

LOW CYCLE FATIGUE PREDICTIONS OF A SPACE THRUSTER BUILT WITH A NEW REFRACTORY HIGH ENTROPY ALLOY

S. Valvano^a, G. Canale^b, A. Maligno^c, P. Wood^d

^a Associate Professor at IISE, University of Derby, s.valvano@derby.ac.uk
^b Mechanical Integrity Engineer, Rolls-Royce Derby, giacomo.canale@rolls-royce.com
^c Professor at IISE, University of Derby, a.maligno@derby.ac.uk
^d Professor at IISE, University of Derby, p.wood7@derby.ac.uk

The Fourth International Conference on Damage Mechanics Baton Rouge, Louisiana, USA, MAY 15 - 18, 2023

UNIVERSITY OF DERBY

allentig a

TRALS ONTATION GNL

Institute for Innovation in Sustainable Engineering (IISE)

Dr Stefano Valvano Dr Giacomo Canale Professor Angelo Maligno Professor Paul Wood

Work motivation

- Directional thrusters are designed to provide force for short time periods.
- New generation of thrusters could be made using a High Entropy Alloy (HEA).
- Predicting fatigue damage initiation for this kind of metallic structure subjected to cyclic loads is important.
- Design for fatigue resistance relies on empirical with high financial costs.
- Unified Mechanics Theory (UMT) will be used to predict fatigue damage initiation of a material system without having experimental fatigue data.

B20 Thruster

Small satellite applications

Material currently used is Inconel 718

Unified Mechanics Theory (UMT)

C. Basaran, "Introduction to Unified Mechanics Theory with Applications", Springer, 2021

Why Entropy?

- i. Entropy can model multiple competing degradation processes leading to damage
- ii. Entropy is independent of the path to failure ending at similar total entropy at failure
- iii. Entropy accounts for complex synergistic effects of interacting degradation processes
- iv. Entropy is scale independent

Entropy increases in a non-reversible process

Entropy exchange in an open system. dSe is entropy flow through the boundaries of the open system and dSi is the entropy production within the open system.

DERBY

Entropy can be used to predict fatigue damage in materials

derby.ac.uk

Giacomo Canale, Marcello Lepore, Sara Bagherifard, Mario Guagliano, <u>Angelo Maligno,</u> An experimental validation of unified mechanics theory for predicting stainless steel low and high cycle fatigue damage initiation. Forces in Mechanics, https://doi.org/10.1016/j.finmec.2022.100162.

ABAQUS FE Model of Tensile Test and Quasi-static Simulation of LCF Sample

Forge grade stainless steel tensile test

Giacomo Canale, Marcello Lepore, Sara Bagherifard, Mario Guagliano<u>, Angelo Maligno,</u> An experimental validation of unified mechanics theory for predicting stainless steel low and high cycle fatigue damage initiation. Forces in Mechanics, https://doi.org/10.1016/j.finmec.2022.100162.

Prediction of Fatigue Damage Initiation under LCF using UMT

Noushad Bin Jamal M., Aman Kumar, Chebolu Lakshmana Rao and Cemal Basaran, "Low Cycle Fatigue Life Prediction Using Unified Mechanics Theory in Ti-6AI-4V Alloys", Entropy 2020, 22, 24; doi:10.3390/e22010024.

<mark>Giacomo Canale</mark>, Marcello Lepore, Sara Bagherifard, Mario Guagliano<u>, Angelo Maligno</u>

An experimental validation of unified mechanics theory for predicting stainless steel low and high cycle fatigue damage initiation. Forces in Mechanics, https://doi.org/10.1016/j.finmec.2022.100162.

Assessment of UMT to Predict LCF Damage Initiation

Thermo-mechanical Simulation of B20 Thruster

Design based on the following materials:

- Inconel 718
- High Entropy Alloy (Niobium based)

Blue = Wall material

Figure 1: DA13-1

For each material, determine how many ignition cycles lasting 5s can be performed before LCF fatigue damage initiation occurs?

Material properties

Inconel 718

Quasi-static Plastic Behaviour

Young Modulus Poisson's Ratio **Plastic Strain** Temperature Density Stress Temperature [°C] [GPa] [kg/m³] [MPa] [°C] 950 205 8190 0.3 0 0 0 0.01 650 163 7941 0.283 1000 0 1100 0.02 800 150 7884 0.31 0 1200 0.14 0 330 0 650 400 0.01 650 440 0.02 650 450 0.14 650 **Thermal Properties**

Temperature	Thermal Conductivity	Specific Heat	Thermal Expansion
[°C]	$[W/m/^{\circ}C]$	[J/g/°C]	(1/°C)
0	8.8	0.43	1.3E-05
450	18	0.52	1.44E-05
750	24	0.61	1.6E-05

Mechanical Properties

Material properties High Entropy Alloy (HEA) - Designed in ATLAS

Ouasi-static Plastic Rehaviour

Micenanical i roportios			Quasi static i fusice Denaviour				
Youn	g Modulus	Density	Poisson'	s Ratio	Stress	Plastic Strain	Temperature
	[GPa]	$[kg/m^3]$			[MPa]		[°C]
ľ	230	11590	0	3	800	0	0
	230	11550	0	<u> </u>	900	0.05	0
					1000	0.1	0
					1050	0.2	0
					700	0	800
					780	0.05	800
					820	0.1	800
	Ther	mal Prop	erties		810	0.2	800
rature	Thermal Condu	ctivity S	Specific Heat	Thermal Expansion			
וי	[W/m/°C]		[J/g/°C]	(1/°C)			

Mechanical Properties

0.21

0.228

0.25

18

18

18

Thermal Expansio (1/°C) 6.98E-06 7.94E-06

8.91E-06

0 400

800

Model of B20 Thruster (Inco 718)

Predicted Max, Min Stress and Strain for both Materials

	Principal Plastic Strain	Temperature [°C]	Principal Stress [MPa]
Max strain Inco718	0.001	0	246
Min strain Inco718	-0.015	425	-705
Max strain HEA	0.00054	0	80
Min strain HEA	-0.00008	1034	-11

Plastic strain contours for Inco718

derby.ac.uk

UNIVERSITY OF

Strain versus Cycles to Failure (Inco 718)

Empirical (traditional) approach

Walker equivalent medium strain:

$$\epsilon_{w} = (\epsilon_{max} - \epsilon_{min}) * \left(\frac{\sigma_{max}}{\sigma_{max} - \sigma_{min}}\right)^{(1-\gamma)}$$

Stress and strain are input from B20 simulation for Inco718

 γ is the Walker exponent (0.47 in this example).

Low Cycle Fatigue Damage Initiation Predicted

UMT approach

$$\varphi = \varphi_0 \left[1 - exp\left(-\Delta s \frac{m_s}{R} \right) \right]$$

$$\Delta s = \frac{1}{\rho T} \int_{t1}^{t2} \sigma * d\varepsilon^p$$

LCF damage initiation based on the entropy generation

Load cycle divided in small isothermal steps

$$\varepsilon^{p} = \varepsilon^{tot} - \frac{\sigma_{0}}{E}$$
$$N = \frac{1}{\varphi}$$

Comparing Predicted Cycles to Fatigue Damage Initiation in Thruster using Strain Based Approach and UMT for Inco 718

	Strain/N Curve	UMT	% diff
	[traditional approach]	(LCF)	
Cycles to damage initiation	1100	1024	-6.90
Inco 718			
Cycles to damage initiation	-	9590	
HEA			

Stress and strain due thermal loading dominates over mechanical

P. Wood, M. J. Qarni, J. Chippendale, A. Rosochowski. Numerical study on the effect of the thermo-mechanical properties of alloys on the behaviour of super plastic forming tools, 2014. https://doi.org/10.1002/mawe.201400289

Conclusions

- UMT can make fatigue predictions when test data are not yet available.
- UMT does not take into account surface finish, fundamental in fatigue assessments.
- In this work the entropy generation is mechanical based.
- In future work the thermal contribution will be evaluated in the entropy calculation for damage initiation.

University of Derby, Kedleston Road, Derby, DE22 1GB T +44 (0)1332 591044 E opendays@derby.ac.uk

derby.ac.uk

THANK YOU

KKKKKKKK

Sensitivity: Internal