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Abstract

The analysis of animal movement has gained attention recently,
and new continuous-time models and statistical methods have been
developed. All of them are based on the assumption that this move-
ment can be recorded over a long period of time, which is sometimes
infeasible, for instance when the battery life of the GPS is short. We
prove that the estimation of its home range improves if periods when
the GPS is on are alternated with periods when the GPS is turned
off. This is illustrated through a simulation study, and real life data.
We also provide estimators of the stationary distribution, level sets
(which provides estimators of the core area) and the drift function.

1. Introduction

Home range estimation is a major problem in animal ecology. It was de-
fined by Burt (1943) as “the area traversed by the individual in its normal
activities of food gathering, mating, and caring for young”. Following this,
there has arisen a considerable literature on the subject, see for instance the
reviews in Worton (1987) or Powell (2000). Several models have been pro-
posed to analyse the home range as well as the dynamics of animals. The
first one (see Hayne (1949)) assumed that the available data is a sequence of
locations recorded at some times, and estimates the home range by means
of the convex hull of the points. In general, this overestimates the home
range. Some proposals have been introduced to address this overestimation,
for instance the use of “local convex hulls” (see Getz and Wilmers (2004)) or
the r-convex hull (see Burgman and Fox (2003)). Some others are focused
on the estimation of the co-called “utilization distribution” (the density
function that describes the probability of finding the animal at a particu-
lar location). Among these, there is the so-called Brownian bridge model
(BBMM), a parametric model, which was introduced in Horne et al. (2007).
In the BBMM, given two recorded locations a, b ∈ R2 of the individual, the
trajectory is interpolated by using a Brownian bridge Za,b,T
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(see Benhamou (2011), Buchin et al. (2012), Horne et al. (2007)), where
Za,b,T

0 = a, Za,b,T
T = b and at time t ∈ [0, T ], Za,b,T

t ∼ N(µ(t), σ2(t)Id),

µ(t) = a+ t(b− a)/T, σ2(t) = t(T − t)σ2
m/T,

Id is the 2 × 2 identity matrix and σ2
m is a diffusion coefficient that char-

acterizes the animal’s movement. Assuming that a set of recorded points
(ai, bi)i=1,...,n is available, the goal of this model is to estimate the probabil-
ity density function of the process Zt (the position of the animal at time t),
based on a mixture model of the random processes {Zai,bi,T

t }i=1,...,n.
The BBMM can be unrealistic in some cases: for instance, if the irreg-

ularities of the terrain prevent the animal from visiting certain areas, the
BBMM can assign no null probability to those areas, since no restriction is
imposed on the Brownian bridge interpolating the recorded positions.

Avoiding this problem, other more general and flexible models assume
that there is a continuous time reflected diffusion (RBMD) that governs the
process, and the core-area of the species is estimated as well as its home
range (see Cholaquidis et al. (2016, 2020)), together with the stationary
distribution of the process.

A problem that appears in practice is that these models assume that it
is possible to continuously record the location over a long period of time.
This depends on the size of the animal (large animals allow a GPS with a
much longer battery life). To overcome this problem, we propose recording
the position of the animal continuously, but only for certain periods of time
(of fixed length) in which the GPS is on (see Figure 1). More precisely, the
GPS is set alternatively on during p intervals of length δ1, and off during
p− 1 intervals of length δ2.

This will be called the on-off model (see Section 3). Its existence and
uniqueness is inherited from the RBMD. Even though there is a loss in the
amount of available data, we obtain the same rate of convergence, in Haus-
dorff distance, as the one obtained in Cholaquidis et al. (2016). Moreover,
we show that one gets a significant improvement using the on-off model in
the following sense: if the GPS only transmits the location of the animal
during p intervals of time δ1, the upper bound for the Hausdorff distance
between the estimators based on the on-off model and the support S is sig-
nificantly smaller than for the case in which the GPS is turned on the same
amount of time pδ1, but only between 0 and pδ1, see Theorem 1 below.

Next we consider the case where the set is r-convex (see the definition in
next section) and provide convergence rates with respect to the Haussdorff
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Figure 1: A trajectory of the on-off model is shown. The whole trajectory
consist of 104 steps. In the first 250 steps the GPS is on, in the following
500 steps it is off, and so on. In black is the trajectory at times in which
the GPS is on, in red is shown the trajectory at times which it is off.

distance and to the distance in measure for the r-convex hull. We also
provide estimators of the stationary distribution, level sets and the drift
function. Lastly we provide some simulation results and a real data example
is analysed.

2. Some Preliminaries

The following notation will be used throughout the paper.

Given a set S ⊂ Rd, we will denote by int(S), S and ∂S the interior,
closure and boundary of S, respectively, with respect to the usual topology
of Rd. The Borel σ-algebra in S will be denoted by A(S).

The parallel set of S of radius ε will be denoted by B(S, ε), that is,
B(S, ε) = {y ∈ Rd : infx∈S ‖y − x‖ ≤ ε}. If A ⊂ Rd is a Borel set,
then µ(A) denotes its d-dimensional Lebesgue measure. We will denote by
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B(x, ε) the closed ball in Rd, of radius ε, centred at x, and ωd = µ(B(0, 1)).
The open ball is denoted by B̊(x, ε). Given two compact non-empty sets
A,C ⊂ Rd, the Hausdorff distance or Hausdorff–Pompei distance between
A and C is defined by

dH(A,C) = inf{ε > 0 : such that A ⊂ B(C, ε) and C ⊂ B(A, ε)}.

Given two measurable sets A,C ⊂ Rd, the distance in measure between A
and C is defined by

dµ(A,C) = µ(A \ C) + µ(C \ A).

The notion of r-convex sets, a well-known shape restriction in set estimation
(see for instance Walther (1997, 1999)), extends convex sets to a much more
flexible family of sets. It just replaces the hyperplanes in the definition of
convex sets by the complements of balls of radius r, providing a very flexible
class of sets.

Definition 1. A set S ⊂ Rd is said to be r-convex, for r > 0, if S = Cr(S),
where

Cr(S) =
⋂{

B̊(x,r): B̊(x,r)∩S=∅
}
(
B̊(x, r)

)c
, (1)

is the r-convex hull of S.

2.1 A brief outline of our theoretical results

• We prove that any set containing the trajectory of the on-off model
(that is, the times at which the GPS is on) is a consistent estimator,
in Hausdorff distance, of the home range and show the improvement
we can attain with the proposed new model in Theorem 1.

• However, this is not the case if we want to estimate the set with
respect to the distance in measure (w.r.t. Lebesgue measure). In this
case, we propose to use the r-convex hull of the same trajectory of the
on-off model. When S is r-convex, a natural estimator of S from a
random sample Xn of points (drawn from a distribution with support
S) is Cr(Xn). See, for instance, Rodŕıguez-Casal (2007); Pateiro-
López and Rodŕıguez-Casal (2009). We show the convergence in the
Hausdorff metric, while the convergence in measure is derived from
Corollary 1 as mentioned in Remark 2.
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• In order to estimate the core area (as a level set of the stationary den-
sity) and the drift component of the stochastic differential equation
(2), we prove the uniform convergence of a kernel estimator of the
stationary density, and derive estimators of the level sets in Theorem
2.

• An estimator of the the drift component is derived from the kernel
density estimator by using Green’s formula.

• In all cases we get almost sure convergence rates.

2.2 Reflected Brownian Motion with drift

Now we will give a brief review of the definition an main properties of the
RBMD. The details can be found for instance in Cholaquidis et al. (2020)
and references therein. In what follows, D is a bounded domain in Rd

(that is, a bounded connected open set) such that ∂D is C2. Given a d-
dimensional Brownian motion {Bt}t≥0 departing from B0 = 0 defined on a
filtered probability space (Ω,F , {Ft}t≥0,Px), and a function f : D → R, the
RBMD is the (unique) strong solution to the following reflected stochastic
differential equation on D whose drift is given by the gradient of f ,

Xt = X0 +Bt−
1

2

∫ t

0

∇f(Xs)ds+

∫ t

0

n(Xs)ξ(ds), where Xt ∈ D, ∀t ≥ 0.

(2)
Here we assume that ∇f is Lipschitz, while n(x) denotes the inner unit
vector at the boundary point x ∈ ∂D. The term {ξt}t≥0 is the corresponding
local time, that is, a one-dimensional continuous non-decreasing process
with ξ0 = 0 that satisfies

ξt =

∫ t

0

I{Xs∈∂D}dξs.

Since we have assumed that ∂D is C2, we can ensure that the geometric con-
ditions for the existence of a solution of Equation (2), as required in Saisho
(1987), are satisfied. We then get from Theorem 5.1 in Saisho (1987) that
there exists a unique strong solution of the Skorokhod stochastic differential
equation (2). The solution is a strong solution in the sense of definition 1.6
in Ikeda and Watanabe (1981). In Cholaquidis et al. (2020) it is proved
that the RBMD given by (2) is non-trap, which is defined as follows.
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Definition 2. We say that D is a trap domain for the stochastic process
{Zt}t≥0 if there exists a closed ball B ⊂ D with positive radius such that
supx∈D ExTB =∞, where Ex denotes the expectation w.r.t. Px. Otherwise
D is called a non-trap domain.

The following proposition proven in Cholaquidis et al. (2020) will be
used to get the consistency in Hausdorff distance, of the trajectory, as an
estimator of the home range of the on-off model.

Proposition 1. Let D ⊂ Rd be a bounded domain such that ∂D is C2. De-
note by π the invariant distribution of {Xt}t≥0. If D is a non-trap domain
for {Xt}t≥0, then there exist positive constants α and β such that

sup
x∈D

∥∥Px(Xt ∈ ·)− π(·)
∥∥
TV
≤ βe−αt.

Here ‖µ‖TV stands for the total variation norm of the measure µ.

3. The On-Off Model

Our on-off model is defined as follows:

Definition 3. Given

• S ⊂ Rd a compact set

• {Xt : t > 0} a reflected Brownian motion with drift, in S

• Two parameters δ1, δ2 ∈ R+

• A function {at : t > 0} that varies over {0, 1} intermittently, with
at = 1 for periods of length δ1 and at = 0 for periods of length δ2.
More precisely,

at =
∞∑
k=0

I[k(δ1+δ2),(k+1)δ1+kδ2](t).

We define the process

XON
T = {Xt : t ∈ I, t < T}, (3)

where I := {t : at = 1}. Observe that the process XON
T is defined only on

a union of disjoint intervals. The function at works like an “on-off” switch:
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we only observe the process while at = 1 (i.e. the switch is ‘On’), which
happens on intervals of length δ1, while it is not observable on intervals of
length δ2, in alternation.

The intuition behind this is that statistical properties should not vary
so much when observing the full trajectory compared to when it is observed
intermittently.

The following theorem gives some insight into the improvement ob-
tained using the on-off model. It compares the upper bound for the Haus-
dorff distance between the trajectory of the on-off model and the support
S, where the GPS is set on during p intervals of length δ1 and is off during
(p − 1) intervals of length δ2, with the model in which the GPS is on the
same amount of time pδ1 but only between 0 and pδ1.

Theorem 1. Let S ⊂ Rd be a compact set such that S = int(S) and ∂S
is C2. Let XON

T be defined as in Equation (3). Suppose the drift is a
Lipschitz function given by the gradient of some function f , and assume
that the stationary distribution π has density g. Write c := infx∈S g(x).
Let ST be any measurable set containing XON

T , such that ST ⊂ S. Let
ε < 2(2β/cωd)

1/d, and assume that

δ1 >
1

α
log
( 2β

cωd(ε/2)d

)
. (4)

Let T = pδ1 + (p− 1)δ2. Then

P{dH(ST , S) > ε} ≤ C1 exp(−C2pδ1) exp(−C3p). (5)

However, if the GPS is on during the interval [0, pδ1], the bound is

P{dH(S̃pδ1 , S) > ε} ≤ C1 exp(−C2pδ1) (6)

where S̃pδ1 is any measurable set containing Xpδ1 = {Xt : t < pδ1}, con-
tained in S. The values of C1, C2, C3 are given in the proof, they depend
only on ε, µ(S), β, α and ωd. By (4) they are strictly positive.

Remark 1. The choice of the parameters is an important practical prob-
lem. Observe that given B the life time of the battery of the GPS, then
p = B/δ1. So, given δ1 and B, p is fixed. Equations (5) and (6) suggest
choosing p as large as possible, and then δ1 as small as possible, but fulfilling
the condition in (4) together with pδ1 = B. This choice is consistent with
the results we obtained in the simulations and the real-life data example.
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The following corollary is a direct consequence of Theorem 1. It is
proved following the same ideas used to prove Corollary 1 in Cholaquidis
et al. (2016).

Corollary 1. Under the hypotheses of Theorem 1, for any measurable set
ST containing XON

T we have

a) dH(ST , S) = o
(
(log(T )2/T )1/d

)
a.s.

b) If, moreover, S and Sc are r-convex, for some r > 0, then dH(Cr(X
ON
T ), S) =

o
(
(log(T )2/T )1/d

)
a.s..

Remark 2. The convergence in Hausdorff distance of a sequence of r-
convex sets implies the convergence of its boundaries, as is proved in The-
orem 3 in Cuevas et al. (2012), which, in turn, implies the convergence
in measure, i.e., dµ(Cr(XT ), S) → 0, under the hypothesis of part b) of
Corollary 1.

3.1 Estimation of the stationary distribution, level sets, and drift

In the stochastic differential equation (2) the drift ν(x) is given by the
gradient ∇f of a function f , i.e., ν(x) = 1

2
∇f(x). By Green’s formula,

there exists a unique stationary distribution (for the RBMD and the on-off
process XON

T ) and it is given by π(dx) = ce−f(x)ID(x)dx := g(x)dx, where
c is a normalization constant. The density g can also be estimated using a
kernel-based estimator

ĝn(x) =
1

nhdn

n∑
i=1

K
(x−Xi

h

)
, (7)

where K : Rd → R is a non-negative function, as proposed in Cholaquidis
et al. (2020), based on a subsample of points at which the GPS is on. The
a.s. uniform consistency of ĝn is stated in the following theorem.

Theorem 2. Under the hypotheses of Theorem 1, assume further that g is
Lipschitz. Let ℵn = {X(k+1)δ1+kδ2 : k = 0, . . . , n−1}. Let ĝn be given by (7),
based on ℵn. Assume that K is non-negative, Lipschitz and

∫
K(t)dt = 1.

Let h = hn → 0, βn →∞, and αn → 0 such that βnhn → 0, αn = o(1/βn),
log(n)/βn → 0, and αnnh

d/(βn log(n))→∞. Then

βn sup
x∈S
|ĝn(x)− g(x)| → 0 a.s.
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Moreover, if λ > 0 is such that ∂Gg(λ) 6= ∅ where Gg(λ) = {g > λ}, g is
C2 on a neighbourhood E of the level set λ and the gradient of g is strictly
positive on E, then dH(∂Gg(λ), ∂Gĝn(λ)) = o(1/β) a.s.

The level sets will provide significant information about the time spent
in those regions, in particular the core area will correspond to level sets
with large values of λ.

An estimator of the drift function can also be derived from a plug-in
method, and is given by ν̂(x) = 1

2
∇ log(ĝn(x)).

Figure 2 shows the estimated level sets for two different choices of δ1

and δ2, and the density g given by (8). The theoretical level sets are shown
in Figure 3. The much better behaviour of the on-off model is clear when
the number of points in the trajectory is small (2030 in the top panels),
while the behaviour becomes similar when this number is large (98809 in
the bottom panel).

The estimated density for the same set of parameters used in the first
row of Figure 2 (δ1 = 10, δ2 = 500 with a total number of observations of
pδ1 = 2030) is shown in Figure 4, where a Gaussian kernel with bandwidth
h = 2 was employed.

3.2 Some simulation results

To simulate the RBMD we followed Cholaquidis et al. (2020): we first
choose a step h > 0, and denote by sym(z) the point symmetric with the
point z with respect to ∂S. We start with X0 = x and suppose that we
have obtained Xi ∈ S. To produce the following point, set

Yi+1 = Xi + Zi + h∇f(Xi),

where Zi is a centred Gaussian random vector, independent w.r.t. Z1, . . . , Zi−1,
with covariance matrix h× (Id)R2 .

Then:

1. If Yi+1 ∈ S, set Xi+1 = Yi+1.

2. If Yi+1 /∈ S and sym(Yi+1) ∈ S, set Xi+1 = sym(Yi+1).

3. If Yi+1 /∈ S and sym(Yi+1) /∈ S, set Xi+1 = Xi.

Lastly, the on-off model is obtained from X1, . . . , XN where we only
keep those Xi such that i ∈ ∪∞k=0{[k(δ1 + δ2)/h, (k + 1)δ1/h+ kδ2/h]}.
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Figure 2: Top: Contour plot of the level sets of the estimated density
function when δ1 = 10, δ2 = 500 with a total number of observations of
pδ1 = 2030. Bottom: Contour plot of the level sets of the estimated density
function when δ1 = 500, δ2 = 10 with a total number of observations of
pδ1 = 98809. Left panels correspond to the entire trajectory, right panels
to the on–off proposal.

We consider an RBMD in the set S = E \B((4/5, 0), 1/2), where E =
{(x, y) ∈ R2 : 4x2/9+y2 ≤ 1}, with drift function given by µ(x, y) = −(x, y).
The stationary density is

g(x) =
1

c
e−(x2+y2)IS(x, y) where c =

∫∫
S

exp
[
−(x2 + y2)

]
dxdy. (8)

The mean over 50 replications of the Hausdorff distance between S and
the trajectory of the on-off model for different values of δ1, δ2, and h is
shown in Table 1, for trajectories of N = 105 steps. In all tables we also
report the median in parentheses. Figure 5 shows, in each of the 9 panels,
for fixed δ1/h, δ2/h, the 50 Hausdorff distances (whose mean and median
values are shown as solid and dashed lines), for h ∈ {0.01, 0.02, 0.03}.

A comparison of the on-off model and the model in which the GPS is on
only between time 0 and time pδ1, stated in Theorem 1, is shown in Figure
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Figure 3: Theoretical level sets for the density g given by (8).

6 and Table 2. Figure 6 shows for each of the 9 panels previously considered
(see Table 1) the 50 Hausdorff distances between the trajectory of the on-
off model and S (square box). Each of them is joined with a segment,
with the corresponding circle box (for the same trajectory), representing
the Hausdorff distance between S and the same trajectory but where the
GPS is on between 0 and pδ1.

Table 2 shows the average over 50 replications of the aforementioned
distances. Table 3 shows the mean and median of the proportion of effi-
ciency gain given by 1− 1

50

∑50
i=1 dH(SONi , S)/ 1

50

∑50
i=1 dH(S

[0:pδ1]
i , S).
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δ2

h δ1 100 250 500

0.001 100 0.1534 (0.1009) 0.2188 (0.1769) 0.2882 (0.2263)
0.001 250 0.1414 (0.0942) 0.1814 (0.1209) 0.2358 (0.1757)
0.001 500 0.1341 (0.0906) 0.1444 (0.0992) 0.1968 (0.1392)
0.002 100 0.0689 (0.0519) 0.1119 (0.0862) 0.1735 (0.1382)
0.002 250 0.0555 (0.0382) 0.0780 (0.0547) 0.1260 (0.0887)
0.002 500 0.0508 (0.0330) 0.0648 (0.0431) 0.0885 (0.0625)
0.003 100 0.0495 (0.0424) 0.0863 (0.0688) 0.1375 (0.1099)
0.003 250 0.0404 (0.0305) 0.0508 (0.0401) 0.0761 (0.0619)
0.003 500 0.0370 (0.0282) 0.0424 (0.0342) 0.0563 (0.0439)

Table 1: Mean and median over 50 replications of the Hausdorff distance,
for the on-off model, with N = 105 steps.

δ2

h δ1 100 250 500

0.001 100 0.3072 (0.3128) 0.5151 (0.5134) 0.6478 (0.6726)
0.001 250 0.1983 (0.1143) 0.3090 (0.3128) 0.4603 (0.4726)
0.001 500 0.1469 (0.0811) 0.2043 (0.1143) 0.3072 (0.3128)
0.002 100 0.1214 (0.0784) 0.2580 (0.1476) 0.4047 (0.3165)
0.002 250 0.0800 (0.0435) 0.1215 (0.0784) 0.2178 (0.1216)
0.002 500 0.0674 (0.0368) 0.0826 (0.0453) 0.1215 (0.0784)
0.003 100 0.0632 (0.0520) 0.1260 (0.1026) 0.2774 (0.1668)
0.003 250 0.0426 (0.0352) 0.0632 (0.0520) 0.1006 (0.0849)
0.003 500 0.0376 (0.0286) 0.0473 (0.0368) 0.0632 (0.0520)

Table 2: Mean and median over 50 replications of the Hausdorff distance,
for the trajectory observed in [0, pδ1], with N = 105 steps.
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Figure 4: Estimated density using a Gaussian kernel with bandwidth h =
0.2. Right: the on-off model with δ1 = 10, δ2 = 500 with a total number
of observations of pδ1 = 2030. Left: Estimated density based on trajectory
observed with same number of observations but on [0, 2030].

Figure 5: In each of the 9 panels we fixed δ1/h, δ2/h and plot the 50
Hausdorff distances for h ∈ {0.01, 0.02, 0.03}.
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δ2

h δ1 100 250 500

0.001 100 0.5008 (0.6775) 0.5753 (0.6554) 0.5551 (0.6635)
0.001 250 0.2866 (0.1760) 0.4129 (0.6136) 0.4878 (0.6282)
0.001 500 0.0874 (−0.1169) 0.2931 (0.1325) 0.3594 (0.5550)
0.002 100 0.4323 (0.3381) 0.5665 (0.4156) 0.5713 (0.5634)
0.002 250 0.3055 (0.1235) 0.3581 (0.3029) 0.4212 (0.2705)
0.002 500 0.2457 (0.1054) 0.2162 (0.0498) 0.2720 (0.2024)
0.003 100 0.2169 (0.1839) 0.3156 (0.3291) 0.5043 (0.3413)
0.003 250 0.0523 (0.1315) 0.1960 (0.2280) 0.2439 (0.2709)
0.003 500 0.0159 (0.0141) 0.1045 (0.0706) 0.1101 (0.1546)

Table 3: Mean and median of the proportion of efficiency gain given by
1− 1

50

∑50
i=1 dH(SONi , S)/ 1

50

∑50
i=1 dH(S

[0:pδ1]
i , S).

Figure 6: 50 Hausdorff distances between the trajectory of the on-off model
and S (square box). Each of them is joined with a segment, with the
corresponding circle box (for the same trajectory), representing the Haus-
dorff distance between S and the same trajectory but where the GPS is on
between 0 and pδ1. For different values of δ1 and δ2.
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δ2

h δ1 100 250 500

0.001 100 0.0602 (0.0309) 0.1151 (0.0917) 0.2132 (0.2053)
0.001 250 0.0489 (0.0260) 0.0758 (0.0442) 0.1239 (0.1108)
0.001 500 0.0413 (0.0159) 0.0504 (0.0247) 0.0828 (0.0663)
0.002 100 0.0151 (0.0062) 0.0364 (0.0228) 0.0980 (0.0720)
0.002 250 0.0096 (0.0028) 0.0189 (0.0077) 0.0395 (0.0198)
0.002 500 0.0089 (0.0021) 0.0132 (0.0037) 0.0225 (0.0095)
0.003 100 0.0064 (0.0032) 0.0205 (0.0124) 0.0582 (0.0464)
0.003 250 0.0031 (0.0015) 0.0077 (0.0036) 0.0163 (0.0091)
0.003 500 0.0033 (0.0010) 0.0050 (0.0018) 0.0083 (0.0039)

Table 4: Mean and median over 50 replications of the distance in measure,
for the on-off model, with N = 105 steps, and different values of h, δ1 and
δ2.

3.3 The behaviour for the distance in measure

The same analysis is performed for the distance in measure. The mean over
50 replications for the distance in measure between the r-convex hull of the
trajectory (for r = 0.4) and the set, for the same set of parameters used
for the Hausdorff distance, are reported in Table 4 for the on-off model, for
the trajectory only between 0 and pδ1, in Table 5. In Table 6 the relative
efficiency is reported.

Figure 7 shows for each of the 9 panels previously considered the 50
measure distances between the 0.4-convex hull of the trajectory of the on-
off model and S (square box). Each of them is joined with a segment,
with the corresponding circle box (for the same trajectory), representing
the measure distance between S and the same trajectory but where the
GPS is on between 0 and pδ1.
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δ2

h δ1 100 250 500

0.001 100 0.1514 (0.1459) 0.3463 (0.3485) 0.6047 (0.5812)
0.001 250 0.0783 (0.0404) 0.1522 (0.1452) 0.2762 (0.2660)
0.001 500 0.0501 (0.0160) 0.0840 (0.0450) 0.1519 (0.1463)
0.002 100 0.0383 (0.0141) 0.1211 (0.0655) 0.2521 (0.2289)
0.002 250 0.0192 (0.0039) 0.0382 (0.0123) 0.0924 (0.0419)
0.002 500 0.0157 (0.0025) 0.0202 (0.0051) 0.0385 (0.0131)
0.003 100 0.0112 (0.0047) 0.0418 (0.0251) 0.1483 (0.0895)
0.003 250 0.0043 (0.0015) 0.0110 (0.0044) 0.0271 (0.0158)
0.003 500 0.0036 (0.0010) 0.0053 (0.0021) 0.0112 (0.0047)

Table 5: Mean (and median in parentheses) over 50 replications of the
distance in measure, for the trajectory observed in [0, pδ1], with N = 105

steps, and different values of h, δ1 and δ2.

δ2

h δ1 100 250 500

0.001 100 0.6027 (0.7882) 0.6677 (0.7369) 0.6475 (0.6468)
0.001 250 0.3750 (0.3564) 0.5020 (0.6957) 0.5516 (0.5834)
0.001 500 0.1762 (0.0094) 0.4001 (0.4505) 0.4551 (0.5471)
0.002 100 0.6051 (0.5580) 0.6996 (0.6514) 0.6110 (0.6853)
0.002 250 0.4987 (0.2901) 0.5051 (0.3715) 0.5726 (0.5281)
0.002 500 0.4330 (0.1598) 0.3478 (0.2714) 0.4166 (0.2728)
0.003 100 0.4270 (0.3285) 0.5110 (0.5073) 0.6072 (0.4819)
0.003 250 0.2866 (−0.0015) 0.2970 (0.1785) 0.3975 (0.4236)
0.003 500 0.0786 (−0.0903) 0.0529 (0.1464) 0.2543 (0.1551)

Table 6: Mean and median of the proportion of efficiency gain given by
1− 1

50

∑50
i=1 dµ(SONi , S)/ 1

50

∑50
i=1 dµ(S

[0:pδ1]
i , S).
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Figure 7: 50 distances in measure between the trajectory of the on-off
model and S (square box). Each of them is joined with a segment, with the
corresponding circle box (for the same trajectory), representing the distance
between S and the same trajectory but where the GPS is on between 0 and
pδ1. For different values of δ1 and δ2.
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3.4 A real data example

In this section we demonstrate the performance of the on-off model using
an example of real data. We consider a data set consisting of 1577 recorded
positions of elephants in Loango National Park in western Gabon, available
at the Movebank database. This dataset was also analysed in Cholaquidis
et al. (2020). We first estimate the r-convex hull of this full trajectory.
Later, we imagine that this full trajectory is not available at all, and we
only have a subset of size pδ1 of the recorded locations. One approach is
to observe the first pδ1 steps, and the other approach is considering our
on-off strategy. Figure 8 shows, as a solid black line, the boundary of the
0.02-convex hull of the full trajectory, and the 0.02-convex hull under the
two approaches.

Figure 8: Each panel shows for different values of δ1 and δ2, in black solid
line, the boundary of the 0.02-convex hull of the whole trajectory. In orange
the 0.02 convex hull of the trajectory observed only between 0 and pδ1.
Lastly, in green, the 0.02-convex hull of the trajectory of the on-off model.
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4. Concluding Remarks

• We have shown, theoretically, through a simulation study, and through
an example of real data, that the home range estimation problem un-
der the reflected diffusion model is improved if instead of keeping the
GPS on for the whole of the life time of the battery at once, the GPS
is kept on intermittently.

• We obtain almost sure convergence rates for the estimation under the
Haussdorf distance and the distance in measure.

• The stationary distribution can be estimated using a kernel type es-
timator as proposed in Cholaquidis et al. (2020).

• From the uniform convergence of the estimated stationary distribu-
tion, we derive estimators of the level sets, which can determine the
core-area of the animals’ home range.

• An estimator of the drift function can be derived from an estimator
of the stationary distribution by a simple plug-in rule.

• Although a optimal choice of the parameters δ1, δ2 remains an open
problem, the simulations confirm the assertion given in Remark 1
regarding the choice of the parameters: the best possible efficiency is
obtained for small values of δ1.

5. Appendix

5.1 Proof of Theorem 1

Define δ = cωd(ε/2)d/2, n =
⌊

T
1
α

log β
δ

⌋
, and ti = i

α
log β

δ
for i = 1, . . . , n.

Note that the condition for ε guarantees that β/δ > 1. (Roughly speaking,
t1, . . . , tn divide the interval [0, T ] into n intervals of length 1

α
log β

δ
.) As-

suming that at time T the observation period of the process was completed,
and taking p to be the number of periods of observations, δ1 = l1(ti − ti−1)
and δ2 = l2(ti − ti−1) for some integers l1 and l2. We obtain that T =
pδ1 + (p − 1)δ2, and n = p l1 + (p − 1)l2. We have p l1 observations, so we
have p l1 − 1 transition probabilities of which p− 1 occur between an on to
off transition. We will assume that the process is ON in [T − δ1, T ].
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Denote the ε−inner parallel set of S by

S(ε) = {x ∈ S : B(x, ε) ⊂ S}.
Put In := {1, . . . , n} ∩ {i : ati = 1}, the indices at which the process is

observed. Then

P{dH(ST , S) > ε} ≤P{∃x ∈ S(ε) : ∀t ∈ I, t < T : Xt 6∈ B(x, ε)}
≤P{∃x ∈ S(ε) : ∀i ∈ In : Xti 6∈ B(x, ε)}.

Let x1, . . . , xN ∈ S(ε) be such that S(ε) ⊂ B(x1, ε/2)∪ · · ·∪B(xN , ε/2), and
N is the smallest positive integer such that such covering of S(ε) is possible.
N = N(ε/2) is called the ε/2-covering number of S(ε). It is easy to see (and
well known) that N ≤ µ(S)/µ(B(0, ε/4))) = (ε/4)−dµ(S)/ωd.

If for some x ∈ S we have Xti 6∈ B(x, ε) for all i ∈ In, then there exists
a j ∈ {1, . . . , N} such that Xti 6∈ B(xj, ε/2) for all i = 1, . . . , n. Thus,
continuing the chain of inequalities above,

P{dH(ST , S) > ε} ≤P{∃j ∈ {1, . . . , N} : ∀i ∈ In : Xti 6∈ B(xj, ε/2)}
≤N sup

x∈S(ε)

P{∀i ∈ In : Xti 6∈ B(x, ε/2)}.

Next we estimate the probability on the right-hand side. Recall that the
process is ON in [T − δ1, T ], then n ∈ In. For all x ∈ S(ε),

P{∀i ∈ In : Xti 6∈ B(x, ε/2)}
=P{Xtn 6∈ B(x, ε/2)|∀i ∈ In−1 : Xti 6∈ B(x, ε/2)}
× P{∀i ∈ In−1 : Xti 6∈ B(x, ε/2)}

=P{Xtn 6∈ B(x, ε/2)|Xtn−1 6∈ B(x, ε/2)}
× P{∀i ∈ In−1 : Xti 6∈ B(x, ε/2)}
(since Xt is a Markov process)

Denote by π the invariant distribution of the process {XON
t }t>0. Let us

iterate this process the last l1 steps at which the process is ON . Then

P{∀i ∈ In : Xti 6∈ B(x, ε/2)} =

= P{Xtn 6∈ B(x, ε/2)|Xtn−1 6∈ B(x, ε/2)} × · · · ×
P{Xtn−l1+2

6∈ B(x, ε/2)|Xtn−l1+1
6∈ B(x, ε/2)}×P{∀i ∈ In−l1+1 : Xti 6∈ B(x, ε/2)}

= P{∀i ∈ In−l1+1 : Xti 6∈ B(x, ε/2)}
l1−2∏
i=0

P{Xtn−i 6∈ B(x, ε/2)|Xtn−i−1
6∈ B(x, ε/2)}
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Now, by Proposition 1 and the definition of δ (δ = cωd(ε/2)d/2), for all
i = 0, . . . , l1 − 2,

P{Xtn−i 6∈ B(x, ε/2)|Xtn−i−1
6∈ B(x, ε/2)} =

1− P{Xtn−i ∈ B(x, ε/2)|Xtn−i−1
6∈ B(x, ε/2)}

≤ 1− π(B(x, ε/2)) + β exp{−α(tn−i − tn−i−1)}
= 1− π(B(x, ε/2)) + δ

≤ 1− cωd(ε/2)d + δ = 1− cωd(ε/2)d/2

So

l1−2∏
i=0

P{Xtn−i 6∈ B(x, ε/2)|Xtn−i−1
6∈ B(x, ε/2)} ≤ (1− cωd(ε/2)d/2)l1−1

Using a similar argument, we will bound the term P{∀i ∈ In−l1−1 :
Xti 6∈ B(x, ε/2)}. Observe that now at time tn−l1+1 the GPS is on but it is
off at time tn−l1 , and it is also off at times tn−l1−j for all j = 0, . . . , l2 − 1.
This implies that In−l1+1 = {n− l1 + 1} ∪ In−l1−l2 . Then

P{∀i ∈ In−l1+1 : Xti 6∈ B(x, ε/2)} =

P(Xtn−l1+1
/∈ B(x, ε/2)|Xtn−l1−l2

/∈ B(x, ε/2))P{∀i ∈ In−l1−l2 : Xti 6∈ B(x, ε/2)} ≤
(1− cωd(ε/2)d + βe−αδ2)P{∀i ∈ In−l1−l2 : Xti 6∈ B(x, ε/2)}

So, by iterating the argument, P{∀i ∈ In : Xti 6∈ B(x, ε/2)} is bounded
from above by

(1− cωd(ε/2)d/2)p(l1−1)(1− cωd(ε/2)d + βe−αδ2)p−1 (9)

≤ exp {−(l1 − 1)pδ} exp
{
−(p− 1)(2δ − δ(δ/β)l2−1)

}
To obtain the gain of using the on-off model compared with the model

in which the GPS is set on only between 0 and pδ1, note that

exp {−(l1 − 1)pδ} = exp

{
−(l1 − 1)pt1

t1
δ

}
,

and (l1−1)t1 = δ1−t1. Then if the process is on only on the interval [0, pδ1]
(that is, l2 = 0),
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P{dH(S̃pδ1 , S) > ε} ≤ (ε/4)−dµ(S)

ωd
exp

{
−
cωd(ε/2)dp(δ1 − 1

α
log β

δ
)

2 1
α

log β
δ

}
= C1 exp(−C2pδ1)

However, from (9) in the on-off model, the bound obtained is

P{dH(ST , S) > ε} ≤ (ε/4)−dµ(S)

ωd
exp

{
−
cωd(ε/2)dp(δ1 − 1

α
log β

δ
)

2 1
α

log β
δ

}
×

× exp
{
−δ(p− 1)(2− (δ/β)l2−1)

}
= C1 exp(−C2pδ1) exp(−C3p)

5.2 Proof of Theorem 2

It is easy to prove, following the ideas used to prove Proposition 2 in
Cholaquidis et al. (2020), that the chain ℵn is geometrically ergodic. Then
βn supx∈S |ĝn(x) − g(x)| → 0 a.s. follows as a direct application of The-
orem 1 in Cholaquidis et al. (2020). From Corollary 1 together with Re-
mark 4 in Cholaquidis et al. (2020) it follows that dH(∂Gg(λ), ∂Gĝn(λ)) =
o(1/β) a.s..
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