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Abstract

A general formulation of the linear model with functional (random) explanatory

variable X = X(t), t ∈ T , and scalar response Y is proposed. It includes the

standard functional linear model, based on the inner product in the space L2[0, 1], as

a particular case. It also includes all models in which Y is assumed to be (up to an

additive noise) a linear combination of a finite or countable collections of marginal

variables X(tj), with tj ∈ T or a linear combination of a finite number of linear

projections of X. This general formulation can be interpreted in terms of the RKHS

space generated by the covariance function of the process X(t). Some consistency

results are proved. A few experimental results are given in order to show the practical

interest of considering, in a unified framework, linear models based on a finite number

of marginals X(tj) of the process X(t).

Keywords: functional data analysis; functional regression; RKHS methods; comparison of

linear models
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1 Introduction

Linear regression is a topic of leading interest in statistics. The general paradigm is well-

known: one aims to predict a response variable Y in the best possible way as a linear

(or affine) function of some explanatory variable X . In the classical case of multivariate

regression, where Y is a real random variable and X takes values in R
d there is little

doubt about the meaning of “linear”. However, this is not that obvious when X is a

more complex object that can be modelled via different mathematical structures. The

most important example arises perhaps in the field of Functional Data Analysis (FDA)

where X = X(t) is a real function; see e.g., Cuevas (2014) for a general survey of FDA

and Horváth and Kokoszka (2012) for a more detailed account, including an up-to-date

overview of functional linear models.

Some notation

More precisely, we will deal here with the scalar-on-function regression problem where

the response Y is a real random variable and X is a random function (i.e., a trajectory of

a stochastic process). In formal terms, let (Ω,F ,P) be a probability space and denote by

L2(Ω) = L2(Ω,F ,P) the space of square integrable random variables defined on (Ω,F ,P).

Denote by 〈X, Y 〉 = E(XY ) the inner product in this space and by ‖ · ‖ the corresponding

induced norm.

Consider a response variable Y ∈ L2(Ω) and a family of regressors {X(t) : t ∈ T} ⊂
L2(Ω), where T is an arbitrary index set. For the sake of simplicity we will assume both

the response and the explanatory variable are centered, so that E(Y ) = E(X(t)) = 0, for

all t ∈ T .

The covariance function K : T × T → R of {X(t) : t ∈ T} is defined by K(s, t) =

〈X(s), X(t)〉 = E(X(s)X(t)). It can be shown that K is the covariance function of a family

of variables if and only if K is symmetric and positive semidefinite.

The aim of this work. Some motivation

Our purpose is to show that the term “linear” admits several interpretations in the
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functional case; all of them could be useful, depending on the considered context. We

will provide a general formulation of the linear model and we will show that several useful

formulations of functional linear models appear as particular cases. Some basic consistency

results will be given regarding the estimation of the slope (possibly functional) parameter.

The theory of Reproducing Kernel Hilbert Spaces (RKHS) will be an important auxiliary

tool in our approach; see Berlinet and Thomas-Agnan (2004).

In order to give some perspective and motivation, let us consider, for T = [0, 1], the

classical L2-based functional regression model, as given by

Y =

∫ 1

0

β(t)X(t)dt+ ε := 〈β,X〉2 + ε, (1)

where X = X(t) is a process with trajectories in the space L2[0, 1] of square integrable real

functions, 〈·, ·〉2 stands for the inner product in L2[0, 1], ε is the error variable, independent

from X = X(t), with E(ε) = 0, E(ε2) = σ2 < ∞ and β ∈ L2[0, 1] is the slope function. The

usual aim in such a model is estimating β and σ2 from an i.i.d. sample (Xi, Yi), i = 1, . . . , n.

As we are assuming E(X(t)) = 0 we omit as well the additional intercept additive term β0

in the theoretical developments involving model (1). This term will be incorporated in the

numerical examples of Section 5.

The vast majority of literature on functional linear regression is concerned with model

(1); see, e.g., the pioneering book by Ramsay and Silverman (2005) (whose first edition

dates from 1997), as well as the paper by Cardot et al. (1999), the book by Horváth and Kokoszka

(2012) and references therein. Though this model is, in several aspects, natural and useful,

we argue here that this is not the only sensible approach to functional linear regression.

There are several reasons for this statement: first, unlike the finite dimensional model

Y = β1X1+. . .+βdXd+ε, there is no obvious, easy to calculate, estimator for β under model

(1). The simple, elegant least squares theory is no longer available here. The optimality

properties (Gauss-Markov Theorem) of the finite-dimensional least squares estimator do

not directly apply for (1) either. Second, note that in the finite-dimensional situation,

where X = (X1, . . . , Xd), there is a strong case in favour of a model of type Y = β1X1 +
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. . .+βdXd+ε. The reason is that, as it is well-known, when the joint distribution of all the

involved variables is Gaussian, the best approximation of Y in terms of X = (X1, . . . , Xd)

is necessarily of type β1X1 + . . . + βdXd. A similar motivating property does not hold

for model (1). Third, some natural, linear-like functional approaches do not appear as

particular instances of (1); this is the case, for example, with an approach of type “the

response Y is (up to an additive noise) a linear combination of a finite or countable subset

of variables {X(t), t ∈ T}”.
Our goal here is to analyse a more general linear model which partially addresses these

downsides and includes model (1) as a particular case. Perhaps more importantly, the

finite dimensional models of type Y = β1X(t1) + . . . + βpX(tp), with tj ∈ T , βj ∈ R and

p ∈ N are also included. This is particularly relevant in practice since, in many cases, such

models (obtained, for example, by a variable selection procedure) have a larger predictive

power than that of the L2-based model (1); see the experiments in Section 5.

It is worth noting that, essentially, this model already appears in the recent paper by

Berrendero et al. (2019) as a suitable setting for variable selection in functional regression.

The novel contribution here is to provide a more complete perspective of such model, by

formulating it in two equivalent ways and realizing its full generality (beyond variable

selection), along the lines commented in the previous paragraph. Also, the estimation of

the regression parameter is also explicitly addressed here.

The organization of this paper

In Section 2 our general linear RKHS-based model is defined. Section 3 is devoted to

prove that some relevant examples of practical interest appear just as particular cases of

such a model. Two results of consistent estimation of the slope function are given in Section

4. Some experimental results are discussed in Section 5.
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2 A general formulation of the functional linear model

In the functional framework introduced in the previous section, a linear model might be

defined as any suitable linear expression of the variables X(t) aiming to explain (predict)

the response variable Y . The L2-model (1) is just one possible formulation of such idea.

If the random variables (rv) X(t) are defined in a common sample space Ω, let L2(Ω)

be the space of all rv’s with finite second moment. Thus, in the present work, by “linear

expression” we mean an element of the closed linear subspace LX of L2(Ω) spanned by

the variables in {X(t) : t ∈ T}. In other words, LX is the closure of the linear subspace

of all finite linear combinations of variables in the collection. Hence, LX includes both

finite linear combinations of the form
∑p

i=1 βiX(ti) (where p ∈ N, β1, . . . , βp ∈ R, and

ti, . . . , tp ∈ T ) and rv’s U such that there exists a sequence Un of these linear combinations

with ‖Un − U‖ → 0, as n → ∞.

In more precise terms, our general linear model will be defined by assuming that Y and

{X(t) : t ∈ T} are related by the following linear regression model:

Y = UX + ε, (2)

where UX ∈ LX , and ε is a random variable with zero mean and variance equal to σ2 which

is assumed to belong to L⊥
X , the orthogonal complement of LX , that is E(εUX) = 0 for all

U ∈ LX .

Since LX is closed, we know that L2(Ω) = LX ⊕ L⊥
X , and then the elements in the

model are unambiguously given by the orthogonal projections UX = ProjLX
(Y ) and ε =

ProjL⊥

X
(Y ).

2.1 An RKHS formulation of the proposed linear model

The aim of this subsection is to give a fairly natural parametrization of model (2), based

on the RKHS theory. As a consequence of this alternative formulation we will show that

several useful linear models appear as particular cases of (2).
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Denote by R
T the set of all real functions defined on T . We are going to define a map

ΨX : LX → R
T that will play a key role in the sequel: given U ∈ LX , ΨX(U) is just the

function

ΨX(U)(t) = E(UX(t)). (3)

As we will next show, this transformation defines an isometry (often called Loève’s isometry;

see Lemma 1.1 in Lukić and Beder (2001)) between LX and ΨX(LX). We will also see that

ΨX(LX) coincides in fact with the RKHS generated by K.

To begin with let us recall here, for the sake of completeness, a simple lemma collecting

two elementary properties of ΨX :

Lemma 1. Let ΨX(U) be as defined in (3). Then,

(a) ΨX is injective.

(b) ΨX(X(t))(·) = K(·, t), for all t ∈ T . Equivalently, Ψ−1
X [K(·, t)] = X(t).

Proof. To show (a), let U, V ∈ LX such that ΨX(U)(t) = ΨX(V )(t), for all t ∈ T . Then,

E[(U−V )X(t)] = 0, for all t ∈ T , what implies U−V ∈ L⊥
X . Since we also have U−V ∈ LX ,

we get U = V ; recall that in L2 spaces we identify those functions that coincide almost

surely.

Property (b) is obvious from the definition.

Denote by HK the image of ΨX so that ΨX : LX → HK is a bijection. The subscript K

emphasizes the fact that the properties of HK are closely related to those of the covariance

function. Observe that by Lemma 1(b), all the finite linear combinations
∑p

j=1 βjK(·, tj)
belong to HK .

The inner product in LX induces an inner product in HK : given f, g ∈ HK , define

〈f, g〉K := 〈Ψ−1
X (f),Ψ−1

X (g)〉.

As a consequence of the considerations above, HK endowed with 〈·, ·〉K, is a Hilbert

space. Once we endow HK with this structure, the mapping ΨX is a linear, bijective,
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and inner product preserving operator between LX and HK ; this accounts for the word

“isometry” in the usual name (which is often called Loève’s isometry).

On the other hand, it is well-known (see, e.g., Appendix F in Janson (1997) for de-

tails) that, given a positive semi-definite function K : T × T → R (called “reproducing

kernel”), there is a unique Hilbert space, generated by the linear combinations of the form
∑

j βjK(·, tj). This space is usually called the Reproducing Kernel Hilbert Space (RKHS)

associated with K.

The following simple result shows that ΨX(LX) = HK coincides in fact with the RKHS

generated by the covariance function K of the process X = X(t).

Proposition 1. The Hilbert space HK and the covariance function K satisfy the following

two properties:

(a) For all t ∈ T , K(·, t) ∈ HK.

(b) Reproducing property: for all f ∈ HK and t ∈ T , 〈f,K(·, t)〉K = f(t).

Proof. (a) follows directly from Lemma 1(b). To prove (b),

〈f,K(·, t)〉K = 〈Ψ−1
X (f), X(t)〉 = E[Ψ−1

X (f)X(t)] = ΨX [Ψ
−1
X (f)](t) = f(t).

The first equality is due to Lemma 1(b).

We are now in a position to recast the general model (2) into a sort of parametric

formulation, where the “parameter” belongs to the RKHS generated by the covariance

function K of the process X = X(t). As we will see, this reformulation will be particularly

useful to encompass several particular cases of practical relevance.

Theorem 1. Model (2) can be equivalently established in the form

Y = Ψ−1
X (α) + ε, (4)

where α ∈ HK and ε ∈ L⊥
X is a random variable with zero mean and variance equal to σ2

and Ψ−1
X is the inverse of Loève’s isometry ΨX : LX → HK defined above.

In addition the “parameter” α is the cross-covariance function α(t) = E(Y X(t)).
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Proof. Formulation (4) follows directly from the definition of ΨX and the fact that this

transformation is a bijection between LX and HK ; hence UX ∈ LX if and only if there

exists a (unique) α ∈ HK such that UX = Ψ−1
X (α).

To prove the second assertion note that, by the reproducing property, α(t) = 〈α,K(·, t)〉K
for all t ∈ T , and hence

α(t) = 〈α,K(·, t)〉K = E[Ψ−1
X (α)X(t)] = E[(Y − ε)X(t)] = E[Y X(t)], (5)

because ε ∈ L⊥
X .

As a consequence, the RKHS HK is a fairly natural parametric space for our general

linear regression model.

Remark 1. Let us note that model (4) was already considered, with a different notation,

in the paper by Berrendero et al. (2019). Indeed, the inverse Loève transformation Ψ−1
X (α)

is sometimes denoted 〈α,X〉K. This is somewhat of a notational abuse, as typically the

trajectories of the process do not belong to the RKHS HK ; see Berrendero et al. (2019) for

details. Still, the notation is often useful and convenient, so that the RKHS-model can be

expressed also by

Y = 〈X,α〉K + ε. (6)

3 Some important particular cases

The above mentioned work by Berrendero et al. (2019) focusses in the model (4)-(6) from

the point of view of its application to variable selection topics. In the present work, we go

further in the study of such model: in addition to the relevant equivalence (that we have

just established) between (4) and (2), we show in this section the generality of such model,

by showing that several commonly used models appear just as particular cases. In Section

4 we address the problem of estimating the “regression parameter” α and in Section 5 we

carry out some numerical experiments.
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3.1 Finite dimensional models: a setup for variable selection

problems

When there are infinitely many regressors (which is the case in functional regression prob-

lems), several procedures of variable selection are available (see Berrendero et al. (2019) for

details) for replacing the whole set of explanatory variables with a finite, carefully chosen,

subset of these variables. The following proposition characterizes when it is possible to

apply these procedures without any loss of information at all.

Proposition 2. Under model (4)-(6), there exist X(t∗1), . . . , X(t∗p) ∈ {X(t) : t ∈ T} and

β1, . . . , βp ∈ R such that Y = β1X(t∗1) + · · · + βpX(t∗p) + ε if and only if for all t ∈ T ,

α(t) = β1K(t, t∗1) + · · ·+ βpK(t, t∗p).

Proof. By Lemma 1(b), Y = β1X(t∗1)+· · ·+βpX(t∗p)+ε if and only if Ψ−1
X (α) = β1Ψ

−1
X (K(·, t∗1))+

· · ·+βp(K(·, t∗p)), what in turn happens if and only if α(t) = β1K(t, t∗1)+· · ·+βpK(t, t∗p).

3.2 The classical L2-model

For T = [0, 1] assume that {X(t) : t ∈ T} is an L2 random process and Y a response

variable such that the RKHS linear model (2) or, equivalently (4) or (6), holds. To gain

some insight, let us illustrate this with an example, beyond the finite-dimensional models

considered in the previous subsection.

Example (Brownian regressors): When {X(t) : t ∈ [0, 1]} is a standard Brownian

Motion (K(s, t) = min{s, t}) it can be shown

HK = {α ∈ L2[0, 1] : α(0) = 0, there exists α′ ∈ L2[0, 1] such that α(t) =

∫ t

0

α′(s)ds}.

and 〈α1, α2〉K = 〈α′
1, α

′
2〉2. It can also be proved that Ψ−1

X (α) is given by Itô’s stochastic

integral, Ψ−1
X (α) =

∫ 1

0
α′(t)dX(t); for these results see Janson (1997), Example 8.19, p. 122.

Thus, in this case, the linear model (2) and (4) reduces to Y =
∫ 1

0
α′(t)dX(t) + ε.
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Our goal in this subsection is to analyze under which conditions the RKHS model (4) or

(6) entails the L2-model (1). To do this, we need to recall some basic facts about the RKHS

space associated with K. Let us denote by K : L2[0, 1] → L2[0, 1] the integral operator

defined by K, that is

Kf(t) =

∫ 1

0

K(t, s)f(s)ds.

We will henceforth assume that K is continuous. Under this condition, it is well-known

that K is a compact and self-adjoint operator. The following proposition is a standard

result in the RKHS theory. It relates HK to L2[0, 1]. The proof can be found, e.g. in

(Cucker and Smale, 2001, Th. 4.1.2).

Proposition 3. Assume T = [0, 1] and K is continuous. Let λ1 ≥ λ2 ≥ · · · be the

eigenvalues of K (which are assumed to be strictly positive for simplicity) and let e1, e2, . . .

be the corresponding unit eigenfunctions. Then, the RKHS corresponding to K is

HK = {f ∈ L2[0, 1] :
∞∑

i=1

〈f, ei〉22
λi

< ∞} = K1/2(L2[0, 1]),

endowed with the inner product 〈f, g〉K =
∑∞

i=1〈f, ei〉2〈g, ei〉2/λi.

At this point, we should perhaps recall that according to Spectral Theorem (Gohberg et al.,

2004, Ch. 4) under the stated conditions, there is an orthonormal basis of L2[0, 1] made

of eigenvectors ei whose corresponding eigenvalues are λi, in such a way that, for all

f ∈ L2[0, 1] we have f =
∑

i〈f, ei〉ei (where the convergence of this series and the cor-

responding equality must be understood in the L2 sense) and K1/2(f) =
∑

i

√
λi〈f, ei〉ei.

Thus, the membership to HK must be understood as a “regularity property” established

in terms of a very fast convergence to zero of the Fourier coefficients 〈f, ei〉.
Now, let us go back to the classical functional linear regression model (1). We will show

that (1) appears as a particular case of our general model (4) if, and only if, the slope

function β in (1) is regular enough to belong to the image subspace K(L2[0, 1]) which, by

Proposition 3, is a subset of HK . The formal statement is as follows.
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Proposition 4. If model (1) holds, then model (4) also holds. Reciprocally, if (4) holds

and there exists β ∈ L2[0, 1] such that α = Kβ, then (1) holds.

Proof. Since
∫ 1

0
X(t)β(t)dt ∈ LX (e.g. Ash and Gardner (1975), p. 34) we have that (1)

implies (4). Reciprocally, assume Y = Ψ−1
X (α) + ε, where α = Kβ for β ∈ L2[0, 1], and

ε ∈ L⊥
X . Using Fubini’s Theorem we get, for all t ∈ [0, 1],

α(t) =

∫ 1

0

K(t, s)β(s)ds = E
[
X(t)

∫ 1

0

X(s)β(s)ds
]
.

On the other hand, by (5) we also have α(t) = E[X(t)Y ], for all t ∈ [0, 1]. Then, E
[
X(t)

(
Y−∫ 1

0
X(t)β(t)dt

)]
= 0, for all t ∈ [0, 1]. Hence, Y −

∫ 1

0
X(t)β(t)dt ∈ L⊥

X . Now,

Y =

∫ 1

0

X(t)β(t)dt+
(
Y −

∫ 1

0

X(t)β(t)dt
)
= Ψ−1

X (α) + ε,

where Ψ−1
X (α) ∈ LX ,

∫ 1

0
X(t)β(t)dt ∈ LX , and ε ∈ L⊥

X , Y −
∫ 1

0
X(t)β(t)dt ∈ L⊥

X . Since

L2(Ω) = LX ⊕ L⊥
X , we get Ψ−1

X (α) =
∫ 1

0
X(t)β(t)dt and the result follows.

Observe that the difference between (4) and (1) is not just a minor technical question.

There are important values of the parameter α such that α ∈ HK but α 6= Kβ. For example,

finite linear combinations of the form β1K(·, t1) + · · · + βpK(·, tp), which are important

because they allow us to include finite dimensional regression models (also called impact

point models in the literature on functional regression) as particular cases of the general

model (see Proposition 2 above).

The procedures to fit model (1) very often involve to project {X(t) : t ∈ [0, 1]} on

a convenient subspace of L2[0, 1]. More precisely, given {uj : j = 1, 2, . . .}, an arbitrary

orthonormal basis of L2[0, 1], it is quite common to use as regressor variables the projections

{X(t) : t ∈ [0, 1]} on the finite dimensional subspace spanned by the first p elements of

the basis. This amounts to replace the whole trajectory with 〈X, u1〉2u1 + · · ·+ 〈X, up〉2up.

This method will work fine whenever
∫ 1

0
X(t)β(t)dt ≈

∑p
j=1 βj〈X, uj〉2, where βj = 〈β, uj〉2.

A natural question to ask is when there is no loss in using the projection instead of the
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whole trajectory, and how is this situation characterized in terms of the parameter α in (4).

The answer is given by Proposition 5 below.

Assume that the following model (explaining the response in terms of the projection of

the trajectory) holds:

Y = β1〈X, u1〉2 + · · ·+ βp〈X, up〉2 + ε, (7)

where β1, . . . , βp ∈ R and ε ∈ L⊥
X . We have the following result:

Proposition 5. If model (7) holds, then model (4) also holds. Reciprocally, if (4) holds

and α belongs to the subspace spanned by {Ku1, . . . ,Kup} then (7) holds.

Proof. The proof is similar to that of Proposition 4. For j = 1, . . . , p, we have 〈X, uj〉2 ∈ LX

(see e.g. Ash and Gardner (1975), p. 34) and hence (7) implies (4).

Reciprocally, assume Y = Ψ−1
X (α)+ε, where α = β1Ku1+. . .+βpKup for β1, . . . , βp ∈ R,

and ε ∈ L⊥
X . Using Fubini’s Theorem:

[ΨX(〈X, uj〉2)](t) = E[X(t)〈X, uj〉2] =
∫ 1

0

K(t, s)uj(s)ds = [Kuj](t).

Then Ψ−1
X (α) = β1Ψ

−1
X (Ku1) + · · ·+ βpΨ

−1
X (Kup) = β1〈X, u1〉2 + · · ·+ βp〈X, up〉2, and the

result follows.

An important particular case is functional principal component regression (FPCR). In

FPCR, the orthonormal basis is that given by uj = ej , the eigenfunctions of K. Then,

Kej = λjej , for j = 1, . . . , p, and the condition in Proposition 5 simply states that α must

belong to the subspace spanned by {e1, . . . , ep}.

4 Consistent estimation of the slope function

4.1 An L2-consistent estimator based on regularization

Let (Y1, X1), . . . , (Yn, Xn) is a sample of i.i.d. observations following the functional regres-

sion model (4). In this section we give a consistent estimator of α based on Tikhonov
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regularization.

The interpretation of α as a covariance given by Equation (5) suggests a natural way

to estimate it. We could just use the sample covariance function,

α̃(t) =
1

n

n∑

i=1

YiXi(t).

Unfortunately, P(α̃ ∈ HK) = 0 (see Lukić and Beder (2001)) whereas we are assuming

α ∈ HK . Then, we need to apply a regularization technique in order to take α̃ into

the RKHS. A possibility is to use Tikhonov regularization, which leads to the following

estimator of α:

α̌ = arg min
f∈HK

‖α̃− f‖22 + γn‖f‖2K ,

where ‖ · ‖2 denotes the norm in L2[0, 1], ‖ · ‖K denotes the norm in HK and γn > 0 is a

sequence of regularization parameters depending on the sample size. It turns out that α̌

has the following explicit expression:

α̌ = (K + γnI)
−1Kα̃, (8)

where K is the integral operator defined by the kernel K; see Cucker and Zhou (2007, p.

139). Note that (8) is a sort of “oracle estimator” since, in practice, K is generally unknown

so that K must be also estimated from the sample. This leads to the final estimator

α̂ := (K̂ + γnI)
−1K̂α̃, (9)

where K̂ is the integral operator defined by the kernel K̂(s, t) = n−1
∑n

i=1Xi(s)Xi(t).

The consistency of α̂ in L2 norm is stated in the following result:

Theorem 2. Let γn → 0 be such that γ2
n

√
n → ∞ and assume that E(‖X‖42) < ∞. Then

‖α̂− α‖2 → 0 in probability, as n → ∞.

Proof. Let us define Tn := (K + γnI)
−1K and T̂n := (K̂ + γnI)

−1K̂. Then ‖α̂ − α‖2 ≤
‖T̂nα̃− Tnα‖2 + ‖Tnα− α‖2. We analyse both terms separately.
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First term. For the first term, ‖T̂nα̃−Tnα‖2 ≤ ‖T̂nα̃−T̂nα‖2+‖T̂nα−Tnα‖2 ≤ ‖T̂n‖op‖α̃−
α‖2+‖T̂n−T ‖op‖α‖2, where ‖·‖op stands for the usual operator norm for linear continuous

operators, ‖Tx‖op = sup‖x‖=1 ‖Tx‖. Now it is enough to prove ‖α̃ − α‖2 → 0 and ‖T̂n −
T ‖op → 0 in probability.

Convergence ‖α̃−α‖2 → 0 in probability follows fromMourier’s SLLN (see e.g. Theorem

4.5.2 in Laha and Rohatgi (1979) p. 452). To prove ‖T̂n − T ‖op → 0 in probability, use

triangle inequality to bound ‖T̂n − Tn‖op ≤ ‖(K̂ + γnI)
−1‖op‖‖K̂ − K‖op + ‖(K̂ + γnI)

−1 −
(K + γnI)

−1‖op‖K‖op. From Equation (1.14) in Gohberg et al. (2004) p. 228,

‖(K̂ + γnI)
−1‖op ≤ γ−1

n , for all n > 0. (10)

Whenever ‖A−1‖op‖A− B‖op < 1 the following inequality holds (Gohberg et al. (2004), p.

71) ‖A−1 −B−1‖op ≤ (‖A−1‖2op‖A−B‖op)(1− ‖A−1‖op‖A−B‖op)−1. From this inequality,

together with (10), we get

‖(K̂ + γnI)
−1 − (K + γnI)

−1‖op ≤
(1/γn)

2‖K̂ − K‖op
1− (1/γn)‖K̂ − K‖op

.

To prove that (1/γn)
2‖K̂ − K‖op → 0 in probability we will use that ‖K̂ − K‖op ≤ ‖K̂ −

K‖HS, where ‖ · ‖ stands for the Hilbert-Schmidt norm for operators. Theorem 8.1.2 in

Hsing and Eubank (2015) p. 212, guarantees that if E(‖X‖42) < ∞, then
√
n‖K̂ −K‖HS is

bounded in probability. Then, for all ǫ > 0 there exists M such that for n large enough,

P(
√
n‖K̂ − K‖HS > M) < ǫ. Now, let us fix an arbitrary δ > 0. Let n be large enough

such that
√
nγ2

nδ > M (remember that we are assuming
√
nγ2

n → ∞). Then,

P((1/γn)
2‖K̂ − K‖op > δ) ≤ P(

√
n‖K̂ − K‖HS > M) < ǫ.

Second term. The term ‖Tnα − α‖2 will be small for small γn. Then, we need to consider

a sequence γn ↓ 0, but we must take into account that K is not invertible.

Let {ej}j be an orthonormal base of eigenvectors of K with associated eigenvalues {λj}j.

14



Let ǫ > 0 and N = N(ǫ) such that
∑∞

j=N+1〈α, ej〉22 < ǫ/2. Observe that

Tnα =
∞∑

j=1

λj

γn + λj

〈α, ej〉2ej and
∞∑

j=N+1

λ2
j

(γn + λj)2
〈α, ej〉22 < ǫ/2.

Then, for large enough n, ‖Tnα−α‖22 =
∑N

j=1(
λj

γn+λj
−1)2〈α, ej〉22+ ǫ/2 < ǫ. Hence, ‖Tnα−

α‖22 → 0 as n → ∞.

We now establish the consistency of the simple plug-in estimator defined in (8) in

the RKHS norm. Note that this estimator requires the knowledge of the true covariance

operator, which is seldom the case in practice. Still, the following result has perhaps some

theoretical interest; see the discussion at the beginning of subsection 4.2.

Proposition 6. Let γn → 0 such that nγ2
n → ∞, then ||α̌− α||2K → 0 in probability.

Proof. To prove that ‖α̌−α‖K → 0 in probability, observe that since α ∈ HK , for all ǫ > 0

there exists N = N(ǫ) such that

∞∑

j=N+1

1

λj
〈α, ej〉22 < ǫ. (11)

For this value of N we have

‖α̌− α‖K ≤
∥∥∥

N∑

j=1

( λj

γn + λj

− 1
)
〈α̃, ej〉2ej

∥∥∥
K
+
∥∥∥

N∑

j=1

〈α̃− α, ej〉2ej
∥∥∥
K

+
∥∥∥

∞∑

j=N+1

λj

γn + λj
〈α̃− α, ej〉2ej

∥∥∥
K
+
∥∥∥

∞∑

j=N+1

( λj

γn + λj
− 1

)
〈α, ej〉2ej

∥∥∥
K
. (12)

We will look at each term in the expression above. For the first one, we have:

∥∥∥
N∑

j=1

( λj

γn + λj
− 1

)
〈α̃, ej〉2ej

∥∥∥
K
≤

∥∥∥
N∑

j=1

( λj

γn + λj
− 1

)
〈α̃− α, ej〉2ej

∥∥∥
K
+

∥∥∥
N∑

j=1

( λj

γn + λj
− 1

)
〈α, ej〉2ej

∥∥∥
K
.
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Now, observe that ‖α̃− α‖2 → 0 a.s., and let us define

CN,n := max
j=1,...,N

( λj

γn + λj

− 1
)2

‖ej‖2K =
( λ1

γn + λ1

− 1
)2 1

λN

→ 0, as n → ∞.

Then, for large enough n, with probability one,

∥∥∥
N∑

j=1

( λj

γn + λj
− 1

)
〈α̃− α, ej〉2ej

∥∥∥
2

K
≤ NCN,n‖α̃− α‖22 < ǫ.

We have used Cauchy-Schwarz inequality in the first inequality above. Similarly, we also

have, for large enough n,

∥∥∥
N∑

j=1

( λj

γn + λj
− 1

)
〈α, ej〉2ej

∥∥∥
K
≤ NCN,n‖α‖22 < ǫ,

The second term in (12) satisfies ‖
∑N

j=1〈α̃ − α, ej〉2ej‖2K ≤ Nλ−1
N ‖α̃ − α‖22 < ǫ, for large

enough n, with probability one. For the third term in (12), let
∑

j λ
∞
j=1 := C < ∞. Then,

∥∥∥
∞∑

j=N+1

λj

γn + λj
〈α̃− α, ej〉2ej

∥∥∥
2

K
=

∞∑

j=N+1

λj

(γn + λj)2
〈α̃− α, ej〉22

≤ ||α̃− α||22
γ2
n

∞∑

j=N+1

λj ≤ C
n||α̃− α||22

nγ2
n

→ 0,

in probability, since we are assuming nγ2
n → ∞ and n‖α̃ − α‖22 is bounded in probability

by the Central Limit Theorem. Finally, the fourth term in (12) is also bounded by ǫ using

(11):

∥∥∥
∞∑

j=N+1

( λj

γn + λj
− 1

)
〈α, ej〉2ej

∥∥∥
2

K
=

∞∑

j=N+1

1

λj

( γn
γn + λj

)2

〈α, ej〉22 ≤
∞∑

j=N+1

1

λj
〈α, ej〉22 < ǫ.
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4.2 An RKHS-consistent estimator based on discretization

The analysis of the proof of Proposition 6, concerning consistency of the “oracle estimator”

α̌, suggests an obvious line of attack for the problem of establishing the RKHS consistency

for the more realistic estimator α̂ defined in (9): one could think of just replacing the eigen-

values and eigenfunctions, λi and ei, with the natural empirical estimators. Nevertheless

such strategy suffers from a serious practical problem: the eigenvalues λi appear in the

denominator of the RKHS norm; so, as the sequence of eigenvalues tend to zero, a very

small error in the estimation of the λi could have a huge effect in the estimation of the

norm. As a consequence, the convergence condition (11) looks quite difficult to ensure from

an analogous inequality based on the estimated λi and ei.

Therefore, we will try here a different approach: instead of approximating the eigen-

structure we will rather consider a discrete approximation of the linear model itself, taking

advantage of the RKHS structure (unlike the “direct” approach based on the estimation of

the λi and ei). More specifically, we will approximate the RKHS model (4) by a sequence

of finite dimensional models, of type of those considered in Proposition 2, based on pn-

dimensional marginals (X(t1,p), . . . , X(tp,p)), obtained by evaluating the process X(t) at

the grid points Tp = {ti,p}, where p = pn. The corresponding sequence of least squares

estimators of the slope function α̂p will hopefully provide a consistent sequence of estimators

of the true slope function α in (4). This idea is next formalized.

We will use the following lemma (which follows from Theorem 6E in Parzen (1959)),

that states that function α can be approximated (in the RKHS norm) by a finite linear

combination of the kernel function K, evaluated at points of a partition of [0, 1].

Lemma 2. Let α ∈ HK. Let us consider Tp = {tj,p : j = 1, . . . , p} where 0 ≤ t1,p ≤ · · · ≤
tp,p ≤ 1, an increasing sequence of partitions of [0, 1], i.e, Tp ⊂ Tp+1, such that ∪pTp = [0, 1].

Then, there exist β1,p . . . , βp,p such that,
∥∥∥α(·)−

∑p
j=1 βj,pK(tj,p, ·)

∥∥∥
2

K
→ 0, as p → ∞.

Now our estimator is defined by the ordinary least squares estimator of the coefficients
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β1,p, . . . , βp,p. To be more precise, let us denote

αp(·) =
p∑

j=1

βj,pK(tj,p, ·) and α̂p(·) =
p∑

j=1

β̂j,pK(tj,p, ·), (13)

where t1,p, . . . , tp,p are chosen as indicated in Lemma 2 and, for j = 1, . . . , p, β̂j,p are the

ordinary least squares estimators (based on a sample of size n) of the regression coefficients

in the p-dimensional linear model

Yi =

p∑

j=1

βj,pX(tj,p) + ei,p = 〈αp, X〉K + ei,p, i = 1, . . . , n. (14)

To prove the almost sure consistency of the estimator we will need to impose a condition

of sub-Gaussianity. Let us recall that a random variable Y with E(Y ) = 0 is said to be

sub-Gaussian with (positive) proxy constant σ2 (we will denote Y ∈ SG(σ2)) if the moment

generating function of Y satisfies E (exp(sY )) ≤ exp(σ2s2/2), for all s ∈ R. It can be seen

that the tails of a random variable Y ∈ SG(σ2) are lighter than or equal to those of a

Gaussian distribution with variance σ2, i.e. P(|Y | > t) ≤ 2 exp(−t2/(2σ2)) for all t > 0.

A p-dimensional random vector X is said to be sub-Gaussian with proxy constant σ2 if

X ′v ∈ SG(σ2) for all v ∈ R
d with ‖v‖ = 1. Observe that if X is a p-dimensional random

variableX = (X1, . . . , Xp) and theXi are independent with Xi ∈ SG(σ2) and sub-Gaussian

then X is sub-Gaussian with proxy constant σ2 as well. See (?, Ch. 1) for details.

Theorem 3. Assume the RKHS-based linear model Yi = 〈X,α〉K + ǫi for i = 1, . . . , n,

as defined in (2), (4) or (6). Let us consider a sequence of approximating p-dimensional

models (with p = pn) as defined in (14). Assume that

(i) The error variables ei,p = ei in the p-dimensional models are iid and sub-Gaussian,

SG(σ2
p) with σ2

p ≥ C0 for all p and some C0 > 0.

(ii) The random variable supt∈[0,1]X(t) is sub-Gaussian as well.
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(iii) We have p → ∞, as n → ∞, in such a way that n(γp,p)
2/(p2 log3 n) → ∞, where γp,p

is the smallest eigenvalue of the covariance matrix KTp , of (X(t1,p), . . . , X(tp,p)).

Then, νn‖α̂p−αp‖2K → 0 almost surely (a.s.), for all νn → ∞ such that nγp,p/(p
2νn logn) →

∞. In addition, as a consequence of Lemma 2, ‖α− α̂p‖2K = max{ν−1
n ,O(‖α−αp‖2K)} a.s.

The proof of this theorem is deferred to the appendix as it is a bit more technical than

those of the previous results in the paper. Hypothesis (ii) in Theorem 3 is satisfied for the

case of stochastic processes with stationary and independent increments and equispaced

impact points tj,p, as it is stated in the following proposition.

Proposition 7. Let {W (t)}t∈[0,1] be a stochastic process with stationary and independent

increments, such that E(W 2(t)) < ∞ and E(W (t)) = 0 for all t ∈ [0, 1], then for all

δ > 0, p1+δγp,p → ∞, γp,pbeing the smallest eigenvalue of KTp, the covariance matrix of the

random vector (W (1/p), . . . ,W (1)).

Proof. Let us denote, with some notational abuse, W = (W (1/p), . . . ,W (1)), ti = i/p, and

v = (v1, . . . , vp). Let us introduce the p×p matrix A, such that WA is the 1×p row vector

(W (1/p),W (2/p)−W (1/p), . . . ,W (1)−W (1 − 1/p)), that is A = (aij) where aii = 1 for

i = 1, . . . , p, ai−1,i = −1 for i = 2, . . . , p and aij = 0 otherwise. The coordinates of WA are

independent random variables. Then, for all v,

E|WAv|2 = v′A′
E(W ′W )Av = v′A′KTpAv = ‖Av‖22

v′A′

‖v′A′‖2
KTp

Av

‖Av‖2
.

Since A is invertible there exists v with ‖v‖2 = 1 such that w := Av fulfills KTpw = γp,pw

min
v:‖v‖2=1

‖Av‖22
v′A′

‖v′A′‖2
KTp

Av

‖Av‖2
≤ ‖A‖2op min

v:‖v‖2=1

v′A′

‖v′A′‖2
KTp

Av

‖Av‖2
≤ ‖A‖2op

w′

‖w‖2
KTp

w

‖w‖2
= ‖A‖2opγp,p.

Then γp,p ≥ ‖A‖−2
op minv:‖v‖2=1E|WAv|2. Since V ar(Wt+s−Wt) = σ2s for all 0 ≤ t, s ≤ 1,

such that s+ t ≤ 1, and for some σ > 0, then, if ‖v‖2 = 1, it follows that

E|WAv|2 = σ2

p−1∑

j=0

E
(
W ((j + 1)/p)−W (j/p)

)2
v2j+1 =

σ2

p
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Then γp,p ≥ σ2/(p‖A‖2op). Lastly, ‖A‖2op = 1/p + (4/p)(p − 1), (the maximum of ‖Av‖
conditioned to ‖v‖ = 1 is when vi = (−1)i+1/

√
p).

Remark 2. In Gupta and Joshi (2008) it is proved that (see eq. (68)) the fractional

Brownian Motion with Hurst exponent H fulfils that γp,p = O(1/p2H).

5 Some empirical results

We will consider here different examples of functional regression problems in which the goal

is to predict a real random variable Y from a functional explanatory variable X = X(t),

where t ranges in some known interval I. Hence, our sample information is given by n

pairs (Xi(·), Yi), i = 1, . . . , n, where Xi(·) = Xi(t) are sample trajectories of the process

X(t) and Yi are the corresponding response variables.

The overall aim of this section is to check the performance of different finite-dimensional

models, based on a few one-dimensional marginals X(t1), . . . , X(tp), such as those whose

asymptotic behavior has been analyzed in the previous section, versus that of a functional

L2-based counterpart. More precisely, we will compare the performance of a model of type

Y = β0 + β1X(t1) + . . .+ βpX(tp) + ε, (15)

with that of

Y = β0 +

∫ 1

0

β(t)X(t)dt+ ǫ. (16)

The word “performance” must be understood in terms of “prediction capacity”, as mea-

sured by appropriate estimations of the prediction error E[(Ŷ −Y )2], Ŷ being the predicted

value for the response obtained from the fitted model.

It is very important to note that the finite-dimensional models of type (15) are viewed

here as functional models, in the sense that they are all considered as particular cases of the

RKHS-model (4). In practice, this means that we don’t assume any prior knowledge about

the “impact points” ti or the number p of variables. So, in principle, the whole trajectory
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is available in order to pick up the impact points ti we will use. However, given the grid

points ti, the model (15) is handled as a problem of multivariate regression.

5.1 Simulation experiments

The models we use to generate the data

We analyse here three scenarios: one of them is more or less “neutral” in the comparison

finite-dimensional vs. L2-model. The second one is somewhat favorable to the finite-

dimensional models, in the sense that one of these models is the “true one”, though we

have no advance knowledge about the impact points ti and the number of them. Finally,

the third scenario clearly favours the L2-choice since the data are generated according to a

model of type (16). We now define these scenarios in precise terms.

Scenario 1. We use the function rproc2fdata of the R-package fda.usc (Febrero-Bande and Oviedo de la Fuente,

2012) to generate random trajectories according to a fractional Brownian Motion

(fBM) X(t) and the aim is to predict Y = X(1) from the observation of the sample

trajectories X(t) for t ∈ [0, 0.95]. Let us recall that the fBM is a Gaussian process

whose covariance function is K(s, t) = 0.5(|t|2H + |s|2H − |t − s|2H), H being the

so-called “Hurst exponent”. We have taken H = 0.8.

Scenario 2. We have generated the responses Yi according to the following two finite-

dimensional models (previously considered in Berrendero et al. (2019)),

Model 2a: Y = 2X(0.2)− 5X(0.4) +X(0.9) + ε.

Model 2b: Y = 2.1X(0.16)− 0.2X(0.47)− 1.9X(0.67)+5X(0.85)+4.2X(0.91)+ ε,

where in both cases the error variable ε has a distribution N(0, σ) with standard

deviation σ = 0.2. The process X(t), t ∈ [0, 1] follows a centered fBM with H = 0.8.

Scenario 3. The response variable Y is generated according to a L2-based linear model

with

Y =

∫ 1

0

log(1 + 4s)X(s)ds+ ε,
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where, again, the trajectories X(t) are drawn from the same fBM indicated above

and ε has a N(0, σ = 0.2) distribution.

Note that these models are only used to generate the data, so that none of the regression

models we will compare in our simulations below will incorporate any prior knowledge on

the true distribution of (X(t), Y ) whatsoever.

The specific regression models and estimation methods we compare

Let us go back to our basic question: to what extent the finite-dimensional models

(based on marginals X(ti)) of type (15) are competitive against a standard, L2-based regres-

sion model of type (16)? Since we don’t assume any previous knowledge on the underlying

models generating the data, we will take the “impact points” t1, . . . , tp equispaced in the

observation interval [0, 1] (or, in the interval [0, 0.95] in Scenario 1 above). The coefficients

βi in this model are estimated by the ordinary least squares method for multiple regression,

using the R-function lm. We will check several values of p = 6, 10, 14, 18.

As for the L2-regression model (16), we will estimate the slope function β and the

intercept β0 by the so-called functional principal components (PC) method; this essen-

tially amounts to approximate the model (16) with another finite-dimensional model ob-

tained by projecting the functional data on a given number q of principal functions (i.e.,

eigenfunctions of the covariance operator). We use the function fregre.pc of the R-

package fda.usc.Thus, the notation L2
q will refer to the use of this PC-based estima-

tion method, with q eigenfunctions, for the model (16). The considered sample sizes are

n = 100, 300, 500, 700.

The simulation outputs

In the left panels of the tables below we report, under the different scenarios, the mean

over 100 replications of the standard error,

√
(1/k)

∑
(Yi − Ŷi)2, where k = 0.2n is the size

of the random “test sub-samples” we use to evaluate the predictions Ŷi. . The “training

subsamples”, made of the remaining 80% of observations, are used to estimate the regression

coefficients for Ŷi. The right panels provide the adjusted coefficients of determination given

by R2
a = 1 − (1 − R2)(n − 1)/(n − p − 1), where R2 =

∑
i(Ŷi − Yi)

2/
∑

i(Yi − Ȳ )2 is the
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ordinary coefficient of determination. For the L2
q-functional models we replace p in R2

a with

the number q of principal components used in the fit.

p n 100 300 500 700

6 0.23838 0.23670 0.23524 0.23400

10 0.18485 0.17618 0.17338 0.17370

14 0.16162 0.15017 0.14909 0.14929

18 0.14811 0.13475 0.13390 0.13310

L2

4 0.13989 0.13752 0.13736 0.13788

L2

6
0.12326 0.11841 0.11767 0.11859

100 300 500 700

0.94359 0.94364 0.94394 0.94407

0.96977 0.97034 0.96993 0.96982

0.97830 0.97865 0.97839 0.97803

0.98251 0.98295 0.98277 0.98250

0.98098 0.98125 0.98077 0.98088

0.98587 0.98631 0.98615 0.98600

Table 1: Prediction errors (left) and R2
a
values (right) for the different models under Scenario 1.
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p n 100 300 500 700

6 0.41801 0.40521 0.40834 0.41084

10 0.22031 0.21508 0.21211 0.21196

14 0.28902 0.27278 0.26997 0.26887

18 0.24875 0.23343 0.23137 0.22897

L2

4
0.37890 0.37307 0.37242 0.37872

L2

6
0.31213 0.31609 0.31690 0.31626

100 300 500 700

0.90024 0.89827 0.90052 0.89949

0.97295 0.97192 0.97270 0.97264

0.95878 0.95612 0.95729 0.95717

0.96917 0.96766 0.96821 0.96837

0.91747 0.91433 0.91653 0.91528

0.94419 0.93880 0.94004 0.93967

Table 2: Prediction errors (left) and R2
a
values (right) for the different models under Scenario 2a.

p n 100 300 500 700

6 0.63168 0.59355 0.59966 0.59673

10 0.33911 0.32504 0.31936 0.32095

14 0.28649 0.26921 0.26497 0.26292

18 0.29568 0.26385 0.25990 0.25734

L2

4
0.45911 0.44992 0.43995 0.45183

L2

6 0.37263 0.36384 0.36069 0.35768

100 300 500 700

0.99295 0.99317 0.99319 0.99311

0.99803 0.99804 0.99805 0.99804

0.99868 0.99870 0.99871 0.99870

0.99872 0.99875 0.99876 0.99875

0.99612 0.99606 0.99616 0.99611

0.99744 0.99752 0.99752 0.99754

Table 3: Prediction errors (left) and R2

a
values (right) for the different models under Scenario 2b.
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p n 100 300 500 700

6 0.20752 0.20636 0.20441 0.20368

10 0.20912 0.20548 0.20377 0.20279

14 0.21606 0.20657 0.20454 0.20347

18 0.22349 0.20865 0.20575 0.20391

L2

4
0.20259 0.20291 0.20177 0.20106

L2

6
0.20520 0.20406 0.20249 0.20151

100 300 500 700

0.91137 0.91444 0.91282 0.91404

0.91269 0.91592 0.91422 0.91523

0.91237 0.91613 0.91436 0.91548

0.91351 0.91621 0.91455 0.91552

0.91343 0.91624 0.91463 0.91559

0.91336 0.91617 0.91461 0.91559

Table 4: Prediction errors (left) and R2
a
values (right) for the different models under Scenario 3.

6 More Simulations

To assess the performance of the estimator α̂p, we have considered several values of n and

p, for models 2 and 3. The mean error, over 100 replications ((1/100)
∑

||α̂i − α||K̂) are

reported for model 2 in table 5 and for model 3 in table 6. In both tables we assumed that

K is known, which is equivalent to known the Hurst parameter.

p n

200 400 600 800

3 0.2610 0.2643 0.2587 0.2789

5 0.0075 0.0065 0.0063 0.0062

7 0.0643 0.0640 0.0628 0.0609

9 0.0642 0.0623 0.0588 0.0607

11 0.0511 0.0457 0.0439 0.0427

13 0.0266 0.0237 0.0229 0.0224

15 0.0057 0.0016 0.0025 0.0019

17 0.0222 0.0169 0.0160 0.0157

Table 5: Mean over 100 replications of ||α̂p − α||2K . Scenario 2a). K known.
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p n

200 400 600 800

3 0.9127 0.9240 1.0097 0.9630

5 0.3983 0.3774 0.3863 0.3774

7 0.0695 0.0689 0.0680 0.0678

9 0.0723 0.0685 0.0684 0.0704

11 0.0519 0.0444 0.0448 0.0460

13 0.0210 0.0191 0.0189 0.0186

15 0.0401 0.0361 0.0350 0.0343

17 0.0447 0.0401 0.0396 0.0377

Table 6: Mean over 100 replications of ||α̂p − α||2K . Scenario 2b). K known.
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6.1 The case of unknown K

We assume that the process is a fBm and the value of H is unknown, it was estimated

with Ĥ = − log(V̂ ar(X(1/2)))/(2 log(2)) (which follows from V ar(X(1/2)) = (1/2)2H), in

Tables 7 and 8 we report the mean over 100 replications of ‖α̂p − α‖K̂ where

K̂(s, t) = 0.5(|t|2Ĥ + |s|2Ĥ − |t− s|2Ĥ)

p n

200 400 600 800

3 0.3985 0.2822 0.2341 0.2971

5 0.0070 0.0074 0.0075 0.0068

7 0.0838 0.0602 0.0539 0.0719

9 0.0794 0.0658 0.0584 0.0594

11 0.0453 0.0545 0.0397 0.0396

13 0.0332 0.0273 0.0224 0.0214

15 0.0031 0.0028 0.0013 0.0012

17 0.0311 0.0277 0.0136 0.0160

Table 7: Mean over 100 replications of ||α̂p − α||2K. Scenario 2a). K unknown.

6.2 Real data examples

Real data sets provide another natural playing field for a fair comparison on the prediction

capacity of different regression models. In all considered cases the sample is randomly divide

in two parts: 80% of the observations is used for training (i.e. for parameter estimation) and

the remaining 20% is used in order to check the accuracy of the predictions. This random

splitting is repeated 100 times. As in the simulated examples, the tables below report the

average prediction errors and the (average) adjusted coefficients of determination.
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p n

200 400 600 800

3 1.0334 0.8965 1.0999 0.8796

5 0.4482 0.3608 0.4855 0.3933

7 0.0761 0.0718 0.0632 0.0734

9 0.0785 0.0427 0.0662 0.0538

11 0.0582 0.0667 0.0595 0.0492

13 0.0310 0.0223 0.0226 0.0182

15 0.0483 0.0488 0.0366 0.0367

17 0.0614 0.0396 0.0404 0.0486

Table 8: Mean over 100 replications of ||α̂p − α||2K . Scenario 2b). K unknown.

The data sets under study

(a) The Tecator data set. This data set has been used and described many times in papers

and textbooks; see, e.g., Ferraty and Vieu (2006). It is available in the R-package

fda.usc., see Febrero-Bande and Oviedo de la Fuente (2012). After removing some

duplicated data, we have 193 functions obtained from a spectrometric study per-

formed on meat samples in which the near infrared absorbance spectrum is recorded.

The response variable is the fat content of the meat pieces. The functions are observed

at a grid of 100 points.

p 4 5 6 7 8 9 10 11 L2

3

Pred. error 3.8743 3.2116 2.9689 3.3557 2.8581 3.3886 3.4155 3.5514 3.2567

R2
a

0.9106 0.9427 0.9513 0.9436 0.9548 0.9400 0.9446 0.9472 0.9415

Pred. error 8.8023 3.3377 3.3791 3.3950 3.0646 3.3215 2.9751 2.9421 8.4414

R2

a
0.5287 0.9396 0.9401 0.9383 0.9527 0.9450 0.9532 0.9588 0.5938

Table 9: Standard prediction errors (mean over 100 replications) and adjusted R2
a
, for different values

of p for the Tecator dataset. In the first two rows the second derivatives are used. The last two rows

correspond to the original data.
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An important aspect of this dataset is the fact that the derivatives of the sample

functions seem to be more informative than the original data themselves. Thus, we

have taken into account this feature, using the original data, as well as the second

derivatives to predict the response variable (obtained by preliminary smoothing of

the data). The outputs are shown in Table 9, where the first two rows correspond

to the prediction errors and determination coefficients for the second derivatives and

the last two rows show the results obtained with the original data. The headings

4,5,...,11 refer to the number p of variables used in the finite-dimensional models and

the notation L2
3 refers to the functional L2-model fitted by projecting on 3 principal

components, as explained above. The prediction errors are estimated by splitting

the sample into training and tests elements, as mentioned in the description of the

simulation experiments (all the considered values of p are checked in every run).

(b) The sugar data set. This data set has been previously considered in functional data

analysis by several authors; see e.g. Aneiros and Vieu (2014) for additional details.

The functions X(t) are fluorescence spectra obtained from sugar samples and the

response Y is the ash content, in percentage of the sugar samples. The comparison

results of finite-dimensional models versus the L2-functional counterpart are shown in

Table 10. Again the outputs correspond to the averages over 100 replications obtained

by randomly selecting 100 training and tests samples from the original data.

p 4 5 6 7 8 9 10 11 L2

3

Pred. error 1.9793 2.0472 1.9918 1.9975 1.9300 1.9784 1.9929 1.9938 2.2203

R2
a

0.7523 0.7507 0.7607 0.7618 0.7841 0.7733 0.7754 0.7798 0.6579

Table 10: Standard prediction errors and adjusted R2

a
, with different values of p for the sugar dataset.

(c) Population data The data provide, for 237 countries and geographical areas, the

percentage of population under 14 years for the period 1968-2018 (one datum per

year). In our experiment, the functional data (in fact, they are longitudinal data) are
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given for vectors (X(1960), X(1961), . . . , X(2010)) and the aim is to predict the value

eight years ahead. Thus, the response variable is Y = X(2018). Several theoretical

assumptions (for example, independence), commonly used in the linear model, are

violated here but, still, our comparisons make sense at an exploratory data level.

The outputs can be found in Table 11 below. As in the previous examples, they

correspond to 100 runs based on random partitions of the data set into 80% training

data and 20% test data. Again p denotes the number of years (equispaced in the

interval 1960-2010) used as explanatory variables in the finite-dimensional models.

Thus for p = 10 we consider the years 1960, 1965,...,2010; for p = 8 we take 1960,

1967, 1974,...,2009.

p 5 6 7 8 9 11 13 L2
3

Pred. error 1.7298 2.7577 1.6625 1.4712 1.5952 2.0241 1.6138 2.1520

R2

a
0.9719 0.9294 0.9754 0.9810 0.9778 0.9629 0.9815 0.9559

Table 11: Standard error and adjusted R2
a
, for different values of p for the population-under-14 dataset.

7 Conclusions

We explore a mathematical framework, different from the classical L2-approach (16), for

the problem of linear regression with functional explanatory variable X and scalar response

Y .

(a) This mathematical formulation includes, as particular cases, the finite-dimensional

models (15) obtained by considering as explanatory variables a finite setX(t1), . . . , X(tp)

of marginals. This would allow for example, to compare such models for variable se-

lection purposes (Berrendero et al., 2019) or considering, within a unified framework,

the study of asymptotic behaviour of models as the number p of covariates grows

to infinity (see e.g. (Sur and Candès, 2019) for a recent analysis in the logistic re-

gression model). Note also that in the functional case the asymptotic analysis as
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p → ∞ appears more naturally than in the case of general regression studies, since

the new incoming co-variables are homogeneous in nature as they come from the

unique, predefined reservoir of the one-dimensional marginals of the process X(t).

(b) From a practical viewpoint, the fact of encompassing all the finite-dimensional models

under a unique super-model (4)-(6) is also relevant in view of the empirical results of

Section 5: indeed, the outputs of the simulations and the real data examples there

show that, somewhat surprisingly, there is often little gain (if any) in considering the

L2-functional model (16) instead of the simpler finite-dimensional alternatives (15).

(c) Of course, we don’t claim that the L2-based regression model (16) should be aban-

doned in favour of the finite-dimensional alternatives of type (15), since this model is

now well-understood and has proven useful in many examples. We are just suggest-

ing that there are perhaps some reasons to consider the problem of linear functional

regression under a broader perspective. In addition, note that the L2 model appears

as a particular case of the general formulation (4)-(6).

(d) In any case, even if we are willing to incorporate the finite-dimensional models (15),

according to our suggested approach, the functional character of the regression prob-

lem is not lost at all as the proposed global general formulation is unequivocally

functional. In practice, this means that, according to our assumptions, our explana-

tory variables are functions and we cannot get rid of this fact in the formulation of

our model.

A Appendix: Proof of Theorem 3

The proof depends on the following three lemmas, the first one is a direct application of

Lemma 3.1 in Bosq (1991), (it is also called Weyl’s inequality in the literature). In what

follows, we denote Xp the n × p data matrix whose (i, j)-entry is Xi(tj,p), i = 1, . . . , n,
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j = 1, . . . , p. Denote also by KTp , the covariance matrix of (X(t1,p), . . . , X(tp,p)).

Lemma 3. Let γ1,p ≥ γ2,p ≥ · · · ≥ γp,p be the eigenvalues of KTp and γ̂1,p ≥ γ̂2,p ≥ · · · ≥ γ̂p,p

the eigenvalues of (1/n)(X ′
pXp). Then, for j = 1, . . . , p, |γj,p−γ̂j,p| ≤ ‖(1/n)(X ′

pXp)−KTp‖op.

Lemma 4. Let K be a continuous covariance function and let Tp be a set of grid points

as in Lemma 2. Then limp→∞
1
p
‖KTp‖op = λ1, where λ1 is the largest eigenvalue of the

covariance operator K associated with K.

Proof. It is enough to prove that ‖(1/p)KTp‖op → λ1. Let the p-dimensional vector fp =

(f(t1,p), . . . , f(tp,p)) be an eigenvector of (1/p)KTp associated to γ1,p the largest eigenvalue

of KTp , such that ‖fp‖max ≤ γ1,p for all p. Let us define a polygonal function gp : [0, 1] → R

such that gp(ti,p) = f(ti,p), observe that ‖gp‖∞ = ‖fp‖max. Let us prove that {gp}p is an

equicontinuous sequence. Since K(s, t) is continuous, it is also uniformly continuous on

[0, 1]2. Then, for all ǫ > 0, there exists δ = δ(ǫ) > 0 such that |K(x, y)−K(x′, y′)| < ǫ if

‖(x, y)− (x′, y′)‖max < δ. Let us denote ‖Tp‖ = maxi=1,...,p−1 |ti+1,p − ti,p|. Let ǫ > 0 and p

large enough such that ‖Tp‖ < δ. From ‖fp‖max ≤ γ1,p, it follows that, for all i, k such that

1 ≤ i ≤ p, 1 ≤ i+ k ≤ p and |ti,p − ti+k,p| < δ, we have

γ1,p|f(ti,p)− f(ti+k,p)| =
1

p

∣∣∣
p∑

j=1

[
K(ti,p, tj,p)−K(ti+k,p, tj,p)

]
f(tj,p)

∣∣∣ ≤ ǫγ1,p.

Then, for p large enough, for all i, k such that 1 ≤ i ≤ p, 1 ≤ i+k ≤ p and |ti,p− ti+k,p| < δ,

|f(ti,p)− f(ti+k,p)| ≤ ǫ. Hence, {gp}p is equicontinuous.

Since {gp}p is bounded, by Arzela-Ascoli there exists pk → ∞ and g such that ‖gpk −
g‖∞ → 0. For ease of writing we will denote gpk = gp, Let us fix ti,p. Then, for all ǫ > 0

and for p (which depends on ti,p) large enough,

∣∣∣γ1,pgp(ti,p)−
∫ 1

0

K(ti,p, t)gp(t)dt
∣∣∣ =

∣∣∣1
p

p∑

j=1

K(ti,p, tj,p)gp(tj,p)−
∫ 1

0

K(ti,p, t)gp(t)dt
∣∣∣ < ǫ.

(17)
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Since gp → g uniformly, there exists p0 > 0 such that Equation (17) holds for all p > p0.

By continuity of K and gp it can be seen that there exists p1 > p0 such that for all p > p1,

max
s∈[0,1]

∣∣∣γ1,pgp(s)−
∫ 1

0

K(s, t)gp(t)dt
∣∣∣ < ǫ.

Again using that gp → g uniformly, ‖
∫ 1

0
K(s, t)gp(t)dt −

∫ 1

0
K(s, t)g(t)dt‖∞ → 0, then

γ1,pgp → λg for some λ. This proves that g is an eigenfunction of K with eigenvalue λ.

Let us prove that λ = λ1. Assume first that λ < λ1 and let f be an eigenfunction

associated to λ1. Let us define fp = (f(t1,p), . . . , f(tp,p)). Since f ∈ L2[0, 1] and f is a

continuous function, we have that wp :=
∑p

i=1 f(ti,p)
2 → ∞ as p → ∞, from where it

follows that ξp := f/‖fp‖22 is a Cauchy sequence w.r.t to the uniform norm (observe that

‖ξp − ξp+k‖∞ ≤ ‖f‖∞((1/wp) + (1/wp+k))). Then we can apply (17) for p > p2 for some p2

and we get ‖λ1ξp − (1/p)KTpξp‖∞ < ǫ. Let us take ǫ < (λ1 − λ)/4 and p large enough such

that |γ1,p − λ| < ǫ/4. Since ‖ξp‖ = 1,

λ+ ǫ/4 ≥ γ1,p ≥ ‖(1/p)KTpξp‖op ≥ λ1 − ǫ,

which contradicts that ǫ < (λ1 − λ)/4 and then λ ≥ λ1.

To prove the other inequality let (f(t1,p), . . . , f(tp,p)) be an eigenvector of KTp and gp

a polygonal function such that gp(ti,p) = f(ti,p), we have proved that there exists g an

eigenfunction (associated to λ) of K, such that gpk → g uniformly. Denote gp = gpk and

define the sequence of functions

hp(s) =
1√
‖g‖2

gp(s) s ∈ [0, 1].

Then, hp → h uniformly, where h is an eigenfunction of K associated to λ, and ‖h‖22 = 1.

Hence, λ = ‖K(h)‖2 ≤ λ1.

Finally, γ1,p → λ1 since we have proved that every subsequence of γ1,p has a subsequence

which converges to λ1.
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Lemma 5. Under the hypotheses of Th. 3. We have, for all ǫ > 0,

∥∥∥ 1
n
X ′

pXp −KTp

∥∥∥
op

≤ ǫγp,p, eventually, with probability one. (18)

Proof. Let us define Fn = {ω : ‖ 1
n
X ′

pXp−KTp‖op > ǫγp,p}. To prove (18), by Borel-Cantelli

lemma, it is enough to prove that,
∑

n P(Fn) < ∞. Let us denote Ai = Ai,n = {ω :

maxj=1,...,p |Xi(tj,p)| < log2 n}, then P(Fn) ≤ P(Fn ∩
⋂n

i=1Ai) + nP(Ac
1) := I1 + I2.

To prove that
∑

n I1 < ∞, we will use Corollary 5.2 in Mackey et al. (2014). Let

us define Yk the p × p random matrix whose entry i, j is (Xk(ti,p)Xk(tj,p) − (KTp)i,j)IAk
.

Let us denote Zk = (Xk(t1,p), . . . , Xk(tp,p))
′
IAk

, then Yk = ZkZ
′
k − KTpIAk

, so ‖Yk‖op ≤
‖ZkZ

′
k‖op + ‖KTpIAk

‖op ≤ ‖Zk‖22 + ‖KTpIAk
‖op. We have that ‖Zk‖22 ≤ p log2 n and

‖KTpIAk
‖op = max

z∈Sp−1

E[(z′Zk)(Z
′
kz)] = max

z∈Sp−1

E[(z′Zk)
2] ≤ ‖z‖22‖Zk‖22 ≤ p log2 n.

To bound η2 := ‖∑k E(Y
2
k )‖op ≤ n‖E(Y 2

1 )‖op, observe that, E[Y 2
1 ] ≤ E[(Z1Z

′
1)

2] =

E[‖Z1‖22Z1Z
′
1] ≤ p log2 nE[Z1Z

′
1] ≤ p log2 nKTp . Then, η2 ≤ np log2 nγ1,p. By Corollary

5.2 in Mackey et al. (2014),

P

(
Fn ∩

n⋂

i=1

Ai

)
≤ p exp

[
− (nǫγp,p)

2

3npγ1,p log
2 n + 4pnǫγp,p log

2 n

]
:= exp(−an). (19)

From Lemma 4, γ1,p/p → λ1, then
∑

n I1 < ∞ follows from the assumption n(γp,p)
2/(p2 log(n)3) →

∞ since this implies an/ logn → ∞. Finally,
∑

n nP(Ac
1) < ∞ follows from the assumption

P(supt∈[0,1] X(t) > M) ≤ exp(−CM2) for some constant C > 0 and for all M > 0.

Now, to prove Theorem 3, let us take p = pn and Tp as in Lemma 4. Recall that

αp(·) =
p∑

j=1

βj,pK(tj,p, ·) and α̂p(·) =
p∑

j=1

β̂j,pK(tj,p, ·),

and denote βp = (β1,p, . . . , βp,p)
′, and β̂p = (β̂1,p, . . . , β̂p,p)

′, where ′ stands for the transpose.

Observe that ‖α̂p − αp‖2K = (β̂p − βp)
′KTp(β̂p − βp) = (β̂p − βp)

′K
1/2
Tp

K
1/2
Tp

(β̂p − βp). Since
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K
1/2
Tp

= (K
1/2
Tp

)′, ‖α̂p − αp‖2K = ‖K1/2
Tp

(β̂p − βp)‖22 ≤ ‖K1/2
Tp

‖2op‖β̂p − βp‖22. By Lemma 4, we

can take p large enough such that, ‖α̂p − αp‖2K ≤ 2λ1p‖β̂p − βp‖22. So is is enough to prove

νnp‖β̂p − βp‖22 → 0 a.s. (20)

Since β̂p = argminν‖Y − Xpν‖2, we have ‖Y − Xpβ̂p‖2 ≤ ‖Y −Xpβp‖2 = ‖e‖2 and

‖Y −Xpβ̂p‖22 = ‖Xpβp + e− Xpβ̂p‖22 = ‖Xp(β̂p − βp)‖22 + ‖e‖22 − 2e′Xp(β̂p − βp)

so ‖Xp(β̂p − βp)‖22 ≤ 2e′Xp(β̂p − βp). Denote by Φ an n× p matrix whose columns form an

orthonormal basis for the linear space spanned by the columns of Xp. Then Xp(β̂p−βp) = Φv

for some unique v ∈ R
p, and ẽ = Φ′e, then denoting by Sp−1 the unit sphere of Rp,

‖Xp(β̂p − βp)‖2 ≤ 2e′
Xp(β̂p − βp)

‖Xp(β̂p − βp)‖2
= 2ẽ′

v

‖v‖2
≤ 2 sup

u∈Sp−1

ẽ′u.

Let us denote N1/2 a minimal covering of Sp−1 with balls of radius 1/2, centred at

points in Sp−1, its cardinality |N1/2| is bounded from above by 5p−1. For all u ∈ Sp−1

there exist a point z in the set C1/2 of centres of the balls in N1/2 and w ∈ R
p such

that u = z + w, with ‖w‖2 ≤ 1/2. Denote W1/2 the set of such w′s so maxu∈Sp−1 ẽ′u ≤
maxz∈C1/2

ẽ′z + maxw∈W1/2
ẽ′w, then

2 sup
u∈Sp−1

ẽ′u ≤ 4 max
z∈C1/2

ẽ′z. (21)

Observe that ‖K1/2
Tp

(β̂p − βp)‖22 = (β̂p − βp)
′KTp(β̂p − βp). Thus,

‖K1/2
Tp

(β̂p − βp)‖22 = (β̂p − βp)
′(KTp − (1/n)(X ′

pXp))(β̂p − βp) + (β̂p − βp)
′(1/n)(X ′

pXp)(β̂p − βp).

Now, using Lemma 5 together with the inequalities |x′Ax| ≤ ‖A‖op‖x‖2, for x = (β̂p − βp),

A = (1/n)(X ′
pXp)−KTp and ‖KTp‖op ≥ γp,p we get that, eventually a.s.,

1

n
‖Xp(β̂p − βp)‖22 ≥ ‖K1/2

Tp
(β̂p − βp)‖22 − ǫγp,p‖β̂p − βp‖22 ≥ ‖β̂p − βp‖22γp,p − ǫγp,p‖β̂p − βp‖22.
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Then, from (21), P(νnp‖β̂p − βp‖22 > ǫ) ≤ 5p−1maxz∈Sp−1 P
(
ẽ′z >

√
nǫγp,p(1− ǫ)/(2pνn)

)
.

Now, note that there is a sub-Gaussianity bound, not depending on z, for the tail proba-

bilities P(ẽ′z > t) (see the remarks immediately before Theorem 3). Finally, (20) follows

from nγp,p/(p
2νn logn) → ∞.

References

Aneiros, G. and Vieu, P. (2014). Variable selection in infinite-dimensional problems. Statis-

tics & Probability Letters, 94:12–20.

Ash, R. and Gardner, M. (1975). Topics in Stochastic Processes. Academic Press.

Berlinet, A. and Thomas-Agnan, C. (2004). Reproducing kernel Hilbert spaces in probability

and statistics. Kluwer Academic Publishers.

Berrendero, J. R., Bueno-Larraz, B., and Cuevas, A. (2019). An rkhs model for variable

selection in functional linear regression. Journal of Multivariate Analysis, 170:25–45.

Bosq, D. (1991). Modelization, nonparametric estimation and prediction for continuous

time processes. Nonparametric functional estimation and related topics. Springer.

Cardot, H., Ferraty, F., and Sarda, P. (1999). Functional linear model. Statistics and

Probability Letters, 45(1):11–22.

Cardot, H. and Sarda, P. (2011). Functional linear regression. In Ferraty, F. and Romain,

Y., editors, The Oxford Handbook of Functional Data Analysis, pages 21–46. Oxford

University Press.

Cucker, F. and Smale, S. (2001). On the mathematical foundations of learning. American

Mathematical Society, 39(1):1–49.

36



Cucker, F. and Zhou, D. X. (2007). Learning theory: an approximation theory viewpoint,

volume 24. Cambridge University Press.

Cuevas, A. (2014). A partial overview of the theory of statistics with functional data.

Journal of Statistical Planning and Inference, 147:1–23.

Febrero-Bande, M. and Oviedo de la Fuente, M. (2012). Statistical computing in functional

data analysis: The R package fda.usc. Journal of Statistical Software, 51(4):1–28.

Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis: theory and prac-

tice. Springer Science & Business Media.

Gohberg, I., Goldberg, S., and Kaashoek, M. (2004). Basic classes of linear operators.

Birkhäuser.
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