
Avoiding synchronization to accelerate a CFD solver in GPU

Ernesto Dufrechou∗, Pablo Ezzatti∗ and Gabriel Usera†
∗Instituto de Computación, Universidad de la República, Montevideo, Uruguay.

Emails: {edufrechou,pezzatti}@fing.edu.uy
† Instituto de Mecánica de los Fluidos e Ingeniería Ambiental

Universidad de la República, Montevideo, Uruguay.
Email:gusera@fing.edu.uy

Abstract—The caffa3d.MBRi is an open source, GPU-aware,
general purpose incompressible flow solver, aimed at providing
a useful tool for numerical simulation of real world fluid
flow problems that require both geometrical flexibility and
parallel computation capabilities to afford tens and hundreds
million cells simulations. At the core of this tool there are a
number of linear solvers that can be selected according to the
characteristics of the problem to solve. For band matrices, the
most efficient linear solver included in caffa3d.MBRi is the
Strongly Implicit Procedure (SIP) solver. The parallelization
of this solver follows the hyper-planes strategy, where the
computations in one hyper-plane bare no dependencies and
can be executed in parallel, while the hyper-planes have to be
processed sequentially.

In this work, we analyze this strategy to reach an efficient
GPU implementation of the SIP solver for the caffa3d.MBRi.
In particular, we design and implement a self-scheduling
procedure to avoid the overhead of CPU-GPU synchroniza-
tion implied by the hyper-planes strategy, outperforming the
standard GPU implementation of the SIP by approximately
2×.

Keywords-Graphics processors; Strongly Implicit Procedure;
Computational fluid dynamics; Asynchronous computations.

I. INTRODUCTION

The solver caffa3d.MBRi [1], [2] is an open source, gen-
eral purpose incompressible flow solver aimed at providing
a useful tool for numerical simulation of real world fluid
flow problems. Besides providing the flexibility necessary
to process complex geometries, the model also aims to have
the computational efficiency required to solve large-scale
problems. For this reason, the caffa3d.MBRi is currently
undergoing transformations oriented to improve the exploita-
tion of modern parallel platforms.

The development of hardware platforms in the last decade
was restrained by several physical limits. To mitigate this
deceleration, one of the most widespread strategy is the
leverage of many computational units concurrently. Aligned
with this idea, Graphics Processing Units (GPUs) have
evolved to become one of the most important parallel
architectures nowadays, completely changing the landscape
of High Performance Computing (HPC) infrastructures [3].
For this reason, it is crucial to adapt the parallel computing

strategies of the caffa3d.MBRi to fully exploit the capabili-
ties of these sort of devices.

The process of enabling the use of GPUs in the model
has advanced significantly in the last years, with about three
quarters of the different physical modules being already
functional in GPU. To avoid memory transfers the model
data is stored in the GPU global memory from the begin-
ning of the simulations. Furthermore, to promote coalesced
memory access and prevent the excessive need of atomic
functions in several routines across the solver, structured grid
field arrays are stored using a red-black layout. This strategy
suits well most of the solver routines, and even simple linear
solvers that can be optionally used in caffa3d.MBRi, like the
Red-Black solver. However, the most efficient linear solver
included in caffa3d.MBRi for the band matrices is the SIP
Solver [4].

Departing from the work of Igounet et al., that presented
an efficient GPU implementation of the SIP solver [5],
and later evaluated that implementation on the caffa3d.MB
model [6], [7], in this work we present a new implementation
of the SIP for the caffa3d.MBRi. The new proposal leverages
a special memory scheme that better suits the hyper-planes
strategy that the SIP follows, since the red-black layout
makes it difficult to attain an efficient memory access in
the forward elimination and backward substitution phases of
the solver. However, the main contribution of this work is a
novel mechanism that seeks to reduce the cost of the syn-
chronization that must take place between the processing of
two consecutive hyper-planes. This mechanism uses atomic
operations to control the progress of the computations, and
leverages the particularities of the GPU execution model to
avoid deadlock situations. Similar ideas have been proposed
in recent years to decrease the overhead due to kernel
launches in the context of sparse numerical linear algebra
operations [8], [9], [10], [11].

The rest of the article is structured as follows. Section II
summarizes the main aspects of the caffa3d.MBRi CFD
model while Section III introduces the theoretical aspects
of the SIP solver. We then describe our proposal in Sec-
tion IV. After that, the experimental evaluation is showed
in Section V. Finally, the principal conclusions arrived in
our effort and the future lines of work are summarized in

978-1-7281-4194-7/19/$31.00 c©2019 IEEE

Section VI.

II. CAFFA3D.MBRI MODEL

The solver caffa3d.MBRi is a solver designed for the
simulation of real world fluid flow problems providing
geometrical flexibility and the posibility of handling up to
hundred-million cells simulations. Geometrical flexibility is
provided in this model by using a block structured grid
approach, combined with the immersed boundary condition
method [12] to address even the most complex geometries
with little meshing effort and preserving the inherent numer-
ical efficiency of structured grids [13], [14].

The same block-structured framework provides the basis
for parallelization through domain decomposition under a
distributed memory model using the MPI library. A compact
set of encapsulated calls to MPI routines provides the
required high-level communication tasks between processes,
or domain regions, each composed by one or several grid
blocks.

The solver has been applied and validated in several
different fields, including wind energy and wind turbines
simulations [15], blood flow in arteries, and atmospheric
pollutants transport [1]. For a full description of the solver
capabilities please see [1].

A. Caffa in GPU

The solver is currently being ported to GPU, with about
three quarters of the different physical modules being al-
ready functional in GPU. To minimize inefficiencies due
to memory transfers between CPU and GPU, field arrays
for velocity, pressure and other physical magnitudes are
permanently stored at the GPU global memory, even at
the expense of intense GPU RAM utilization. Currently
about 1 GB RAM is required every 1.5 million cells in
a typical simulation. Full field arrays are only transferred
between CPU and GPU at the beginning of the simulation
and before writing intermediate or final output to disk. For
this purpose a copy of those fields is also permanently stored
at CPU memory, which enables to overlap disk latency with
ongoing computations. MPI communications between nodes
are overlapped with computations in a similar fashion.

III. THE SIP SOLVER

The Strongly Implicit Procedure (SIP) [4] is an iterative
method for band linear systems derived from the solution
of elliptic Partial Differential Equations (PDEs) on regular
grids. In these cases, the linear system can be expressed as
Ax = b, where the matrix A penta- or hepta-diagonal.

The procedure can be described as a variant of the
incomplete LU factorization, followed by the solution of the
two corresponding triangular systems.

Algorithm 1 describes the main steps of the procedure.
First a LU factorization without fill-in is computed, using a
parameter α based on the properties of the PDE so that L̂

Algorithm 1: Strongly Implicit Procedure (SIP)

1 Input: A, b
2 Output: x

1: Do incomplete LU decomposition L̂Û ≈ A
2: Calculate initial residual: r0 = b−Ax0
3: while residual is not small enough do
4: Calculate vector Rn (forward substitution):

Rn = L̂−1rn
5: Calculate δx(backward substitution): Ûδx = Rn

6: Update solution: xn+1 = xn + δx
7: Update residual: rn+1 = b−Axn+1

8: end while

and Û are good approximations of L and U [16]. The value
typically used for α is 1.8 (more details can be found in
[16]).

This step can be solved in sequential order beginning at
the southwest corner of the grid (of size Ni×Nj in the 2-D
case) following this computations:

L̂l
W = Al

W /(1 + αÛ
l−Nj

N) (1)

L̂l
S = Al

S/(1 + αÛ l−1
E) (2)

L̂l
P = Al

P+α(L̂
l
W Û

l−Nj

N +L̂l
SÛ

l−1
E)−L̂l

W Û
l−Nj

N −L̂l
SÛ

l−1
E

(3)

Û l
N = (Al

N−αL̂l
W Û

l−Nj

N)/L̂l
P Û

l
E = (Al

E−αL̂l
SÛ

l−1
E)/L̂l

P .
(4)

Using the matrices L̂ and Û obtained in the approximate
factorization, the SIP method iterates on (2), (3), and (4)
until residual is small enough. Rl can be easily computed
by

Rl = (rl − L̂l
SR

l−1 − L̂l
WRl −Nj)/L̂

l
P .

This equation has to be solved considering a increasing order
of the index l. After Rl is computed, δx can be obtained
considering a decreasing order of the index l as:

δxl = Rl − Û l
Nδx

l + 1− Û l
Eδx

l +Nj .

A. The hyperplanes strategy

To compute the SIP in a parallel machine, the usual
strategy is to organize the procedure by hyper-lines for the
2D case, or hyper-planes for the 3D case. these strategies
are well known, and are described in detail in the technical
report of Deserno et al. [17], which presents a thorough
analysis of the implementation of the SIP method on
shared memory multiprocessors. The parallelization strategy
is based on that (in the 2D case) processing a certain point
(i, j) of the grid, only requires the values in the positions

(i, j − 1) and (i − 1, j). This means that in step h of the
procedure, those points of the grid for which i + j = h
present no data dependencies between each other and can
be processed in parallel. These groups of points are called
hyper-lines. The same is valid for the 3D case, only that now
the points (i, j, k) for which i+ j+ k = h are independent,
forming hyper-planes. Therefore, the procedure to compute
the SIP proceeds by increasing hyper-plane index in the
forward-substitution stage, and by decreasing hyper-plane
index in the backward-substitution stage, computing all the
points that belong to the current hyper-plane concurrently.

IV. PROPOSAL

Our GPU implementation of the SIP solver
for the caffa3d.MBRi is composed by three
main routines. ComputeLuCoefficientsSIP
performs the initial approximate LU factorization,
SolveLUforFiForwardSIP performs the forward
substitution phase, and SolveLUforFiBackwardSIP
performs the backward substitution.

To promote coalesced memory access and prevent exces-
sive need of atomic functions in several routines across the
solver a red-black scheme is adopted to store structured grid
field arrays in GPU global memory. This strategy suits well
most of the solver routines and even simple linear solvers
that can be optionally used in caffa3d.MBRi, like the Red-
Black linear solver. However, the red-black scheme is not
suitable for the SIP Solver since in the three aforementioned
routines, the memory is accessed by hyper-plane, and main-
taining the red-black organization undermines the coalesced
access mechanism. Thus, a special memory scheme has
been adopted for the SIP solver routines, where the data
corresponding to the grid points of one hyper-plane are
contiguous in memory.

As the computations corresponding to the grid points
of one hyper-plane depend on the computations of the
previous hyper-plane, the hyper-planes have to be processed
sequentially, and a synchronization is needed between the
computation of two contiguous hyper-planes. Our baseline
GPU version of the routines performs this synchronization
by assigning a single GPU kernel to each hyper-plane, and
launching them sequentially from a CPU thread. This will
result in a queue of kernels in the default GPU stream that
will be implicitly synchronized.

A. Overcoming the synchronization overhead

One drawback of the previous strategy is that the com-
putations required for each hyper-plane are relatively sim-
ple and highly parallel, which makes these kernels very
lightweight. Although the time consumed by a kernel launch
is extremely small, it can be a significant percentage of
the total runtime of a kernel that computes a single hyper-
plane. Thus, in large-scale scenarios, where there can be

potentially thousands of hyper-planes, the overhead due to
kernel launches can be significant.

To reduce this overhead, we propose an explicit synchro-
nization mechanism that works inside the kernel to avoid
the implicit synchronization given by the multiple kernel
launches. As the __syncthreads() primitive can be used to
synchronize the threads within a block, our procedure only
has to deal with the synchronization of thread blocks. Similar
ideas were leveraged in the past by other authors [18], [19].

An outline of the proposed mechanism is the following:

• As it is common practice, we define a constant num-
ber of block_size threads per block. Therefore, a
hyper-plane of n grid points is processed by nb =
dn/block_sizee blocks of threads.

• Before invoking the main kernel, we initialize an array
blocks_x_hyp in the global memory of the GPU
with the nb value that corresponds to each of the
hyper-planes. We perform this initialization using a
simple kernel that sets this value for each hyper-plane
concurrently. This is performed only once for each of
the three steps of the SIP solver, so the computation
time of this operation is practically negligible.

• In the main kernel, before processing the grid points of
the next hyper-plane, each block must actively wait for
the value corresponding to the current hyper-plane in
the blocks_x_hyp array to become 0. This value
will be decreased by every thread block that has a
block index lower than nb for the current hyper-plane.
We take advantage of the CUDA execution model,
which removes a warp from execution whenever it must
wait for the result of a global memory load, yielding
the execution to another warp. This avoids a deadlock
situation between different blocks in one multiprocessor
when accessing the blocks_x_hyp array.

• Once the value corresponding to the current hyper-
plane in blocks_x_hyp is 0, the hyper-plane has
been processed in full, and the dependencies of the next
hyperplane have the correct values. Then, the block ad-
vances one hyper-plane and updates the corresponding
values.

• Finally, after all the threads in the block have performed
their processing, the first thread decrements the value in
blocks_x_hyp corresponding to the current hyper-
plane through an atomic operation.

The geometry of the grid implies that the number of grid
points that lie in each hyper-plane varies. As in our proposal,
a single kernel processes all the hyper-planes, the thread grid
has to be configured considering the maximum number of
grid points in one hyper-plane nmax. Thus, the total number
of blocks launched is nmax/block_size. It is important to
note that, because some of the first and last hyper-planes
contain much less grid points than the average, some thread
blocks will start idle. The CUDA execution model does not

determine a specific order for the issue of thread blocks.
Additionally only a subset of the thread blocks of the grid
will be active at a given instant, while the rest of the blocks
will be inactive, waiting for the active bocks to exit. This
can imply that an active block that has to process hyper-
plane h must wait for an inactive block to finish processing
hyper-plane h− 1, which would cause a deadlock. For this
reason, instead of using the built-in block identifier, we use a
global variable which each block has to atomically increment
before proceeding with any other computation. This prevents
the existence of an inactive block with a higher index that
any active block.

V. EXPERIMENTAL EVALUATION

The experimental evaluation considers three variants of
the solver: CAFFACPU performs all the computations on
the CPU, CAFFAGPU computes the SIP solver on the GPU
using kernel launches to synchronize between hyper-planes,
and CAFFASF computes the SIP solver on the GPU with
our in-kernel synchronization strategy. First, we perform a
comparison of total runtime between the three versions for
a typical CFD problem, and then we study the two GPU
versions more closely to compare the two synchronization
strategies.

Before advancing to the experimental results, we describe
the hardware and software, as well as the problems em-
ployed in our tests.

A. Test cases

The fluid dynamics setup chosen for the benchmarks
computed in this work is that of the 3D turbulent backward
facing step (BFS) at Re=5.0e+4, relative to channel height.
This benchmark is frequently used due to the inherent
complexity of the turbulent flow arising from sudden flow
expansion downstream from the step.

Figure 1 presents an instantaneous stream-wise velocity
field, normalized by the uniform inlet velocity, where the
turbulent nature of the flow is captured. Non stationary
simulations were run with dimensionless time step of dt*U/L
= 1.0e-2, uniform inlet conditions in the upper half of
the channel and null gradient developed outflow conditions
downstream. A simple Smagorinsky LES turbulence model
was applied as described in [2].

Figure 1: Instantaneous normalized stream-wise velocity
field.

B. Experimental hardware platform

The hardware platform is composed by a Intel(R)
Core(TM) i7-4770 CPU @ 3.40GHz processor of 4 cores
and 64GB of RAM, connected to a NVIDIA GeForce GTX
1080 Ti GPU. Table I summarizes the main characteristics
of the GPU hardware and software.

Table I: Main characteristics of the employed GPU.

GPU Name GeForce GTX 1080 Ti
CUDA Driver/ Runtime Version 9.0 / 9.0
CUDA Capability Major/Minor version: 6.1
Total amount of global memory: 11 GB
(22) Multiprocessors, (128) CUDA Cores: 3584 CUDA Cores
Max. memory bandwidth 484 GB/s

C. Experimental results

Table II shows the total runtimes obtained for the back-
ward facing step problem by three variants of our solver,
using different grid sizes. It can be observed that the
baseline GPU implementation of the SIP solver achieves
a remarkable acceleration with respect to the CPU variant.
Additionally, the CAFFASF variant, which employs the
proposed synchronization mechanism achieves a runtime
reduction of 28%. However, considering that only three ker-
nels have been enhanced with the proposed synchronization
mechanism, this improvement is strongly significant.

Table II: Total runtime obtained for the backward facing step
test case using different solver variants.

Grid Size Variant Time (s)
512 ×64 × 64 CAFFACPU 4421.828

CAFFAGPU 246.251
CAFFASF 192.326

512 × 128 × 128 CAFFACPU 19779.911
CAFFAGPU 595.749
CAFFASF 564.606

1024 × 64 × 64 CAFFACPU 8975.414
CAFFAGPU 461.965
CAFFASF 367.489

Now we proceed with a deeper inspection of the GPU
routines. Table III dissects the runtime of the CAFFAGPU

variant for the employed test case, showing the performance
of the most important kernels. This data was obtained using
the tool nvprof, bundled with the CUDA Toolkit, executing
only one outer iteration of the caffa3d.MBRi solver.

The principal kernels related to the SIP
are SolveLUforFiBackwardSIP_GPUk and
SolveLUforFiForwardSIP_GPUk, which represent
the forward and backward substitution phases of
the solver. Additionally there are other kernels that
represent previous and intermediate steps, such as
ComputeMomentumFluxesInnerFaces_GPUk,
ComputeResInnerCellsSIP_GPUk,
ComputeGradientInnerCellsFaces_GPUk and

ComputeLuCoefficientsSIP_GPUk kernels. Added
together, these kernels represent more than 63% of
the total runtime. However, it is important to note that
each execution takes only a few microseconds (except for
ComputeMomentumFluxesInnerFaces_GPUk).

Conversely, the time implied by the transfer of
parameters and the kernels launches, shown in Table IV, are
considerable. In fact, the time taken by each kernel launch
(4.7920us on average) can be even higher than the average
kernel runtime of ComputeResInnerCellsSIP_GPUk,
SolveLUforFiBackwardSIP_GPUk and
SolveLUforFiForwardSIP_GPUk. This means
that the overhead due to kernel launches is significant.

To visualize this situation, Figure 2 shows the timeline
generated by the Nvida Visual Profiler for the forward
substitution kernel. This confirms that the operations which
require one kernel launch by hyper-plane suffer from a
significant overhead originated by the calls to the CUDA
API. For this reason, it is important to reduce the number
of kernel launches in these cases.

To obtain a higher bound of the improvement that is
attainable by reducing the cost of synchronization between
hyper-planes, we first performed a test that completely
eliminates the synchronization, disregarding the numerical
result. In this test, we execute CUDA grids with different
number of blocks, where each block has 1024 threads,
unifying the processing of those hyper-planes with fewer
cells than the total number of threads.

The results of this test can be observed in Table V,
which shows that the improvement obtained by removing
the synchronization behaves linearly, and that the maximum
acceleration that is obtained is of approximately 2.7×.

We now proceed to evaluate the mechanism to reduce
the cost of synchronizations between hyper-planes. We test
this strategy in three of the kernels that use the hyper-plane
layout, which are ComputeResInnerCellsSIP_GPUk,
SolveLUforFiBackwardSIP_GPUk and
SolveLUforFiForwardSIP_GPUk. The same strategy
can be applied to ComputeLuCoefficientsSIP_GPUk
but we leave it out of this experiments because it is called
much fewer than the other three routines.

Tables VI and VII summarize the output of the profiling
tool of Nvidia (nvprof) for the execution of the afore-
mentioned test case. Comparing these results with those
obtained for the CAFFAGPU variant, a minor increase in
the total execution time of the three kernels can be noted.
This is expected because now, besides performing the same
computations that CAFFAGPU , the kernels of the CAFFASF

variant contain the logic required by the synchronization
between hyper-planes. Additionally, the results show how
the time dedicated to kernel launches is severely reduced,
decreasing from 589.85ms to 43.257ms, representing an
improvement of approximately 13×.

The notorious increase of the time taken by the

cudaDeviceSynchronize API call is because
the time of that call is that comprehended between
the call to cudaDeviceSynchronize and the
end of all kernels and transfers that are queued on
the device. In the CAFFAGPU variant, the call to
cudaDeviceSynchronize occurs after the call to
the kernel that computes the last hyper-plane, and thus
comprehends only its execution time, while on the
CAFFASF variant, the call occurs after the call to the kernel
that computes all the hyper-planes, which has a much
longer execution time.

Figure 3 illustrates the behavior of the kernel
that performs the forward substitution of the SIP
(SolveLUforFiForwardSIP_GPUk) for the two GPU-
aware variants. It can be observed that the synchronization
mechanism of variant CAFFASF implies a runtime
reduction of 1.9× for this operation. A similar effect
can be observed on the other kernels that use the hyper-
planes layout, although the acceleration obtained for
the group of three routines is of 1.7×. This is mainly
because the average duration of the kernels corresponding
to ComputeResInnerCellsSIP in the CAFFAGPU

variant, is slightly higher than in the other two routines,
which decreases the benefit of reducing the synchronization
time.

VI. FINAL REMARKS AND FUTURE WORK

The caffa3d.MBRi is a useful tool for numerical simula-
tion of real world fluid flow problems that is currently been
transformed to exploit the computational power of massively
parallel processors. In this context, we developed a GPU
version of the SIP, which is the most efficient linear solver
available in this CFD tool for regular grids, following the
hyper-planes strategy, which is a variant of the well-known
wavefront parallelism pattern.

The analysis of the baseline GPU variant of the SIP
revealed that a potential drawback of this strategy is the
considerable overhead implied by the kernel launches, which
are required to synchronized the computations between con-
secutive hyper-planes. Although the time taken by the setting
of parameters and the kernel launch is usually negligible,
the small volume of computation required by each hyper-
plane allows this overhead to have a significant impact on
the performance of the entire simulation.

We proposed a synchronization mechanism for the GPU
implementation of the SIP that works within the kernel,
avoiding the need to launch multiple kernels to synchro-
nize the computations. The strategy makes use of atomic
operations to control the progress of the computations, and
leverages the particularities of the GPU execution model to
avoid deadlock situations.

The synchronization strategy proposed represents a con-
siderable improvement with respect to the implicit synchro-
nization GPU variant, reaching accelerations close to 2× on

Table III: Total runtime, percentage of the total runtime, number of launching, and maximum, minimum and average of each
launch.

Name Time(%) Time Calls Avg Min Max
ComputeResInnerCellsSIP_GPUk 16.55% 117.33ms 38280 3.0650us 1.4080us 7.5520us
SolveLUforFiBackwardSIP_GPUk 14.97% 106.13ms 38220 2.7760us 1.2800us 7.7130us
SolveLUforFiForwardSIP_GPUk 12.94% 91.700ms 38280 2.3950us 1.2800us 6.0490us
ComputeGradientInnerCellsFaces_GPUk 9.44% 66.930ms 150 446.20us 240.30us 764.06us
ComputeMomentumFluxesInnerFaces_GPUk 4.81% 34.079ms 30 1.1360ms 1.0708ms 1.1792ms
ComputeLuCoefficientsSIP_GPUk 4.21% 29.811ms 6380 4.6720us 1.2800us 6.3680us

Table IV: Total runtime, percentage of the total runtime, number of launching, and maximum, minimum and average of
each call to the CUDA API.

Name Time(%) Time Calls Avg Min Max
cudaLaunchKernel 48.16% 589.85ms 123080 4.7920us 4.4130us 281.81us
cudaMemcpy 15.18% 185.89ms 736 252.57us 5.0010us 12.990ms
cudaDeviceSynchronize 14.76% 180.71ms 3798 47.581us 1.8500us 7.5785ms
cudaStreamCreate 11.88% 145.50ms 2 72.748ms 15.367us 145.48ms
cudaDeviceReset 7.32% 89.602ms 1 89.602ms 89.602ms 89.602ms

Figure 2: Detail of the timeline generated by Nvidia Visual Profiler that evidences the overhead of synchronization between
hyper-planes (gaps between vertical bars) for the SolveLUforFiForwardSIP_GPUk kernel.

Figure 3: Timeline generated with the Nvidia Visual Profiler for the SolveLUforFiForwardSIP kernel with the
CAFFASF variant.

some of the kernels that work with the hyper-plane layout.

As future work, we intend to perform a deeper study
on the individual kernels, including the design of storage
layouts that allow a more efficient data reuse within the
kernels. We are also interested on accelerating other routines
that gain importance after the acceleration of those that work
with the hyper-plane layout, including those that follow the
red-black memory organization. Additionally, it would be

interesting to compare our asynchronous SIP implementa-
tion with one based on the Cooperative Groups technique,
available in lastest CUDA generations.

REFERENCES

[1] M. Mendina, M. Draper, A. Kelm Soares, G. Narancio,
and G. Usera, “A general purpose parallel block structured
open source incompressible flow solver,” Cluster Computing,
vol. 17, no. 2, pp. 231–241, 2014.

Table V: Effect of disabling the synchro-
nization between hyper-planes for the routine
SolveLUforFiForwardSIP_GPUk, using blocks
of 1024 threads.

Blocks Merged % Time (ms)
hyper-planes

0 1 0.39 3.45
1 44 17.25 3.12
2 63 24.71 2.96
3 77 30.20 2.85
4 90 35.29 2.76
5 100 39.22 2.67
6 110 43.14 2.58
7 119 46.67 2.50
8 127 49.80 2.44
9 135 52.94 2.37
10 144 56.47 2.31
11 154 60.39 2.20
12 164 64.31 2.11
13 177 69.41 1.99
14 191 74.90 1.85
15 210 82.35 1.68
16 254 99.61 1.26

Table VI: Total runtime, percentage of the total runtime,
number of launching, and maximum, minimum and average
of each launch.

Name Time Time Calls
Avg (ms)

(%) (ms) Min (ms)
Max (ms)

ComputeResInnerCells 14.64 92.543 60
1.542
1.373
2.283

SolveLUforFiBackward 12.76 80.681 60
1.344
1.149
2.281

ComputeGradient... 10.59 66.944 150
0.446
0.240
0.765

SolveLUforFiForward 10.26 64.885 60
1.081
0.946
1.628

ComputeMomentum... 5.40 34.108 30
1.136
1.072
1.178

ComputeLuCoefficients 4.88 30.832 6380
0.004
0.001
0.006

[2] G. Usera, A. Vernet, and J. Ferré, “A parallel block-structured
finite volume method for flows in complex geometry with
sliding interfaces,” Flow, Turbulence and Combustion, vol. 81,
no. 3, pp. 471–495, 2008.

[3] D. B. Kirk and W.-m. W. Hwu, Programming Massively
Parallel Processors, Third Edition: A Hands-on Approach,
3rd ed. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2016.

[4] H. L. Stone, “Iterative solution of implicit approximations
of multidimensional partial differential equations,” SIAM
Journal on Numerical Analysis, vol. 5, no. 3, pp. 530–
558, 1968. [Online]. Available: http://www.jstor.org/stable/
2949703

Table VII: Total runtime, percentage of the total runtime,
number of launching, and maximum, minimum and average
of each call to the CUDA API.

Name Time Time Calls
Avg (ms)

(%) (ms) Min (ms)
Max (ms)

cudaStreamCreate 40.70 522.52 2
261.260

0.011
522.510

cudaDeviceSynchronize 32.72 420.15 3798
0.110
0.001
7.586

cudaMemcpy 14.39 184.75 736
0.251
0.005

12.942

cudaDeviceReset 6.40 82.158 1
82.158
82.158
82.158

cudaLaunchKernel 3.37 43.257 8660
0.004
0.004
0.267

[5] P. Igounet, P. Alfaro, M. Pedemonte, and P. Ezzatti, “A
GPU implementation of the SIP method,” in 2011 30th
International Conference of the Chilean Computer Science
Society, Nov 2011, pp. 195–201.

[6] P. Igounet, P. Alfaro, G. Usera, and P. Ezzatti, “Towards a
finite volume model on a many-core platform,” Int. J. High
Perform. Syst. Archit., vol. 4, no. 2, pp. 78–88, December
2012. [Online]. Available: http://dx.doi.org/10.1504/IJHPSA.
2012.050987

[7] ——, “GPU acceleration of the caffa3d.MB model,” in
Computational Science and Its Applications – ICCSA 2012,
B. Murgante, O. Gervasi, S. Misra, N. Nedjah, A. M. A. C.
Rocha, D. Taniar, and B. O. Apduhan, Eds. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2012, pp. 530–542.

[8] W. Liu, A. Li, J. Hogg, I. S. Duff, and B. Vinter, “A
synchronization-free algorithm for parallel sparse triangular
solves,” in European Conference on Parallel Processing.
Springer, 2016, pp. 617–630.

[9] W. Liu, A. Li, J. D. Hogg, I. S. Duff, and B. Vinter, “Fast
synchronization-free algorithms for parallel sparse triangular
solves with multiple right-hand sides,” Concurrency and
Computation: Practice and Experience, vol. 29, no. 21, 2017.

[10] E. Dufrechou and P. Ezzatti, “Solving sparse triangular linear
systems in modern gpus: A synchronization-free algorithm,”
in 26th Euromicro International Conference on Parallel,
Distributed and Network-based Processing, PDP 2018, Cam-
bridge, United Kingdom, March 21-23, 2018, 2018, pp. 196–
203.

[11] ——, “A new GPU algorithm to compute a level set-based
analysis for the parallel solution of sparse triangular systems,”
in 2018 IEEE International Parallel and Distributed Process-
ing Symposium, IPDPS 2018, Vancouver, BC, Canada, May
21-25, 2018, 2018, pp. 920–929.

[12] C.-C. Liao, Y.-W. Chang, C.-A. Lin, and J. McDonough,
“Simulating flows with moving rigid boundary using

immersed-boundary method,” Computers and Fluids, vol. 39,
no. 1, pp. 152–167, 2010.

[13] Lilek, S. Muzaferija, M. Perić, and V. Seidl, “An implicit
finite-volume method using nonmatching blocks of struc-
tured grid,” Numerical Heat Transfer, Part B: Fundamentals,
vol. 32, no. 4, pp. 385–401, 1997.

[14] C. Lange, M. Schäfer, and F. Durst, “Local block refinement
with a multigrid flow solver,” International Journal for Nu-
merical Methods in Fluids, vol. 38, no. 1, pp. 21–41, 2002.

[15] M. Draper, A. Guggeri, M. Mendina, G. Usera, and F. Cam-
pagnolo, “A large eddy simulation-actuator line model frame-
work to simulate a scaled wind energy facility and its
application,” Journal of Wind Engineering and Industrial
Aerodynamics, vol. 182, pp. 146–159, 2018.

[16] E. Krause, “Ferziger, j. h.; perić, m.: Computational methods
for fluid dynamics. berlin etc., springer-verlag 1996. xiv,
356 pp., dm 74,00. isbn 3-540-59434-5,” ZAMM - Journal
of Applied Mathematics and Mechanics / Zeitschrift für
Angewandte Mathematik und Mechanik, vol. 77, no. 2,
pp. 160–160, 1997. [Online]. Available: https://onlinelibrary.
wiley.com/doi/abs/10.1002/zamm.19970770220

[17] F. Deserno, G. Hager, F. Brechtefeld, and G. Wellein, “Basic
optimization strategies for cfd-codes,” Regionales Rechenzen-
trum Erlangen, Technical report, 2002.

[18] J. G. Gomez Luna, L. Chang, I. Sung, W. Hwu, and N. Guil,
“In-place data sliding algorithms for many-core architec-
tures,” in 2015 44th International Conference on Parallel
Processing, Sep. 2015, pp. 210–219.

[19] S. Yan, G. Long, and Y. Zhang, “Streamscan: Fast scan
algorithms for gpus without global barrier synchronization,”
in Proceedings of the 18th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, ser.
PPoPP ’13. New York, NY, USA: ACM, 2013, pp.
229–238. [Online]. Available: http://doi.acm.org/10.1145/
2442516.2442539

