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Abstract: Imidazole derivatives have found wide application in organic and medicinal chemistry. In
particular, benzimidazoles have proven biological activity as antiviral, antimicrobial, and antitumor
agents. In this work, we experimentally and theoretically investigated N-Butyl-1H-benzimidazole. It
has been shown that the presence of a butyl substituent in the N position does not significantly affect
the conjugation and structural organization of benzimidazole. The optimized molecular parameters
were performed by the DFT/B3LYP method with 6-311++G(d,p) basis set. This level of theory shows
excellent concurrence with the experimental data. The non-covalent interactions that existed within
our compound N-Butyl-1H-benzimidazole were also analyzed by the AIM, RDG, ELF, and LOL
topological methods. The color shades of the ELF and LOL maps confirm the presence of bonding and
non-bonding electrons in N-Butyl-1H-benzimidazole. From DFT calculations, various methods such
as molecular electrostatic potential (MEP), Fukui functions, Mulliken atomic charges, and frontier
molecular orbital (HOMO-LUMO) were characterized. Furthermore, UV-Vis absorption and natural
bond orbital (NBO) analysis were calculated. It is shown that the experimental and theoretical spectra
of N-Butyl-1H-benzimidazole have a peak at 248 nm; in addition, the experimental spectrum has a
peak near 295 nm. The NBO method shows that the delocalization of the aσ-electron from σ (C1–C2)
is distributed into antibonding σ* (C1–C6), σ* (C1–N26), and σ* (C6–H11), which leads to stabilization
energies of 4.63, 0.86, and 2.42 KJ/mol, respectively. Spectroscopic investigations of N-Butyl-1H-
benzimidazole were carried out experimentally and theoretically to find FTIR vibrational spectra.

Keywords: N-butyl-1H-benzimidazole; benzimidazole; DFT; AIM; RDG; ELF

1. Introduction

Heterocyclic compounds are important substances. They are widely distributed in
nature, and are important in the metabolism of all living cells and in the chemistry of natural
compounds. Aromatic nitrogen-containing heterocyclic compounds are the most diverse
and well-studied. Nitrogen-based heterocyclic compounds play an important role for
humanity. In particular, benzimidazole is of great importance, not only biologically but also
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industrially among all nitrogen-based heterocyclic compounds [1,2]. Benzimidazole is a
nitrogen-containing aromatic heterocyclic compound whose structure includes conjugated
rings of benzene and imidazole.

Benzimidazoles are heterocyclic compounds that have attracted great interest in the
last few years due to their proven biological activity such as antiviral [3], antitumor [4],
antifungal [5], antimicrobial [6], and other substances [7]. Also, benzimidazoles are widely
used in industrial processes as corrosion inhibitors for surfaces of metals and alloys [8].

Benzimidazole derivatives have different types of pharmacokinetic and pharmacody-
namic properties. The benzimidazole core is one of the bioactive heterocyclic compounds
exhibiting a number of biological activities [9].

It was shown [1,2] that the functional group present in the benzimidazole molecule
plays an important role in the physicochemical properties of the molecule. To determine
the best molecule for a therapeutic target (as well as the required physicochemical charac-
teristics), it is necessary to understand the relative contribution of each functional group.
The benzimidazole molecule has proven to be important in biochemistry due to its bio-
logical activity and simple compound. Recently, new medically important benzimidazole
derivatives have been synthesized.

The physical and chemical properties of imidazoles and benzimidazoles, which are
potential starting materials for a large number of important chemicals, are currently being
actively studied. Considering that even the most fundamental physical properties of
alkylimidazoles are actively investigated to this day, there is still insufficient data for many
benzimidazole derivatives [10,11]. The biological activity of benzimidazole derivatives is
influenced by both the type of substituent and the position at which it is attached to the
benzimidazole ring [12].

N-Butyl-1H-benzimidazole (1-Butylbenzimidazole) is an important imidazolium deriva-
tive. It and its analogs have been investigated as an electrolyte with improved charge trans-
fer capabilities for dye-sensitized solar cells [13] and for the synthesis of N-(fluoroalkyl)
imidazolones [14].

In addition, N-Butyl-1H-benzimidazole can be a platform molecule for obtaining
brønsted acidic ionic liquid, which can be used in esterifications of aliphatic acids [11] and
others [15,16].

Since the physical and chemical properties of chemicals are decisive in their practical
application, an urgent task is to study them by various methods, both experimental and
theoretical. The aim of this work was to study N-Butyl-1H-benzimidazole using FTIR
spectroscopy, Mulliken atomic charges, UV-Vis, DFT, RDG, QTAIM, ELF, LOL, NBO,
HOMO-LUMO, Fukui functions, and MEP.

2. Result and Discussion
2.1. Structural Analysis of N-Butyl-1H-Benzimidazole

In this work, we used the DFT and QTAIM method with B3LYP/6-311++G(d,p) for
calculation of the benzimidazole derivative.

It is known [17] that the physicochemical properties of imidazole derivatives of this
type are affected by the following factors: the charge distribution on ions, H bond, ion
symmetry, and van der Waals interaction. The size of the alkyl chain also plays an important
role in determining the characteristics of ionic liquids. For example, it is known [18]
that with an increase in the length of the alkyl chain, the melting point of ionic liquids
gradually decreases.

In our case, imidazole has a butyl and benzyl substituent and its optimized structure
is shown in Figure 1, and the optimized parameters are shown in Table 1.
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Figure 1. Optimized molecular structure of N-Butyl-1H-benzimidazole.

Comparison of the optimized structural parameters of N-Butyl-1H-benzimidazole
showed that the C1-N26 and C2-N27 bonds have similar values (1.386 and 1.387 Å, re-
spectively) for theoretical calculations. The experimental values for C1-N26 and C2-N27
are 1.391 and 1.367 Å, respectively. Benzimidazole was calculated in [19] using the DFT
method with B3LYP functional and the 6-311G+(2d,p) basis set. It was shown that for
bonds analogous to C1-N26 and C2-N27 (N-Butyl-1H-benzimidazole), the bond lengths
are 1.389 and 1.385 Å, respectively.

The C7-N26 and C7-N27 bond lengths are 1.377 and 1.306 Å, respectively. For benz-
imidazole, the C7-N26 and C7-N27 bond lengths are 1.377 and 1.304 Å, respectively [19].
Thus, the lengths of bonds C1-N26, C2-N27, C7-N26, and C7-N27 in benzimidazole and
N-Butyl-1H-benzimidazole are similar, which allows us to judge that the butyl substituent
has almost no effect on this type of bond. For the butyl group, the bond lengths C13-C16,
C16-C19, and C19-C22 are 1.534, 1.533, and 1.531 Å, respectively.

According to Table 1, in general, for the experimental values of the bond lengths, lower
values are observed in comparison with the theoretical ones.

The value of the angles with the C-N-C and N-C-N bonds obtained using theoretical
calculations differs from the experimental data (Table 1), which may be due to a systematic
calculation error [20–22]. Thus, for N26-C7-N27, C2-N27-C7, and C1-N26-C7, the theoretical
angles are 114.3, 104.6, and 105.9◦, respectively, and for the experimentally determined
angles N26-C7-N27, C2-N27-C7, and C1-N26-C7, the values are 121.6, 105.4, and 109.5◦,
respectively. The obtained theoretical values of the angles are consistent with the literature
data on benzimidazole [19] for which the angles N26-C7-N27, C2-N27-C7, and C1-N26-C7
are 113.4, 104.9, and 106.8◦, respectively.

Thus, the introduction of an alkyl group into the N position in benzimidazole has
almost no effect on the C-N bond lengths and C-N-C and N-C-N angles, which is in good
agreement with the results presented in [19].
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Table 1. The theoretical and experimental optimized structural parameters of N-Butyl-1H-benzimidazole.

B3LYP/6-311++G(d,p)

Bond Lengths (A◦) Bond Angles (◦)

Atom Position Theo. Exp. Atom Position Theo. Exp.

C1-C2 1.415 1.398(2) C2-C1-C6 122.3 107.0
C1-C6 1.396 1.390(3) C2-C1-N26 105.1 107.6
C1-N26 1.386 1.391(2) C6-C1-N26 132.6 107.5
C2-C3 1.399 1.371(3) C1-C2-C3 119.9 107.6
C2-N27 1.387 1.367(2) C1-C3-N27 110.1 107.6
C3-C4 1.389 1.393(3) C3-C2-N27 130.0 118.9(2)
C3-H8 1.084 0.930 C2-C3-C4 118.1 107.7(2)
C4-C5 1.408 1.368(3) C2-C3-H8 120.2 124(1)
C4-H9 1.084 0.930 C4-C3-H8 121.7 128(1)
C5-C6 1.391 1.371(3) C3-C4-C5 121.4 119.8(2)
C5-H10 1.084 0.930 C3-C4-H9 119.6 109.4(2)
C6-H11 1.084 0.930 H9-C4-C9 119.0 130.8(2)
C7-H12 1.082 0.80(2) C4-C5-C6 121.5 105.5(2)
C7-N26 1.377 1.365(3) C4-C5-H10 119.2 132.3(2)
C7-N27 1.306 1.317(2) C6-C5-H10 119.2 122.2(2)
C13-H14 1.094 0.970 C1-C6-C5 116.9 121.0
C13-H15 1.095 0.970 C1-C6-H11 122.2 118.0(2)
C13-C16 1.534 1.449(4) C5-C6-H12 120.9 121.0
C13-N26 1.458 - H12-C7-N26 120.7 121.5
C16-H17 1.096 0.969 H12-C7-N27 125.0 116.9(2)
C16-H18 1.095 0.970 N26-C7-N27 114.3 121.6
C16-C19 1.533 1.510(4) H14-C13-H15 106.7 119.2
C19-H20 1.097 0.970 H14-C13-C16 110.2 121.6(2)
C19-H21 1.097 0.971 C14-C13-N26 107.4 119.2
C19-C22 1.531 1.417(5) H15-C13-C16 110.5 121.5(2)
C22-H23 1.094 0.960 H15-C13-N26 108.2 119.2
C22-H24 1.093 0.960 C16-C13-N26 113.6 119.3
C22-H25 1.094 0.959 C13-C16-H17 108.8 123.1(2)

C13-C16-H18 109.3 124.8(2)
C13-C16-C19 112.4 112.1(2)
H17-C16-H18 106.4 108.3
H17-C16-C19 109.9 108.3
H18-C16-C19 109.8 115.7(2)
C16-C19-H20 109.4 107.5
C16-C19-H21 109.4 108.4
C16-C19-C22 112.9 108.3
H20-C19-H21 106.1 107.8
H20-C19-C22 109.4 107.9
H21-C19-C22 109.4 117.8(3)
C19-C22-H23 111.2 107.3
C19-C22-H24 111.3 107.9
C19-C22-H25 111.2 107.8
H23-C22-H24 107.7 109.5
H23-C22-H25 107.6 109.5
H24-C22-H25 107.7 109.5
C1-N26-C7 105.9 109.5
C1-N26-C13 127.4 109.4
C7-N26-C13 126.7 109.4
C2-N27-C7 104.6 105.4(2)

2.2. Topological Analysis

Topological analysis helps to describe and predict the molecular structure of molecules,
and also provides a model for explaining how aetheric wave functions of atoms should fit
together [23].

The theory of atoms in molecules (AIM) [24,25] provides a rigorous solution to the
problem of dividing each molecular property into contributions from atoms or functional
groups. Using this theory, one can obtain data on the topological characteristics of the
studied substances [24,26,27]. In addition, this technique is an appropriate method to
examine the intra- and intermolecular interactions in terms of the electron density of a
molecular system [28].
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In the AIM theory, the character of the bond is described by the electron density ρ(r),
the kinetic energy density G(r), the electron density Laplacian ∇2ρ(r), the potential energy
density V(r), the interaction energy Einteractions, and the ratio |V|/G. However, the values
|V(r)|/G(r) make it possible to judge the nature of interactions: for covalent bonds, this
ratio is greater than 2; for mixed interactions it is between 1 and 2; and for ionic bonds, van
der Waals interactions have a value less than 1 [29].

To determine the electronic structure and obtain the topological characteristics of N-
Butyl-1H-benzimidazole, the method of quantum theory of atoms in a molecule (QTAIM)
was used. The molecular graph of the dimer is shown in Figure 2.

Figure 2. Molecular graph of the dimer.

In addition, the topological parameters in the BCP of the cation around the atoms
were calculated; the results are presented in Table 2. The ratios |V(r)|/G < 1, H(r) > 0,
and ∇2ρ(r) > 0 for all types (except RCP2) indicate closed-shell interactions typical of ionic
bonds and van der Waals interactions.

Table 2. AIM topological parameters at BCPs (ρ: electron density; ∇2ρ: Laplacian of electron density;
H: total energy density; V: potential energy density, and Einteractions: interaction energy).

Interactions Types ∇2ρ(r) (a.u.) ρ (r)
(a.u.) G(r) (a.u.) V(r)

(a.u.) H(r) (a.u.) ε Einteractions kJ/mol

RCP1 0.0140 0.0040 0.0029 −0.0023 0.0006 −2.0003 −3.02
RCP2 −0.0176 0.3888 0.3888 −0.6782 −0.5589 0.0041 −890.05
RCP3 0.0071 0.0018 0.0013 −0.0009 0.0005 −1.9466 −1.18
RCP4 0.1673 0.0226 0.0342 −0.0265 0.0077 −1.2088 −34.13

NRCP1 0.3993 0.0560 0.0939 −0.0879 0.0059 −1.2860 −112.89
NRCP2 0.3980 0.0558 0.0936 −0.0876 0.0059 1.2847 −112.89
NRCP3 0.1671 0.0225 0.0341 −0.0265 0.0077 −1.2076 −34.13

C43-H45 . . . N26 0.0123 0.0033 0.0026 −0.0022 0.0005 0.4900 −28.88
N31-H54 . . . N26 0.0874 0.0211 0.0182 −0.0145 0.0037 0.0298 −18.90
C7-H8 . . . H16 0.0069 0.0019 0.0013 −0.0009 0.0004 1.8492 −1.05
C36-H37 . . . H2 0.0063 0.0017 0.0012 −0.0008 0.0004 2.9057 −1.05

According to Table 2, the largest value of ∇2ρ(r) is observed for NRCP1 (0.3993 a.u.),
and the smallest for RCP2 (−0.0176 a.u.). It should be noted that the maximum values of
ρ(r) and G(r) are observed for RCP2 and are 0.3888 and 0.3888 a.u., respectively, and also
for this type of interaction, the minimum values of V(r) (−0.6782 a.u.), H(r) (−0.5589 a.u.),
and Einteractions (−890.05 kJ/mol) are observed.
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Similar and comparable values are shown of C-H . . . H:∇2ρ(r) (0.0063–0.0069 a.u), ρ(r)
(0.0017-0.0019 a.u), G(r) (−0.0008–0.0009 a.u), H(r) (0.0004 a.u), and Einteractions −1.05 kJ/mol.
It should be noted that the interaction between hydrogen and nitrogen in C-H . . . N and
N-H . . . N differ significantly in all of the main parameters.

The topological analysis of the electron localization function ELF gives a division of
the molecular space into basins of attractors that have a clear chemical significance [30].
The hierarchy of these basins is given by the bifurcation of localization domains. In the case
of π-donor substituents (OH, NH2, F, CH3, etc.), the aromatic domain opens first near the
substituted carbon and then near the metacarbon [31]. The orienting effects of electrophilic
substitutions correlate with these bifurcations.

Analysis of the ELF function allows the division of the molecular space not into an
atomic pool, as in the Bader theory, or into areas of charge concentration, but into electron
localization pools, inside which the excess of kinetic energy due to Pauli repulsion is
minimal. The spatial position of these attractors makes it possible to distinguish between
core and valence basins [31,32]. The pools of the center are located around the nuclei
(except for the hydrogen atom). Valence basins are classified according to their relationship
to the main basins. The topological analysis of the electron localization function is a suitable
mathematical model for characterizing chemical bonds [33].

The ELF isosurface representation for N-Butyl-1H-benzimidazole was determined
using the Multiwfn program [34]. Figure 3 shows shaded surface maps with an electron
localization function (ELF) projection effect. As you can see, several colors are represented
on this surface. The red and orange colors represent strong electronic localization. The blue-
colored circle represents the depletion region between the inner shell and the valence shell.
The hydrogen and carbon regions have the minimum values of the localized orbital locator.

Figure 3. Electron localization function (ELF) map of the title compound.
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Topological analysis of the electron localization function (ELF) and localized orbital
locator (LOL) are tools used to perform the analysis of covalent bonds since they reveal
regions of molecular space where the probability of detecting a pair of electrons is high [35].

ELF and LOL have a homogeneous chemical composition as they depend on the
kinetic energy density. ELF explains the density of electron pairs, while LOL explains the
maximum overlap of localized orbitals due to the orbital gradient [36]. The meanings of
ELF and LOL complement each other. The color shades of the ELF and LOL maps shown in
Figures 3 and 4 confirm the presence of bonding and non-bonding electrons, where the red
color around the hydrogen atoms (H10, H12, H14, H54) with a maximum value indicates
the presence of bonding and non-bonding electrons. High ELF or LOL values shown in
red around the hydrogen atoms indicate high electron localization due to the ubiquity
of a covalent bond, lone electron pair, or nuclear shell in this region, also influenced by
the presence of a benzene ring. The C-N chemical bond is described by mislocalization
domains (orange) with lower electron localization values [37]. The central region of the
hydrogen atom in LOL has a white color since the electron density exceeds the upper limit
of the color scale [35].

Figure 4. Localized orbital locator (LOL) for our compound.

To investigate the weak interactions within the molecular system, the reduced density
gradient (RDG) method was applied. This approach is a topological tool that reveals
non-covalent interactions such as van der Waals, hydrogen bonds, and steric collisions. The
area of these interactions and their graphical visualization is provided by the XRD analysis
based on the electron density and its derivatives [38].
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The reduced density gradient (RDG) is a basic non-dimensional quantity consisting of
the density and first derivative and denoted as follows [39]:

RDG(r) =
1

2(3π2)
1
3

|∇ρ(r)|
ρ(r)

4
3

(1)

The graphical representation of ρ(r) as a function of the sign of (λ2) ρ, where the sign
of (λ2) ρ is the second eigenvalue of the electron density, provides convenient information
about the strength and nature of interactions [40]. The interactions of repulsion, attrac-
tion, and van der Waals correspond to sgn(λ2) ρ > 0, sgn(λ2) ρ < 0, and sgn(λ2) ρ ≈ 0,
respectively [41]. The 2D scatterplot and 3D RDG isosurface densities for N-Butyl-1H-
benzimidazole are shown in Figure 5.

Figure 5. (a) VMD graph and (b) RDG scatter map of the title compound.
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As can be seen in Figure 5, the blue color shows the hydrogen bond, while the green
color corresponds to the van der Waals interaction, and the red color to the steric cyclic
effect. The results of the RDG analysis show that there are attractive, van der Waals, and
repulsive interactions in N-Butyl-1H-benzimidazole. In addition, NCI numbers are used
to visualize the corresponding strength of H bonds, and plots for the systems studied
are shown in Figure 5. As you can see, disc-shaped blocks, which indicate non-covalent
interactions and the strongest H bonds, are indicated in blue-green.

The molecular electrostatic potential is very informative in relation to the distribution
of the nuclear and electronic charge of molecules; in addition, it is a tool for interpreting
and predicting chemical activity, as well as the interaction of hydrogen bonds [42].

2.3. MEP Analysis

Molecular electrostatic potential maps, also known as electrostatic potential energy or
molecular surface electric potential maps, illustrate the charge distribution of molecules
in three dimensions [43], which is used to determine how molecules interact with each
other [40]. Molecular electrostatic potential maps help visualize the charge distribution
of molecules and charge-related properties of molecules, as well as the size and shape of
molecules. Electrostatic potential analysis is related to electron density and is very useful
for assessing the position of electrophilic and nucleophilic attacks, as well as the interaction
of hydrogen bonds [44–46].

Different colors in the MEP (Figure 6) indicate different electrostatic potential values. The
descending order potential is expressed as follows: blue > green > yellow > orange > red. Nega-
tive values in Figure 6 are shown in red and are associated with the area of electrophilic
attack. The area of nucleophilic attack (positive area) is shown in blue and is mainly related
to the N26 nitrogen atoms.

Figure 6. Molecular electrostatic potential map.

2.4. Frontier Molecular Orbital (FMO) Analysis

In computational chemistry, the energy gap of HOMO-LUMO and the electronic pro-
prieties of the FMOs are very imperative descriptors [47]. This method is widely used
to explain both the electronic and optical properties of compounds. The main partici-
pants in molecular interactions are the highest occupied molecular orbital (HOMO) and
the lowest unoccupied molecular orbital (LUMO). These values are used to determine
the kinetic stability and chemical reactivity of molecules. The LUMO energy level repre-
sents the electron-withdrawing abilities, while the HOMO shows the electron-donating
ability [48–50]. The exact energies of HOMO and LUMO are the ionization potential and
electron affinity, respectively [51]. A molecule with a small energy gap means it is highly
polarized and is mainly associated with high chemical reactivity and low kinetic stabil-
ity [52,53].
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The electronic properties of various benzimidazoles and their derivatives are being
actively studied [54,55]. For example, the authors studied in detail (wavelength, Osc
strength (f), orbital composition to the electronic transitions) the ruthenium complex of
tetradentate N,N′-bis(benzimidazole-2yl-ethyl)-ethylenediamine [56].

Graphs of frontier molecular orbitals (HOMO and LUMO) of N-Butyl-1H-benzimidazole
were calculated by the DFT/B3LYP/6-31++G(d, p) method used in the optimization of
molecules and are shown in Figure 7.

Figure 7. Frontier molecular orbital (HOMO-LUMO) image of the title compound.

As shown in Figure 7, HOMO and LUMO have nodes and are arranged symmetrically.
Red is the positive phase, green is the negative phase. Using the HOMO and LUMO
energies, the following were calculated: electron affinity (EA), electronegativity (χ), energy
gap (Egap), chemical potential (µ), hardness (η), ionization potential (IP), softness (ς), and
electrophilicity index (Ñ) for N-Butyl-1H-benzimidazole using procedures in [57]. The data
are presented in Table 3.

According to Table 3, the chemical potential of N-Butyl-1H-benzimidazole has a nega-
tive value, i.e., the molecule is stable. In other words, it does not spontaneously disintegrate
into elements. Hardness indicates the resistance of chemical systems to deformation of the
electron cloud during chemical treatment [58]. Hard systems with a large HOMO-LUMO
energy gap are much less polarizable and relatively small, while soft systems with a small
HOMO-LUMO energy gap are strongly polarizable and large [52].
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Table 3. HOMO-LUMO energy and other electronic properties of title compound.

Quantum Parameters DFT/B3LYP/6-31++G(d, p)

EHOMO(eV) −6.26
ELUMO(eV) −0.82

EHOMO+1(eV) −6.37
ELUMO-1 (eV) −0.81

|∆EHOMO-LUMO| (eV) 5.44
|∆EHOMO+1-LUMO-1| (eV) 5.56

I 6.26
A 0.82
χ 3.39
η 2.72
µ −3.39
ω 2.11
S 0.18

∆E = |EHOMO − ELUMO|(eV), I = −EHOMO (eV), A = −ELUMO, χ = (I + A)/2, η = (I − A)/2, µ = −(I + A)/2,
ω = µ2/2 η, S = 1/2 η.

2.5. Fukui Functions

Fukui functions are defined as a measure of the sensitivity of a particular region of a
N-electron system to an external chemical potential [52,59–61]. Therefore, Fukui functions
are used when determining atomic centers with high regional electrophilic reactivity, local
nucleophilic reactivity, and local radical reactivity in a molecule. The Fukui functions (f+ (r),
f− (r), f0 (r)) defined by Kolandaivel et al. [62] are calculated using the following equations:

f+ (r) = q(N+1) (r) − q(N) (r) for nucleophilic attack (2)

f− (r) = q(N) (r) − q(N−1) (r) for electrophilic attack (3)

f0 (r) = 1/2 [q(N+1) (r) − q(N−1) (r)] for radical attack (4)

In the above equations, q (r) represents the atomic charge obtained from the electrostatically-
derived charge, and the Mulliken population analysis for neutral (N), anionic (N−1), and
cationic (N+1) chemical structures at the nth atomic site. +, −, and 0 signs represent
nucleophilic, electrophilic, and radical attack, respectively. The data for the Fukui functions
are listed in Table S1. The high value of the Fukui function of an atom indicates that the
molecular reactivity is also high [63,64]. Compared to these three attacks, the molecule
is more nucleophilic. The dual identifier ∆f(r) in the last row of Table S1 is the difference
between their signs and nucleophilic and electrophilic attacks in a particular region and is
calculated with the following equation:

∆f(r) = f+ (r) − f− (r) (5)

If ∆f(r) > 0, the site can be considered a nucleophilic attack, and when ∆f(r)<0, the site
can be considered an electrophilic attack [65]. As shown in Table S1, the nucleophilic case is
in the order C22>C13>H17>C2>C5>C4>H15>C6>C16>C19>N27>H9>H8. The electrophilic
case is in the order H24>H21>H20>H23>H11>H12>H14>H25>C1>H18>C7>C3>H10.

2.6. UV-Vis Analysis and NBO Analysis

UV spectrophotometry helps to identify organic compounds and observe some changes
during their chemical modification [66,67].

It is known [19] that the UV-visible spectra of benzimidazole and its derivatives are
characterized by four sets of bands. The absorption band of the lowest energy electronic
transition (π→π*) at 278 nm in benzimidazole was modified by the addition of substituents
causing a shift corresponding to the lower energy LUMO stabilized by N-substitution.

This absorption shift is likely due to an increase in chromophore conjugation. Extensive
delocalization of π-electrons in alkyl-substituted benzimidazole can be associated with
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hyperconjugation, in which σ-electrons of the alkyl bond participate in resonance with the
benzimidazole ring [19].

The UV-Vis spectrum of N-Butyl-1H-benzimidazole is shown in Figure 8. It is shown
that the experimental and theoretical spectra of N-Butyl-1H-benzimidazole have a peak at
248 nm, in addition, the experimental spectrum has a peak at 295 nm. The presence of an
additional peak at 295 may be due to both the influence of the solvent and the transition
(π→π*) in the benzimidazole fragment [68].

Figure 8. UV-Vis spectra of the title compound.

NBO analysis is an efficient method that effectively describes bond-to-bond interac-
tions, charge transfer or conjugation in molecular systems, as well as various second-order
interactions between occupied and vacant orbitals, and provides detailed information on
intramolecular and intermolecular hydrogen bonds [69].

Natural bond orbit analysis (NBO) is one of the many options available to “translate”
the calculated solutions of the Schrödinger wave equation into the familiar language of
chemical bond concepts. This method has important features such as broad agreement
(including with respect to experimental data), good predictive ability, including numerical
model predictions, and others [70]. The NBO analysis is performed by calculating the
stabilization energies (E(2)) using the following equation:

E(2) = ∆Eij = qi
F(i, j)2

ε j − εi
(6)

where F(i, j), εj, and εi, qi are the diagonal NBO Fock matrix element, the diagonal elements,
and the donor orbital occupancy, respectively.

To determine the nature of the interaction that exists within N-Butyl-1H-benzimidazole
and the charge distribution on the ion pairs, NBO analysis was performed on the optimized
structure (Table S2).

The importance of hyperconjugative interaction and the transfer of electron density
from lone pair electrons to the antibonding orbital was analyzed [71].

Intramolecular interactions with charge transfer for the most significant stabilization
energies E (2), obtained from NBO calculations, are presented in Table S2. The larger
the value of E (2), the greater the degree of conjugation of the entire system [72,73]. The
stabilization of the structure of N-Butyl-1H-benzimidazole is evidenced by the strong
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intramolecular interaction of σ- and π-electrons of donor C–N, C–C bonds with acceptor
C–N, C–C bonds.

The σ system makes some contribution to delocalization, and important contributions
to delocalization correspond to donor–acceptor interactions: C1-C2→ C1-C6, C1-C2→ C1-
N26, C1-C2→ C6-H11, C1-C6→ C1–C2, C1-C6→ C1-N26, C1-C6→ C6-H11, C1-N26→
C1-C2, C1-N26→ C2-C3, C2-C3→ C1-C2, C2-C3→ C3-H8, C2-N27→ C1-C2, C2-N27→
C7-H12, C2-N27→ C7-N27, C3-C4→ C2-C3, C3-C4→ C2-N27, C3-H8→ C1-C2, C7-N26
→ C1-C6, C7-N27→ C2-C3.

According to Table S2, the delocalization of the σ-electron from σ (C1-C2) is distributed
into the antibonding σ* (C1-C6), σ* (C1-N26), and σ* (C6-H11), which leads to stabilization
energies of 4.63, 0.86, and 2.42 KJ/mol, respectively. Delocalization of the π-electron from π

(C1-C2) is distributed into antibonding π* (C3-C4) and π* (C7-N27), which leads to high
stabilization energies of 18.89 and 14.45 KJ/mol, respectively. The delocalization of the σ-
electron from σ (C1-C6) is distributed into the antibonding σ* (C1-C2), σ* (C1-N26), and σ*
(C6-H11), which leads to stabilization energies of 4.57, 2.82, and 1.04 KJ/mol, respectively.
A strong interaction is observed due to the transfer of electron density from the lone
pair LP (1) to the antibonding orbitals π* (C1-C2) and π* (C7-N27) with high stabilization
energies of 35.08 and 50.10 KJ/mol, respectively.

The values of the polarization coefficients determine the bond formation of the two
hybrids. The value of the differences in the polarization coefficients of the atoms (C-O, C-N,
C-H bonds) is equal to the differences in the electronegativity of the atoms involved in the
bond formation [74]. As can be seen from Table S3, all of the σ(C1-N26), σ(C2-N27), σ(C7-
N26), and σ(C7-N27) bond orbitals are polarized towards the nitrogen atoms EDA (%) and
EDB (%) with percentage electron densities of about 62.45%, 58.02%, 63.96%, and 58.70%
respectively. The σ(C22-H24) orbital with high occupancy 1.98933 a.u. has 60.09% (C22)
character in an sp 3.25 hybrid and 39.91% (H24) character in an sp 0.04 hybrid. According
to Table S3, it is clear that the natural hybrid orbital LP (1) (N27) having high occupancy
(1.92917 a.u.) and low energy (−0.37999 a.u.) has a p-character (0.052%), whereas LP (1)
(N26) occupies a high energy orbital (−0.26555 a.u) with p-character (69.99%) and low
occupation number (1.57449 a.u).

2.7. FTIR Analysis

The density functional theory helps to theoretically establish various physicochemical
characteristics of substances [22,75], including spectral data [76,77]. This is important for
the structural characterization of substances. The theoretical and experimental FTIR spectra
of N-Butyl-1H-benzimidazole are shown in Figure 9, and the ratios of absorption bands are
presented in Table S4.

C-H group vibration
The predicted stretching vibrations of the C-H group are observed in the range

3110–2900 cm−1 at 3110, 3089, 3080, 3070, 3059, 2987, 2983, 2979, 2953, 2936, 2926, 2923,
2919, and 2904 cm−1. The CH2 scissor mode is assumed to be in the range 1463–1440 cm−1.
Moreover, vibrations of the C-H group are observed at 1362, 1287, 1251, 1136, 1114, 1092,
993, 943, 882, and 820 cm−1. The results obtained agree with the works [76,77].

C-C group vibration
The bands observed in the range 1650–1400 cm−1 are usually attributed to simple C–C

bonding modes for benzene derivatives. In our case, in the calculated C-C spectra, stretch-
ing vibrations are observed at 1597, 1563, 1092, 1023, 882, and 759 cm−1. Bending vibrations
of the C-C group are observed at 1430, 1362, 1272, 1231, 1184, 1054, and 866 cm−1. Torsion
vibrations of the C-C group in the calculated spectra are observed at 1335, 1251, 1092, 943,
914, 908, 832, 820, and 723 cm−1.

C-N group vibration
Bands observed closer to 1500 cm−1 indicate a C=N double bond, while bands closer

to 1300 cm−1 indicate the presence of C-N bonds [78]. It is known [19] that vibrations of
the C=N group of the imidazole group in benzimidazole are observed at 1490 cm−1. In our
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case, in the calculated spectra, C-N stretching vibrations are observed at 1477, 1362, 1344,
1264, and 1084 cm−1. Bending vibrations of the C-N group are observed at 1430, 1054, 832,
and 759 cm−1. Torsion vibrations of the C-N group in the calculated spectra are observed
at 1354, 1335, 832, and 617 cm−1.

Figure 9. FTIR spectra of the title compound (blue line: experimental, red line: theoretical spectrum).

2.8. Mulliken Atomic Charges Analysis

Mulliken atomic charges, calculated by determining the electron population of each
atom, play an important role in the application of quantum mechanical calculations and
in relation to the vibrational properties of the molecule. Moreover, these charges affect
many properties of molecular systems, various aspects of electronic structure, the atomic
charge effect, and molecular polarizability [45,79]. Mulliken atomic charges of N-Butyl-1H-
benzimidazole calculated at the same basis set are listed in Table S5. According to Table
S5, there are negative values on C2-C6 and C13, C19, C22, and N27 atoms, while there are
positive values on C1, C7, C16, N26, and hydrogen atoms.

3. Materials and Methods

The compound N-Butyl-1H-benzimidazole was purchased from Sigma-Aldrich chem-
ical company.

FTIR spectrum of N-Butyl-1H-benzimidazolewas recorded on Thermo Scientific Nico-
let iS10 FTIR spectrophotometer. UV spectra of the N-Butyl-1H-benzimidazole solution
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(THF solvent) is recorded in 200–600 nm range by using Thermo Scientific
UV-Vis Spectrophotometer.

Theoretical calculations were performed using the Gaussian 09 [80] and GaussView
5.0 [81] software packages, and by using Becke’s three parameter exact exchange functional
(B3) [82] and three parameter hybrid exchange functional with Lee–Yang–Parr correlation
functional [83] method with 6-311++G(d,p) basis set.

The wavefunctions obtained at DFT with 6-311++G(d,p) level were used to determine
the electron density ρc and the Laplace electron density (∇2ρc) at the bond critical points
(BCPs). All wavefunction analysis was performed by Multiwfn 3.8 program [34]. Multiwfn
program was used for topological analysis and to draw electron localization function
diagram (ELF) using atom in molecule theory.

4. Conclusions

In this work, a comprehensive (theoretical and experimental) study of N-butyl-1H-
benzimidazole was carried out. It was shown that the presence of a butyl substituent in the
N position has no significant effect on the conjugation and structural organization of benz-
imidazole and has almost no effect on the C-N bond lengths and C-N-C and N-C-N angles.
The nucleophilic and electrophilic regions of N-butyl-1H-benzimidazole were characterized
by MEP analysis, Fukui function, and Mulliken atomic charge analysis. It was found that the
H atoms and their environment are the most electrophilic centers. FMO (HOMO-LUMO)
was useful for evaluating the reactivity of the molecule under study. The value of the
coefficients obtained using the NBO analysis shows the contribution of the hybrids to bond
formation. The stabilization of the structure of N-Butyl-1H-benzimidazole is evidenced
by the strong intramolecular interaction of σ- and π-electrons of donor bonds C-N, C-C
with acceptor bonds C-N, C-C. In addition, N-Butyl-1H-benzimidazole was analyzed by
AIM, RDG, ELF, and LOL topological methods. The color shades of the ELF and LOL maps
confirm the presence of bonding and non-bonding electrons in N-butyl-1H-benzimidazole.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules27227864/s1, Table S1: Condensed Fukui functions for NBB;
Table S2: Second order perturbation theory analysis of Fock matrix in NBO basis for N-Butyl-1H-
benzimidazole; Table S3: Calculated natural bond orbitals (NBO) and the polarization coefficient
for each hybrid in selected bonds of the C1 using the B3LYP/6-311++G(d,p) in the gas phase for
NBB; Table S4: Theoretical wavenumber (cm−1) of N-Butyl-1H-benzimidazole calculated by means
of VEDA 4 program; Table S5: Mulliken atomic charges of N-Butyl-1H-benzimidazole.
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