

MALIHA TASNIM

REQUIREMENTS ENGINEERING IN
OPEN-SOURCE SOFTWARE
PROJECTS: PROCESSES &

CHALLENGES

 Faculty of Information Technology and Communication Sciences
 M. Sc. Thesis

 June 2023

ABSTRACT

Maliha Tasnim: Requirements Engineering in Open-Source Software Projects: Processes &
Challenges
M.Sc. Thesis
Tampere University
Master’s Degree Programme in Computing Science (Software, Web & Cloud)
June 2023

Open-source software (OSS) development has gained significant influence in the soft-

ware industry, fostering collaboration and knowledge sharing among developers and us-

ers. This paper explores the practices and challenges of requirements engineering (RE)

in OSS projects through a systematic literature review (SLR). By analyzing 43 selected

papers, the study reveals various practices, techniques, and methods that aid RE activities

in OSS projects while addressing the challenges faced by practitioners and proposing

potential solutions.

The literature review highlights a growing interest in utilizing machine learning and sta-

tistical methods to support RE activities in OSS projects. Specifically, these methods fo-

cus on automating requirements identification and analysis by leveraging information

extracted from project discussion forums, issue reports, and other online resources. More-

over, the review emphasizes the significance of community involvement in OSS projects.

Several studies examine the interaction patterns, expertise levels, and influence of devel-

opers within these projects. This underscores the importance of fostering a strong and

engaged developer community to enhance the quality of requirements and project out-

comes.

The findings from the SLR offer valuable insights for both OSS project managers and

researchers. They provide guidance on effectively managing requirements in OSS pro-

jects, considering the unique challenges and characteristics of the open-source environ-

ment. By incorporating the recommended practices and techniques, project managers can

streamline the RE process and improve the overall success of OSS projects. Overall, this

thesis contributes to the understanding of RE in OSS projects by synthesizing existing

knowledge and highlighting emerging trends. The insights gained from this research can

inform decision-making and strategy development for both practitioners and researchers

in the OSS community. By embracing these findings, stakeholders can leverage the col-

laborative power of OSS development and optimize the handling of requirements to de-

liver high-quality software solutions.

Key words and terms: Requirements Engineering, Open Innovation, Open-Source Soft-

ware, Systematic Literature Review (SLR).

ACKNOWLEDGEMENT

I am immensely grateful to my thesis supervisor, Zheying Zhang, for her invaluable guid-

ance and support. I would also like to extend my heartfelt appreciation to my advisor,

Timo Poranen, and my fellow mate, Maruf Rayhan, for their unwavering encouragement

and assistance. Their contributions have been instrumental in shaping my thesis journey.

I am truly fortunate to have such amazing individuals by my side throughout this thesis

endeavor.

Contents

1. Introduction………………………………………………………………………1

1.1. Research questions 2

1.2. Research Method 2

1.3. Thesis Structure 3

2. Requirement Engineering……………………………………………………….3

2.1. Roles of requirement engineering 4

2.2. Requirement engineering processes 5

3. Open Innovation: Open-Source Software……………………………………..10

3.1. Open innovation 10

3.2. Difference between open and closed innovation 10

3.3. Open innovation processes 11

3.4. Open-Source Software 11

3.5. Requirements Engineering for OSS development 12

4. Related Work……………………………………………………………………14

5. Research Methodology………………………………………………………….23

 5.1. Search Strategy 23

 5.2. Data Extraction 26

6. Results…………………………………………………………………………...28

 6.1. Overview of Selected Studies 28

 6.2. RQ1: What Requirement Engineering activities, tools and techniques are

used by practitioners in open-source software project? 30

 6.3 RQ2: What are the challenges faced by the practitioners in OSS projects?

What are the possible solutions to overcome the challenges? 33

7. Discussion……………………………………………………………………….40

 7.1. Analysis of the findings 40

 7.2. Threats to Validity 42

8. Conclusion………………………………………………………………………44

References ……………………………………………………………………………46

Appendix ……………………………………………………………………………..48

-1-

1. Introduction

In recent decades, there has been a notable surge in interest in open innovation, both in

academic circles and among businesses. For software-centric companies, the ever-evolv-

ing technological landscape and the expanding global competition in software production

necessitate the search for new sources of innovation [1]. In the pursuit of maximizing

return on investment (ROI), software companies are compelled to explore various ave-

nues of open innovation [2]. These approaches involve the sharing of knowledge and

resources, as well as the utilization of external knowledge and resources from diverse

entities, spanning from other companies to individual developers.

Open-source is considered as an innovative and particular avenue of open innovation,

which is generated within extensive online communities or closed communities [3]. These

communities are open to individuals from diverse backgrounds, encompassing both hob-

byist users and professionals who rely on the software as a critical component of their

business operations. However, operating within such a mixed environment introduces

challenges in effectively managing requirements. Tasks like comprehending and priori-

tizing requirements become notably intricate [3]. Overcoming these challenges is pivotal

in harnessing the full benefits of open-source software production, which can encompass

improved inter-organizational and external collaboration, reduced support costs, and ad-

herence to vendor compliance [3].

In light of these circumstances, it is evident that open-source software (OSS) has emerged

as a progressively expanding open innovation policy embraced by an increasing number

of software firms [5]. Due to the characteristics of openness, generally OSS communities

consist of a significant quantity of members. This large communities often make the man-

agement of RE processes complex and bulky. Open-source software (OSS) projects are

characterized by a distributed community of developers, users, and other stakeholders,

working in a collaborative and often decentralized manner [5]. Given the less formal or-

ganizational structure in OSS projects, the RE process diverges from conventional soft-

ware development practices. Requirements are typically expressed for open review, elab-

oration, and discussion through informal channels such as mailing lists, forums, and issue

tracking systems [4] [5]. Traditional requirements review activities are replaced by com-

munity feedback and testing. Comments and peer reviews are common practices in OSS

projects, where developers assess each other’s work to identify and resolve potential is-

sues and discrepancies. By continuously building, integrating, and testing change requests

and implementations, developers can ensure that requirements are properly implemented

and satisfied [6]. This results in more dynamic and informal RE activities. Given these

-2-

observations, this thesis aims to explore the requirement engineering practices and chal-

lenges in the OSS context through a systematic literature review (SLR). The purpose of

this thesis is 1) to identify RE practices to support OSS project managers and contributors

in requirements creation, analysis, and management, thus enhancing their effectiveness

and efficiency in conducting requirements analysis and implementation in OSS projects;

and 2) to recognize challenges and research-based solutions for these RE activities in OSS

projects. To achieve these goals, two research questions (RQs) has been formulated.

1.1 Research Questions

Research questions are conducted in such a way which can address the goal of this thesis

through the literature review. The research questions and consecutive relevant sub-ques-

tions are given as below:

RQ1: What requirement engineering activities, tools and techniques are used by

practitioners in open-source software project?

RQ2: What are the challenges faced by the practitioners in OSS projects? What are

the possible solutions to overcome the challenges?

The first research question will address the possible requirements engineering activities,

associated tools and techniques which are commonly used in open-source projects in the

current software industry and identify the roles of the practitioners who are involved in

this process in the community. After addressing these facts, this research question will

aim to draw a connection on how these RE activities and sub-activities play a crucial role

to accelerate the output efficiency of open-source software projects. The follow up second

research question will address the possible challenges which the practitioners face in the

OSS projects to imply these RE activities. After identifying the challenges, this research

question will also point out the possible solutions to overcome those challenges.

1.2 Research Methods

Systematic literature review (SLR) method is used in this thesis to answer the research

questions. This method basically ensures a systematic and rigorous process of identifying,

selecting, and analyzing relevant literature. It aims to include all relevant studies available

on this thesis topic, minimizing the risk of bias and providing a comprehensive overview

of existing knowledge. By systematically reviewing and synthesizing existing literature,

this method helps to identify gaps in the current knowledge and areas where further re-

search is needed, which is properly identified in this thesis paper. Several steps have been

followed to conduct this SLR method for this thesis paper. First of all, proper search

-3-

strings are selected to search relevant papers and articles from databases like IEEEXplore,

Scopus, ACM Digital Library, and Web of Science. For the initial screening of the search

results, inclusion and exclusion criteria are applied. After that, forward and backward

snowballing process are implied to get the final selected papers. From those selected pa-

pers, required data are extracted using excel sheet. Detailed research methods are dis-

cussed in Chapter 5 with associated procedures. It also needs to be mentioned that, this

thesis is an extension version of a conference paper which is already submitted.

1.3 Thesis Structure

This thesis is conducted by utilizing the systematic literature review (SLR) method. The-

sis structure is as following: Chapter 2 will explain about the definition of requirements

engineering along with its advantages and processes in software engineering field. Chap-

ter 3 will discuss about the definition of open innovation and open-source software. This

chapter will also briefly explain the primary differences of open and closed innovation.

Chapter 4 will cover existing literature reviews on OSS development and identifies a gap

in the literature and a need for investigating RE practices in OSS projects. Chapter 5 will

discuss about the research methodology and how it is executed. Chapter 6 and 7 will

continue about the results and discussion. Chapter 8 will proceed with the limitations of

the work and conclusion.

-4-

2. Requirements Engineering

Requirements engineering (RE) is the process of eliciting, analyzing, documenting, vali-

dating, and managing the needs and expectations of stakeholders, ensuring that the soft-

ware product meets their needs [7] [8] [9]. Establishing a shared understanding of the

requirements among stakeholders is essential for successfully developing, maintaining,

and evolving a software product, with various techniques and tools to support the com-

munication and cooperative interaction process between requirements analysts and stake-

holders [10] [11].

Requirements engineering is an essential aspect of software development and project

management. It is the process of identifying, documenting, tracking, and communicating

the needs and expectations of stakeholders in a project or product development [12]. The

aim of requirements engineering management is basically to ensure that the end product

meets the demands of all stakeholders, delivers within budget and schedule, and satisfies

the quality standards [13]. By following a systematic approach to requirements engineer-

ing management, organizations can ensure that their projects are delivered on time, within

budget, and to the satisfaction of all stakeholders [12].

2.1 Roles of Requirements Engineering

The importance of requirements engineering management cannot be overstated, as it

helps to minimize the risk of project failure. Requirements that are not well defined, doc-

umented, or managed can lead to misunderstandings, delays, and cost overruns [14]. On

the other hand, proficient management of requirements engineering can contribute to en-

suring timely delivery, adherence to budgetary constraints, and meeting the expectations

of stakeholders for a given project [14]. Advantages of requirements engineering can be

pointed as below:

1. Requirements engineering ensures that the right product is built, with the right

features, to the right standards.

2. Requirements engineering helps reduce rework, avoid misunderstandings, and

minimize confusion, leading to increased efficiency.

3. Requirements engineering helps engage stakeholders early and often, ensuring

that their needs and expectations are met.

4. Requirements engineering provides a clear trail of how the product has evolved,

making it easier to track changes and manage risk.

5. Requirements engineering supports collaboration and communication between

development teams, stakeholders, and other relevant parties.

6. Requirements engineering provides visibility into project progress, making it eas-

ier to monitor progress and manage resources.

-5-

Studies show that, insufficient Requirements Engineering (RE) in software projects can

lead to various challenges and negative outcomes [14]. Along with the exploration about

the pains associated with inadequate RE, studies also shed light on its consequences. One

major pain is the risk of misaligned expectations between stakeholders, resulting in mis-

understandings, rework, and delays in project delivery [14]. Inadequate requirements can

lead to poor software quality, decreased user satisfaction, and increased maintenance

costs. Insufficient RE also hinders effective project planning and resource allocation,

making it difficult to meet project goals and deadlines [12]. Additionally, lacking clarity

in requirements can lead to difficulties in scope management, leading to scope creep and

project scope instability [12]. Basically, the critical importance of robust RE practices are

proven to mitigate these pains and ensure successful software project outcomes [14].

2.2. Requirements Engineering Processes

Organizations can ensure that their requirements are well understood, accurately cap-

tured, and properly managed throughout the project or product lifecycle by following

several significant steps [15]:

Requirements elicitation is a critical phase in the software development lifecycle. It in-

volves identifying, collecting, and documenting the needs, expectations, and constraints

of stakeholders [13]. This process relies on various techniques such as interviews, sur-

veys, workshops, and observations to gather information. The aim is to understand the

stakeholders' requirements and ensure that all relevant perspectives are considered [13].

Effective requirements gathering requires strong communication and interpersonal skills

to elicit accurate and complete requirements. During this process, requirements analysts

engage with stakeholders to identify their pain points, goals, and desired outcomes. They

also gather information about the business processes, user needs, system constraints, and

technical considerations [12]. The gathered requirements are typically documented in a

structured manner, such as in requirement specifications or user stories, to ensure clarity

and traceability throughout the development process. Requirements gathering sets the

foundation for the subsequent phases of analysis, design, and implementation [12].

Requirements analysis is the process of examining and refining the gathered requirements

to ensure their clarity, consistency, and feasibility [13]. It involves analyzing the require-

ments for completeness, correctness, and alignment with the project objectives. The goal

is to refine the initial requirements into a more precise and unambiguous set that can serve

as a basis for system design and development [13]. During requirements analysis, analysts

scrutinize the requirements to identify any conflicts, ambiguities, or gaps. They assess the

feasibility of implementing the requirements within the given constraints and evaluate the

-6-

potential risks and impacts [12]. Techniques such as use case modeling, data modeling,

and scenario-based analysis are commonly employed to validate and verify the require-

ments. This process aims to ensure that the requirements are well-defined, verifiable, and

aligned with the stakeholders' needs. Requirements analysis also involves prioritizing re-

quirements based on their importance and impact, identifying dependencies between re-

quirements, and creating traceability links to ensure coverage and manage changes effec-

tively [12]. The outcome of requirements analysis is a refined and validated set of re-

quirements that can guide the subsequent development activities.

Requirements documentation is the process of capturing and recording the gathered and

analyzed requirements in a structured format [15]. It involves transforming the require-

ments into clear, concise, and unambiguous artifacts that serve as a reference for all pro-

ject stakeholders. The purpose of documentation is to ensure that the requirements are

well-understood, communicated effectively, and can be easily shared, reviewed, and val-

idated [12]. Requirements documentation includes creating documents such as require-

ment specifications, use case diagrams, data flow diagrams, user interface prototypes, and

other visual representations [12]. These artifacts provide a detailed description of the sys-

tem's functional and non-functional requirements, user interactions, system behavior, and

interface specifications. They also document any assumptions, constraints, and depend-

encies associated with the requirements. Well-documented requirements facilitate effec-

tive communication and understanding among stakeholders, provide a basis for system

design and development, and serve as a reference for future maintenance and updates.

They also support traceability, impact analysis, and compliance verification [13]. The

documentation should be organized, easily accessible, and regularly updated to reflect

changes in the requirements throughout the project lifecycle. Overall, requirements doc-

umentation is a crucial process that ensures clarity, consistency, and traceability of re-

quirements, enabling effective collaboration and decision-making among project stake-

holders [13].

Requirements management is the process of effectively managing the requirements

throughout the software development lifecycle [12]. It involves activities such as require-

ments identification, prioritization, tracking, and control. The goal is to ensure that re-

quirements are properly defined, documented, and maintained to meet the project objec-

tives [15]. During requirements management, stakeholders' needs and expectations are

continually monitored and evaluated to identify any changes or new requirements [15].

The process involves establishing a mechanism to handle requirement changes, assessing

their impact, and obtaining necessary approvals. It also includes establishing a traceability

matrix to track the relationships between requirements, project deliverables, and system

-7-

components [15]. Requirements management helps in controlling scope creep and mini-

mizing the risk of delivering a solution that does not meet stakeholder expectations [12].

It ensures that changes to requirements are properly managed and communicated to all

relevant parties. Effective requirements management contributes to project success by

enabling better decision-making, reducing rework, and improving overall project effi-

ciency [12].

Requirements validation is the process of evaluating and verifying the requirements to

ensure that they meet the intended purpose and are of high quality [15]. It involves re-

viewing and assessing the requirements to check for correctness, consistency, complete-

ness, and feasibility. The objective is to validate that the requirements accurately repre-

sent the stakeholders' needs and can be effectively implemented [15]. During require-

ments validation, techniques such as inspections, walkthroughs, and reviews are used to

assess the requirements against predefined quality criteria. This process involves engag-

ing with stakeholders, domain experts, and the development team to identify potential

issues, conflicts, or gaps in the requirements [13]. The goal is to identify and rectify any

deficiencies or inconsistencies early in the project lifecycle to avoid costly rework or mis-

understandings [13]. Validating requirements helps in reducing the risk of developing a

system that does not fulfill stakeholder expectations. It ensures that the requirements are

realistic, achievable, and aligned with the project objectives [13]. By validating the re-

quirements, organizations can enhance the quality and accuracy of the final product, im-

prove customer satisfaction, and mitigate risks associated with requirement-related errors

or misunderstandings [15].

Requirements communication is the process of effectively conveying and sharing the re-

quirements information among project stakeholders [15]. It involves creating a common

understanding of the requirements to ensure clarity, alignment, and collaboration through-

out the development process. Effective requirements communication facilitates effective

decision-making, problem-solving, and consensus-building among stakeholders [15].

During requirements communication, various techniques such as meetings, presentations,

documentation, and visual aids are used to convey the requirements in a clear and concise

manner [13]. It involves tailoring the communication approach based on the stakeholders'

background, roles, and communication preferences. The goal is to ensure that all stake-

holders have a shared understanding of the requirements and can provide valuable input

and feedback. Requirements communication fosters effective collaboration and reduces

the risk of misinterpretation or misunderstanding of the requirements [13]. It encourages

stakeholders to actively participate in the requirements process, provide feedback, and

contribute to the overall success of the project [13]. By promoting effective requirements

-8-

communication, organizations can enhance stakeholder engagement, improve project out-

comes, and reduce the likelihood of requirement-related issues [13].

Requirements traceability is the process of establishing and maintaining the relationships

between requirements and other project artifacts throughout the software development

lifecycle [15]. It involves linking requirements to design elements, test cases, code com-

ponents, and project deliverables. The goal is to ensure that each requirement is properly

implemented, tested, and verified, and that changes to requirements are adequately man-

aged [15]. During requirements traceability, traceability matrices or tools are used to es-

tablish bidirectional links between requirements and related artifacts. This allows stake-

holders to track the origin, impact, and dependencies of each requirement [15]. Tracea-

bility helps in impact analysis, change management, and ensuring that all requirements

are satisfied by the final system. Requirements traceability enhances project transparency,

facilitates impact analysis, and helps in managing scope changes [12]. It enables organi-

zations to assess the impact of requirement changes on other project elements, identify

potential risks, and ensure that no requirements are overlooked during implementation.

By establishing traceability, organizations can improve project visibility, reduce rework,

and enhance overall project control [12].

Different types of tools and techniques are applied to follow the above requirements en-

gineering management processes. Some of the prominent requirements management tools

are JIRA, Trello, and Asana [15]. These tools play a crucial role in effectively managing

and organizing requirements throughout the software development lifecycle. These tools

provide a structured and collaborative platform for capturing, tracking, and prioritizing

requirements, making the RE process more efficient and transparent [15]. JIRA, one of

the most widely used RE tools, offers features for creating and managing requirements as

well as tracking their progress. It allows users to define requirements, assign them to team

members, set deadlines, and monitor their status [15]. JIRA's customizable workflows

and issue tracking capabilities enable teams to easily manage requirement changes, pri-

oritize tasks, and communicate effectively [15]. With its integration options, JIRA can be

linked to other development tools, facilitating seamless collaboration between different

teams, and enhancing overall project visibility [15]. Trello, on the other hand, provides a

user-friendly Kanban-style interface for managing requirements and tasks [15]. It enables

teams to create boards, lists, and cards to represent requirements and their associated ac-

tivities. Trello's drag-and-drop functionality allows easy movement of cards across dif-

ferent lists, reflecting the progress of requirements from creation to completion [15]. This

visual approach makes it easy to track the status of requirements, assign responsibilities,

and collaborate with team members in real-time [15]. Asana is another popular RE tool

-9-

that offers comprehensive features for requirements management [15]. It provides a cen-

tralized platform for capturing and documenting requirements, setting priorities, and

tracking progress. Asana's project and task management capabilities facilitate effective

communication and coordination among team members [15]. It allows for the creation of

detailed requirements with associated sub-tasks, due dates, and dependencies, ensuring

that the entire team stays aligned and focused on achieving project goals [15].

These RE tools are useful because they streamline the requirements management process,

improve collaboration, and enhance project visibility [12]. They provide a centralized

repository for requirements, making it easy to access and update information. With fea-

tures like task assignment, progress tracking, and notifications, these tools enable effec-

tive communication and ensure that everyone is on the same page [13]. They also offer

reporting and analytics features, allowing teams to gain insights into the status of require-

ments, project progress, and resource allocation. Overall, RE tools like JIRA, Trello, and

Asana simplify the management of requirements, enhance team productivity, and pro-

mote efficient collaboration [13]. By leveraging these tools, organizations can effectively

capture, track, and prioritize requirements, resulting in improved project outcomes and

increased stakeholder satisfaction [15].

-10-

3. Open Innovation: Open-Source Software

Open innovation is an approach which has gained widespread attention in recent years,

particularly in the field of business and management [3]. It refers to a paradigm shift in

the way organizations approach innovation, moving away from traditional, closed-door

approaches to more open, collaborative models [16]. The idea behind open innovation is

to leverage the collective knowledge, expertise, and resources of multiple stakeholders,

including employees, customers, suppliers, partners, and even competitors, to drive inno-

vation and create value [17].

3.1 Open Innovation

The rise of open innovation can be attributed to several factors, including the increasing

complexity of products and services, the need for organizations to stay ahead of rapidly

changing technologies and market trends, and the desire to harness the creativity and ideas

of a broader network of stakeholders [17]. Additionally, advances in communication and

collaboration technologies have made it easier than ever to connect with stakeholders and

exchange information, enabling organizations to tap into a vast pool of knowledge and

resources beyond their traditional boundaries.

Open innovation has the potential to offer significant benefits to organizations, including

increased speed to market, greater access to new ideas and technologies, improved prod-

uct quality and customer engagement, and reduced costs [3]. However, it also presents

several challenges, including cultural resistance, intellectual property protection, and the

management of partnerships and collaborations. Despite these challenges, the trend to-

wards open innovation continues to grow, and it is increasingly seen as a key factor in

driving innovation and competitiveness in a rapidly changing business environment [3].

3.2 Differences between open and closed Innovation

Open innovation refers to a philosophy and approach to innovation where companies ac-

tively seek ideas and solutions from a variety of sources, both within and outside the

company [17]. This may include collaborating with external partners, leveraging cus-

tomer feedback, or encouraging employees to generate and share new ideas. The objective

of open innovation is to accelerate the pace and effectiveness of innovation by leveraging

a broader range of knowledge and resources [17]. Closed innovation, on the other hand,

refers to a traditional, centralized approach to innovation where ideas and solutions are

generated and developed solely within the company. This approach relies on the internal

R&D and product development teams to drive innovation and may limit the company's

ability to take advantage of external ideas and resources [17].

-11-

3.3 Open Innovation Processes

A comprehensive analysis of the literature has revealed three fundamental open innova-

tion processes that are applicable across industries, regardless of whether a company spe-

cializes in software, physical goods, or other domains [18]. These processes, coined as

inside-out, outside-in, and coupled process by Gassmann and Enkel, represent distinct

approaches [18]. Interestingly, companies examined by Gassmann and Enkel predomi-

nantly adopted one of these processes as their primary approach, while simultaneously

incorporating elements from the other processes [18].

The inside-out, outside-in, and coupled processes serve as the identified open innovation

frameworks. Additionally, open-source software introduces a significant decision point

for software-intensive companies, as it presents the choice between an open or closed

approach [18]. Therefore, open-source software is recognized as a unique method of im-

plementing open innovation, even though software companies could also adopt the fun-

damental open innovation processes [18].

3.4 Open-Source Software

Open-source Software (OSS) is a type of software whose source code is made available

to the public, allowing anyone to view, modify, and distribute it. It is a collaborative and

community-driven approach to software development, fostering transparency, collabora-

tion, and innovation [20]. Open innovation, on the other hand, is a concept that empha-

sizes the importance of seeking external knowledge and ideas to drive innovation within

organizations. Open-source Software and open innovation are closely related and have a

mutually beneficial relationship [16].

First and foremost, OSS embodies the principles of open innovation. By providing open

access to its source code, OSS encourages participation from a diverse community of

developers, users, and contributors. This inclusivity allows for the exploration and ex-

change of ideas, leading to the development of high-quality software through collective

intelligence [16]. This collaborative approach aligns with the core tenets of open innova-

tion, which advocate for the integration of external knowledge and expertise into the in-

novation process.

Open-Source Software also enables open innovation by promoting knowledge sharing

and learning. The open nature of OSS projects allows developers to examine, study, and

learn from existing codebases. This availability of code acts as a valuable educational

resource, enabling developers to acquire new skills, understand different programming

techniques, and improve their own software development practices [19]. This knowledge

-12-

dissemination contributes to the broader pool of expertise and enhances the overall inno-

vation ecosystem.

Furthermore, OSS projects often incorporate feedback and contributions from users and

developers worldwide. This crowdsourcing of ideas and feedback allows for rapid itera-

tion and improvement of software products [3]. Developers can leverage the collective

insights and experiences of a global community to identify bugs, suggest enhancements,

and propose new features [3]. This collaborative feedback loop nurtures continuous inno-

vation and enables OSS projects to evolve rapidly, often outpacing proprietary software

in terms of innovation and feature development.

The relationship between open-source software and open innovation extends beyond the

development phase. Many organizations have embraced OSS as a strategic tool for open

innovation [20]. By leveraging open-source solutions, organizations can tap into a vast

array of pre-existing software components and libraries, reducing development costs and

time-to-market for their own products and services [18]. Moreover, organizations can ac-

tively participate in OSS communities, contributing back to the projects they rely on and

influencing their future direction. This symbiotic relationship fosters innovation ecosys-

tems where organizations and OSS projects mutually benefit from each other's contribu-

tions [18].

Basically, Open-source Software and open innovation share a deep connection. OSS em-

bodies the principles of open innovation by promoting collaboration, knowledge sharing,

and community-driven development [20]. It empowers developers, encourages collective

intelligence, and provides a fertile ground for innovation to thrive. Open-source Software

also complements open innovation strategies adopted by organizations, enabling them to

leverage external knowledge, reduce development costs, and actively participate in inno-

vation ecosystems [21]. The combination of OSS and open innovation has revolutionized

the software industry, drove rapid innovation, and transformed the way software is devel-

oped, shared, and improved.

3.5 Requirements Engineering for OSS Development

From the elaborative discussion about Requirements Engineering (RE) in the previous

chapter, it is evident that, RE is a critical component in the development of software pro-

jects, ensuring that user needs are captured, and system functionality is defined [8]. In the

context of Open-Source Software (OSS) development, RE plays a crucial role due to the

decentralized and community-driven nature of OSS projects [4]. This chapter provides an

in-depth exploration of Requirements Engineering in OSS development, emphasizing its

-13-

importance and presenting best practices derived from previous research. Effective Re-

quirements Engineering is essential for OSS projects, establishing a clear understanding

of user needs, defining system functionality, and guiding the development process [4].

OSS projects rely on collaboration and community involvement, making robust RE prac-

tices vital. Well-defined requirements foster collaboration, minimize ambiguities, and en-

sure a shared vision among diverse contributors [4].

While OSS development presents unique challenges, the adoption of best practices can

help address these hurdles. Community involvement is a cornerstone of successful OSS

projects [5]. Early engagement of the OSS community and stakeholders during the re-

quirements elicitation process is crucial. Platforms such as forums, mailing lists, and so-

cial media facilitate discussions and gather valuable input [5]. The iterative and incre-

mental approach to requirements development and management is highly effective in the

context of OSS [5]. Breaking down complex requirements into smaller, manageable user

stories or tasks enables distributed contributions and promotes agility [4]. Documentation

and traceability play vital roles in Requirements Engineering for OSS. Clear and up-to-

date documentation of requirements, decisions, and changes ensures transparency, aids

collaboration, and facilitates future understanding of the software system [4]. Maintaining

effective communication channels is essential to foster discussions, gather feedback, and

resolve conflicts among distributed contributors [10]. Prioritization and effective man-

agement of requirements are key to success in OSS development [4]. Prioritizing require-

ments based on their impact and feasibility, while considering available resources and

community interests, helps guide the development process and ensure efficient allocation

of limited resources [5].

In conclusion, Requirements Engineering holds great importance in the development of

OSS projects, facilitating collaboration, aligning stakeholder expectations, and guiding

the development process [4]. By adopting best practices such as community involvement,

iterative development, and effective communication, OSS projects can overcome the

challenges unique to their environment [5]. In short, it is crucial for researchers and prac-

titioners to seek, understand and implement effective Requirements Engineering (RE)

practices in OSS development.

-14-

4. Related Work

A number of systematic literature studies and mapping studies have been conducted to

explore various aspects of OSS development, ranging from investigating the distinctions

between traditional and OSS development activities to assessing community participation

and engagement. A summary of the related work is given in Table 1 where research goals,

research questions, method of the study and research summary is presented.

Studies Goals Research Ques-

tions

Research

Method

Research

Summary

Llanos

and

Castillo,

2012 [22]

Review of

software

development

processes

enacted by

the OSS

community

[22]

What activities do

OSS process

models contain?

[22]

Mapping

study

Identified 22 pri-

mary studies in their

systematic mapping

study and reviewed

software develop-

ment processes en-

acted by the OSS

community, with a

focus on the

requirements,

design, and

implementation

activities in OSS

projects

Gandomani

et al. 2013

[23]

Assessment of

the relation and

integration of

agile software

development

(ASD) and

Open-source

software

development

methodology

(OSSD) [23]

RQ1: Could ASD

and OSSD have

any relation-

ship? RQ2: Are

practices of one of

them applicable

in the second?

RQ3: Can

they integrate with

each other? [23]

Literature

review

Evaluated the rela-

tionship between ag-

ile software devel-

opment (ASD) and

OSS development

methods, finding ev-

idence that agile and

open-source prac-

tices complement

each other. The find-

ings showed that in-

corporating some

ASD practices in

-15-

OSS development

was feasible

Franco-

Bedoya et

al. 2017

[24]

Evaluation of

the current

state of the art

in OSS

ecosystems

(OSSECOs)

research [24]

RQ1. What are the

demographic

characteristics

of the studies

about OSSECOs?

RQ2. What is an

OSSECO?

RQ3. Which

representations

have been

proposed for

OSSECOs? [24]

Mapping

study

Assessed the current

state of the art in

OSS ecosystems

(OSSECOs) re-

search through a

mapping study of 87

primary studies. The

aim of this research

was to explore and

understand the gene-

sis of the OSSECO

terms from related

definitions, the soft-

ware ecosystems in

the context of OSS,

as well as the model-

ling and analysis

techniques of

OSSECOs

Kiran and

Ali, 2018

[25]

Investigation

of

requirements

elicitation

techniques in

open-source

projects [25]

How the process

of

requirement

elicitation

is carried out for

open-source

software? [25]

Literature

survey

Explored require-

ment elicitation

techniques in OSS

projects, inspecting

how the requirement

elicitation process is

carried out through a

literature survey

-16-

Kaur et al.

2020 [26]

Review of the

community

participation

and

engagement in

OSS

projects

RQ1: Which stud-

ies have

been published in

the

literature related

to community

dynamics?

RQ2: What

empirical

evidence

is provided for the

topics

addressed in the

community

dynamics studies?

Mapping

Study

Conducted a system-

atic mapping study

to gain a compre-

hensive understand-

ing of community

participation and en-

gagement in OSS

projects. Their find-

ings provide insights

into the dynamics of

OSS projects and

highlight the signifi-

cance of community

contributions and

factors that drive

and influence

community engage-

ment

Table 1: Overview of the selected studies

A. Castro Llanos and Acuña Castillo [22]

This paper aims to explore the variations and similarities in the development processes

between open-source software (OSS) communities and the traditional software engineer-

ing practices established by IEEE Standard 1074:2006 [22]. The authors conducted a sys-

tematic mapping study to identify the activities that constitute the OSS development pro-

cess, specifically focusing on requirements, design, and implementation [22]. The study

begins by highlighting the increasing significance of OSS and the need to understand how

OSS processes differ from traditional software engineering processes [22]. While some

studies have demonstrated differences in the OSS project development processes, the au-

thors argue that successful OSS systems exist despite deviating from the standard model.

-17-

However, other researchers claim that OSS development is not fundamentally different

but rather represents an alternative perspective on software engineering activities [22].

To investigate these differences and similarities, the authors compare the development

processes enacted by the OSS community with the established IEEE Standard 1074 [22].

They consider IEEE Standard 1074 as the baseline process model for traditional develop-

ment. To achieve this, the authors conducted a systematic mapping study (SMS) as their

research method [22]. The SMS involved identifying relevant keywords and search terms,

followed by a search across electronic databases such as IEEE Xplore, ACM Digital Li-

brary, SpringerLink, Science Direct, and Scopus [22]. The inclusion criteria for selecting

primary studies included papers that discussed or described the OSS development pro-

cess, listed OSS or free source software development process activities, proposed an OSS

development process, or focused on a particular OSS project's development process [22].

Papers that did not discuss or present the OSS development process or its activities were

excluded [22].

Through the SMS, a total of 22 primary studies were identified and analyzed. The findings

showed that the OSS community does not strictly adhere to prescriptive software engi-

neering models [22]. The requirements process in OSS projects involves the evolution of

requirements using web artifacts and continuous interactions in forums and messaging

[22]. Unlike traditional software engineering, OSS requirements are asserted rather than

elicited. Additionally, OSS projects prioritize modular design and implementation, allow-

ing anyone, including developers and users, to contribute designs and code. The paper's

structure includes a discussion of the match between the software development activities

in IEEE Standard 1074 and those enacted by the OSS community [22]. The activities

related to requirements, design, and implementation are compared, and the specific char-

acteristics of the OSS requirements process are examined.

In short, the paper utilizes a systematic mapping study to investigate the differences and

similarities between the development processes of OSS communities and traditional soft-

ware engineering practices [22]. It provides insights into the activities involved in OSS

development, highlighting variations in requirements, design, and implementation. The

findings contribute to understanding the unique aspects of OSS development and its de-

parture from traditional software engineering models [22].

-18-

B. Gandomani et al. [23]

This paper explores the connection between Agile software development (ASD) and

Open-source Software Development (OSSD) [23]. The authors note that while both ap-

proaches have gained popularity in the past decade and have their respective advocates,

there is a lack of rigorous studies examining the relationship and integration between

ASD and OSSD. The study aims to assess the extent of the relationship and potential

integration between ASD and OSSD through a systematic literature review. The research

questions guiding the study are as follows: (1) Could ASD and OSSD have any relation-

ship? (2) Are practices of one of them applicable in the other? (3) Can they integrate with

each other? [23] The authors adopt guidelines proposed by Kichenham for conducting

their systematic review. They search various online databases such as Scopus, IEEE

Xplore, ACM Digital Library, Springer Link, Taylor, and Francis, and Science Direct

[23]. The inclusion and exclusion criteria are established to ensure the selection of rele-

vant studies. The quality of the studies is assessed based on specific questions related to

the existence of a relationship, similar practices, simultaneous application, useful prac-

tices, successful integration, and feasibility of integration [23].

The results of the review indicate that there is a relationship between ASD and OSSD,

particularly in terms of project management. Many authors acknowledge this relationship,

and some even consider OSSD as a type of ASD. The study also reveals that there are

similar practices and concepts in both ASD and OSSD, such as self-organized teams and

incremental development [23]. Several case studies demonstrate successful simultaneous

application of ASD and OSSD, highlighting the benefits of combining these approaches.

However, when it comes to the integration of ASD and OSSD, the evidence is limited.

Only a small portion of the studies explicitly address integration, and there is a lack of

comprehensive integration examples. While some authors believe in the feasibility of in-

tegration and collaboration between ASD and OSSD, clear case studies supporting this

claim are scarce. It is suggested that adoption plays a crucial role in successfully integrat-

ing these methodologies [23].

Basically, the study highlights the relationship and support between ASD and OSSD,

showcasing their potential to complement each other in various practices. However, com-

prehensive integration between the two approaches remains an area of exploration, with

limited evidence available [23]. The findings emphasize the need for further research and

the importance of adoption for successful integration [23].

-19-

C. Franco-Bedoya et al. [24]

This paper focuses on the evaluation of the current state of the art in research related to

Open-source Software Ecosystems (OSSECOs) [24]. Open-source software and software

ecosystems are established areas of study in software engineering, and their interplay has

significant implications for how organizations develop, acquire, use, and commercialize

software. Software ecosystems offer a holistic perspective on understanding the dynamics

and heterogeneity of collaborative software development, making them a suitable frame-

work for analyzing OSS systems [24].

The objective of the study is threefold: (a) to identify the most relevant definitions asso-

ciated with OSSECOs, (b) to explore the unique characteristics of OSSECOs, and (c) to

investigate how knowledge about OSSECOs is represented in the literature. To achieve

these goals, the authors employ a systematic mapping methodology following recom-

mended practices [24]. They conduct automatic and manual searches across various

sources and use rigorous selection criteria to retrieve relevant papers. In total, 82 papers

are selected and evaluated, with identified threats to validity being addressed when pos-

sible. The results of the analysis provide insights into the research questions. The authors

identify 64 terms related to OSSECOs and organize them into a taxonomy, enabling a

comprehensive understanding of the terminology associated with the topic [24]. Addi-

tionally, a genealogical tree is constructed to trace the origins and evolution of the OS-

SECO term from related definitions. The available definitions of software ecosystems in

the context of OSS are analyzed, highlighting the nuances and variations in understand-

ing. Furthermore, existing modeling and analysis techniques for OSSECOs are classified,

shedding light on the current approaches employed in the field. Based on the systematic

mapping, the authors draw several conclusions [24]. They note that research on various

topics related to OSSECOs, such as modeling and analysis techniques, quality models,

and standard definitions, remains limited [24]. This observation suggests a need for fur-

ther investigation into how organizations and OSS communities perceive and understand

OSSECOs. By providing an overview of the research in the field, the paper contributes

to consolidating knowledge and identifying areas that require more attention and explo-

ration [24].

The paper presents background information on OSS and the evolution of software eco-

systems [24]. It describes the systematic mapping protocol, including the criteria for se-

lecting and analyzing the primary studies on OSSECOs. The demographic characteristics

of the literature, such as publication sources, research volume over the years, and the

distribution between industry and academia, are analyzed. This paper basically provides

a comprehensive analysis of the state of the art in OSSECOs research [24]. It contributes

-20-

to the understanding of terminology, characteristics, and representations related to OS-

SECOs while identifying areas that require further investigation. The findings highlight

the need for continued exploration and development of models, techniques, and defini-

tions to enhance the understanding and application of OSSECOs in software engineering

[24].

D. Kiran and Ali [25]

This paper focuses on the process of requirement elicitation in open-source software de-

velopment [25]. The abstract highlights the increasing trend of open-source software de-

velopment and the challenges involved in gathering requirements for such systems. The

study aims to explore the techniques used for requirement elicitation in open-source soft-

ware development and simplify the process [25]. Requirement elicitation is the critical

step of gathering requirements from stakeholders for software development. Poor require-

ment elicitation can lead to software system failures. In open-source software develop-

ment, where developers from different regions collaborate, requirement elicitation be-

comes more complex. The paper emphasizes the importance of requirement engineering

in the context of open-source software development and the need for effective techniques

[25]. The nature of open-source systems, which are often distributed and involve a large

number of participants, makes the requirement elicitation process different from tradi-

tional software development [25]. The requirements are usually presented in natural lan-

guage text format and are gathered through discussions, emails, messaging, and internet

communication. The informal and unstructured nature of documentation and communi-

cation in open-source projects contributes to the unique challenges in requirement elici-

tation [25]. The paper categorizes various requirement elicitation techniques for open-

source systems [25]. It mentions groupware tools as an effective method for eliciting re-

quirements by facilitating communication among groups of stakeholders. Web surveys

are another technique discussed, where requirements are collected through online sur-

veys, allowing for data collection from a dispersed population. Interviews, a common

requirement elicitation technique, are also mentioned [25].

The study highlights the advantages and limitations of using different requirement elici-

tation techniques in the context of open-source software development [25]. For example,

groupware tools enable collaboration among stakeholders, while web surveys can effi-

ciently gather requirements from a large geographical area. Interviews provide direct in-

teraction but may be time-consuming and subjective [25]. The paper concludes with a

comparative analysis of the various techniques in relation to different categories of open-

source software. It acknowledges the importance of requirement elicitation in open-

-21-

source systems and emphasizes the need for selecting appropriate techniques based on

the specific context [25].

This paper addresses the challenges of requirement elicitation in open-source software

development and provides an overview of various techniques that can be used. It empha-

sizes the importance of understanding the unique characteristics of open-source projects

and tailoring the requirement elicitation process accordingly [25]. The insights from this

study can guide developers and organizations in effectively gathering requirements for

open-source software systems.

E. Kaur et al. [26]

In this paper, the authors conducted a systematic mapping study to review the literature

on community participation and engagement in Open-source Software (OSS) projects

[26]. Their aim was to identify research topics, gaps, methods, and publication venues in

this area. The study analyzed 67 research papers using the snowballing technique and

revealed the significance of active community engagement for the success of OSS pro-

jects [26]. It emphasized the need for greater community participation through the adop-

tion of tools, practices, and processes [26]. The authors identified five main research top-

ics: the joining process, contribution barriers, motivation, retention, and abandonment

[26]. While motivation and contribution barriers have been extensively studied, there is

relatively less research available on the joining process and abandonment, indicating po-

tential research gaps in these areas [26]. The study employed surveys and questionnaires

as the primary research methodology, with most studies utilizing this approach [26].

The authors highlighted the importance of studying the joining process and abandonment

in OSS projects, as these areas have received less attention in previous research [26].

They also provided insights into the publication venues and frequency of publications in

community dynamics studies, as well as the countries participating in the research [26].

By presenting this information, the authors aimed to assist researchers in understanding

the latest trends in the field and identifying potential research opportunities [26]. This

study, being a systematic mapping study, provided a concise summary of the research

area, types of research conducted, and available results [26]. While less resource-inten-

sive compared to a systematic literature review, it still offered a valuable overview of the

research landscape [26]. Moreover, the paper contributed to the existing literature by fo-

cusing on aspects of community dynamics that were not adequately covered in previous

studies, such as the joining process, contribution barriers, and abandonment in OSS pro-

jects [26]. Through their systematic mapping approach, the authors provided a compre-

-22-

hensive analysis of the current state of research on community participation and engage-

ment in OSS projects [26]. This paper serves as a valuable resource for researchers inter-

ested in community dynamics in OSS projects, offering an overview of existing research,

identifying research gaps and topics, and presenting insights into research methods and

publication venues [26]. The findings presented in the paper can guide future research

endeavors and help researchers stay informed about the latest trends in this area [26].

While the related work explored various aspects of OSS development, none of the above-

mentioned studies comprehensively investigated requirements engineering processes and

practices in OSS projects. An SLR focusing on requirements engineering practices would

fill this gap, providing a complete understanding of the challenges and practices associ-

ated with requirements analysis and management in OSS projects. Despite the fact that

these studies provided some insightful information about OSS development, there are

some limitations to consider. First, the complete spectrum of OSS development cannot

be represented by concentrating on the activities that comprise OSS process models. Sec-

ondly, some studies narrowed the focus by emphasizing requirement elicitation tech-

niques and integration between agile software development (ASD) and OSSD practices.

Lastly, the studies may not have accounted for the most recent trends and challenges as-

sociated with open-source software development as they are based on previous OSS prac-

tices. In contrast this thesis aims to identify the best practices for OSS project managers

and contributors involved in requirement identification, analysis, and management, as

well as examine the latest research on requirements practices in OSS projects and poten-

tial challenges and solutions.

-23-

5. Research Methodology

In this section literature search strategy and data extraction from the selected studies are

described. To conduct the research methodology, comprehensive guidelines by Kitchen-

ham and others [27], [28] are adopted to establish the search strategies and the review

protocol before implying the systematic literature review. A systematic literature review

is basically a process to identify, evaluate and interpret all available research relevant to

a particular research question or specific genre or particular topic [27].

5.1 Search Strategy

1) Search String:

The following search string is applied to search the relevant journals and

articles:

 (”open source software” OR oss) AND (project OR development)) AND (

”requirements management” OR ”requirements engineering” OR ”requirements

analysis” OR ”handle requirements”) AND (process OR tool OR technique OR

activit* OR challeng* OR solution OR benefit))

The search string is formulated to include keywords identified from research questions

and diversified using synonyms. It is started with the terms ”requirements management”,

”open source software project”, ”process”, ”tool”, and ”challenge”, and continue to iden-

tify the synonyms, abbreviations, or alternatives to those words or terms to widen the

coverage of the search. This is also the reason for using Asterix (*) to include variations

of certain keywords in the search. The key terms are concatenated using AND, so that it

is easier to search for relevant studies. On the other hand, concatenation of the alternatives

and synonyms using OR is implied so that it could maximize the percentage of search

results being relevant. To ensure consistency and completeness, the presence of terms is

verified in several iterations to look for relevant terms from papers chosen from the

rounds of search results.

2) Information sources and search process:

The same search string is used to search for relevant studies. Four most representative

databases for research in software engineering are chosen in the study, and they are as

below:

I. Scopus

II. IEEEXplore

III. ACM Digital Library

IV. Web of Science.

Scopus was the first database where the search was done, duplicate values that were found

from Scopus are removed from research results in other databases. Overall, 256 unique

results came from database searches.

-24-

3) Inclusion and exclusion criteria:

Table 2: Inclusion and Exclusion Criteria

The inclusion and exclusion criteria for the study have been specified based on the re-

search questions. The inclusion criteria require that studies investigate relevant topics to

address our research objectives. The included studies are those which meet four specific

criteria. Exclusion criteria include those commonly used in SLR, such as non-English

papers, duplicate papers, non-peer reviewed papers, research plans and roadmaps, and the

use of a secondary study method. Additionally, studies related to OSS adoption, evalua-

tion of a requirements tool using OSS projects, or the development of requirements tools

are outside the scope of this study and are listed in the exclusion criteria. The complete

Inclusion/Exclusion Criteria

Inclusion Papers on open-source software develop-

ment process

 Papers on how to handle issues and con-

tributions in OSS projects

 Papers applying methods, techniques, or

tools for requirements elicitation, analy-

sis, and management in OSS projects

 Papers analyzing contributors’ influence

in handling requirements for

 OSS projects

Exclusion

 Not in English

 Focuses on OSS evaluation and adoption

 Focuses on requirements specification for

an OSS project

 Focuses on using OSS projects as exam-

ples for tool/method

evaluation

 Focuses on open-source tools

 Duplicate papers

 Out of topic and using the terms for other

purposes

 Non-peer-reviewed papers

 Secondary studies, vision papers, or tuto-

rial

-25-

list of inclusion and exclusion criteria is given in Table 2. The initial screening of search

results for relevant studies is conducted after several revision and applied the inclusion

and exclusion criteria to select relevant papers. The results are compared after the inde-

pendent screening process to reach a consensus on the papers to be included. If there is a

dispute between results, the full paper is reviewed, checked and read again, and then after

the final confirmation it is determined whether the paper should be included or not. There

are altogether 39 selected papers.

Each of the 39 papers underwent the forward and backward snowballing process. All the

references listed in the selected papers are reviewed and all the papers that reference the

selected ones are evaluated. The process provided 3 additional papers in forward snow-

balling and 1 additional in backward snowballing. Hence, the total number of selected

papers was 43. The number of papers resulting from each process is summarized in Figure

1.

Figure 1: Search and Selection process

-26-

5.2 Data Extraction

In order to extract data from the 43 studies, a coding schema is developed that is based

on the research objectives and questions. In the coding schema, eleven steps are implied

for data extraction and those steps are as below:

1. Title of the paper

2. Extracted data (Brief summary of the paper)

3. Goal of the paper

4. Method of the paper (case study, survey research, experiments, action research,

constructive method, etc.)

5. Requirement Engineering activities

6. Techniques that are involved in those RE activities

7. Tools that are used in those RE activities and techniques

8. Stakeholder involvement in RE activities and their roles

9. Identified challenges/constraints/problems in OSS projects

10. How these challenges affect the overall RE management in project

11. Corresponding solutions to identified challenges in OSS projects

This coding schema is conducted through an excel datasheet as like in Figure 2:

Figure 2: Sample datasheet of coding schema

-27-

This coding process is conducted in three phases. Firstly, eight papers are selected from

the list and extracted data intensively using the coding schema. After that, the extracted

data has been compared, the data items and the coding schema have been refined and

revised. This coding schema helps to identify characteristics of the selected studies such

as their goals, research methods, requirements engineering management activities and

practices reported, methods and tools used, challenges faced in requirements management

in OSS development, and proposed solutions. After finalized the coding schema, the pa-

pers are coded using the schema in the second stage. At this point, several discussion

meetings are conducted with the supervisor to interpret and analyze the codes based on

perceived similarities, and to discuss any confusion and discrepancies. In cases of disa-

greement, the full paper is read again thoroughly and intensively. In the third phase, the

data is summarized by identifying themes that emerged from the codes. These identified

themes formed the categories reported in the results section.

-28-

6. Results

6.1. Overview of Selected Studies

43 papers are selected through the process described earlier. The papers are listed in Ap-

pendix A and cited as SP* in the following discussion. They were published from 2002

to 2022. The distribution of the number of papers over time is shown in Figure 3. Among

these 33 papers were published in conferences and 10 were published in journals.

Figure 3: Year wise distribution of selected studies

From 2005 to 2008, the number of selected studies stayed unchanged. Nevertheless, in

2009-2010, a modest rise in the number of studies was seen. The most notable rise in the

selected number of studies occurred between 2015 and 2016 when 9 studies were pub-

lished. This shows that several research was conducted, and conferences received high-

quality submissions during this time period. The number of chosen research reduces little

between 2017 and 2018 with nine publications. The decline continued until 2022. When

analyzing the characteristics of selected studies, it is identified that the themes emanating

from the coding of research goals and methods of the selected studies. The studies have

been categorized into different areas and found that Data analytics (26.6%), RE processes

(35.56%), RE activities (31.11%), and Techniques and tools (6.67%) are the key methods

that emerged from requirements management practices.

-29-

The selected studies are analyzed and grouped into two categories based on their research

topics, as shown in Figure 4. There are 29 studies (67.44%) on the characteristics of the

requirements engineering process and practices in OSS projects and 14 studies (32.56%)

that focus on specific requirements analysis and management activities and propose and

discuss techniques or tools supporting those activities. Among the studies on techniques

and tools supporting requirements management tasks, there are 11 studies (25.58%) on

the use of data analytics methods for analysis.

Figure 4: Study topics divided into categories

-30-

The 29 studies on RE processes and practices revealed several main themes. Numerous

studies focused on the social-technical distributed aspects of RE practice in open-source

communities, examining the processes and frameworks involved [SP9], [SP10], [SP15],

[SP16], [SP18], [SP25], [SP34], and [SP40]. Meanwhile, other research investigated the

informal and open innovation nature of software engineering practices, particularly re-

garding the RE process [SP13], [SP24], [SP30], [SP42], [SP8], [SP21], and [SP26]. Fur-

thermore, several papers conducted empirical study on specific RE activities, e.g., re-

quirements elicitation [SP14], [SP17], [SP20], [SP23], [SP32], [SP39], analysis [SP5],

[SP12], [SP19], [SP31], [SP36], [SP43], and documentation and tracing [SP35] and

[SP38].These studies explored various aspects of RE in the context of OSS development.

Out of the 14 studies on techniques and tools for requirements analysis and management,

11 recent studies proposed and evaluated data analysis methods such as natural language

processing (NLP), machine learning (ML), or statistical analysis algorithms to accom-

plish various tasks. These tasks include analyzing stakeholders’ influence [SP3] and ex-

pertise [SP29], eliciting requirements from developer communities or forums [SP6]

[SP28], identifying redundant features [SP33], classifying or prioritizing requirements

[SP1], [SP22], [SP27], [SP4], tracing requirements [SP37] and monitoring project per-

formance [SP2]. Additionally, 3 studies proposed and evaluated requirements elicitation

and analysis techniques that primarily relied on participants’ discussions and voting

[SP4], [SP7], and [SP11].

6.2. RQ1: What RE activities, tools and techniques are used by practitioners in

open-source software project?

Synthesizing data from 43 selected papers, the practices, techniques, and methods that

support RE activities in OSS projects are summarized in Table 3. After analyzing the

data, various sorts of RE activities are identified where several sorts of tools and tech-

niques are involved. Based on the following RE activities, the identified practices are

categorized as in Table 3.

1) Requirements Elicitation: Proposing and identifying change requests and new fea-

tures that align with a project's roadmap is crucial in software development and ongoing

improvements. Numerous studies have emphasized the responsibility of core developers

and team members in determining the majority of features (SP8, SP14, SP23, SP25, SP32,

SP34, SP42). Feature requests and bug reports are often conveyed through provision-

ments, a statement that describes a feature provided by existing software systems, com-

peting products, or prototypes put forth by developers advocating for the changes(SP30).

These provisionments and assertions are openly discussed within the developer commu-

nity, drawing upon personal experiences or knowledge of user needs. Such discussions

-31-

typically take place on forums, during project workshops, through emails, or by using

reporting tools such as Jira, Bugzilla, or other issue tracking systems (SP8, SP17, SP25,

SP32, SP34). Meanwhile, studies SP40 and SP23 have suggested improvements to the

decision-making process for selecting proposed use cases, constraints, and feature re

quests.

Table 3: Requirement Engineering Practices

Requirements

Engineering Activities

Practices Related Papers

Requirements elicitation

Assertion & discussion in

developer’s

community

SP8, SP14, SP17, SP23,

SP25, SP30, SP31, SP32,

SP34, SP40, SP42

Automated requirements

identification

SP27, SP28, SP43

 Requirements analysis

Automated requirements

classification

SP1, SP4, SP6, SP33, SP43

Requirements prioritization SP7, SP8, SP14

Refinement and resolution SP5, SP12, SP14, SP19, SP25

Requirements analysis SP25, SP31, SP32, SP34,

SP35, SP36, SP40, SP42

Requirements

documentation

Informal documentation SP14, SP25, SP34, SP35,

SP38, SP40, SP42

Requirements

management

Feature management SP32

Traceability SP26, SP31, SP32, SP35,

SP37, SP40, SP38

Stakeholder analysis Community involvement SP17, SP39, SP42

Data analytics methods SP2, SP3, SP18, SP20, SP28,

SP29

Social-technical

characteristics

Socio-technical distributed cog-

nitive

process

SP9, SP10, SP15, SP16

Informal requirements SP25, SP30

Others SP2, SP11, SP13, SP14,

SP21, SP22, SP24, SP40,

SP41

-32-

Furthermore, to automate the labor-intensive process of identifying requirements from

diverse information sources, NLP techniques, ML methods, and grammar-based parsing

strategies (SP43) have been applied in recent studies. For example, a logistic regression

model has been proposed to identify security requirements from reported issues (SP27).

2) Requirement Analysis and Validation: Requirements analysis involves tasks such

as identifying redundant requirements and classifying and prioritizing issues and change

requests. These tasks rely on automated methods, contributors' feedback and comments,

and diverse information sources. Several studies proposed automated approaches for re-

quirements classification, using and comparing algorithms such as TF-IDF, Naive Bayes,

Decision Tree, and Random Forest (SP1, SP4). Additional automated approaches have

been suggested for identifying redundant feature requests (SP33) and classifying security

requirements (SP43). Besides automated methods, requirements prioritization and refine-

ment often involve informal discussions, comments, and voting processes, where com-

munity members, e.g., project maintainers, developers, and users, collaboratively assess

the proposed features and improvements (SP5, SP8, SP14, SP25). Requirements valida-

tion is typically conducted through unit testing and integration testing of change requests

(SP7, SP8, SP14, SP19). Researchers have explored community communication, scenar-

ios of usage, How-to guides, external publications, bug reports, issue tracking, and docu-

mentation as sources for requirements analysis (SP14, SP25). Furthermore, several stud-

ies have explored approaches and frameworks to better understand OSS requirements and

address communication problems in OSS development (SP34, SP36, SP40).

3) Requirements documentation: Documentation is typically less formalized in OSS

projects. Studies indicate that requirements are documented through discussion and vot-

ing (SP14, SP25, SP34, SP40, SP42) and in various formats such as forums, guidelines,

READMEs, wikis, and website resource files (SP35, SP38). Although not always re-

quired, templates for reporting issues and generating change requests are frequently used

in OSS projects to provide guidelines for contributors when submitting their work or re-

porting problems. For instance, guidelines for documenting and managing issues for agile

software development on GitHub have been proposed in studies (e.g., SP35).

4) Requirements management: In OSS projects, requirements management and tracing

are achieved through issue tracking systems, source control systems, informal documen-

tation, and tags or labels. The degree of traceability varies based on project size, com-

plexity, community involvement, as well as the abstraction level of requirements. Con-

crete and technical requirements are often reported in the project's issue tracker and can

be traced with the support of issue references and status tracking (SP35, SP40), while

-33-

features documented in READMEs, wikis, and website resource files may lack explicit

referencing to source code (SP38). Additionally, Requirements tracing has been explored

through the use of automated approaches based on the Universal Sentence Encoder fol-

lowing a semantic search and innovative clustering technique (SP26), Vector Space

Model (VSM), Term Frequency-Inverse Document Frequency (TF-IDF) techniques

(SP37).

5) Stakeholder analysis: Many studies highlight the importance of community involve-

ment and participation in OSS projects, as well as the need for effective stakeholder man-

agement and communication throughout the software development life cycle. These stud-

ies result in preliminary guidelines for the organization of community-oriented software

development (SP17, SP39, SP42). Many recent studies applied quantitative analysis tech-

niques such as social network analysis (SP2, SP3, SP18, SP20), Markov Network (SP28,

SP29), and graph theory (SP20) to model and analyze stakeholder interactions patterns

and their influence, and their expertise level to a given topic.

6) Social-Technical Characteristics: OSS projects represent complex relationships be-

tween the social aspects (e.g., collaboration, communication, stakeholders) and technical

aspects (e.g., software architecture, code base, tools). Understanding these characteristics

is essential for promoting a healthy OSS ecosystem. Some studies have investigated the

impact of social-technical characteristics on OSS projects, examining the role of distrib-

uted and cognitive activities across releases (SP9, SP10, SP15) and the influence of in-

ternal social capital in driving RE activities (SP16). Studies highlight that informal re-

quirements are common in OSS projects (SP25, SP30).

Moreover, various other aspects of RE practices in OSS projects have been explored,

including the impact of crowd-sourcing on OSS project performance and process effec-

tiveness evaluation (SP2), the feasibility of adopting the visual brainstorming usability

technique in OSS project (SP11), models for analyzing and managing requirements in

OSS and Software Ecosystems (SECOs) (SP13), challenges in managing requirements in

an open innovation context (SP21), as well as the frameworks and models to describe the

requirements analysis process in OSS projects (SP24, SP41).

6.3 RQ2: What are the challenges faced by the practitioners in OSS projects? What

are the possible solutions to overcome the challenges?

Studies have demonstrated that diverse challenges may arise in the process of OSS de-

velopment. Identified challenges and corresponding solutions from the selected papers

are presented in Table 4.

-34-

Challenges Corresponding Solution Related Papers

Classifying user inputs into re-

quirements categories

Classification model/ML SP1

Managing volume of system re-

quirements in crowdsourcing

Organize, prioritize, em-

ploy CrowdRE, dedicated

managers

SP2

Complexity of RE process in

OSS ecosystems

SIA method for stake-

holder analysis

SP3

Prioritizing new requirements

and responsible developers

Prioritization tool with

real-world data and ML

classifiers

SP4

Prioritizing requirements for in-

dividual contributors

Utility-based prioritiza-

tion approaches

SP7

Need for systematic and auto-

mated testing in OSS projects

Leverage benefits from

industry involvement

SP8

Impact of social structures on

RE quality

Quantitative analysis of

OSS projects

SP9

Recruiting OSS users for usabil-

ity testing

Modified visual brain-

storming, improved re-

cruitment process

SP11

Resource and coordination is-

sues

Improved communica-

tion, resource allocation,

prioritization

SP12

Challenges in OSS and SECO

projects

Agile methodologies,

stakeholder involvement,

new tools

SP13

-35-

Informal requirements genera-

tion

Inform future RE im-

provements

SP14

Handling large volume and vol-

atility of requirements

Understand socio-tech-

nical distribution of cog-

nitive processes

SP15

Understanding internal social

capital

Case study of four OSS

development projects

SP16

Limited scope of empirical

studies

Guidelines for commu-

nity-oriented software de-

velopment

SP17

Openness-related challenges in

OSS projects

Network analysis for

stakeholder understand-

ing

SP18

Lack of knowledge in JIT re-

quirements engineering

Further research in JIT re-

quirements engineering

SP19

Decentralized social interac-

tions in OSS

Understanding structural

hole theory

SP20

Requirements scoping and man-

agement in open innovation

Improved data-mining

tools, second-generation

forums

SP21

-36-

Limited understanding of the

relationships between require-

ments and project success, dif-

ficulty in identifying excep-

tions or anomalies, and limited

research on the impact of re-

quirements and design evolu-

tion

Bridge the knowledge gap

through exploration and

pattern identification, de-

velop a comprehensive

taxonomy for require-

ments, and replicate anal-

yses on larger datasets to

gain a broader under-

standing of failed projects

and their impact

SP22

Complex web of sociotechnical

processes, development situa-

tions, and dynamically emerg-

ing development contexts

Ethnographic methods are

needed to

elicit, analyze, validate,

and communicate

SP25

Manual extraction of require-

ments from user feedback

Universal sentence en-

coder

SP26

Limited analysis in require-

ments identification models

Use more metrics, test

complementary combina-

tions

SP27

Eliciting requirements

knowledge from online discus-

sions

Tool-supported method

with NLP, ML, and

search techniques

SP28

Evaluating expertise of stake-

holders in OSS projects

Enriched concepts from

forum- and social net-

work-based works

SP29

Inappropriate traditional RE

practices in some projects

Taxonomy of require-

ments practices

SP31

Managing large numbers of fea-

ture requests

TF-IDF VSM for measur-

ing text-based similarity

SP32

-37-

Presence of inconsistency, in-

completeness, and ambiguities

as the major hindrance for re-

quirements communication

Proposed a novel frame-

work to tackle communi-

cation problems and am-

biguities

SP36

Lack of tool support to visualize

and navigate large networks of

feature requests and their rela-

tionships

TF-IDF VSM to measure

the text-based similarity

between feature requests

SP37

Lack of guidance in ERP re-

quirements management

Further research for prac-

tical guidelines

SP39

Distributed user communities,

user needs, and decision-mak-

ing

Web-based project man-

agement technologies,

planning strategies

SP40

Table 4: Overview of Identified Challenges and Solutions

The challenges can be grouped into several distinct categories, with various studies ex-

ploring and proposing solutions to address them.

1. Managing the large volume of issues and feature requests: Several studies have

highlighted the challenges in managing the growing volume of system requirements, fea-

ture requests, and issues in OSS projects (SP2, SP15, SP21, SP22, SP32). There is often

a lack of support for handling and managing a large number of feature requests in forums

and wikis, making it harder for users to submit well-thought-out requests (SP33) and for

developers to visualize and navigate extensive networks of feature requests (SP37). These

challenges affect the overall RE process by making it difficult to understand, identify,

classify, and clarify requirements, leading to delays in software development, increased

bugs and errors, and higher development iterations (SP36). To address these challenges,

various solutions have been proposed. These include the implementation of processes to

organize and prioritize issues and change requests, the application of CrowdRE tech-

niques, and the assignment of dedicated managers to effectively manage input from the

crowd (SP2). Utility-based prioritization techniques have been proposed to facilitate de-

cision-making in selecting the most important and urgent requirements and assigning

them to suitable developers for review and implementation (SP7). Furthermore, recent

research trends involve utilizing ML methods to handle the large volume of requirements,

such as automated requirements identification and analysis (SP1, SP4, SP6, SP27, SP28,

-38-

SP33, SP43). For instance, a prioritization tool was proposed in SP4 to recommend rele-

vant requirements (issues/bugs) to open-source developers. The study used data from

Eclipse to build a prediction model, training and evaluating different classifiers. The re-

sults revealed that the Random Forest classifier offered the highest precision.

2. Distributed nature of OSS projects: The distributed nature of OSS projects presents

unique challenges in communication, management of requirements, and resource alloca-

tion due to the cognitive distribution among multiple developers and their interaction in

social networks. RE is considered to be less formal and dependent on online documenta-

tion and communication tools. To address these challenges, several approaches have been

proposed, including stakeholder influence analysis (SIA) methods that analyze develop-

ers' social networks and evaluate their influence and expertise (SP2, SP3, SP18, SP20,

SP28, SP29). These analyses support identifying responsible developers for requirements

analysis and implementation. In particular, the study in SP20 investigated the impact of

structural hole theory on the identification of new requirements in OSS projects. The

findings enhance the RE process in decentralized environments by understanding the in-

fluence of social network structures on OSS development. Lack of resources, conflicting

stakeholder interests, and coordination problems among contributors are identified as

challenges (SP12) that can result in delays in the elaboration, refinement, and resolution

of just-in-time requirements. To address these challenges, various solutions have been

proposed including enhancing communication and coordination among contributors, ap-

propriate resource allocation, prioritizing requirements based on stakeholder feedback,

and resolving stakeholder conflicts through negotiation and mutual compromise (SP12).

3. Complex Social Structure: Another challenge in OSS projects is found in the studies,

which is the complex and multifaceted characteristics of the RE process. The reason be-

hind it is the competitive RE processes inherent in the ecosystem (SP3). The SIA method

is proposed to support firms to maintain the structure of their stakeholder analysis pro-

cesses in regard to an OSS ecosystem and identify the concepts of influence and interac-

tions (SP3). The impact of diversified social structures on RE quality is another challenge

addressed in the studies (SP9, SP16). The authors advised that understanding the role of

internal social capital in RE activities could be beneficial to address these challenges in

OSS projects. Additionally, the relationship between structural hole theory and the iden-

tification of new requirements is proposed to improve the RE process in decentralized

environments like OSS projects (SP20). Another identified challenge is that the presence

of inconsistency, incompleteness, and ambiguities as the major requirements communi-

cation hitches in OSSD context (SP36). It also identified the challenges posed by the

-39-

heterogeneous stakeholders with different educational backgrounds, geographical loca-

tions, and language use competencies. It can make the process of understanding, classi-

fying, and clarifying unclear requirements a tedious task, leading to delays in software

development processes, increased defects, and higher development iterations. As a solu-

tion, the authors proposed a novel framework to tackle communication problems and am-

biguities in OSSD by merging various approaches for their collective impact. The frame-

work aims to combine the positive attributes of automation-oriented domains and support

humans to arrive at precise and unambiguous requirements (SP36).

4. Requirements prioritization and identification: Prioritization of new requirements

and identification of responsible developers for the implementation is another crucial

challenge specified by several studies (SP4, SP8). An effective solution is proposed in

SP4 by developing a prioritization tool that provides a solution to this challenge. This tool

recommends relevant requirements (issues/bugs) to open-source developers (SP4). The

tool utilizes real-world data from Eclipse and machine learning classifiers to build a pre-

diction model that can accurately predict issues. Another challenge is in this case, to elicit

requirements knowledge from big online discussions and to elicit indicators of the level

of expertise of the participants to a given discussion (SP28). This can make manual anal-

ysis of online discussions an effort demanding and error-prone task. A tool-supported

method that combines Natural Language Processing (NLP) techniques, Machine Learn-

ing (ML), statistical and search-based techniques is proposed by the authors to address

the identified challenge (SP28).

In addition, numerous solutions have been proposed to figure out these challenges, for

instance utilizing a universal sentence encoder, which helps to identify matched requests

coming from forum postings and issue tracker records (SP26), a tool-supported method

combining NLP techniques, ML, statistical, and search-based techniques to address the

challenge of requirements elicitation from big online discussions (SP28), and a novel

framework to handle communication problems and ambiguities in OSSD by merging sev-

eral approaches (SP36). The studies also recommend the implementation of planning and

communication strategies to enhance the decision-making process (SP40) and the need

for future research to derive more practical guidelines on the requirements definition for

ERP development (SP39).

-40-

7. Discussion

In this study, a comprehensive and detailed analysis of the best practices of RE activities

is performed in the context of OSS projects. The results and data from numerous studies

are synthesized to analyze the practices, techniques, tools, and methods applied in various

RE activities, for instance, requirements analysis, requirements elicitation, documenta-

tion, management, stakeholder analysis, and social-technical characteristics. Throughout

the findings, the diversified range of RE practices and corresponding tools and techniques

for example, NLP techniques, statistical and search-based techniques, ML approaches,

etc. applied in OSS projects has been emphasized. The significance of community in-

volvement and participation in OSS projects and as well as the importance of informal

requirements for OSS project development and management are highlighted in our find-

ings, with many studies pointing out the importance of effective stakeholder management

and communication throughout the software development life cycle. Several studies have

analyzed the social-technical characteristics of OSS projects with in-depth reasoning of

the complex relationship between social aspects and technical aspects. To assure the ef-

ficient and effective management of requirements in OSS projects, it is important to man-

age traceability between requirements and implementation artifacts. Our research sug-

gests that forums are generally used for feature management, while traceability has been

implied through automated approaches, recommender systems, and lightweight represe-

ntations.

7.1. Analysis of the findings

According to the results of the comprehensive analysis of the relevant literature, research

trends on requirement management practice have grown significantly since 2005. Be-

tween the years 2005 and 2008, there were very few studies that concentrated on the topic

of requirement management for open-source software projects. In terms of how trends

change over time, it is possible to observe that from 2009 to 2012, a variety of studies

were conducted. These studies focused on the need for classification and analysis as well

as understanding the requirements for OSS, which includes socio-technical processes.

During this time period, there was a lack of coherence in the research subject. There has

been a rise in interest in the social-technical distributed aspects of requirement engineer-

ing in open-source projects from 2016 to 2018, as evidenced by the publication of six

articles that particularly focus on this aspect of the topic. Since 2017, there has been a

reduction in the number of research studies conducted on RE processes, in particular soft-

ware engineering (SE) practices on the subject of open innovation (OI) and the require-

ments management process. To enhance project performance, eliminate redundant data,

and for classification and analysis of requirements, an increasingly popular trend is the

use of data analytics techniques. The use of data analytics began in 2011, but the majority

-41-

of work started in 2015. There were multiple works published in 2018 that focused on the

tools and techniques for requirement analysis. After 2015, in 2022, a study concentrated

on documentation for an OSS project, disclosing an intriguing topic that can be combined

using data analytics for future studies. Basically, it is important to note that the majority

of studies on Requirements Management on Open-Source Projects were conducted in

2018 and 2019, with ten studies being the most productive years.

Over the past years, the research in RE practices in the context of OSS projects has

evolved. Prior to 2010, studies solely drew attention to understanding the social pro-

cesses, developer community, and informal text descriptions of requirements. Several

case studies and surveys were applied to point out how requirements analysis and man-

agement differ from traditional RE practices. Since 2009, there has been a deviation in

discussing methods and techniques for individual RE activities such as requirements elic-

itation, prioritization, and tracing. Researchers have performed a flourishing interest in

community involvement and participation in RE development for OSS projects. From

then, the use of mixed methods approaches, combining qualitative and quantitative data

techniques were also widely used. With the expanding application of NLP and ML meth-

ods, automotive requirements identification and analysis in OSS projects have also be-

come a trending topic since 2015.

Overall, the findings reported in the selected papers are inspiring as they show an increas-

ing interest in improving RE practices in OSS projects, with a particular focus on com-

munity involvement and automation of tasks like requirements identification, classifica-

tion, and tracing. Looking ahead, we see the research trends will continue to focus on

community involvement, automation of tasks, and the integration of large language mod-

els (LLMs) and artificial intelligence (AI) tools to assist the RE process for OSS devel-

opment. These promising trends will undoubtedly contribute to the advancement of RE

practices and the growth of OSS projects. In a nutshell, this thesis provides a comprehen-

sive overview of the best practices of RM activities in OSS projects. These findings can

serve as a valuable resource for software practitioners and researchers in the OSS com-

munity, helping them to understand the diverse range of practices and techniques used in

RM activities and how to effectively manage requirements in OSS projects.

-42-

7.2. Threats to Validity

To ensure the validity of our SLR study, search strategies and a review protocol are es-

tablished based on guidelines [27] [29] [28] and followed the four categories recom-

mended in [30] to discuss potential threats. To ensure the comprehensiveness of the

search, a diversified search string is utilized, incorporating synonyms relevant to the re-

search questions. The queries are executed in major citation databases such as Scopus and

Web of Science, as well as digital library portals including IEEE Xplore and ACM Digital

Library. Additionally, snowballing is employed as a complementary method to extend

the coverage of studies, encompassing the review of references in the selected studies and

evaluation of papers that referenced the selected ones. This process resulted in the iden-

tification of four additional relevant publications. To mitigate threats associated with con-

struct validity, the search strategy, review protocol, and data extraction process are en-

tirely based on established guidelines [27] [28] [29]. These guidelines served as a frame-

work to ensure adherence to best practices in conducting an SLR, minimizing the poten-

tial for bias and errors [27] [28] [29]. By following a standardized approach, the study

design is aimed to maintain consistency and accuracy throughout the research process.

To minimize threats related to inaccurate data extraction and conclusion validity,

measures are implemented to promote consistency and rigorous analysis. Sample extrac-

tions are thoroughly discussed to achieve consensus among me and the supervisors, fa-

cilitating uniformity in the data extraction process. Furthermore, the extracted data were

diligently recorded in a shared excel file, allowing for easy access and verification. This

approach aimed to enhance transparency and enable the replication of the study by other

supervisors, thus strengthening the reliability of the findings.

While the possibility of omitting relevant studies is acknowledged, it is asserted that the

SLR study represents a comprehensive overview of relevant literature within the defined

scope. The rigorous application of established guidelines and the employment of diverse

search strategies and complementary methods aimed to minimize the likelihood of ex-

cluding important studies. By diligently following these procedures, it is endeavored to

ensure that the findings are based on a robust and comprehensive collection of relevant

literature. Regarding threats to external validity, it is acknowledged that minor limitations

may exist. External validity pertains to the generalizability of the study findings to

broader populations or contexts. Although specific details regarding the mitigation of

these threats are not provided, it can be inferred that the thesis aimed to achieve a reason-

able level of external validity by conducting an extensive search across relevant databases

and digital libraries. By adhering to established guidelines, employing diversified search

strategies, utilizing multiple databases, and implementing rigorous data extraction and

review processes, this thesis is aimed to mitigate potential threats to validity. While ac-

-43-

knowledging the potential omission of relevant studies, it is asserted that the SLR pro-

vides a comprehensive overview within the defined scope. Additionally, it is acknowl-

edged that minor threats to external validity may exist, emphasizing the need for careful

consideration when generalizing the findings to broader populations or contexts.

-44-

8. Conclusion

The systematic literature review conducted in this study aimed to investigate the practices

and research related to requirements engineering (RE) in open-source software (OSS)

projects. By synthesizing the findings from 43 selected studies, we have gained valuable

insights into the techniques, methods, and practices employed in various RE activities,

such as requirements elicitation, analysis, documentation, management, and stakeholder

analysis. Through our review, we have identified a diverse range of practices and tech-

niques applied in OSS projects. Notably, the use of machine learning (ML) methods, nat-

ural language processing (NLP) techniques, and other statistical approaches have

emerged as effective tools for requirements identification and analysis. These advanced

technologies leverage diverse sources of information associated with OSS projects, ena-

bling more accurate and efficient RE processes. One interesting trend highlighted by re-

cent studies is the growing interest and potential for integrating AI tools into RE activities.

Researchers and practitioners are recognizing the benefits of utilizing AI to assist in re-

quirements engineering, enabling automated analysis, identification of patterns, and de-

cision-making support. This indicates a shift towards more data-driven and intelligent

approaches to RE in OSS projects. Additionally, our findings underscore the significance

of community involvement and participation in OSS projects. The nature of open-source

development fosters active stakeholder dynamics and emphasizes the importance of ef-

fective communication throughout the software development lifecycle. The involvement

of diverse stakeholders brings valuable insights and perspectives, contributing to the over-

all quality of the requirements and the success of the project.

In summary, this thesis provides a comprehensive review of the best practices for RE

activities in OSS projects. The synthesis of findings from various studies offers software

practitioners and researchers in the OSS community a valuable resource to understand

and leverage the wide range of practices and techniques utilized in RE. By adopting these

practices, practitioners can effectively manage requirements in OSS projects, leading to

improved project outcomes and increased stakeholder satisfaction. As the field of RE in

OSS continues to evolve, it is crucial to stay updated with the latest practices and trends.

The findings of this study not only serve as a snapshot of the current state of RE in OSS

but also provide a foundation for future research and exploration in this area. By building

upon these findings, researchers can further advance the field by proposing novel ap-

proaches, validating existing techniques, and addressing the unique challenges and op-

portunities presented by the OSS context. In conclusion, this study contributes to the body

of knowledge in RE for OSS projects by providing a comprehensive overview of prac-

tices, techniques, and research trends. The insights gained from this study will support

-45-

practitioners and researchers in making informed decisions regarding RE practices, ena-

bling them to navigate the complexities of OSS projects more effectively. By leveraging

these findings, the OSS community can continue to innovate and deliver high-quality

software that meets the evolving needs of users worldwide.

-46-

References

[1] Huizingh, E.K.: "Open innovation: State of the art and future perspectives." Technova-

tion, vol. 31, no. 1, pp. 2-9 (2011)

[2] European Commission: Open Innovation Open Science Open to the World - a vision

for Europe. European Commission, Brussels (2016)

[3] Enkel, E., Gassmann, O., Chesbrough, H.: "Open R&D and open innovation: exploring

the phenomenon." R&D Management, vol. 38, no. 4, pp. 311-316 (2009)

[4] Scacchi, W.: Understanding requirements for open-source software. In: Design Re-

quirements Engineering: A Ten-Year Perspective: Design Requirements Workshop, Cleve-

land, OH, USA, June 3-6, 2007, Revised and Invited Papers. pp. 467–494. Springer (2009)

[5] Paech, B., Reuschenbach, B.: Open source requirements engineering. In: 14th IEEE

International Requirements Engineering Conference (RE’06). pp. 257–262. IEEE (2006)

[6] Beller, M., Bacchelli, A., Zaidman, A., Juergens, E.: Modern code reviews in open-

source projects: Which problems do they fix? In: Proceedings of the 11th working confer-

ence on mining software repositories. pp. 202–211 (2014)

[7] Cheng, B.H., Atlee, J.M.: Research directions in requirements engineering. Future of

Software Engineering (FOSE’07) pp. 285–303 (2007)

[8] Pohl, K.: Requirements engineering: fundamentals, principles, and techniques. Springer

Publishing Company, Incorporated (2010)

[9] Wiegers, K., Beatty, J.: Software requirements. Pearson Education (2013)

[10] Pohl, K.: The three dimensions of requirements engineering: a framework and its ap-

plications. Information systems 19(3), 243–258 (1994)

[11] de Gea, J.M.C., Nicol ́as, J., Alem ́an, J.L.F., Toval, A., Ebert, C., Vizca ́ino, A.: Re-

quirements engineering tools. IEEE software 28(4), 86–91 (2011)

[12] Young, R.R.: The Requirements Engineering Handbook. ARTECH HOUSE, INC. 685

Canton Street Norwood, MA 02062 (2004)

[13] Kotonya, G., Sommerville, I.: Requirements Engineering: Processes and Techniques.

John Wiley & Sons, Chichester, UK (1998)

[14] Sommerville, I., Sawyer, P.: Requirements Engineering: A Good Practice Guide. John

Wiley & Sons, New York (1997)

[15] Wiegers, K.E.: Software Requirements, 2nd edn. Microsoft Press, Redmond, WA

(2003)

[16] Huizingh, E.K.: "Open innovation: State of the art and future perspectives." Techno-

vation, vol. 31, no. 1, pp. 2-9 (2011)

[17] European Commission: Open Innovation Open Science Open to the World - a vision

for Europe. European Commission, Brussels (2016)

-47-

[18] Gassmann, O., Enkel, E.: "Towards a Theory of Open Innovation: Three Core Process

Archetypes" (2004)

[19] Fitzgerald, B.: "The Transformation of Open Source Software." MIS Quarterly, 30(3),

587-598 (2006)

[20] Osterloh, M., Rota, S.: "Open source software development - Just another case of col-

lective invention?" Research Policy, 36(2), 157-171 (2007)

[21] von Hippel, E., von Krogh, G.: "Open source software and the "private-collective"

innovation model: Issues for organization science." Organization Science, 14(2), 209-223

(2003)

[22] Castro Llanos, J.W., Acuña Castillo, S.T.: Differences between traditional

and open source development activities. In: Product-Focused Software

Process Improvement: 13th International Conference, PROFES 2012,

Madrid, Spain, June 13-15, 2012 Proceedings 13. pp. 131–144. Springer

(2012)

[23] Gandomani, T.J., Zulzalil, H., Ghani, A.A.A., Sultan, A.B.M.: A

systematic literature review on relationship between agile methods

and open source software development methodology. arXiv preprint

arXiv:1302.2748 (2013)

[24] Franco-Bedoya, O., Ameller, D., Costal, D., Franch, X.: Open source

software ecosystems: A systematic mapping. Information and software

technology 91, 160–185 (2017)

[25] Kiran, H.M., Ali, Z.: Requirement elicitation techniques for open source

systems: a review. International Journal of Advanced Computer Science

and Applications 9(1) (2018)

[26] Kaur, R., Chahal, K.K., Saini, M.: Understanding community partici-

pation and engagement in open source software projects: A systematic

mapping study. journal of king saud university-computer and information

sciences 34(7), 4607–4625 (2022)

[27] Kitchenham, B., Charters, S., et al.: Guidelines for performing systematic

literature reviews in software engineering. Tech. Rep. EBSE-2007-01,

Keele Durham Univ. (2007)

[28] Kitchenham, B.A., Madeyski, L., Budgen, D.: SEGRESS: Software

engineering guidelines for reporting secondary studies. IEEE Transactions

on Software Engineering 49(3), 1273–1298 (2022)

[29] Petersen, K., Vakkalanka, S., Kuzniarz, L.: Guidelines for conducting

systematic mapping studies in software engineering: An update. Informa-

tion and Software Technology 64, 1–18 (2015)

[30] Wohlin, C., Runeson, P., H ̈ost, M., Ohlsson, M.C., Regnell, B., Wessl ́en,

A.: Experimentation in software engineering. Springer Science & Busi-

ness Media (2012)

-48-

APPENDIX A - LIST OF INCLUDED STUDIES

[SP1] Pérez -Verdejo, J.M., Sanchez-Garcia, J., Ocharán-Hernández, J.O., Mezura-Montes,

E., Cortés-Verdín, K.: Requirements and GitHub issues: An automated approach for quality

requirements classification. Programming and Computer Software 47, 704–721 (2021)

[SP2] Robinson, M., Sarkani, S., Mazzuchi, T.: Network structure and requirements

crowdsourcing for OSS projects. Requirements Engineering 26, 509–534 (2021)

[SP3] Linåker, J., Regnell, B., Damian, D.: A method for analyzing stakeholders’ influence

on an open source software ecosystem’s requirements engineering process. Requirements

Engineering 25, 115–130 (2020)

[SP4] Samer, R., Felfernig, A., Stettinger, M.: Towards issue recommendation for open

source communities. In: IEEE/WIC/ACM International Conference on Web Intelligence.

p. 164–171. WI ’19, Association for Computing Machinery, New York, NY, USA (2019)

[SP5] Bhowmik, T., Do, A.Q.: Refinement and resolution of just-in-time requirements in

open source software and a closer look into non-functional requirements. Journal of Indus-

trial Information Integration 14, 24–33 (2019)

[SP6] Wang, W., Mahakala, K.R., Gupta, A., Hussein, N., Wang, Y.: A linear classifier

based approach for identifying security requirements in open source software development.

Journal of Industrial Information Integration 14, 34–40 (2019)

[SP7] Felfernig, A., Stettinger, M., Atas, M., Samer, R., Nerlich, J., Scholz, S., Tiihonen,

J., Raatikainen, M.: Towards utility-based prioritization of requirements in open source

environments. In: 2018 IEEE 26th International Requirements Engineering Conference

(RE). pp. 406–411 (2018)

[SP8] Munir, H., Linåker, J., Wnuk, K., Runeson, P., Regnell, B.: Open innovation using

open source tools: a case study at Sony Mobile. Empirical Software Engineering 23, 186–

223 (2018)

[SP9] Gopal, D., Lyytinen, K.: Effects of social structures in requirements quality of open

source software project development. In: ICIS 2017 Proceedings. pp. 406–411 (2017)

[SP10] Xiao, X., Lindberg, A., Hansen, S., Lyytinen, K.: “Computing” requirements for

open source software: A distributed cognitive approach. Journal of the Association for In-

formation Systems 19(12), 1217–1252 (2018)

[SP11] Llerena, L., Rodríguez, N., Castro, J.W., Acuña, S.T.: How to incorporate a usabil-

ity technique in the open source software development process. In: Pereira, O.M. (ed.) The

30th International Conference on Software Engineering and Knowledge Engineering, Hotel

Pullman, Redwood City, California, USA, July 1-3, 2018. pp. 182–181. KSI Research Inc.

and Knowledge Systems Institute Graduate School (2018)

[SP12] Do, A.Q., Bhowmik, T.: Refinement and resolution of just-in-time requirements in

open source software: A case study. In: 2017 IEEE 25th International Requirements Engi-

neering Conference Workshops (REW). pp. 407–410 (2017)

-49-

[SP13] Linåker, J., Wnuk, K.: Requirements analysis and management for benefiting open-

ness. In: 2016 IEEE 24th International Requirements Engineering Conference Workshops

(REW). IEEE (sep 2016)

[SP14] Kuriakose, J., Parsons, J.: How do open source software (OSS) developers practice

and perceive requirements engineering? An empirical study. In: 2015 IEEE Fifth Interna-

tional Workshop on Empirical Requirements Engineering (EmpiRE). pp. 49–56 (2015)

[SP15] Gopal, D., Lindberg, A., Lyytinen, K.: Attributes of open source software require-

ments – the effect of the external environment and internal social structure. In: 2016 49th

Hawaii International Conference on System Sciences (HICSS). pp. 4982–4991 (2016)

[SP16] Gopal, D.: Effect of social networks on requirements engineering in open source

projects. In: 22nd Americas Conference on Information Systems, AMCIS 2016, San Diego,

CA, USA, August 11-14, 2016. Association for Information Systems (2016)

[SP17] Neulinger, K., Hannemann, A., Klamma, R., Jarke, M.: A longitudinal study of

community-oriented open source software development. In: Nurcan, S., Soffer, P., Bajec,

M., Eder, J. (eds.) Advanced Information Systems Engineering. pp. 509–523. Springer In-

ternational Publishing, Cham (2016)

[SP18] Linåker, J., Rempel, P., Regnell, B., M ̈ader, P.: How firms adapt and interact in

open source ecosystems: Analyzing stakeholder influence and collaboration patterns. In:

Daneva, M., Pastor, O. (eds.) Requirements Engineering: Foundation for Software Quality.

pp. 63–81. Springer International Publishing, Cham (2016)

[SP19] Bhowmik, T., Reddivari, S.: Resolution trend of just-in-time requirements in open

source software development. In: 2015 IEEE Workshop on Just-In-Time Requirements En-

gineering (JITRE). pp.17–20 (2015)

[SP20] Bhowmik, T., Niu, N., Singhania, P., Wang, W.: On the role of structural holes in

requirements identification: An exploratory study on open-source software development.

ACM Trans. Manage. Inf. Syst. 6(3) (sep 2015)

[SP21] Wnuk, K., Pfahl, D., Callele, D., Karlsson, E.A.: How can open source software

development help requirements management gain the potential of open innovation: An ex-

ploratory study. In: Proceedings of the 2012 ACM-IEEE International Symposium on Em-

pirical Software Engineering and Measurement. pp. 271–279 (2012)

[SP22] Vlas, R., Vlas, C.: A requirements-based analysis of success in open- source soft-

ware development projects. In: AMCIS 2011 Proceedings. pp. 1–10 (2011)

[SP23] Noll, J.: Requirements acquisition in open source development: Firefox 2.0. In:

Russo, B., Damiani, E., Hissam, S., Lundell, B., Succi, G. (eds.) Open Source Develop-

ment, Communities and Quality. pp.69–79. Springer US, Boston, MA (2008)

[SP24] Scacchi, W., Jensen, C., Noll, J., Elliott, M.S.: Multimodal modeling, analysis, and

validation of open source software development processes. International Journal of Infor-

mation Technology and Web Engineering 1(3), 49–63 (2006)

[SP25] Scacchi, W.: Understanding the requirements for developing open source software

systems. IEE Proceedings - Software 149(1), 24–39 (2002)

-50-

[SP26] Tizard, J., Devine, P., Wang, H., Blincoe, K.: A software requirements ecosystem:

Linking forum, issue tracker, and FAQs for requirements management. IEEE Transactions

on Software Engineering pp. 1–13 (2022)

[SP27] Wang, W., Hussein, N., Gupta, A., Wang, Y.: A regression model based approach

for identifying security requirements in open source software development. In: 2017 IEEE

25th International Requirements Engineering Conference Workshops (REW). pp. 443–446

(2017)

[SP28] Morales-Ramirez, I., Vergne, M., Morandini, M., Perini, A., Susi, A.: Exploiting

online discussions in collaborative distributed requirements engineering. In: Castro, J.,

Filho, G.A.C., Liaskos, S. (eds.) Proceedings of the Eighth International i*Workshop, iStar

2015, in conjunction with the 23rd International Requirements Engineering Conference

(RE 2015), Ottawa, Canada, August 24-25, 2015. CEUR Workshop Proceedings, vol. 1402,

pp. 7–12. CEUR-WS.org (2015)

[SP29] Vergne, M., Susi, A.: Expert finding using markov networks in open source com-

munities. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Moura-

tidis, H., Horkoff, J. (eds.) Advanced Information Systems Engineering. pp. 196–210.

Springer International Publishing, Cham (2014)

[SP30] Alspaugh, T.A., Scacchi, W.: Ongoing software development without classical re-

quirements. In: 2013 IEEE 21st International Requirements Engineering Conference (RE).

pp. 165–174. IEEE Computer Society, Los Alamitos, CA, USA (jul 2013)

[SP31] Ernst, N.A., Murphy, G.C.: Case studies in just-in-time requirements analysis. In:

2012 Second IEEE International Workshop on Empirical Requirements Engineering (Em-

piRE). pp. 25–32 (2012)

[SP32] Laurent, P., Cleland-Huang, J.: Lessons learned from open source projects for fa-

cilitating online requirements processes. In: Glinz, M., Heymans, P. (eds.) Requirements

Engineering: Foundation for Software Quality. pp. 240–255. Springer Berlin Heidelberg,

Berlin, Heidelberg (2009)

[SP33] Shi, L., Chen, C., Wang, Q., Boehm, B.: Is it a new feature or simply “don’t know

yet”?: On automated redundant OSS feature requests identification. In: 2016 IEEE 24th

International Requirements Engineering Conference (RE). pp. 377–382. IEEE Computer

Society, Los Alamitos, CA, USA (sep 2016)

[SP34] Scacchi, W.: Understanding requirements for open source software. In: Design Re-

quirements Engineering: A Ten-Year Perspective: Design Requirements Workshop, Cleve-

land, OH, USA, June 3-6, 2007, Revised and Invited Papers. pp. 467–494. Springer (2009)

[SP35] Salo, R., Poranen, T., Zhang, Z.: Requirements management in GitHub with a lean

approach. In: SPLST. pp. 164–178 (2015)

[SP36] Gill, K.D., Raza, A., Zaidi, A.M., Kiani, M.M.: Semi-automation for ambiguity

resolution in open source software requirements. In: 2014 IEEE 27th Canadian Conference

on Electrical and Computer Engineering (CCECE). pp. 1–6. IEEE (2014)

-51-

[SP37] Heck, P., Zaidman, A.: Horizontal traceability for just-in-time requirements: the

case for open source feature requests. Journal of Software: Evolution and Process 26(12),

1280–1296 (2014)

[SP38] Puhlf ̈urß, T., Montgomery, L., Maalej, W.: An exploratory study of documentation

strategies for product features in popular github projects. In: 2022 IEEE International Con-

ference on Software Maintenance and Evolution (ICSME). pp. 379–383. IEEE (2022)

[SP39] Johansson, B., de Carvalho, R.A.: Management of requirements in ERP develop-

ment: a comparison between proprietary and open source ERP. In: Proceedings of the 2009

ACM symposium on Applied Computing. pp. 1605–1609 (2009)

[SP40] McGrath, O.G.: Balancing act: community and local requirements in an open source

development process. In: Proceedings of the 34th annual ACM SIGUCCS fall conference:

expanding the boundaries. pp. 240–244 (2006)

[SP41] Bastani, B.: A requirements analysis framework for open systems requirements en-

gineering. ACM SIGSOFT Software Engineering Notes 32(2), 1–19 (2007)

[SP42] Noll, J., Liu, W.M.: Requirements elicitation in open source software development:

a case study. In: Proceedings of the 3rd International Workshop on Emerging Trends in

Free/Libre/Open Source Software Research and Development. pp. 35–40 (2010)

[SP43] Vlas, R.E., Robinson, W.N.: Two rule-based natural language strategies for require-

ments discovery and classification in open source software development projects. Journal

of management information systems 28(4), 11–38 (2012)

