graph of variables, the 

scree plot, the number of principal components you selected, a brief description of the how the factors 

are correlated to the original predictor variables, the MAE, RMSE, and R-squared for the test data, and a 

brief conclusion of how the model performed. Include your R program. 
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Group Review Project 2 

 

As a group, prepare a presentation that presents the most interesting discoveries from the Sommerville, 

MA Happiness Survey using exploratory data analysis and predictive models.  There are potentially 

information quality issues in the data; exploratory data analysis will need to be used.  Different 

predictive models can be built using different combinations of variables as predictor and dependent 

variables.  Note, there are potentially many “correct” answers to this project, it is an open ended “what 

can you find” assignment.  You can take different points of view in your analysis and can choose to only 

use subsets of the data. You are limited to only the predictive models we have covered in this course: 

regression, multiple regression, logistic regression, regression and classification trees, Random Forests, 

artificial neural networks, variable selection, and principal components. 

Each person in the group must contribute slides to the presentation that include output from the R code 

they constructed.   

The attached data are from https://data.somervillema.gov/Happiness/Somerville-Happiness-Survey-

Responses/bi8e-5vw8 

Included are three files, the raw data as an Excel file—if you want to use some of the data that was 

removed during the cleaning process, a csv file where the data are cleaned, and a pdf of 2019 survey (so 

you can see how the data were collected). 

According to the documentation: 

Every two years, the City of Somerville sends out a happiness survey to a random sample of Somerville 

residents. The survey asks residents to rate their personal happiness, wellbeing, and satisfaction with 

City services. This combined dataset includes the survey responses from 2011 to 2019. The surveys are 

attached as PDFs. 

Within the data, an NA or blank indicates that the question was not asked during the identified year 

while a "999" indicates a nonresponse to a question which was asked. 

happinessSurvey.csv has been cleaned to remove missing values, to use only more current data, and to 

remove some problematic columns 

Included in the file are the following columns: 

• ID = Combined ID 
• Year = Year 
• HappyNow = How happy do you feel right now 
• GeneralLifeSatisfaction = How satisfied are you with your life in general 
• SvilleSatisfaction = How satisfied are you with Somerville as a place to live 
• NbrHoodSatisfaction = How satisfied are you with your neighborhood 
• AvailabilityInfoCity = How would you rate the following:  The availability of information about 

city services 
• RateCostofHousing = How would you rate the following: The cost of housing 
• RateTrustinPolice = How would you rate the following:  Your trust in the local police 
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• RateMaintenanceStreets = How would you rate the following:  The maintenance of streets and 
sidewalks 

• RateSocialEvents = How would you rate the following:  The availability of social community 
events 

• SafeWalkingatNight = How safe do you feel walking in your neighborhood at night 
• SatisfiedwithBeautyNbrhood = How satisfied are you with the beauty or physical setting of your 

neighborhood 
• SatisfiedParks = How satisfied are you with the appearance of parks and squares in your 

neighborhood 
• Gender = What is your gender 
• Age = Age 
• Ethnicity = What is your race or ethnicity 
• Children = Do you have children age 18 or younger who live with you 
• HousingStatus = Describe your housing status in Somerville 
• YearsResidence = How long have you lived here 
• Income = What is your annual household income 
• Student = Are you a student 
• CityDirection = Do you feel the City is headed in the right direction or is it on the wrong track 
• SafeCrossingStreet = How safe do you feel crossing a busy street in Somerville 
• ConvenientTravel = How convenient is it for you to get where you want to go 
• SatisfiedHousingCond = How satisfied are you with the condition of your housing 

 

Your group’s final presentation must include the following: 

• It must be a single, cohesive and professional presentation.  
• At least one graph or table that presents a discovery from the data.  
• At least one predictive model that analyzes the data.  
• At least one meaningful contribution from data analysis using R for each member of the group.  
• Assume you are making the presentations for a non-data analyst audience.  Include an 

interpretation of what each analysis means and why it is interesting in terms of practical 
information in terms that are easily understood.  

• An appendix containing the R programs used, labeling each member’s R program contribution.  
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