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a b s t r a c t

The particle swarm optimization (PSO) algorithm is widely used to solve a variety of complicated engi-
neering problems. However, PSO may suffer from an effective balance between local and global search
ability in the solution search process. This study proposes a new acceleration coefficient for the PSO algo-
rithm to overcome this issue. The proposed coefficient is implemented on the distribution network recon-
figuration (DNR) problem to reduce power loss. The lowest power loss is obtained while problem
constraints (maintain radial structure, voltage limits, and power flow balance) are satisfied with the pro-
posed method. The validity of the proposed acceleration coefficient-based binary particle swarm opti-
mization (BPSO) in handling the DNR problem is examined through simulation studies on IEEE 33-bus,
P&G 69-bus, and 84-bus Taiwan Power Company (TPC) practical distribution networks. Furthermore,
the DNR problem is evaluated regarding energy cost and environmental issues. Finally, the average com-
putational times of the different acceleration coefficient-based PSO methods are compared. The solution
speed of the proposed acceleration coefficient-based method is faster than the other methods in the DNR
problem.
� 2022 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Reducing power losses in the power distribution network is
important due to the high resistance value compared to the trans-
mission network. Furthermore, as the power losses increase the
operational cost of the system, power loss minimization is neces-
sary for efficient usage of the distribution networks. Network
reconfiguration, distributed generation (DG), and capacitor place-
ment are the approaches for reducing power loss in distribution
networks. Network reconfiguration is preferable because the DG
and capacitor placement are costly methods to minimize power
losses.*.

Distribution network reconfiguration (DNR) is an operation
based on changing the status of the tie (normally open) and sec-
tionalizing (normally closed) switches to reduce power losses in
the distribution network. Finding an optimal solution is important
because the DNR is a combinatorial problem with complex search
space because of voltage, current, and radiality constraints. More-
over, a large number of switch is considered in the DNR problem,
and there are 2n possible changes (where n represents branch
number). Therefore, evaluating all candidate-switching combina-
tions takes much time, especially in large distribution networks.
So, it is not easy to find the optimal solution quickly. Therefore,
there are three categories of the DNR problem solution: the opti-
mal flow pattern-based method, branch exchange method, and
intelligent optimization method [1].

DNR was first presented by Merlin and Back for power loss
reduction in 1975 [2]. Since then, several comprehensive research
has been done to improve the performance of distribution net-
works. For example, Civanlar et al. solve the DNR problem using
the branch exchange method, and they greatly effort to develop a
power loss formulation [3]. Nevertheless, as the DNR result
depends on the initial structure of the network, solution searching
efficiency will be lower in the branch exchange method, especially
in large-scale networks. In [4], Baran andWu present a general for-
mulation of DNR for load balancing and power loss reduction. In
[5], improved mixed-integer hybrid differential evolution (IMI-
DE) is presented to solve the DNR problem, and the objective func-
tion is to reduce power loss. A heuristic method is presented for
the DNR problem, and the method is based on minimum branch
current [6]. In [7] and [8], genetic algorithm (GA) and harmony
search algorithm (HSA) are used for the solution of DNR. Also,

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jestch.2022.101230&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jestch.2022.101230
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:hhizarci@sakarya.edu.tr
https://doi.org/10.1016/j.jestch.2022.101230
http://www.sciencedirect.com/science/journal/22150986
http://www.elsevier.com/locate/jestch


Fig. 1. Particle movement in PSO algorithm.
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another GA-based solution is presented in [9]. A hybrid big bang–
big crunch algorithm (BB-BCA) [10] is used to solve the DNR prob-
lem with power loss, voltage deviation minimization, and load bal-
ancing objectives. The fireworks algorithm (FWA) [11] is used for
DNR, considering different load levels (heavy, normal, and light)
for voltage stability enhancement and power loss minimization.

Selective bat algorithm (SBAT) and selective PSO (SPSO) [12] are
presented to find an optimal solution for DNR based on a two-step
solution (mesh vector and search space determination) to avoid
sticking to non-feasible solutions. A similar approach (called selec-
tive binary PSO) that alternates the transfer function of PSO is pre-
sented for the DNR problem solution in [13]. In addition, the
authors proposed a two-step approach based on an analysis of
the network meshes to reduce the search space of BPSO. An
improved version of selective BPSO is presented in [14], and the
sigmoid function is changed with a parameter in a wide range. A
three-dimensional group search optimization (3D-GSO) [15] is
proposed for the DNR problem with the aim of power loss reduc-
tion, and 3D-GSO is implemented for different load levels. Ant col-
ony optimization (ACO) is another method presented to find the
optimal switch pattern to minimize power loss in the distribution
network [16,17].

In [18], a salp swarm algorithm (SSA), an improved version of
SSA (called ISSA), and information gap decision theory (IGDT) are
used for optimal DNR based on power loss and energy cost reduc-
tion. A new swarm-based approach entitled improved whale opti-
mization (IWOA) [19] is presented for the DNR problem to
minimize power losses. In [20], a chaotic stochastic fractal search
(CSFSA) algorithm is developed to overcome the weakness of the
SFSA, and it is implemented on the DNR problem. A switch opening
and exchange (SOE) method consisting of three steps is used in
DNR [21]. In the first step, the switches open sequentially until
all the loops are open. Then, the branch statuses obtained in the
first step are modified to find better radial topologies in the second
and third steps. In [22], the harris hawks optimization (HHO) algo-
rithm is proposed as a four-step solution procedure for the DNR,
and the objective function is the reduction of power loss.

In [23], a hybrid of binary particle swarm optimization and
gravity search algorithm (BPSO-GSA) is used for the optimal
DNR. The loss minimization and reliability indices are considered
the study’s objective function. Artificial ecosystem-based opti-
mization (AEO) is used to solve the DNR problem to reduce power
loss [24]. Statistical analysis is performed based on the minimum,
mean, and maximum adaptive function values in the study. In [25],
an improved coyote optimization algorithm (ICOA) is performed
for the reconfiguration of the balanced and unbalanced power dis-
tribution networks to minimize power loss. The most important
advantage of ICOA is that it only updates the optimal solution so
far without creating a new population.

PSO is used for different complex problems due to its ease of
implementation and has fewer parameters to adjust. For example,
PSO-based algorithms are used to delete transactions [26], and
mine high-utility item sets [27] in the data mining research field.
Another variant of PSO, named adaptive PSO, is proposed for the
balanced allocation of resources in resource leveling problems [28].

Generally, power loss reduction, voltage deviation, voltage sta-
bility index, and system reliability are considered as the objective
function of the DNR in the literature. Nevertheless, less attention is
paid to reducing greenhouse gas emissions (GHG). As power losses
decrease the efficiency of the power system, efforts to minimize
the power losses in the distribution network (which is responsible
for the large proportion of the power losses) have a positive envi-
ronmental impact.

This paper proposes a new time-varying acceleration
coefficient-assisted BPSO algorithm to solve the feeder reconfigu-
ration problem. An exponential-based acceleration coefficient is
2

proposed to adaptively adjust the balance between local and global
search. With the proposed acceleration coefficient, the particles in
the swarm can rapidly reach the global optimal solution without
falling into the local optimal. Also, the convergence speed is
improved compared to the constant acceleration coefficient.

Furthermore, the proposed algorithm gives an optimal and
robust solution to the DNR problem. In addition to power loss
reduction, the cost of energy and GHG emissions (CO2, NOx, and
SOx) are considered in this study. Three case studies are examined
to test the effectiveness and robustness of the proposed BPSO. Fur-
thermore, the proposed approach is compared with the other stud-
ies based on the coefficient modification. As a result of the
simulation study, the proposed BPSO gives better power loss
reduction and convergence results.

This paper is organized as follows. First, the proposed accelera-
tion coefficient of BPSO is introduced in Section 2. The proposed
BPSO is implemented considering the DNR problem’s objective
function and constraints in Section 3. Next, case studies are given
in Section 4. Finally, the conclusion is presented in Section 5.
2. Binary PSO

PSO algorithm is firstly introduced by social psychologist J. Ken-
nedy and electrical engineer R. Eberhart in 1995 [29]. Then, the
same authors also proposed a binary version of the PSO after two
years [30]. The inspiration source of the PSO algorithm is the food
search of the animals that move in a swarm. Each individual in the
swarm is defined as a particle. PSO grounds on the share of social
information in the swarm.

The movement of the particles in a swarm is presented in Fig. 1.
Each particle in the swarm adjusts its position using its previous
experience towards to best position. The fitness function is a crite-
rion to determine how close a particle is to the solution. The best
solution of a particle, which is closest to the optimal solution, is
called pbest (personal best). Moreover, gbest (global best) is by far
the best solution among all particles in the swarm. The search pro-
cess of the algorithm continues until the target is reached.

In Fig. 1, the velocity of the particle i is mathematically modeled
as in (1).

v id ¼ xv id þ c1r1 pid � xidð Þ þ c2r2 pgd � xid
� � ð1Þ

where x is inertia weight and scale velocity of the particle i. d
defines the dimension of the search space. c1 is the cognitive (or
personal) acceleration coefficient, and c2 is the social one. r1 and
r2 are the random numbers between 0� 1½ �.

The positions of each particle are updated based on (2).
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xid ¼ xid þ v id ð2Þ
Changing the position of a particle in BPSO is defined below:

i f rand ð Þ < S v idð Þð Þ then xid ¼ 1
else xid ¼ 0

S vð Þ ¼ 1
1þ e�v

ð3Þ

S vð Þ is the sigmoid transfer function, and randð Þ is a quasi-
random number selected between 0� 1½ �. Eventually, the velocity
and direction of a particle in each dimension in a solution space
will change based on a combination of the best coordinates of its
neighbors and its own pbest coordinates at each iteration.

PSO algorithm has many advantages, such as ease of implemen-
tation, fast convergence, short computational time, wide adaptivity
to different problems, and the requirement of fewer control param-
eters. However, when PSO is faced with complex functions, it can
be trapped into the local optimum point, or premature conver-
gence occurs. Therefore, researchers propose various improve-
ments to overcome these problems. The improvements focus on
swarm adaptation, position updating mechanism, control parame-
ters, neighborhood topology, and fitness landscape analysis [31].

2.1. Improved time-varying acceleration coefficient assisted BPSO

The acceleration coefficients are important control parameters
of the PSO algorithm, leading to particles flying to desirable solu-
tion regions. Generally, c1 and c2 are set as 2 in the PSO algorithm.
However, the coefficients are the key component in the searching,
and a constant value may be harmful in searching for optimal solu-
tions [6,32]. Therefore, except for the coefficients with constant
values, there are several strategies of acceleration coefficients
based on dynamically changing with the iteration [33,34]. For
example, Ratnaveera et al. proposed a linear time-varying acceler-
ated coefficient (TVAC) to enhance the search for the optimal solu-
tion [35]. In their study, while the cognitive acceleration coefficient
(c1) of PSO is linearly decreased from 2.5 to 0.5, the social acceler-
ation coefficient (c2) is linearly increased from 0.5 to 2.5 during the
iteration.

In [36], a variant of PSO, called randomised PSO, is proposed to
search for problem space more comprehensively. In the paper,
TVAC presented in [35] is used as the acceleration coefficients,
and the acceleration coefficients are randomly perturbed using
Gaussian white noise. A tangent chaotic acceleration coefficient
is presented in [37] to solve stuck in local minima and premature
convergence problems.

A sine–cosine acceleration coefficient (SCAC) based PSO is pro-
posed in [38], and the range of the c1 and c2 is changing from 2.5 to
0.5 and 0.5 to 2.5, respectively. The authors claimed that the SCAC
gives better balance at the early stages of the global search and
later global convergence stages than TVAC. Another coefficient
entitled nonlinear dynamic acceleration coefficient (NDAC) is pre-
sented in [39], and the coefficients range is used as in [35]. A
sigmoid-based acceleration coefficient (SBAC) [40] is proposed,
and the increasing/decreasing of the coefficients is relatively slow
compared to others. Lin et al. propose piecewise nonlinear acceler-
ation coefficients (PNAC) [41]. The approach is different from
others in appearance due to its piecewise form. A summary of
the time-varying coefficients is given in Table 1.

In this study, a new exponential-based acceleration coefficient
(EBAC) is proposed. The proposed coefficient-based BPSO effec-
tively balances local and global search capabilities. The EBAC is
represented mathematically as follows:

c1 ¼ c1i þ 2e� 2:2iter=maxiterð Þ2 ð4Þ
3

c2 ¼ c1f � 2e� 2:2iter=maxiterð Þ2 ð5Þ
where c1i ¼ 0:5 and c1f ¼ 2:5, respectively. iter and maxiter repre-
sent the current iteration and maximum iteration number. To see
the changes in the coefficients better, iteration �c1/c2 is illustrated
in Fig. 2 for the acceleration coefficients, which are listed in Table 1.

The averages of the best-so-far solution in the last iteration of
each algorithm are given in Fig. 3a and Fig. 3b. The simulation
results are obtained based on two traditional benchmark test func-
tions (Sphere and Rastrigin). Population size (N) and iteration
number for the compared algorithms are set to 30 and 500, respec-
tively. It is seen from Fig. 3a that the proposed acceleration coeffi-
cient converges faster than others for the f1 function. In Fig. 3b, the
proposed EBAC is the sole algorithm that reaches optimal solution
at the end of the iteration.

The pseudocode of the proposed BPSO algorithm is presented in
Fig. 4. Furthermore, the implementation of the proposed BPSO
steps is given in Section 3.

3. DNR problem formulation

The objective function of the DNR problem is minimizing the
total real power losses, and it is calculated as follows:

Ploss ¼
XNbr

i

Ri
P2
i þ Q2

i

V2
i

ð6Þ

where Nbr is the total branch number, Pi and Qi are real and reactive
power of branch i, Ri is the resistance of the ith branch and finally Vi

is voltage magnitude at bus i.
Constraints of the DNR problem are given below.
Power flow balance: The power flow constraint may be calcu-

lated by (7) and (8).

PGi � PDi ¼ Pi ¼ Vij j
XNbus

j¼1

Vj

�� �� Gij cos di � dj
� �þ Bij sin di � dj

� �� � ð7Þ

QGi � QDi ¼ Qi ¼ Vij j
XNbus

j¼1

Vj

�� �� Gij sin di � dj
� �� Bij cos di � dj

� �� � ð8Þ

where i ¼ 1; 2; � � � ; Nbus (Nbus is the bus number); PGi, QGi: active and
reactive power generation at bus i; PDi, QDi: active and reactive load
demand at bus i; Vij j, Vij j: voltage magnitude at buses i and j; Gij; Bij:
real and imaginary part of the bus admittance matrix (Yij); di, dj:
voltage angle at buses i and j.

Voltage limits: The voltage magnitude of the bus i must lie
within the permissible range given in (9). This constraint is impor-
tant for power quality; generally, permissible values are 10 % for
voltage drop and over-voltage.

Vi; min � Vi � Vi;max ð9Þ
where the minimum and maximum bus voltages are Vi;min ¼ 0:9
and Vi;max ¼ 1:1 pu, respectively.

Line loading: Line loading constraint limits the maximum cur-
rent of bus i. Currents passing through for each branch must lie
within the permissible ranges given in (10).

Ii � Ii;max ð10Þ
Radiality and connectivity of the network: This constraint speci-

fies maintaining the radial structure of the distribution network.
Continuity of the power flow to the loads is necessary for the
DNR problem. So, it is required to maintain the radial form of the
network. After the reconfiguration, all buses must be energized,
and there must be no isolated bus in the distribution network.

The branch node incidence matrix is used to verify the radiality
of the network in the study.



Table 1
Review of the acceleration coefficients.

Reference Expression Parameters

TVAC [35] c1 ¼ c1f � c1i
� �

iter
maxiter

þ c1i and c2 ¼ c2f � c2i
� �

iter
maxiter

þ c2i c1f ¼ 0:5, c1i ¼ 2:5
c2f ¼ 2:5, c2i ¼ 0:5

SCAC [38] c1 ¼ @ � sin 1� iter
maxiter

� �
� p

2

� �
þ d and c2 ¼ @ � cos 1� iter

maxiter

� �
� p

2

� �
þ d @ ¼ 2d ¼ 0:5

NDAC [39]
c1 ¼ � c1f � c1i

� �
iter

maxiter

� �2
þ c1f and c2 ¼ �c1i � 1� iter

maxiter

� �2
þ c1f � iter

maxiter

c1f ¼ 2:5c1i ¼ 0:5

SBAC [40]
c1 ¼ 1

1þe �kiter=maxiterð Þ þ 2 c1f � c1i
� �

iter
maxiter

� 1
� �2

c2 ¼ 1
1þe �kiter=maxiterð Þ þ c1f � c1i

� �
iter

maxiter

� �2 k ¼ 0:0001c1f ¼ 2:5c1i ¼ 0:5

PNAC [41]

c1 ¼
4� iter

maxiter
� 1

2

� �2
þ 3

2 ; if 0 < iter
maxiter

< 1
2

�4� iter
maxiter

� 1
2

� �2
þ 3

2 ; if 1
2 � iter

maxiter
� 1

8><
>:

c2 ¼
�4� iter

maxiter
� 1

2

� �2
þ 3

2 ; if 0 < iter
maxiter

< 1
2

4� iter
maxiter

� 1
2

� �2
þ 3

2 ; if 1
2 � iter

maxiter
� 1

8><
>:

Fig. 2. Comparison of different acceleration coefficients. Fig. 3. The convergence characteristic for different acceleration coefficients.
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Aij ¼
1
�1
0

if branch start at bus i

if branch start at bus j

otherwise

8><
>:

ð11Þ

where i ¼ 1; 2; 3; � � � ; Nbr and j ¼ 1; 2; 3; � � � ;Nbus.
The radiality of the network is checked with the determinant of

the A matrix and det Að Þj j ¼ 1 should be satisfied [42].
Cost and Environmental Benefits of DNR: Although the main

objective is the power loss minimization in the DNR problem, the
DNR also affects energy cost and environmental issues. Especially
due to the high resistance of the distribution networks, power loss
increases. Increasing power loss corresponds to an increase in the
energy cost. Moreover, more energy production is needed to dis-
tribute the same energy to the consumers. This situation means
producing more emission gases per MWh to generate the same
energy in a power plant.

Power cost: The annual cost from the active power losses is cal-
culated as follows:
4

Closs ¼ Kloss � Ploss � Ts ð12Þ
where Kloss represents the cost per kilowatt-hour equal to 0.06 $/kW
[18,19] and Ts is the time in hours equal to 8760.

Energy loss: Annual energy loss is calculated as in (13):

Energy losses ¼ 8760� Power losses� LF ð13Þ
LF is the loss factor [43], and it is considered 0.3 for residential

loads in (13).
Emissions reduction: Conventional power plants generate emis-

sions equal to 0.0036 kg SO2, 0.1 kg NOx, and 720 kg CO2 per
MWh [43]. Therefore, CO2, NOx, and SO2 are calculated as follows:

CO2 reduction ¼ 720� Eloss ð14Þ

NOx reduction ¼ 0:1� Eloss ð15Þ

SO2 reduction ¼ 0:0036� Eloss ð16Þ



Fig. 4. Implementation of proposed BPSO algorithm.
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The cost and environmental benefits assessment are given for
three cases in Section 4.

The steps of the proposed algorithm for the DNR problem are
given below:

Step 1: The population size and dimension of the search space of
the PSO algorithm are determined. The inertia weight decreases
from 0.9 to 0.4 during the iteration. The maximum iteration num-
ber is 100 for the DNR problem.

Step 2: A random population consisting of switch combinations
is initialized, and matrixes with the dimension N � d are built for
initial velocity and positions.

Step 3: Distribution network data is loaded for power flow, and
connectivity of the buses is checked with the branch incidence
matrix. Also, the branch incidence matrix helps to trace closed
loops in the network.

Step 4: The algorithm’s main loop is given in this step. Each par-
ticle’s positions and velocities are determined based on the itera-
tion number. In order to search for a wider search space, the
inertia weight defined in step 1 is decreased with the iteration
number. Velocities and positions are calculated using (15) and
stored in the matrix form for each particle. As the algorithm is
called binary PSO, the sigmoid function is used to scale the posi-
tions of particles between 0 and 1. Thus, statues of the switches
are converted to 1 for open and 0 for closed.

Step 5: The objective function is calculated by realizing the
power flow for the radial network formed according to the switch-
ing combination obtained from the swarm.

Step 6: Fitness function and constraints of the problem are
checked for the particle i. The best position of particle i is updated.
If the position is better than the previous position, this position is
selected as pbest . If the position is better than the global best posi-
tion of the swarm, then it is assigned as gbest .

Step 7: The stopping criterion is checked, and if it meets then
gbest is chosen as the optimal solution to the problem. Otherwise,
it is returned to Step 4 in the algorithm. Finally, the algorithm is
terminated when the iteration number reaches its maximum
value.
Fig. 5. Single line diagram of 33-bus distribution network.
4. Case studies for DNR problem

In this paper, the DNR problem is solved by a proposed
exponential-based acceleration coefficient assisted binary PSO.
5

The proposed BPSO algorithm is implemented in three distribution
networks in MATLAB R2021a environment. For the power flow,
MATPOWER [44] tool is used. The algorithm is run on a PC with
a 2.40-GHz CPU and 12-GB RAM. Results for all cases are obtained
after ten independent runs of the algorithm.

The population size of the PSO algorithm is selected as 20. Tie
switches specify the dimension of the problem, and the dimension
is 5 for 33 and 69-bus distribution networks and 13 for the 84-bus
distribution network. The inertia weight is linearly decreased dur-
ing the iteration, from 0.9 to 0.4. The maximum iteration number is
100 for the DNR problem.
4.1. IEEE 33-bus distribution network

The 33-bus distribution network has 32 sectionalizing and 5 tie
lines, as seen in Fig. 5. The base voltage of the system is 12.66 kV.
The network’s total active and reactive powers are 3715 kW and
2300 kVAr, respectively [4]. The initial total active power loss of
the system is 202.68 kW.

After ten independent runs, obtained results are given in
Table 2. Moreover, implementing the proposed method is com-
pared with other studies available in the literature. As indicated
in Table 2, it can be noted that in the base case, the total real power
losses of the 33-bus test system were 202.68 kW. After the recon-
figuration, power loss reduction is 31.45 % in the proposed method.
The proposed BPSO algorithm gives lower power loss than SSA,
ISSA, and IGDT algorithms and equal power loss with the 3D-
GSO algorithm. The optimal switch configuration obtained in 3D-
GSO and proposed BPSO are the same. There is a small difference
between the power loss due to the load flow method used in the
simulation.

Table 2 also gives the annual net saving, amount of CO2, NOx,
and SO2 reductions due to reducing power losses using distribution
networks network reconfiguration. Total cost is saved 33507.940$
after the DNR in the 33-bus distribution network. Furthermore, the
positive impact of the power loss reduction using the DNR on the
environmental issue is examined. It is clear from Table 2 that the
amount of environmentally harmful gases significantly decreased
after the reconfiguration.

The voltage profile of the 33-bus network before and after DNR
is depicted in Fig. 6. Minimum voltage is seen at bus 18 with
0.9131 pu and at bus 32 with 0.9378 pu before and after DNR.
Especially, the voltage profile at buses 6–18 is improved signifi-
cantly after the reconfiguration.

The initial case and optimum case of the system seen in Fig. 6
are examined, as bus 18 is the furthest bus to the main substation,
and the minimum voltage is seen at bus 18 before the reconfigura-
tion. After the reconfiguration, the network’s topology is changed;
in this case, the furthest bus is 32. Loads are transferred from over-



Table 2
Result comparison of different algorithms for the 33-bus test system.

Base case SSA [18] ISSA [18] IGDT [18] 3D-GSO [15] ACO [17] Proposed BPSO

Power losses
(kW)

202.68 142.16 141.99 170.5027 139.26 139.55 138.928

Power loss cost
($)

106528.26 74721.99 74589.38 89616.2349 73195.056 73347.48 73020.3198

Net saving ($/yr) – 31809.312
(29.86 %)

31938.880
(29.98 %)

16912.025
(15.88 %)

33333.204
(31.29 %)

33181.128
(31.15 %)

33507.940 (%
31.45)

CO2 reduction
(kg)

– 268989.466 268667.798 322618.389 263502.202 264050.928 262873.151

NOx reduction
(kg)

– 37.360 37.315 44.808 36.598 36.674 36.510

SO2 reduction
(kg)

– 1.345 1.343 1.613 1.318 1.320 1.314

Open switches 33-34-35-36-
37

7-9-14-36-37 7-9-14-28-36 8-32-33–34-37 7-9-14-28-32 7-9-14-32-37 7-9-14-32-37

Fig. 6. Voltage profile of 33-bus test system.
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loaded lines to fewer loaded lines by changing the status of the
switches. Thus, the voltage profile is improved.
4.2. PG&E 69-bus distribution network

The single-line diagram of the 69-bus distribution network is
presented in Fig. 7, and the network has 68 sectionalizing switches
and 5 tie lines. The base voltage of the system is 12.66 kV [45]. The
total active and reactive powers of the network are 3802 kW and
2695 kVAr, respectively. Power loss in the base case is 224.97 kW.
Fig. 7. Single line diagram of 69-bus distribution network.

6

After the reconfiguration, the best switch combination which
gives the minimum power loss is obtained as 14-57-61-69-70.
When the power loss results are compared with other methods,
it is seen that the proposed BPSO is better than GA and HSA.
Although the switch combination is different in the methods, the
proposed method gives the same power loss reduction with
FWA, 3D-GSO, and IWOA. When switches 56, 57, and 58 are open,
they give the same power loss. This situation is related to the con-
nected load to these buses. There are no loads in buses 56, 57, and
58, so opening the switches gives equal power loss.

According to Table 3, power loss reduction is 56.18 % after the
reconfiguration. Net cost saving with the reconfiguration using
the proposed method is 66425.790$. Also, the reduction of the
power losses shows an impact on GHG reduction. Both cost and
environmental benefits are obtained with the DNR.

The influence of the power loss reduction is also seen in the
voltage profile of the 69-bus network. Voltage levels at the buses
before and after feeder reconfiguration is shown in Fig. 8. The min-
imum voltage is 0.9092 pu at bus 65, and after the DNR voltage
profile is improved, and minimum voltage level is seen at bus 61
with 0.9495 pu.
4.3. 84-bus Taiwan power Company (TPC) distribution network

84-bus TPC (seen in Fig. 9) is used in the study as a real case
study. In the network, there are 83 sectionalizing and 13 tie lines
[5]. The base voltage of the system is 11.4 kV. The total active
and reactive powers of the network are 28350 kW and 20,700
kVAr, respectively. In the base case, the total power loss is
531.994 kW.

In the 84-bus network, voltage constraints are Vi;min ¼ 0:95 and
Vi;max ¼ 1:05 pu, respectively. Feeder A has heavy loads; thus, most
of the buses at this feeder violate the voltage constraints before the
DNR. After the DNR using the proposed BPSO, the best switch com-
bination that gives the minimum losses is obtained as 7-13-34-39-
42-55-63-72-83-86-89-90-92. The number of buses that violate
the voltage limits is ten, and after the DNR, all violated buses are
improved.

A comparison is given in.
Table 4, and the minimum power loss is obtained as

469.337 kW. Proposed BPSO gives better results than IMI-DE,
CSFSA, SBAT, BB-BCA, and GA. Power loss cost and GHG are reduced
using the DNR without additional DG or capacitor placement.
Hence the DNR is the proper solution that does not require addi-
tional cost.

The voltage profile of the 84-bus network before and after DNR
is shown in Fig. 10. The minimum voltage is 0.9285 pu at bus 10



Table 3
Result comparison of different algorithms for the 69-bus test system.

Base case FWA [11] HSA [7] GA [7] 3D-GSO [15] IWOA [19] Proposed BPSO

Power losses
(kW)

224.97 98.59 99.35 103.29 98.59 98.5952 98.595

Power loss cost
($)

118247.42 51821.63 52218.360 54289.224 51821.63 51821.63 51821.63

Net saving ($/yr) – 66425.790
(56.18 %)

66025.872
(55.84 %)

63955.008
(54.09 %)

66425.790
(56.18 %)

66425.790
(56.18 %)

66425.790
(56.18 %)

CO2 reduction
(kg)

– 186557.894 187986.096 195441.206 186557.894 186557.894 186557.894

NOx reduction
(kg)

– 25.911 26.109 27.145 25.911 25.911 25.911

SO2 reduction
(kg)

– 0.933 0.940 0.977 0.933 0.933 0.933

Open switches 69-70-71-72-
73

14-56-61-69-70 13-18-56-61-69 14-53-61-69-70 14-56-61-69-70 14-58-61-69-70 14-57-61-69-70

 

Fig. 8. Voltage profile of 69-bus test system.

Fig. 9. Single line diagram of 84-bus distribution network.
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and after the DNR voltage profile is improved. As a result, the min-
imum voltage level is seen at bus 72 with 0.9532 pu.

The proposed acceleration coefficient is compared with other
coefficients available in the literature. According to the results pre-
sented in Table 5, the proposed coefficient gives the minimum
average running time of 32.058 s. Thus, it gives better performance
compared to other coefficients available in the literature.

As a result, the proposed algorithm gives the best switching pat-
tern that provides minimum power loss as well as minimum volt-
age deviation while satisfying the constraints of the DNR problem
for these three distribution networks.

Convergence assessment is shown in Fig. 11, and it is obvious
that the proposed acceleration coefficient-based BPSO is more
robust than others in the DNR problem solution.

Eventually, the proposed acceleration coefficient-based BPSO
algorithm for the DNR problem converges to an optimal solution
better than other methods. Also, computational times show that
the method given in this study is less time-consuming than others.

The limitation of the proposed algorithm is using the sigmoid
function as the classical transfer function for transforming the
velocity to the probability. Newly introduced transfer functions
such as v-shaped, x shaped, and z-shaped in the literature can be
used to improve the performance of the BPSO as well as the pro-
posed EBAC BPSO.

To verify the performance of the proposed algorithm, statistical
details are listed in Table 6. Results are obtained after 20 indepen-
dent runs with 250 iterations. The smallest standard deviation sig-
nifies a near-optimal solution, and the proposed algorithm that has
7

the smallest standard deviation with 2.51 is satisfied better than
other algorithms, according to the results seen in Table 6.

4.4. Wilcoxon test

Wilcoxon signed-rank sum test is a non-parametric test used in
outcome comparations between two independent groups [46,47].
The test is used when the position of one of the variables is com-
pared with the positions of the other. The null hypothesis is tested
using the Wilcoxon test against the alternative hypothesis. Let the
null hypothesis and alternate hypothesis [48]:

H0 : lo ¼ la

H1 : lo–la
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Table 4
Result comparison of the different algorithms for the 84-bus TPC system.

Base case IMI-DE [5] SBAT [12] CSFSA [20] Heuristic method
[6]

BB-BCA [10] GA [9] SOE [21] ACO [16] Proposed BPSO

Power
losses
(kW)

531.994 469.88 469.88 469.878 470.89 471.62 469.878 470.06 469.88 469.337

Power loss
cost ($)

279616.046 246968.928 246968.928 246967.877 247499.784 247883.472 246967.877 247063.536 246968.928 246683.527

Net saving
($/yr)

– 32647.1184
(11.68 %)

32647.1184
(11.68 %)

32648.170
(11.68 %)

32116.262
(11.49 %)

31732.574
(11.35 %)

32648.170
(11.68 %)

32552.510
(11.64 %)

32647.1184
(11.68 %)

32932.519
(11.78 %)

CO2 reduction (kg) – 889088.141 889088.141 889084.356 890999.222 892380.499 889084.356 889428.730 889088.141
888060.698
NOx reduction (kg) – 123.484 123.484 123.484 123.750 123.942 123.484 123.532 123.484
123.342
SO2 reduction (kg) – 4.445 4.445 4.445 4.455 4.462 4.445 4.447 4.445
4.440
Open

switches
84-85-86-87-88-
89-90-91-92-93-
94-95-96

7-13-34-39-41-
55-62-72 -83-86-
89-90-92

7-13-34-39-42-
55-62-72-83-86-
89-90-92

7-13-34-39-42-
55-62-72-83-86-
89-90-92

7-34-39-42-55-
63-72-82-86-88-
89-90-92

7-33-38-55-62-
72-83-86-88-89-
90-92-95

7-13-34-39-42-
55-62-72-83-86-
89-90-92

7-13-34-39-42-
55-63-72-83-86-
89-90-92

7-13-34-39-41-
55-62-72-83-86-
89-90-92

7-13-34-39-42-
55-63-72-83-86-
89-90-92
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Table 6
Statistical details for 33-bus network.

Algorithm Best (kW) Average (kW) Worst (kW) Standard deviation Open switches

Proposed BPSO 138.928 140.3251 156.6013 2.51 7-9-14-32-37
FWA [11] 140.335 147.02 157.243 5.39 7-9-14-28-32
HSA [8] 138.06 152.33 195.10 11.28 7-10-14-36-37
RGA [8] 139.5 164.9 198.4 13.34 7-9-14-32-37
ITS [8] 139.28 163.5 196.3 12.11 7-9-14-36-37
GA [8] 141.6 166.2 202.7 14.53 7-9-14-32-37

Table 7
Wilcoxon signed-rank sum test probability of different algorithms for the 33-bus network.

Algorithm SSA [18] ISSA [18] IGDT [18] 3D-GSO [15] Proposed BPSO

p 6.8087e-05 4.9565e-05 4.2204e-05 4.5744e-05 4.2204e-05
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5. Conclusion

This paper deals with the DNR problem for power loss mini-
mization using the exponential-based acceleration coefficient-
assisted BPSO algorithm. Simulation results of different distribu-
tion networks based on the proposed accelerated coefficient-
based BPSO are presented in the study.

The contributions of this paper are summarized as below:
- An exponential-based acceleration coefficient-assisted BPSO

algorithm is proposed to find optimal switch combinations that
minimize the power losses while providing the problem con-
straints such as network radiality, bus voltage limits, and connec-
tivity of all loads.

- The superiority of the proposed EBAC BPSO is successfully con-
firmed on three distribution networks.

- After the distribution network reconfiguration using EBAC
BPSO, power loss is reduced without DG or capacitor placement
which requires an extra cost.

- The effectiveness of EBAC PSO in reducing environmentally
harmful gases such as CO2, NOx, and SO2 is also considered in this
paper.

- The proposed acceleration coefficient is compared with the
other time-varying coefficients in terms of computing time and
convergence speed. As a result of the study, it is seen that the pro-
posed method gives less computational time and faster conver-
gence speed than other studies available in the literature.

Moreover, it is possible to extend the proposed algorithm for
unbalanced and large power distribution networks as the future
scope of this paper. The proposed algorithm can also be used for
other power system problems such as load balancing, and optimal
DG/capacitor placement.
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