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A B S T R A C T   

This study has two main objectives: (i) to investigate the parameters affecting the compressive strength (CS) of 
perlite-containing slag-based geopolymers and (ii) to predict the CS values obtained from experimental studies. 
In this regard, 540 cubic geopolymer samples incorporating different raw perlite powder (RPP) replacement 
ratios, different sodium hydroxide (NaOH) molarity, different curing time, and different curing temperatures for 
a total of 180 mixture groups were produced and their CS results were experimentally determined. Then con-
ventional regression analysis (CRA), multivariate adaptive regression splines (MARS), and TreeNet methods, as 
well as artificial neural network (ANN) methods, were used to predict the CS results of geopolymers using this 
experimentally obtained data set. Root mean square error (RMSE), mean absolute error (MAE), scatter index (SI) 
and Nash-Sutcliffe (NS) performance statistics were used to evaluate the CS prediction capabilities of the 
methods. As a result, it was determined that the optimum molarity, curing time, and curing temperature were 14 
M, 24 h, and 110 ℃, respectively and 48 h of heat curing did not have a significant effect on increasing the CS of 
the geopolymers. The highest performances in regression-based models were obtained from the MARS method. 
However, the ANN method showed higher prediction performance than the regression-based methods. Consid-
ering the RMSE values, it was seen that the ANN method made improvements by 24.7, 2.1, and 13.7 %, 
respectively, compared to the MARS method for training, validation, and test sets.   

1. Introduction 

Concrete produced with ordinary Portland cement (OPC) is the most 
used construction building material in the construction industry. How-
ever, OPC is responsible for 6–9 % of greenhouse gases [1,2]. Carbon 
emissions have raised awareness among researchers, therefore re-
searchers investigated different materials that can be used instead of 
OPC. Today, geopolymers are seen as an alternative to OPC-based 
composites. Geopolymers are of great interest to researchers due to 
their superior mechanical, and durability properties [3,4], as well as 
global greenhouse gas emission reduction. The name geopolymer was 
first introduced by Davidovits [5,6]. Geopolymer materials belong to the 
family of alkali-activated materials and might be fabricated by poly-
merizing various types of aluminosilicates with activation methods 

utilizing soluble silica, and the greatly alkali activator solution [7–12]. 
Natural materials such as clay and kaolin, industrial by-products, which 
are fly ash, blast furnace slag, and silica fume, are used as aluminosili-
cate precursors. Sodium hydroxide (NaOH), sodium silicate (Na2SiO3), 
potassium hydroxide (KOH), potassium silicate (K2O3Si), and their 
combinations are commonly used for alkali activator solutions [13]. 
Geopolymers are achieved through the activation of a precursor with an 
alkaline solution under an appropriate temperature environment 
[8,14,15], which is known as geopolymerization. The polysialate 3D 
networks of monomers occur through geopolymerization consisting of 
SiO4 and AlO4 tetrahedrons [7,14]. The inorganic compounds are 
composed after complicated chemical reactions between the alumino-
silicate precursor oxides in greatly alkaline to generate 3D polymeric 
Si–O–Al–O chains as the primary alkaline-aluminosilicate gel during the 
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geopolymerization [7,14,16,17]. The amorphous aluminosilicate gels 
(N,K-A–S–H) are constructed as a consequence of the chemical reac-
tion (geopolymerization) of aluminosilicates with low CaO/SiO2 ratios, 
such as clay and class F fly ash while calcium aluminosilicate hydrate (C- 
A–S–H) gels are constructed as a consequence of the geo-
polymerization of aluminosilicates with high CaO/SiO2 ratios, such as 
slag and class C fly ash [7,18,19,20,21]. At low alkaline content, sodium 
is partially replaced by calcium, forming C-(N)-A–S–H gels [7]. 
Strength development in geopolymer composites depends on N-A–S–H 
or/and C-A–S–H rather than C–S–H as in traditional cementitious 
composites [7,14]. 

Geopolymers have positive properties such as good abrasion resis-
tance, fire resistance, high resistance to acid and salt solutions, low 
thermal conductivity, low shrinkage as well as high early compressive 
strength (CS), which is usually the most significant parameter in the 
construction industry [4,10,11,12,16,17]. There are many factors that 
affect the CS of geopolymers. The literature studies showed that pre-
cursor type and amount, alkali activator type and molarity amount, 
curing temperature, curing time, and curing environment affected the 
CS of geopolymer mortars [22–27]. 

The modeling studies in the literature have been conducted using 
existing experimental data in order to make this process easier, which is 
difficult in terms of time, material, equipment, cost, and labor. In the 
studies, mechanical properties of concrete and geopolymers such as CS, 
flexural and tensile strength were discussed [28–33]. Artificial intelli-
gence techniques are used to predict engineering properties around the 
world [34]. Various artificial intelligence techniques such as fuzzy 
interface system (FIS), response surface methodology (RSM), adaptive 
neuro-fuzzy interface system (ANFIS), artificial neural network (ANN), 
support vector machine (SVM), particle swarm optimization algorithm 
(PSOA), back propagation neural network (BPNN), genetic algorithm 
(GA), genetic programming (GP), and gene expression programming 
(GEP) are used by researchers. In the literature, it has been stated that 
applications such as fuzzy logic (FL), artificial intelligence techniques 
including metaheuristic algorithms, and GEP show good features in 
overcoming complex engineering problems [35–41]. Another method 
that is used in modeling studies and gives effective results in solving 
many engineering problems is the multivariate adaptive regression 
splines (MARS) method [39–42]. The MARS method is a flexible and fast 
method for making predictions. It is also seen as an innovative and 
promising modeling tool [43]. MARS also has advantages such as high 
dimensional processing capacity, capturing complex relationships, and 
estimating the contributions of input variables [44,45]. ANNs are 
another group of these techniques and have been successfully applied in 
many prediction studies [35]. In general, there are two other commonly 
used approaches besides ANNs for estimating CS. These are computa-
tional modeling and parametric multivariate regression model [46–48]. 
Such data-driven methods, especially ANN and FL, have become 
popular. 

Estimation of CS of geopolymer concretes is a current research topic 
and different estimation models such as ANN, ANFIS, Multiple Linear 
Regression (MLR), and GEP have been used in the studies. In these 
models, parameters such as coarse aggregate, fine aggregate, curing 
temperature, curing time, slag amount, and alkali activator amount 
were used as input parameters [36,37,49–52]. Rahmati and Toufigh 
[53] estimated the CS of geopolymer concretes exposed to high tem-
peratures using ANN and support vector regression (SVR) models. In the 
study, parameters such as coarse aggregate, fine aggregate, slag ratio, 
molarity, sodium silicate, NaOH, curing temperature, and high tem-
perature were used. Although the results obtained from both models are 
close to each other, it has been reported that the SVR performs better. 
Ganesh and Muthukannan [54] estimated the CS of fiber-reinforced 
geopolymer concrete using ANN. In the model, the age of the con-
crete, curing condition and dosage of fiber are used as input parameters. 
It has been found that CS can be estimated with high accuracy using the 
ANN model. Manikandan and Vasugi [55] estimated the slump, CS, split 
tensile strength, and flexural strength parameters of waste glass powder 
substituted geopolymer concretes with the ANN model. Waste glass 
powder replacement ratio and molarity values were used as input pa-
rameters in the model. When the results obtained from the estimation 
and experimental results were compared, it was seen that the results 
were close to each other. Ahmad et al. [56] used MARS and ANFIS 
models to estimate the CS of geopolymer concrete. When comparing 
both models in terms of R2, RMSE, and MAE, it was concluded that the 
ANFIS model showed better correlation and less error compared to the 
MARS model. Britto and Muthuraj [57] used ANN and MARS models to 
estimate the CS of geopolymer concrete containing bacteria. A total of 
84 data were used in the developed model to estimate the CS of the 
samples cured for 1, 3, 7, 28, 56, and 90 days. 70 % of this data was used 
for training and 30 % for testing. According to the results obtained from 
the study, it was determined that the estimation and experimental data 
were in harmony, and the developed models were robust and reliable. 
Pham et al. [58] used the ANN model to predict the 28-day CS results of 
geopolymer concrete from the input components. Data from 190 test 
samples taken from previous studies in the literature were used to train 
the ANN model. According to the results, the “trainlm” learning algo-
rithm provided the best prediction results. Having carried out a thor-
ough literature review, there is limited understanding on the prediction 
of CS by using parameters such as precursor ratio, alkali activator so-
lution molarity, heat curing temperature, and heat curing time, which 
affect the CS of geopolymers. Moreover, there has been no detailed study 
on the prediction of CS of perlite-containing geopolymers. In this 
context, five different RPP replacement ratios (10, 20, 30, 40, and 50 %), 
three different alkali activator solution molarities (12, 14, and 16 M), 
two different heat curing times (24, and 48 h), and five different heat 
curing temperature (60, 80, 90, 100, and 110 ℃) were determined, and 
the reference and RPP-incorporating slag-based-geopolymers were 
produced. A total of 540 (180×3) geopolymer mortar samples were 
prepared, with each mixture group containing 3 cubic samples with 
dimensions of 50×50×50 mm. Then, the variables used in the prepa-
ration of the geopolymers were used as the inputs of the models, the 
experimentally obtained CS results were used as the model outputs, and 
prediction models were developed with regression-based CRA, MARS, 
and TreeNet methods as well as ANN methods. Root mean square error 
(RMSE), mean absolute error (MAE), scatter index (SI) and Nash- 
Sutcliffe (NS) performance statistics were used to evaluate the predic-
tion capabilities of the methods. 

2. Experimental study 

2.1. Materials 

In this study, ground blast furnace slag (GBFS) and raw perlite 
powder (RPP) were used as aluminosilicate precursors. GBFS was ob-
tained from Ereğli iron and steel plant located in Zonguldak (Türkiye). 

Table 1 
The chemical composition and physical properties of GBFS and RPP.  

Chemical composition (%) GBFS RPP 

SiO2 36.12 73.88 
Al2O3 15.20 15.81 
Fe2O3 0.62 0.32 
CaO 36.10 0.83 
MgO 5.64 −

K2O 0.83 5.21 
Na2O 0.31 3.51 
SO3 1.21 0.08  

Physical properties   
Density (g/cm3) 2.88 2.37 
Specific surface area (cm2/g) 5220 3460 
LOI (%) 1.09 −

E.H. Alakara et al.                                                                                                                                                                                                                             



Construction and Building Materials 359 (2022) 129518

3

The calcium aluminosilicate hydrate (C-A–S–H) gels, which are similar 
to C–S–H that formed during the hydration of Portland cement, are 
constructed as a consequence of the geopolymerization of GBFS with 
high CaO/SiO2 ratios [7,18,19]. Note that the CaO ratio of GBFS is 
36.10 %. However, there is a widespread consensus that a precursor 
containing more than 20 % CaO is not favorable for geopolymerization 
owing to its quick setting [7]. Therefore, RPP was used substituting up to 
50 % by GBFS. Note that the CaO ratio of RPP is 0.83 %. The perlite in 
the raw (unprocessed) form used in the study was obtained from the 
perlite aggregate deposits in Çankırı (Türkiye). A ball mill operating at 
60 rpm was used to pulverize the perlite aggregates. Before being used 
ground RPP, it was sieved through a 90-µm sieve, and the material 
remaining under the sieve was used. As a result of this process, the 
fineness of RPP was brought to a similar fineness of the cement. The 
chemical composition and physical properties of GBFS and RPP are 
given in Table 1. 

NaOH with a molecular weight of 40 g/mol with a purity of 
approximately 99 % was used to produce an alkaline solution in the 
study. NaOH has demonstrated a higher capability to dissolve aluminate 
and silicate [7,59,60]. NaOH furthermore raises the pH of the environ-
ment and furnishes reactions for the dissolution of Si and Al in the 
aluminosilicate precursors to acquire desired binding products [14]. It is 
also a good option for preparing alkaline solutions with sodium silicate 
(Na2SiO3). It increases the compressive strength (CS) of geopolymers 
and the geopolymerization process [61]. However, it is not cost- 
effective, and a significant amount of energy is required during its 
production [62]. At the same time, the alkaline solution with high silica 
reduces the pH and diminishes the binding between aluminosilicate 

precursors and the alkaline solution [14]. Therefore, NaOH was chosen 
in this study. NaOH was supplied as a paillette and used as an activator 
in the study. CEN reference sand specified in EN 196–1 [63] standard 
was used in the experiments. Tap water was used as mixing water. 

2.2. The preparation of the geopolymer composites 

A total of six series of mixtures were prepared for each molar ratio, 
including one reference (R) series, and five series with RPP at different 
ratios (10, 20, 30, 40, and 50 %). The mixture proportions of the 
different geopolymer composite mortars are given in Table 2. 

The mixture proportions of geopolymer mortars were chosen the 
same as EN 196–1 [63] cement mortar mixture and Duxson and Provis 
[64] technique was used. Duxson and Provis [64] proposed an OPC- 
based-composites-like mixing technique for geopolymers. In this tech-
nique, the dry mixture is combined with an alkaline activator solution to 
produce geopolymers. From Table 2, it is seen that the water used in the 
mixture is in different amounts. This is due to the water content in 
NaOH. As the molarity in the geopolymer mixtures increased, the water 
content due to the amount of NaOH increased, so the amount of water 
used in the mixtures was reduced at the same rate. Note that water 
demonstrates no role in geopolymerization, and it merely enhances the 
workability of the mixtures. P1, P2, P3, P4, and P5 in Table 2 show that 
10, 20, 30, 40, and 50 % RPP replacement for GBFS, respectively. 
Geopolymer composites, with dimensions of 50×50×50 mm, were 
produced in an oven (with heat curing) to perform CS in accordance 
with ASTM C-109 [65]. This study focuses on CS of geopolymer. The CS 
of geopolymer gives high CS under high-temperature curing between 60 
and 110 ℃ and 24- and 48-hours curing time [7,66–69]. Therefore, 
prepared geopolymer composite mortars were subjected to curing times 
of 24 and 48 h and curing temperatures of 60, 80, 90, 100, and 110 ℃. 
Geopolymer properties can be adversely affected at temperatures higher 
than 110 ℃ and longer curing times. This can cause evaporation of 
water, change of gel formations, and thus cracks and shrinkage [70–72] 
Another factor in terms of CS is the alkaline solution molarity. The CS 
properties of geopolymers enhance with increasing molar ratios; How-
ever, the high molar ratio of alkaline solution can cause the dissolving of 
aluminosilicate precursors and finally decrease the CS of the geo-
polymers [7,8,73,74]. Accordingly, the molar ratios of alkaline activa-
tors in the mixtures were determined as 12, 14, and 16 M. 180 different 
groups of geopolymer composites were produced with the variables 
abovementioned, and the production parameters are illustrated in Fig. 1. 

As seen in Fig. 1, a total of six different series were prepared with 
three different molarities, five different curing temperatures, five 
different RPP replacement ratios, and two different curing times. Using 
these parameters, the name of each geopolymer composite sample is 
coded. For example, if the code P2-12 M− 24H− 60 T is examined, it is 
understood that the 20 % RPP-based geopolymer composite sample with 
12 molarity is heat cured at 60 ℃ for 24 h. In this way, 180 different 
group codes were produced. Three samples were used for each code, and 

Table 2 
The mixture proportions of the different geopolymers.  

Serial name Molarity 
(M) 

Precursors (g) Sand 
(g) 

Water 
(g) 

NaOH 
(g) 

GBFS RPP 

R-12 M 12 450 0 1350  200.7 108 
P1-12 M 405 45 1350  200.7 108 
P2-12 M 360 90 1350  200.7 108 
P3-12 M 315 135 1350  200.7 108 
P4-12 M 270 180 1350  200.7 108 
P5-12 M 225 225 1350  200.7 108 
R-14 M 14 450 0 1350  196.7 126 
P1-14 M 405 45 1350  196.7 126 
P2-14 M 360 90 1350  196.7 126 
P3-14 M 315 135 1350  196.7 126 
P4-14 M 270 180 1350  196.7 126 
P5-14 M 225 225 1350  196.7 126 
R-16 M 16 450 0 1350  192.6 144 
P1-16 M 405 45 1350  192.6 144 
P2-16 M 360 90 1350  192.6 144 
P3-16 M 315 135 1350  192.6 144 
P4-16 M 270 180 1350  192.6 144 
P5-16 M 225 225 1350  192.6 144  

Fig. 1. Production variables of geopolymer composites.  
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Fig. 2. The production, experimental test, and modeling stages of geopolymer composite mortars.  

Fig. 3. The flow chart for division of data.  
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the average CS result of the three samples was accepted as the final CS 
result. The CS tests were performed in accordance with ASTM C-109 
[65]. Fig. 2 shows the production, experimental test, and modeling 
stages of geopolymer composite mortars. 

3. Methodology of modeling 

3.1. Development of models 

In the study, a total of 180 different mixtures and 540 geopolymer 
samples were prepared by using different raw perlite powder (RPP) 
replacement ratios (0, 10, 20, 30, 40, and 50 %), different molarity ra-
tios (12, 14, 16 M), different curing times (24 and 48 h), and different 
curing temperatures (60, 80, 90, 100, and 110 ℃). The experimental 
compressive strength (CS) test results of the 180 mixtures (540 samples) 
were used in the development of the prediction models. 120 of the ob-
tained results (approximately 70 %) were reserved for training the 
models, 30 (approximately 15 %) for the validation of the models, and 
the remaining 30 (approximately 15 %) for the testing of the models. 
While creating the validation and test data sets, care was taken to 
represent the entire data group. For this purpose, 5 (6×5) mixtures 
represent each RPP replacement ratio, 10 (3×10) mixtures represent 
each molarity, 15 (2×15) mixtures represent each curing time, and 6 
(5×6) mixtures represent each curing temperature, a total of 30 mixture 
validation and test data sets were used. Fig. 3 illustrates the flow chart 
for data division. In order to facilitate optimization in the modeling 
stages and to achieve more accurate results, all the data sets were 
normalized between 0.1 and 0.9 using the equation given in Eq. (1) 
[42,75]. 

Fig. 4. Artificial neuron model [83].  
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0

10

20

30

40

50

60

70

80

R
-6

0T
R

-8
0T

R
-9

0T
R

-1
00

T
R

-1
10

T
P1

-6
0T

P1
-8

0T
P1

-9
0T

P1
-1

00
T

P1
-1

10
T

P2
-6

0T
P2

-8
0T

P2
-9

0T
P2

-1
00

T
P2

-1
10

T
P3

-6
0T

P3
-8

0T
P3

-9
0T

P3
-1

00
T

P3
-1

10
T

P4
-6

0T
P4

-8
0T

P4
-9

0T
P4

-1
00

T
P4

-1
10

T
P5

-6
0T

P5
-8

0T
P5

-9
0T

P5
-1

00
T

P5
-1

10
T

C
om

pr
es

si
ve

 st
re

ng
th

 (M
Pa

)

M14-24 H Curing M14-48 H Curing

Fig. 6. Compressive strengths of geopolymer composites having 14 molarity.  

E.H. Alakara et al.                                                                                                                                                                                                                             



Construction and Building Materials 359 (2022) 129518

6

Normalised value =

[
Raw value − Minimum value

Maximum value − Minimum value

]

× (0.8)+ 0.1

(1) 

Then equations and basic functions with the lowest error were 
determined by applying the regression-based CRA, MARS and TreeNet 
methods, respectively. MARS, and TreeNet models were implemented 
using Salford Predictive Modeler 8.0 software. Finally, the ANN method 
was applied to the same data sets. 

3.2. Conventional regression analysis (CRA) 

Conventional regression analysis (CRA) is one of the statistical con-
cepts of fitting methods to data from practical problems, validation of 
the predicted models, and finally extracting useful information from 
them [76]. In this study, four different regression functions are consid-
ered for the CRA method. These functions are linear function (LF), 
power function (PF), exponential function (EF), and quadratic function 
(QF). CRA was used to optimize unknown coefficients of independent 
variables [41]. The LF, PF, EF, and QF can be formulated as follows: 

yLF = w0 +w1x1 +w2x2 +w3x3 +w4x4 (2)  

yPF = w0xw1
1 xw2

2 xw3
3 xw4

4 (3)  

yEF = w0 + exp(w1 + w2x1 + w3x2 + w4x3 + w5x4) (4)  

yQF =w0 +w1x1 +w2x2 +w3x3 +w4x4 +w5x1x2 +w6x1x3 +w7x1x4

+w8x2x3 +w9x2x4 +w10x3x4 +w11x2
1 +w12x2

2 +w13x2
3 +w14x2

4

(5) 

In these equations, wn regression coefficients, xn independent vari-
ables, and y for CS. 

3.3. Multivariate adaptive regression splines (MARS) 

MARS is a non-parametric statistical method first proposed by Fri-
dedman [43]. The MARS method applies a divide-and-conquer strategy 
to explain the relationship between variables. The method makes no 
prior assumptions for functional relationships between dependent and 
independent variables [45]. Non-parametric regression methods are 
used to represent nonlinear events between variables. The MARS tech-
nique produces flexible, sensitive, and fast regression models to predict 
continuous and binary output variables [77]. The model uses feed- 
forward algorithms for variable estimation [41]. The main advantage 
of the model is its ability to explain the complex and non-linear rela-
tionship between the dependent and independent variables [78]. The 

basic principle of the MARS method is that it divides the data into 
several regions to fit a regression model for each region. The break 
values between regions are called “nodes”. The term “basis function” 
(BF) is used to represent each different range of independent variables. 
BFs are functions (Eq. (6)) of the following form. 

max(0, x − k)or max(0, k − x) (6)  

where × is the predictor variable, and k is the threshold value [79]. The 
general formulation (Eqs. (7) and (8)) of MARS, which consists of a 
linear combination of BFs, is as follows: 

y = f (x)+ ε (7)  

f (x) = β0 + βmBFm(x) (8)  

where y is the dependent variable estimated by the unknown function f 
(x) and ε is the error. BFm is the m’th principal function and its coeffi-
cient of βm. m is the maximum number of basic functions that fit the data 
[77]. 

3.4. TreeNet 

TreeNet, also known as multiple additive regression trees (MART) or 
gradient-boosting decision tree (GBDT), is a method developed by 
Friedman [80]. TreeNet is a general additive boosting regression model 
(ABRM) with a decision tree as its core learner. The main difference of 
TreeNet from other ABRMs is that its core learner is a decision tree, and 
it can capture a non-linear relationship between dependent and inde-
pendent variables [81]. The TreeNet technique provides exceptional 
modeling accuracy, high-speed result generation, and a high degree of 
fault tolerance in incomplete datasets. The TreeNet model generally 
consists of several hundred to several thousand small trees, each con-
taining about six terminal nodes. Each tree included in the model makes 
a small contribution to the overall model, and the final model estimate is 
the sum of the contributions of all these trees. Therefore, the TreeNet 
model can be thought of as a black box with extraordinarily accurate 
results. The model resembles a long series expansion, such as a Fourier 
or Taylor series, which is a summation of factors that gets more and 
more accurate as the expansion continues. The expansion can be written 
as: 

F(X) = F0 + β1T1(X) + β2T2(X) + ...+ βMTM(X) (9) 

Each Ti represents a small tree in Eq. (9). This should be read as a 
weighted sum of terms from the appropriate terminal node of each small 
tree [82]. 
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3.5. Artificial neural network (ANN) 

The ANN is an information processing method inspired by biological 
systems such as the brain. Neural networks consist of a large number of 
processing elements (neurons) that work in harmony to solve specific 
problems. A schematic diagram for an artificial neuron model is shown 
in Fig. 4. Neurons are connected to each other through directed con-
nections. Each link has a weight associated with it. ANN has the logic to 
find the most effective solution based on past experience when unknown 
data is entered into the network [83,84]. The output of the neuron 
network is given in Eq. (10). 

y(t + 1) = a

(
∑m

j=1
wijxj(t) − θi

)

and fi≜neti =
∑m

j=1
wijxj − θi (10)  

where X = (X1, X2, …, Xm) represents the input m applied to the neuron. 
Wi represents the weights for the input Xi. θi is the effect value. a(.) is the 
activation function. Some issues should be considered while installing 
the ANN model. First, the appropriate structure of the model should be 
selected, and the activation function and activation values should be 
determined. Layer numbers and the number of units for each layer 
should be selected. ANN models are used in areas such as model 
matching, nonlinear system modeling, power generation, communica-
tions, the electrical and electronics industry, medical applications, the 
chemical industry, and data mining due to their parallel processing ca-
pabilities [83]. 

3.6. Assessment of model performance 

The prediction performances of the methods were evaluated using 
RMSE, MAE, SI, and NS statistics given in Eqs. (11) to (14). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(ti − tdi)

2

√
√
√
√ (11)  

MAE =
1
N
∑N

i=1
|(ti − tdi) | (12)  

SI =
RMSE

t
(13)  

NS = 1 −
∑N

i=1(ti − tdi)
2

∑N
i=1

(
ti− t

)2 (14)  

Here, ti is the experimental CS values, t is the mean of these values, tdi is 
the value obtained from the model, and N is the number of observations. 
NS takes a value between –∞ and 1. The fact that NS = 1 indicates that 
the method is a physical and perfect method. On the other hand, Moriasi 
et al. [85] have proposed a range for NS statistics that determines the 
level of proficiency of model performance. Accordingly, if the NS value 
is 0.75–1, 0.65–0.75, 0.50–0.65, and <0.50, the model performance is 
classified as very good, good, sufficient, and unsatisfactory, for these 
ranges, respectively. The closer the NS value is to 1, the higher the model 
performance. 

4. Results and discussion 

4.1. Evaluation of experimental results 

A total of 180 different mixtures and 540 geopolymer samples were 
produced according to the stages shown in Fig. 2 and subjected to 
compressive strength (CS) tests. The CS test results of samples are pre-
sented in Figs. 5-7. 

As seen in Fig. 5, test results of the geopolymers produced in 12 M 
show that the highest and lowest CSs are P1-12 M− 24H− 110 T and P5- Ta
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12 M− 24H− 60 T geopolymers, respectively. By increasing the curing 
time of geopolymer composites cured at 60 ℃ from 24 h to 48 h, sig-
nificant increases were observed in CSs of all RPP-based geopolymer 
composite series. This situation was consistent with the studies in the 
literature [86,87]. The CSs of geopolymer composites cured at 110 ℃ 
curing temperature in the R, P1, and P2 series have higher CS results 
than the geopolymers produced in the same series, which are cured at 
110 ℃ curing temperature for 48 h. This might be attributed to pre-
cursor reactivity and the geopolymerization process enhanced at high- 
temperature curing [7,14]. It has been observed that the curing tem-
perature should be increased in order to increase the CS rapidly. As a 

result, it was revealed that short curing times at high temperatures had a 
positive effect on CS. This might be attributed that geopolymer gels 
begin to deteriorate and cracks occur during long curing times under 
high temperatures [70–72]. 

As seen in Fig. 6, test results of the geopolymers produced in 14 M 
show that the CS of all RPP-based geopolymer series increased by 
increasing the molarity ratio from 12 to 14. In geopolymer composites 
with 14 M, the highest CS was obtained with R-14 M− 24H− 110 T cured 
at 110 ℃ for 24 h. An increase of 22.08 % was achieved in the CS of the R 
series produced under the same conditions with the increase in molarity. 
As a result, with the increase of molarity, significant increases occurred 
in the CS of the samples, especially those cured for 24 h. The highest CS 
results were also obtained in the 24-hour curing condition. The CS 
properties of geopolymers enhance with increasing molar ratios 
[7,73,74]. This is because the geopolymerization process increases with 
the increase in molarity. This can be attributed to more Si and Al dis-
solving from aluminosilicate precursors, and the chemical geo-
polymerization process is enhanced with high molarity. 

As seen in Fig. 7, test results of the geopolymers produced in 16 M 
show that the geopolymer composites with 16 M reached higher CS 
results than the geopolymers produced in 14 M at 60 and 80 ℃ heat 
curing. It was determined that increasing the molarity from 14 to 16 had 
the most positive effect on the CS at 60 ℃. The CSs of the R, P1, P2, P3, 
P4, and P5 series cured at 60 ℃ for 48 h increased by 8.53, 30.37, 27.36, 
27.31, 53.86, and 67.93 %, respectively. It has been observed that RPP 
has a positive effect on CS at only low curing temperatures. The same 
effect was not observed at high curing temperatures. This is because 
GBFS is more active than RPP at high curing temperatures. This dem-
onstrates that the degree of geopolymerization of GBFS is much higher 
than that of RPP. As a result, while the increase in molarity in the pro-
duction of geopolymer composites had a positive effect on the CS of 

Table 4 
Performance of MARS models predicted CS for different values of variables.  

Model M1 M2 M3 M4 M5 M6 Training Validating Testing 

RMSE MAE SI NS RMSE MAE SI NS RMSE MAE SI NS 

1 4 4 18 7 3 − 5  2.648  2.107  0.068  0.947  3.616  2.625  0.094  0.863  3.328  2.694  0.085  0.916 
2 4 4 18 2 6 − 2  2.842  2.235  0.072  0.940  2.979  2.236  0.077  0.907  3.090  2.475  0.078  0.925 
3 4 4 20 3 5 − 5  2.269  2.079  0.068  0.946  3.356  2.572  0.087  0.882  3.085  2.747  0.078  0.926 
4 4 4 20 5 5 − 2  3.016  2.399  0.077  0.933  3.029  2.306  0.078  0.904  3.034  2.424  0.077  0.928 
5 4 4 24 5 2 − 2  3.169  2.506  0.081  0.926  2.717  2.019  0.070  0.923  3.172  2.238  0.081  0.921 
6 4 4 24 8 5 − 3  2.748  2.161  0.070  0.944  2.905  2.159  0.075  0.912  3.349  2.546  0.085  0.912 
7 4 4 30 6 3 − 4  3.163  2.491  0.080  0.926  2.680  2.021  0.069  0.925  3.151  2.262  0.080  0.922 
8 4 4 30 2 2 − 5  2.462  1.922  0.063  0.955  3.213  2.364  0.083  0.892  3.278  2.689  0.083  0.916 
9 4 4 36 2 6 − 5  3.287  2.578  0.083  0.920  3.166  2.373  0.082  0.895  3.068  2.392  0.078  0.926 
10 4 4 36 8 3 − 1  3.564  2.880  0.091  0.906  3.236  2.577  0.084  0.890  3.575  2.621  0.091  0.900 
11 4 4 40 6 3 − 7  3.163  2.491  0.080  0.926  2.679  2.022  0.069  0.925  3.151  2.263  0.080  0.922 
12 4 4 40 2 7 − 2  3.094  2.391  0.079  0.929  3.136  2.404  0.081  0.897  3.124  2.382  0.079  0.924 
The Best 4 4 28 6 4 ¡4  2.348  1.758  0.060  0.959  2.498  1.742  0.065  0.935  2.895  2.204  0.074  0.934  

Table 5 
Basis functions and equations obtained from MARS for CS.  

BF1 max (0, T* − 0.42) BF16 max (0, M − 0.1) × BF1 
BF2 max (0, 0.42 − T) BF17 max (0, T − 0.1) × BF4 
BF3 max (0, P* − 0.1) BF19 max (0, 0.26 − P) × BF16 
BF4 max (0, M* − 0.1) BF20 max (0, H − 0.1) × BF13 
BF5 max (0, H* − 0.1) × BF2 BF21 max (0, P − 0.26) × BF17 
BF6 max (0, P − 0.1) × BF2 BF23 max (0, H − 0.1) 
BF7 max (0, H − 0.1) × BF3 BF24 max (0, H − 0.1) 
BF8 max (0, T − 0.42) × BF7 BF25 max (0, 0.5 − M) × BF23 
BF13 max (0, 0.42 − P) × BF1 BF26 max (0, T − 0.74) × BF23 
BF15 max (0, 0.5 − M) × BF13 BF27 max (0, 0.74 − T) × BF23   

BF28 max (0, M − 0.1) × BF5 

CS = 0.480907 + 0.368676 × BF1 − 0.673489 × BF2 − 0.295835⋅BF3 +
0.0657375 × BF4 + 0.303429 × BF6 + 0.148339 × BF8 + 2.18153 × BF13 −
4.66326 × BF15 − 0.96805 × BF16 + 0.527518 × BF17 − 3.16055 × BF19 −
0.896384 × BF20 + 0.199104 × BF21 + 0.141131 × BF24 + 0.16082 × BF25 −
0.393213 × BF26 + 0.154137 × BF27 + 0.423124 × BF28. 
*T, H, M, and P represent curing temperatures, curing times, molarity, and 
perlite, respectively. 

Table 6 
Performance of TreeNet models predicted CS for different values of variables.  

Model T1 T2 T3 T4 T5 Training Validating Testing 

RMSE MAE SI NS RMSE MAE SI NS RMSE MAE SI NS 

1  0.50 10,000 6 10,000 10  3.594  2.574  0.091  0.904  3.218  2.456  0.083  0.891  3.679  2.763  0.093  0.894 
2  0.50 10,000 3 45,000 1  3.625  2.435  0.092  0.903  3.075  2.347  0.080  0.901  3.639  2.789  0.092  0.896 
3  0.55 10,000 4 15,000 3  3.204  2.105  0.081  0.924  2.880  2.097  0.075  0.913  3.267  2.519  0.083  0.916 
4  0.60 10,000 5 25,000 7  3.284  2.200  0.083  0.920  3.032  2.194  0.079  0.904  3.518  2.629  0.089  0.903 
5  0.65 10,000 8 10,000 5  2.781  1.913  0.071  0.943  2.879  2.113  0.075  0.913  3.170  2.440  0.081  0.921 
6  0.70 10,000 2 50,000 5  4.797  3.210  0.122  0.830  3.271  2.711  0.085  0.888  4.227  3.302  0.107  0.860 
7  0.75 10,000 7 20,000 3  2.903  1.860  0.074  0.938  2.802  2.057  0.073  0.918  3.297  2.577  0.084  0.915 
8  0.75 10,000 9 40,000 2  2.743  1.796  0.070  0.944  2.777  2.029  0.072  0.919  3.234  2.534  0.082  0.918 
9  0.80 10,000 6 10,000 8  3.207  2.133  0.081  0.924  2.910  2.076  0.075  0.911  3.391  2.706  0.086  0.910 
10  0.90 10,000 5 30,000 4  3.123  2.045  0.079  0.928  2.865  2.132  0.074  0.914  3.493  2.785  0.089  0.904 
11  1.00 10,000 8 35,000 6  2.973  1.916  0.076  0.935  3.221  2.267  0.083  0.891  3.344  2.596  0.085  0.912 
12  1.00 10,000 10 10,000 10  2.908  1.879  0.074  0.937  3.078  2.372  0.080  0.901  3.131  2.393  0.080  0.923 
The Best  0.60 10,000 10 25,000 1  2.476  1.687  0.063  0.955  2.742  2.020  0.071  0.921  3.093  2.239  0.079  0.925  
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geopolymer composites cured only at low temperatures, it did not have 
the same positive effect on the CS of geopolymer composites cured at 
high temperatures. The reason for this situation is the destruction of the 
geopolymer structure with long-term high-temperature curing [88]. 
Thus, cracks occur and the strength of the geopolymer composite de-
creases [70–72,89]. Moreover, this can be attributed that the high molar 
ratio of alkaline solution can cause the dissolving of aluminosilicate 
precursors and finally decrease the CS of the geopolymers [7,8,73,74]. It 
has been observed that geopolymers can achieve high CS in a short time 
by curing at high temperatures. The CS of geopolymers produced by 
substituting RPP instead of GBFS (except the P1 series) were lower than 
the R series in all conditions. This is because the degree of geo-
polymerization of GBFS is much higher than that of RPP. Additionally, it 
was demonstrated that NaOH contributed significantly to compressive 
strength development. 

4.2. Evaluation of modeling results 

4.2.1. Conventional regression analysis (CRA) modeling results 
The CRA method, which includes LF, PF, EF, and QF functions, was 

used to check the accuracy of the heuristic regression methods and ANN 
method. The coefficients obtained with the CRA functions are given in 
Table 3. These coefficients were then used to generate validation and 
test datasets and the predictive capabilities of the models were 
compared. Model performance statistics for the CRA method are given in 
Section 4.2.5. 

4.2.2. Multiple adaptive regression splines (MARS) modeling results 
The parameters speed factor (M1), degrees of freedom for knot 

optimization (M2), maximum basis functions (M3), maximum in-
teractions (M4), minimum observations between knots (M5) and ridge 
(M6) parameters must be selected accordingly in the analyzes made with 
the MARS method. These parameters affect the performance of the 
MARS method. In this study, M1 and M2 parameters were selected as 4, 
while M3, M4, M5, and M6 parameters were selected in the range of 
5–50, 1–10, 0–10, and 0– (–9), respectively. The performance of the 
MARS method for different trials of the parameters is given in Table 4. 
The basis functions of the model with the best performance and the 
equation obtained from these functions are given in Table 5. The number 
of basis functions used to estimate the CS was determined as 28. The 
basis functions given in Table 5 for the training dataset and the equation 
obtained from these functions were then used to generate validation and 
test datasets, and the predictive ability of the model was compared with 
other models. 

4.2.3. TreeNet modeling results 
The parameters such as subsample fraction (T1), the number of trees 

to build (T2), the number of maximum nodes per tree (T3), maximum 
depth of the tree (T4), minimum terminal node (T5) must be selected 
effectively in the analyzes made with the TreeNet method. The values of 
these parameters directly affect the performance of the method. In the 
study, the optimum values of the parameters for the TreeNet method 
were determined by the trial-and-error method. T1, T3, T4, and T5 pa-
rameters were selected between 0.5 and 1.0, 1–10, 10000–50000, and 
1–10 respectively, while the T2 parameter was selected as 10000. The 
performance statistics of the TreeNet method for different values of the 
parameters are given in Table 6. The best model found for the training 
dataset was then used to generate validation and test datasets, and the 

Table 7 
Performance values of ANN models for different neuron numbers in the hidden layer.  

Number of neurons Training  Validating  Testing 

RMSE MAE SI NS  RMSE MAE SI NS  RMSE MAE SI NS 

4  2.760  2.045  0.070  0.944   3.508  2.734  0.091  0.871   3.530  2.454  0.090  0.902 
5  2.162  1.591  0.055  0.965   2.861  2.163  0.074  0.914   3.048  2.379  0.077  0.927 
6  2.202  1.710  0.056  0.964   2.736  2.133  0.071  0.922   3.068  2.465  0.078  0.926 
7  2.094  1.624  0.053  0.968   3.066  2.315  0.079  0.901   3.178  2.462  0.081  0.921 
8  1.991  1.457  0.051  0.971   2.757  2.049  0.071  0.920   2.679  2.287  0.068  0.944 
9  1.933  1.406  0.049  0.972   2.961  2.251  0.077  0.908   3.043  2.445  0.077  0.928 
10  1.772  1.300  0.045  0.977   2.946  2.220  0.076  0.909   2.760  2.259  0.070  0.940 
12  1.801  1.295  0.046  0.976   2.804  2.292  0.073  0.918   3.128  2.581  0.079  0.923 
14  1.768  1.324  0.045  0.977   2.446  1.974  0.063  0.937   2.498  2.090  0.063  0.951 
16  1.883  1.405  0.048  0.974   3.152  2.498  0.082  0.896   2.845  2.450  0.072  0.937 
18  1.889  1.354  0.048  0.974   3.037  2.416  0.079  0.903   2.924  2.450  0.074  0.933 
20  2.251  1.718  0.057  0.962   2.705  2.291  0.070  0.923   2.652  1.961  0.067  0.945 
25  2.058  1.576  0.052  0.969   2.953  2.367  0.076  0.908   2.779  2.228  0.071  0.939 
30  1.960  1.477  0.050  0.972   2.895  2.162  0.075  0.912   2.606  1.981  0.066  0.947 
40  2.133  1.554  0.054  0.966   2.961  2.227  0.077  0.908   3.228  2.586  0.082  0.918  

Table 8 
RMSE, MAE, SI and NS values of ANN, MARS, TreeNet and CRA in training, validating and testing sets.  

Data Performance Statistics/Methods ANN MARS TreeNet CRA_QF CRA_PF CRA_LF CRA_EF 

Training RMSE  1.768  2.348  2.476  3.368  4.681  4.912  4.915 
MAE  1.324  1.758  1.687  2.631  3.914  3.871  3.873 
SI  0.045  0.060  0.063  0.086  0.119  0.125  0.125 
NS  0.977  0.959  0.955  0.916  0.838  0.821  0.821  

Validating RMSE  2.446  2.498  2.742  3.813  5.016  5.041  5.809 
MAE  1.974  1.742  2.020  2.965  3.967  3.983  4.196 
SI  0.063  0.065  0.071  0.099  0.130  0.131  0.150 
NS  0.937  0.935  0.921  0.848  0.736  0.734  0.646  

Testing RMSE  2.498  2.895  3.093  3.328  4.747  4.762  4.975 
MAE  2.090  2.204  2.239  2.540  3.419  3.427  3.792 
SI  0.063  0.074  0.079  0.085  0.121  0.121  0.126 
NS  0.951  0.934  0.925  0.913  0.824  0.823  0.806  
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prediction performance of the model was compared with other models. 

4.2.4. Artificial neural network (ANN) modeling results 
In the ANN method, the optimum number of neurons in the hidden 

layer was found by the trial-and-error method. The maximum number of 
iterations was chosen as 10,000. The hyperbolic tangent sigmoid 
transfer function (tansig) and linear transfer function (purelin) are used 
for the activation of the hidden and output layers of the network, 
respectively. In the ANN models, the learning rate is 0.8 and the mo-
mentum coefficient is 1.0. The performance statistics of the ANN method 
for different neuron numbers in the hidden layer are given in Table 7. 
The best-performing ANN model is illustrated in bold. 

4.2.5. Comparison of CRA, MARS and TreeNet modeling results with ANN 
results 

In this section, the statistics of the highest-performing models of the 
regression-based CRA, MARS, and TreeNet methods are compared with 
the performance statistics obtained from the ANN method. RMSE, MAE, 
SI, and NS values of the models are given in Table 8 for training, vali-
dation, and testing data sets. The results with the lowest error values and 
the highest NS values are illustrated in bold. 

The lowest RMSE and SI values for all three of the training, valida-
tion, and testing datasets were obtained from the ANN method. The 
lowest MAE value was obtained from the ANN method for the training 
and test datasets, and the MARS method for the validation dataset. It is 

possible to say that the ANN is the method that gives the highest per-
formance for all data sets. The ANN method was followed by MARS, 
TreeNET, and CRA-QF methods, respectively. In addition, among the 
functions in the CRA method, it was determined that the quadratic 
function outperformed linear, power, and exponential functions in all 
training, validation, and test data sets. In the ANN method, the RMSE, 
MAE, SI, and NS values for the training set were determined as 1.768, 
1.324, 0.045, and 0.977, respectively. When the RMSE values of the 
training data were examined, it was determined that the ANN model was 
24.7, 28.6, and 47.5 % better than MARS, TreeNet, and CRA-QF, 
respectively. These values were found to be 2.1, 10.8, and 35.9 % for 
the validation data set, and 13.7, 19.2, and 24.9 % for the test set, 
respectively. When the training, validation, and test set prediction per-
formances of the methods were compared according to their NS values, 
it was determined that the NS value calculated for all methods was 
above 0.75 and the NS values of all methods were in the “very good” 
class. 

Scatter diagrams of ANN, MARS, TreeNet, and CRA-QF (best model 
of CRA) models are shown in Figs. 8-10 for training, validation, and test 
datasets, respectively. When the Figs. 8-10 are examined, and it is seen 
that the values closest to the 45◦ line in all the training, validation, and 
test data sets were obtained from the ANN, MARS, TreeNet, and CRA_QF 
models, respectively. 

The experimental values of CS were compared with the predicted 
values obtained from the ANN method, where the highest performance 

Fig. 8. Scatter plots of the experimental results with the estimated ones by the CRA-QF, TreeNet, MARS and ANN for training data sets for CS.  
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values were obtained, with the time series diagrams in Figs. 11-13 for 
training, validation, and test data sets, respectively. 

The results from the modeling study show that there is clearly a 
significant correlation between the experimental and predictive results 
for all of the training, validating, and testing data. Among the models 
trained using experimental data, the method that comprehensively 
estimated the target values was ANN. The scatter diagrams and time 
series given above confirm this. This shows that the models developed 
by ANN make more effective and better predictions compared to the 
regression-based models. Similar results were also obtained in [42,90] 
studies. The statistics given in Table 8 show that the MARS and TreeNet 
models predict more accurately than the CRA model. These results were 
similar to previous studies using similar methods [40,41]. The results 
given above show that ANN performs more reasonably than other 
methods in estimating the CS of geopolymer concrete. When the results 
obtained from the presented study were compared with the results ob-
tained from the ANN models used in different studies, it was determined 
that the ANN once again showed superior performance in the estimation 
of compressive strength [37,54,91,92]. 

4.2.6. Relative importance of the input variables 
MARS and TreeNet methods used in the study determine the relative 

importance of any independent variable by assigning a value between 
0 and 100. The relative importance values obtained from the models 
with the highest prediction performance of the MARS and TreeNet 

methods are given in Table 9. 
According to the results given in Table 9, it was seen that all the input 

variables were effective on the models established by MARS and TreeNet 
methods. When compared with other input parameters, the relative 
importance value of the curing temperature was found to be the highest. 
This was followed by perlite replacement ratio, molarity, and curing 
time, respectively. It is also supported by this modeling study that the 
curing temperatures significantly affect the CS of geopolymer mortars. It 
is also seen that the order of importance of the parameters for both 
MARS and TreeNet methods is the same. The relative importance of 
curing time was determined at the lowest level for both models. It has 
been determined that the relative importance of the molarity and curing 
time variables in the MARS method is lower than in the TreeNet method. 

5. Conclusion 

In this study, 540 cubic geopolymer samples incorporating different 
raw perlite powder (RPP) replacement ratios, different sodium hy-
droxide (NaOH) molarity, different curing time, and different curing 
temperatures for a total of 180 mixture groups were produced and their 
CS results were experimentally determined. Regression-based conven-
tional regression analysis (CRA), multivariate adaptive regression 
splines (MARS), and TreeNet methods, as well as artificial neural 
network (ANN) methods, were used to predict the CS results of geo-
polymers using the experimental data. The key outcomes of the study 

Fig. 9. Scatter plots of the experimental results with the estimated ones by the ANN, MARS, TreeNet and CRA-QF for validating data sets for CS.  
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are as follows:  

• The compressive strengths of geopolymers enhance with increasing 
molar ratios at low-temperature curing. This is because the geo-
polymerization process increases with the increase in molarity. This 
can be attributed to more Si and Al dissolving from aluminosilicate 

precursors, and the chemical geopolymerization process is enhanced 
with high molarity. The same effect was not observed at high curing 
temperatures. The reason for this situation is the destruction of the 
geopolymer structure at high-temperature curing.  

• RPP has a positive effect on CS at only low curing temperatures. The 
same effect was not observed at high curing temperatures. This 

Fig. 10. Scatter plots of the experimental results with the estimated ones by the ANN, MARS, TreeNet and CRA-QF for testing data sets for CS.  

0

10

20

30

40

50

60

70

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115

C
om

pr
es

si
ve

 st
re

ng
th

 (M
Pa

)

Experiment

TrainingCS ANN
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demonstrates that the degree of geopolymerization of GBFS is much 
higher than that of RPP.  

• The NS values of the best models of all methods were found to be in 
the “very good” class. However, according to all performance sta-
tistics of the models, it was determined that the highest accuracy 
results were obtained from the ANN method. In addition, the MARS 
method outperformed the TreeNet and CRA methods in regression- 
based methods. Considering the RMSE values, it was seen that the 
ANN model made improvements by 24.7, 2.1, and 13.7 %, respec-
tively, compared to the MARS method for training, validation, and 
test data sets.  

• The variable with the highest (lowest) relative importance in the 
prediction of CS in the MARS and TreeNet models was the curing 
temperature (curing time). It was determined that these results 
coincided with the findings obtained from experimental studies. 

This is a comprehensive study in which regression and ANN-based 

methods are presented comparatively for the prediction of the CS vari-
able. It is thought that the findings obtained from this study can guide 
researchers. Using the same data sets, heuristic and metaheuristic al-
gorithms can be used to investigate the feasibility of higher-performance 
prediction models. 
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Table 9 
Relative importance of the input variables on CS in the MARS and TreeNet.  

Variable importance for MARS Variable importance for TreeNet 

Variable name* (%)  Variable name (%)  

T 100 |||||||||||||||||||||||||||||||||||||||||||||||| T 100 |||||||||||||||||||||||||||||||||||||||||| 
P 84.97 |||||||||||||||||||||||||||||||||||||||| P 87.7 ||||||||||||||||||||||||||||||||||||| 
M 50.82 |||||||||||||||||||||||| M 83.37 ||||||||||||||||||||||||||||||||||| 
H 32.82 ||||||||||||||| H 63.85 ||||||||||||||||||||||||||  

* T, H, M, and P represent curing temperatures, curing times, molarity, and perlite, respectively. 
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