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Otelaudalla varustetuilla kieli-instrumenteilla tuotetun musiikin automaattinen nuotintaminen
synnyttää joko perinteistä nuottikirjoitusta tai tabulatuuria. Perinteisestä nuottikirjoituksesta
poiketen tabulatuuri tarjoaa yksikäsitteisen vastaavuuden nuottimerkinnän ja sen otelaudalla
olevan sijainnin välille, ja on siksi suosittu nuotintamistapa kitaralle. Yksittäisen nuotin
soittamiseen käytetyn kielen ja nauhan yhdistelmän tarkka tunnistaminen äänitteestä edellyttää
sekä sävelkorkeuden että kielen tunnistamista, tyypillisesti tässä järjestyksessä. Tämä pro gradu
-tutkielma tarkastelee käytetyn kielen tunnistamista sähkökitaralla soitetuista yksittäisistä
nuoteista konvoluutioneuroverkon avulla.

Opinnäytettä varten kerättiin yli 10000 sähkökitaralla soitettua nuottia, joiden perustaajuus on
tunnistettavissa ja jotka ovat peräisin kolmesta eri kitarayksilöstä. Jokaiselle nuotille laskettiin
spektrogrammi, Mel-spektrogrammi ja CQT (constant-Q transform). Konvoluutioneuroverkko
koulutettiin tunnistamaan kyseisten piirteiden perusteella ääninäytteen tuottamiseen käytetty
kitaran kieli. Neuroverkkomallit arvioitiin 6-kertaisella ristiinvalidoinnilla. Paras tarkkuus 0.932
saavutettiin mallilla joka koulutettiin CQT:n avulla.

Avainsanat: Konvoluutioneuroverkko, automaattinen kitaratranskriptio, signaalinkäsittely,
tabulatuuri, sähkökitara
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ABSTRACT

Inkariina Simola : Tablature notation from monophonic guitar audio using CNN
M.Sc. Thesis
Tampere University
Degree Programme in Computer Science
June 2023
Supervisors: Martti Juhola, Henry Joutsijoki

Automatic Music Transcription for instruments with fretboards, such as the guitar, involves
transcribing audio into either standard notation or tablature notation. Tablature notation provides
a one-to-one mapping between the symbol for a note and the string-fret combination used to
produce it, and is often preferred over standard notation for this reason. Detecting the string-fret
combination used to produce a note involves pitch detection and string detection, which are
usually performed in this order in existing approaches. This Master's Thesis focuses on electric
guitar string detection from monophonic samples using a convolutional neural network (CNN).

A dataset containing over 10000 guitar notes with a detectable fundamental frequency was
collected from three electric guitars and feature engineered to extract spectrogram,
Mel-spectrogram and constant-Q transform per sample. Three convolutional neural networks
were trained, one on each feature, to detect the guitar string from which each original sample had
originated. The models were subjected to 6-fold stratified cross-validation. A string detection
accuracy of 0.932 was achieved with the model trained on the constant-Q transform data.

Keywords: Convolutional Neural Network, Automatic Guitar Transcription, Tablature, Electric
Guitar

The originality of this thesis has been checked using the Turnitin Originality Check service.
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1 INTRODUCTION

1.1 Motivation

While standard music notation is perfect for instruments with an inbuilt one-to-one
mapping between pitch and fingering position, such as the piano, it is ambiguous when
used with fretted instruments such as the guitar. Stringed instruments with fretboards
offer several ways to produce most pitches in their range, but standard notation fails to
address this issue, which explains the popularity of tablature notation among guitar
players. Tablature offers a one-to-one mapping between notes and the fretboard positions
used to produce them, by denoting strings with lines and frets by numbers placed on
those lines, as shown in Figure 1.

Figure 1: Standard notation (top) and tablature notation for the same part (bottom)
["Guitar Tablature 2005"].

Creating tablature without an automatic transcription system is laborious manual work.
As of the writing of this Master's Thesis, there exists no commercial solution capable of
performing accurate string-fret detection from audio recordings produced without special
equipment (such as hexaphonic pickups or purpose-built MIDI guitars). Much previous
academic work on the subject likewise resorts to using plausibility filters to generate
probable or playable tablature, instead of concentrating on ground truth string-fret
combination detection.

Previous work achieving state of the art results in string-fret detection has relied, with the
exception of work done by Dittmar et al. [2013], on either a limited dataset of samples
produced by a single physical instrument [Kim et al. 2022; Wiggins and Kim 2019] or on
prior knowledge of an instrument's physical characteristics [Barbanhco et al. 2012;
Hjerrild et al. 2019a]. It also appears that string-fret detection results for the electric
guitar fall short of those achieved with acoustic guitars when both scores are reported
separately [Hjerrild et al. 2019b; Barbanhco et al. 2012].
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1.2. Domain-specific concepts and background

This section introduces domain-related concepts such as scientific pitch notation, electric
guitar structure and the equal temperament tuning system.

1.2.1 Scientific pitch notation

Scientific pitch notation (SPM) specifies musical pitch by assigning an octave index to
each musical note within the range of human hearing [International Organization for
Standardization (ISO, 1975)]. Figure 2 shows the pitch names for ten different C notes
appearing at octave intervals, ranging from C0 (16.35 Hz) to C9 at 17739 Hz. The pitch
range of a guitar with 24 frets ranges from E2 to E6, for which the fundamental
frequencies are 82.4 Hz and 1318 Hz respectively.

Figure 2: Scientific pitch notation for the musical note C across multiple octaves is
shown below corresponding standard notation symbols [“Scientific pitch notation”,

2023].

1.2.2 Frequencies produced by a vibrating string

When a string having length L is attached at both ends, tightened and set in motion, it
vibrates with several modes of vibration, or standing waves, as shown in Figure 3. The
longest vibrating segment has only two nodes, corresponds to a wavelength of λ0 = 2L
and produces what is called the lowest partial, or fundamental frequency of the vibrating
string. Higher partials of a vibrating string are called harmonics, the first harmonic f1
being produced by segments having length L/2 and each subsequent harmonic fn
corresponding likewise to a vibrating length of L/n. The fundamental frequency f0 of a
vibrating string having length L, mass m and tension T is shown in Equation 1.
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Figure 3: Vibration and standing waves in a string. The fundamental frequency is shown
on top, followed by the first six overtones [“Fundamental frequency", 2012].

On a guitar, the fundamental frequency is produced by the segment of a string that is
plucked and free to vibrate. When the string rings open, the nodes are located at the
bridge and the nut, as shown in Figure 4 (bottom image). If the string is being fretted, the
nodes are at the bridge and the fret against which the string is being pressed, as shown in
Figure 4 (top image).

In order to observe the frequency spectrum of a given musical note, its discrete Fourier
transform (DFT) can be calculated, as described in Section 4.1.1. A series of peaks can
then be observed at f0 and subsequent harmonics by plotting the spectral magnitudes of
successive frequency bins against an axis representing frequency. Figure 5a shows the
waveform of a note played on the open low E string of an electric guitar and Figure 5b
shows the note's frequency spectrum. The fundamental frequency of the note is seen as a
spike at 82 Hz and the partials can be seen to its right. Note that the fundamental
frequency corresponds to the partial with the lowest frequency, not the one with the
largest magnitude.
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Figure 4: String on an electric guitar viewed from the side (dimensions not to scale). Top:
String segment L2 vibrates between contact points at the 10th fret and bridge. Bottom:
Entire string length vibrates, i.e. rings open, between contact points at nut and bridge.

Figure 5a: Waveform of the pitch E2 played on the open low E string.



5

Figure 5b: DFT magnitudes of the waveform shown in Figure 5a. The fundamental
frequency is visible as a peak at 82 Hz, with the first and second harmonics showing as

peaks at 164 Hz and 328 Hz respectively.

For comparison, Figure 6a shows the waveform of the pitch E6 played on the 24th fret of
the high E string. Less harmonics are present, with only the first harmonic being visible
at 2636 Hz. Figures 5b and 6b illustrate the tonal differences at the extremes of an
electric guitar's range. At the low end, the thick open E2 string with a maximally long
vibrating segment produces more harmonics than the thin E6 string fretted at the 24th fret
and vibrating with a much shorter segment that contains barely any harmonics. Less
pronounced but similar differences apply to samples that originate from different strings
but contain the same pitch.

Figure 6a: Audio segment containing pitch E6 played at the 24th fret of the high E4 string.
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Figure 6b: DFT magnitudes of the waveform shown in Figure 6a. The fundamental
frequency is visible as a peak at 1318 Hz.

1.2.3 Equal temperament tuning system

Within the twelve-tone equal temperament tuning system, the frequency ratio between
any adjacent pair of notes is the same ["Equal temperament", 2023]. An octave is defined
as the distance between a frequency f and its double 2f, and each octave is divided into
twelve semitones. Figure 7 shows the musical pitches playable by most six-stringed
guitars as impulses on an x-axis representing frequency.

The twelve semitones within an octave are spaced in such a way that a human ear
accustomed to Western music perceives them to be equally spaced, just as it perceives
successive octaves to be equally spaced. Each semitone can therefore be expected to have
a frequency rfs, where fs is the frequency of the preceding (lower-pitched) semitone, r is a
coefficient and r2fs is the frequency of the following (higher-pitched) semitone. When this
definition is combined with the definition of an octave, Equation 2 can be constructed to
find the semitone coefficient r.

When detecting fundamental frequency f0, the concept of a quarter tone becomes
relevant. String instruments tend to go out of tune, and pitch detection involves matching
detected f0 within a quarter tone's distance of a given musical pitch. A quarter tone having
frequency qfs lies between two successive semitones having frequencies fs and q2fs.
Again, fs is the frequency of the preceding (lower-pitched) semitone, q2fs is the frequency
of the following (higher-pitched) semitone, and q is a coefficient. As one octave is
divided into 24 quarter tones, Equation 3 can be constructed to calculate the quarter tone
coefficient q:
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Figure 7: Octave intervals E2-E6 and semitone intervals E5-E6 shown on an x-axis
representing frequency (Hz). Note the increasing distance in Hz between successive

semitones and octaves.

Because distances within musical tuning systems are based on ratios, a reference point
from which semitones and octaves are calculated using the constant r has to be selected.
A reference point referred to as A440, Stuttgart pitch, or A4 was pinned at 440 Hz by the
International Organization for Standardization in 1975 [ISO 1975]. Figure 8 shows this
reference pitch as a yellow piano key above a blue piano key showing middle C i.e. C4.

Figure 8: Reference pitch A440 shown as a yellow piano key above middle C, which is
shown as a blue piano key [“Piano frequencies", 2012].

Twelve-tone equal temperament is the most commonly used tuning system in the Western
world, and will be used in this Master's Thesis.

1.2.4 Guitar structure

The structure and parts of a typical electric guitar are shown in Figure 9. All guitars
consist of a body (3), a fingerboard i.e. fretboard (2.1) supported by the neck (2) and at
least six strings (4). The strings are attached to the bridge (3.4) at one end and machine
heads i.e. tuning pegs (1.1) at the other. In the case of electric guitars, the body is solid
and includes one or more microphones (3.1 and 3.2 in Figure 9) for picking up string
vibrations. The strings are numbered 1 to 6, starting with the high E string, which is the
most lightweight, and ending with the low E string, which is the heaviest string and
produces the lowest pitches. In Figure 9, strings E2, A2 and D3 are referred to as bass
strings (4.1) and strings G3, B3 and E4 are referred to as treble strings (4.2). When
playing the instrument, strings are plucked with fingers or a plectrum near the
microphones, as shown in Figure 4.
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1. Headstock
1.1 Machine heads
1.2 Truss rod cover
1.3 String guide
1.4 Nut

2. Neck
2.1 Fingerboard
2.2 Inlay fret markers
2.3 Frets
2.4 Neck joint

3. Body
3.1 "Neck" pickup
3.2 "Bridge" pickup
3.3 Saddles
3.4 Bridge
3.5 Fine tuners
3.6 Tremolo arm
3.7 Pickup selector switch
3.8 Volume and tone control knobs
3.9 Output connector
3.10 Strap buttons

4. Strings
4.1 Bass strings
4.2 Treble strings

Figure 9: Parts of an electric guitar ["Electric guitar", 2023].
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Each string on a guitar is attached to a tuning peg and tightened so that it is tightly pressed
against two contact points, the saddle (3.3) and the nut (1.4). The distance between the saddle
and the nut - also referred to as scale length - together with string tension and mass determines
the fundamental frequency produced by a string when it rings open. This vibrating segment
can be shortened by pressing the string against a fret, as shown in Figure 4. The art of guitar
playing essentially consists of selective string plucking, combined with maneuvers that change
the vibrating lengths of strings.

A fret (2.3 in Figure 9) is a thin metal bar that crosses the neck transversely at a point
corresponding to a vibrating length required to produce a musical pitch when the string in
question is tightened to its intended tension. The fret spacing is anchored on the 12th fret;
pressing the string against it halves the length of the vibrating segment and thus produces a
pitch that is one octave higher than the string's unfretted pitch. The remaining frets are placed
at semitone intervals on either side of the 12th fret.

The strings on a given guitar differ from each other in thickness and density, and sets of guitar
strings come in many gauges. Some typical gauge ranges are shown in Table 1 (see Section 3).
The fundamental frequency produced by a given vibrating segment of a string is determined by
Equation 1. Tuning a guitar involves adjusting string tension with the tuning peg (see 1.1 in
Figure 9) until the unfretted string rings at its intended pitch, which for a guitar in standard
tuning is either E2, A2, D3, G3, B3or E4, depending on the string in question. The fundamental
frequencies of the open strings range between 82 Hz on the low E2 string and 329 Hz on the
high E4 string.

The structural property most relevant to this Master's Thesis is the fretboard layout, which
allows notes of identical pitch to be played from several positions, and thus creates ambiguity
with respect to the origin of a recorded note. Figure 10 shows a matrix containing all of the
string-fret combinations and their associated musical pitches on a fretboard of a 24-fret
six-string guitar in standard EADGBE tuning. The pitch with the most fingering options is E4,
highlighted in green. Only nine musical pitches have a single unambiguous point of origin on
this fretboard: C6, D6 and E6 on the first string and pitches E2-G#2 on the sixth string.

Figure 10: Matrix showing the fretboard of a guitar in standard EADGBE tuning seen from
above, showing strings 1-6 as horizontal rows and frets 0-24 as columns. Fret number 0 refers
to an open string. String-fret combinations that produce the E4 note are highlighted in green.



10

1.3. Scope

This section outlines the scope of this Master's Thesis and gives a brief overview of the
context.

An end-to-end Automatic Guitar Transcription (AGT) system has to solve some or all of the
following problems:

1. Instrument isolation from surroundings
2. Note onset detection
3. Polyphonic fundamental frequency (f0) detection
4. String detection
5. Tablature visualization

String-fret combination detection is achieved by combining the results of fundamental
frequency detection with the results of string detection. This masters' thesis will be limited to
monophonic audio samples and focus only on the step involving string detection. The other
steps are briefly touched on below to introduce context around the issue of string detection.

1.3.1 Step 1: Instrument isolation

All existing research on guitar tablature creation that the author was able to find during the
writing of this Master's Thesis (see Section 7) involves a setup using isolated, unprocessed
recordings containing the sound of a single acoustic, electric, classical or bass guitar. In the
real world, this setup corresponds to transcribing a new piece, exercise or a pre-recorded solo
guitar recording with minimal post-processing.

It could be argued that transcribing isolated single-guitar recordings represents a small subset
of actual scenarios where tablature notation is called for. A real-world guitarist might wish to
learn guitar parts embedded in popular music pieces instead, and this would require methods
that are able to extract tablature from multi-instrument compositions. Unfortunately no
previous research exists on tablature transcription from audio containing multiple instruments,
perhaps because of the increased technical complexity involved.

This Master's Thesis follows the approach of existing research on tablature transcription and
concerns itself with isolated guitar recordings only.

1.3.2 Step 2: Note onset detection

Note onset detection is required to separate individual notes from preceding and subsequent
notes in order to limit the scope of string-fret detection to a single musical note or chord at a
time. For this Master's Thesis, onset detection is performed with librosa [McFee et al. 2023]
during dataset construction stage and prediction stage. See Figures 11 and 21 in Sections 3.2
and 4.4.
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1.3.3 Step 3: Fundamental frequency (f0) detection

Approaches used for pitch detection in existing literature include the openSMILE toolkit
[Eyben and Schuller 2010], pYIN [Mauch and Dixon 2014] and custom methods.

In previous work on tablature transcription, fundamental frequency detection is performed
prior to or separately from string detection. Detecting f0 first provides the string detection
component with some awareness of which strings to expect, as each string can only produce a
subset of the musical pitches within a guitar's range, and the detected pitch narrows down
string options. However, detecting f0 prior to detecting string can also subject the string
detection stage to errors that happen at f0 detection stage. Wiggins and Kim [2019] note that in
multipitch estimation systems, a pitch can easily be mistaken for the overtones of a coexisting
pitch, and while this is not an issue in monophonic f0 detection, it is possible that string
detection done prior to f0 detection could inform multipitch detection in future work.

The majority of existing work on tablature transcription uses datasets containing both
monophonic and polyphonic samples. Because of time constraints, the dataset used in this
Master's Thesis contains only monophonic samples. Pitch detection is used during dataset
construction stage to discard samples without a detectable pitch, including accidental thumps,
plectrum scrapes and similar non-harmonic artifacts. The algorithm used for f0 detection is the
librosa.pyin implementation of the PYIN f0 estimator [Mauch and Dixon 2014].

1.3.4 Step 4: String detection

Existing research on tablature transcription approaches string detection with a range of
different plausibility filters. At one end of the range, the aim is to generate playable or
plausible tablature using a set of constraints based on transition probabilities and assumed
biomechanical constraints. This approach will be referred to as tablature generation in later
sections. At the other end, the focus is on detecting ground truth string-fret combinations,
without the influence of prior musicological or biological domain knowledge or dataset bias.
This latter approach will be referred to as tablature transcription in later sections.

This Master's Thesis focuses on tablature transcription, not tablature generation. The aim is to
detect string-fret position accurately, regardless of how musically unlikely or unplayable the
resulting tablature turns out to be. The only constraint applied is a minimalistic plausibility
filter that rules out absolutely impossible notes, i.e. pitches that do not exist on the fretboard on
a given string in standard tuning.

As a result of these decisions, the section on previous work focuses heavily on research that
has a purely detection-oriented angle and mentions constraint-informed research only in
passing. Research which fails to report, or establish a performance metric for, string-fret
detection results is also omitted [Barbancho et al. 2009; Traube and Smith 2001].
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1.3.5 Step 5: Tablature visualization

In order for a tablature transcription system to produce usable results, the results have to be
presented visually to the user. There are several ways to generate tablature; it is possible to
omit note duration information, for example, and this approach is widely used on popular
tablature sharing sites, such as Ultimate Guitar ["Ultimate Guitar"]. This Master's Thesis is
concerned with string detection only, and will therefore not concern itself with tablature
visualization.

2 RELATEDWORK
Previous approaches to string-fret combination detection are given an overview in this section.

As mentioned in Section 1.3.4, research on transcribing string-fret combinations focuses either
on detecting string-fret-combination ground truth, referred to here as tablature transcription, or
on attempts to generate playable or probable tablature, referred to here as tablature generation.
Although previous research on tablature generation is given an overview in Section 2.1.1 of
this Master's Thesis, the main focus is on tablature transcription.

2.1 Previous work involving constrained tablature generation

A selection of different constraints comes up in previous research on guitar tablature
generation. It is possible, for example, to extract transition likelihoods from training data
[Boloyos et al. 2021; Ryynanen and Klapuri 2007] or to attempt to quantify the difficulty of
transitions or hand stretches from an anatomical perspective [Dittmar et al. 2013].

2.1.1 Constraints based on transition probability

Boloyos et al. [2021] used recurrent neural networks (specifically LSTMs) and Hidden
Markov Models on GuitarSet [Xi et al. 2018] samples in an attempt to explore the effect of
adding more temporal context to the act of transcription. Transition likelihoods learned from
any given dataset are subject to bias however, i.e. they may successfully predict tablature for
pieces resembling the training data, but fail when applied to different music genres. Strings of
different thicknesses also exhibit different sonic characteristics, and detecting string-fret
combination ground truth is important in order to preserve tonal decisions made by the
composer of a piece. Constraints based on transition probabilities learned from training data
are therefore not considered in this Master's Thesis.

2.1.2 Anatomy-based constraints

Several previous works attempt to establish definitions for anatomically impossible fingerings
and transitions on the fretboard [Dittmar et al. 2013; Barbancho et al. 2012]. A maximum
stretch distance of 6 frets was imposed by Dittmar et al. [2013] on the tablature generation
algorithm, the assumption being that chords spread out over large fret distances would be
impossible for anyone to play. A decision like this may approximate reality for some
combinations of player and guitar, but fails to account for differences in hand size, proficiency,
guitar neck dimensions and the effect of playing position. As fret spacing varies along the
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fretboard, fret distances that would be impossible for a given player to cover near the fretboard
nut may be easily managed near the body of the guitar (see Figures 4 and 9 in Sections 1.2.2
and 1.2.4). Defining what constitutes an impossible transition depends also on the tempo of the
piece in question. Furthermore, some playing techniques involve using not one but two hands
on the fretboard, which allows for humanly impossible distances between simultaneously and
consecutively fingered frets.

The desire to create tablature that is accessible to the widest possible audience may be a
motivating factor behind the use of anatomic constraints in tablature generation. There exists,
however, no scientifically sound method of drawing a line between playable and unplayable
tablature. For this reason, anatomical constraints are left entirely out of consideration in this
Master's Thesis.

2.2 Previous work involving tablature transcription

This section describes the datasets and methods that have been used in previous research on
tablature transcription, i.e. string-fret combination ground truth detection.

2.2.1 Previously used datasets

In existing research, the most commonly used dataset is GuitarSet [Xi et al. 2018], a collection
of acoustic guitar samples created and annotated with the help of a hexaphonic pickup attached
to the data collection guitar. The dataset was used exclusively by Kim et al. [2022], Maaiveld
[2021], Wiggins and Kim [2019] and Cwitkowitz et al. [2023], and augmented with the
10-chord Montefiore dataset1 [Osmalskyj et al. 2012] by Jadhav et al. [2022]. The Real World
Corpus (RWC) dataset [Goto et al. 2002], containing three and four acoustic and electric
guitars respectively, was used by Barbancho et al. [2012] and Michelson et al. [2018]. Samples
from two electric guitars in the IDMT-SMT-Audio-Effects dataset [Stein et al. 2010] were
used by Abeßer [2013].

In addition to the aforementioned datasets, a variety of unpublished bespoke sample
collections was used alone or in combination with a published dataset. Geib et al. [2017]
constructed a special dataset to complement their detection method which is based on what the
authors refer to as string-inverse frequencies, i.e. the vibrations of string segment L1 in Figure
4 (top image). Monophonic samples from an electric guitar, the most relevant instrument with
respect to this Master's Thesis, were included in the datasets used by Abeßer [2013],
Barbancho et al. [2012], Dittmar et al. [2013], Geib et al. [2017], Hjerrild and Christensen
[2019], Hjerrild et al. [2019] and Michelson et al. [2018].

2.2.2 Previously used methods

Although most research on ground truth string-fret combination detection was based on audio
exclusively, some attempts relied on additional channels of information. Six-channel audio
transmitted by a special hexaphonic pickup was assumed as input in the methods proposed by
O'Grady and Rickard [2009] and Reboursière and Dupont [2013], while Paleari et al. [2008]
and Perez-Carrillo et al. [2016] relied on audiovisual input. The inharmonicity coefficients

1This dataset is no longer available.
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used for string detection by Barbancho et al. [2012] yielded a near-perfect accuracy of 0.997,
but had to be estimated beforehand per string. When using averaged coefficients from a
heterogeneous selection of 13 different guitars, the results were inferior to pre-estimated ones
with an accuracy of 0.75. The string-inverse frequency method used in [Geib et al. 2017]
assumed input data recorded in a way that captures both parts of a fretted, vibrating string (i.e.
segments L1 and L2 in Figure 4, top image) and is not usable with ordinary guitar recordings.

The parametric pitch estimation approach developed by Hjerrild and Christensen [2019]
yielded excellent results using the Maximum a priori, with an average absolute error of 3% for
string-fret detection on the electric guitar used; however it required a prior training sample
from each string of the guitar it was to be used on. (In a subsequent paper by Hjerrild et al.
[2019], the authors attempted to substitute the training phase with prior knowledge on the
physical properties of strings, but the results deteriorated.)

A support vector machine -based approach combined with Inertia Ratio Maximization with
Feature Space Projection (IRMFSP) was utilized in two studies to yield a precision of 0.93
[Abeßer 2013] and mean accuracy of 0.92 [Dittmar et al. 2013]. The dataset used by Abeßer
[2013] consisted of monophonic samples from two electric guitars taken from the
IDMT-SMT-Audio-Effects dataset [Stein et al. 2010], while a bespoke dataset of polyphonic
samples created with three electric guitars formed the dataset in [Dittmar et al. 2013].

Several authors [Jadhav et al. 2022; Kim et al. 2022; Wiggins and Kim 2019; Maaiveld 2021;
Cwitkowitz et al. 2023] used a convolutional neural network to detect string-fret combination,
achieving accuracies in the range of 0.82-0.92. While only the results of [Jadhav et al. 2022]
were explicitly reported using the accuracy metric, all results essentially refer to the same
success rate. The precision metric used by Maaiveld [2021], and Cwitkowitz et al. [2023]
refers to the amount of correct string-fret detections within the pool of detected notes, and the
Tablature Disambiguation Rate (TDR) defined by Wiggins and Kim [2019] and used by Kim
et al. [2022] represents what in this Master's Thesis is defined as the string-fret combination
detection accuracy. All five papers, except for the one by Jadhav et al. [2022], which also
included chords from the Montefiore dataset, utilized the GuitarSet dataset exclusively.

3 DATASET
The dataset created for this study consists of 10099 monophonic audio samples collected from
three different electric guitars. The three instruments used for data collection come from two
different manufacturers and differ in weight, scale length, fret spacing, pickup type, string
action (distance from fretboard) and string set gauge, as shown in Table 1.
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Table 1: Properties of the electric guitars used for dataset creation. SC denotes single coil
pickup, HB denotes humbucker pickup.

3.1 Data collection procedure

Raw audio was recorded directly from the output jack of each instrument into an audio editor
using 48kHz sample rate and 16-bit depth. Multiple samples of differing durations were
collected from each string and fret, such that an entire string's worth of samples was contained
in a single recorded file. Each audio file was manually named after the instrument and string
that produced it.

Playing technique was limited to downstrokes and upstrokes performed with a plectrum, and
the picking position (see Table 1) chosen for each instrument remained constant throughout the
recordings. All three guitars were in standard EADGBE tuning.

3.2 Data cleaning

The Python packages librosa [McFee et al. 2023] and numpy [Harris et al. 2020] were used at
the data cleaning stage for a number of tasks. For each recorded audio file, DC offset was
removed and silence was trimmed from file beginning and end. The trimmed recordings were
then sliced into single-note segments using the librosa.onset module and segments shorter than
1024 samples were discarded to ensure a DFT window length 512 for audio downsampled to
24 kHz (see definition of window length in Section 4.1.1). The remaining segments were
normalized between [-1, 1]. In order to remove segments that had no detectable pitch,
fundamental frequency (f0) detection was performed on each segment using the librosa.pyin
implementation of the PYIN f0 estimator [Mauch and Dixon 2014]. Segments with no
detectable f0 were discarded and the remaining segments were saved to disk as files that
contained a single note each and carried instrument and string information in the filename. See
Figure 11 for an overview of the data cleaning process.

Possible misdetections were identified by the following method: each sample with a detected
fundamental frequency f was matched with the musical pitch whose frequency was within a
quarter-note of f (the formula for calculating the quarter-note ratio is presented in Section
1.2.2). Samples were then grouped by musical pitch into bins containing only a single pitch,
e.g. E2. Each bin was then verified to contain the expected frequency only, by playing the
samples back-to-back to a human validator (i.e. the author) as a monotonous pitch sequence,
from which any deviating pitches or noisy samples were easy to identify and remove by hand.
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Figure 11: Data collection and labeling procedure
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At this point, each audio sample in the dataset contained a single note produced by a known
string and instrument, but lacked fret information. To generate fret labels, a pandas [Reback et
al. 2021] DataFrame representation of a 24-fret guitar fretboard was constructed and populated
with the musical pitches expected from a guitar in standard EADGBE tuning. Each sample
originating from string S was then matched with the fret whose pitch matched the sample's
detected pitch.

The resulting 10099 samples span the musical pitches E2-E6 for the 24-fret guitars and pitches
E2-D6 for the Ibanez 440S, which had only 22 frets.

4 METHODS
Audio samples in the dataset were feature engineered into two-dimensional format using three
different transforms: a spectrogram, the Mel-spectrogram and the constant-Q transform. One
convolutional neural network was trained for each transform to detect which of the guitar
strings (EADGBE) was used to produce each original sample.

4.1 Feature engineering

4.1.1 Discrete Fourier transform

All of the features used in this Master's Thesis are based on the discrete Fourier transform
(DFT) [Allen 1977], which is an algorithm for calculating the frequency domain representation
of a signal.

Natural sounds can be thought of as consisting of multiple cosine waves superimposed on each
other, and the Fourier transform [Osgood, 2009] offers a way to decompose a sound into its
frequency components, yielding a frequency spectrum. See Figures 5b and 6b for examples of
frequency spectra. From a musical perspective, a Fourier transform yields the relative
intensities of different pitches and their harmonics, which is useful in string detection,
considering the differences in tension and thickness of the strings on which a given musical
note can be played.

In the context of digitally sampled signals, the discrete Fourier transform (see Equation 4) is
used instead of the original Fourier transform. In Equation 4, N represents the length of the
signal in samples and ω refers to a component frequency or "frequency bin" under observation.
X(ω) is calculated for every position in the signal, and the output of each calculation is a
complex number. The resulting complex-valued vector of size N constitutes the digital Fourier
transform. The magnitude of each complex number represents the magnitude of the frequency
bin under observation, while angle represents phase. For the purposes of this Master's Thesis,
only the DFT magnitude is used.
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The frequency resolution of DFT is dictated by the length and sample rate of the signal under
analysis. If a signal is too short for a low frequency to complete its cycle, said frequency will
not appear in the DFT, while high frequencies will be subject to aliasing [Robinson and Clark
1991]. Aliasing occurs when an analog-to-digital (A/D) converter with a sampling rate of f
attempts to sample a signal having frequency 0.5f or higher. While a longer wavelength is
sampled several times during its cycle, higher frequencies approaching 0.5f, also known as the
Nyquist frequency, have short wavelengths that are sampled only a few times per cycle. The
results of lowering the sample rate and thus lowering the Nyquist frequency can be seen in
Figure 12, which shows four different frequencies sampled at 10 kHz on the left and 100 Hz
on the right. Longer wavelengths retain their characteristics when sampled at a lower rate,
while higher frequencies suffer.

Since the audio data used in this Master's Thesis is downsampled during preprocessing to 24
kHz, the Nyquist frequency is 12 kHz. The highest harmonics of an electric guitar reach the
6-8 kHz region, so this is more than enough for our purposes. The lowest frequency of a guitar
in standard tuning is produced by the open E2 string, which has a frequency of roughly 82 Hz.
However, when considering the problem of string detection, frequencies with an unvarying
origin point on the fretboard are not strictly required as part of the dataset. This is the case with
pitches E2-G#2 and C6-E6 , which appear only on the 6th and 1st strings of a guitar in standard
tuning. For segments containing these pitches, fundamental frequency detection alone will
yield the string-fret combination, as there is only one string that could have produced them.
The effective range of interesting frequencies starts therefore from 110 Hz (A2) instead of 82
Hz.

The time that it takes for a periodic 110 Hz signal to complete one cycle is ~9.1 milliseconds,
which corresponds to ~436 samples when using a 48 kHz sampling frequency and even less
for a signal sampled at 24 kHz. A DFT window length of 512 is therefore sufficient for both
sampling frequencies. The Short-time Fourier transform (STFT) [Durak and Arikan 2003] is
an effective algorithm for calculating the DFT, and its librosa.stft implementation was used in
this Master's Thesis.

4.1.2 Feature 1: Spectrogram

The discrete Fourier transform reports the frequency and phase content of an entire signal but
offers no temporal dimension. The DFT of a sample played forward and backward is the same,
because the frequency spectrum is unchanged. However, the frequency content of most sounds
produced by physical objects tends to evolve over time, and this is also true for sounds
produced by guitar strings. For the purposes of many sound detection tasks, including the one
attempted in this Master's Thesis, a spectrogram is therefore often more useful than a mere
DFT.

Figure 13 shows a three-dimensional spectrogram of a sound played on a French horn evolving
through time. Only the lower frequency bins are activated at the attack and decay portions of
the note, with higher frequency bins active in the middle portion. This corresponds to the
characteristic sound of brass instruments in general.
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Figure 12: Four waveforms reconstructed from samples taken two sampling rates, 10kHz (top)
and 100 Hz (bottom) ["Aliasing", 2023]. The 100 Hz sampling rate is not sufficient to capture

the shape of the higher frequencies, while the lower frequencies remain intact.
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Figure 13: Three-dimensional spectrogram of a sound played on a French horn whose volume
first increases and then decreases. The elevation of the diagram at a particular time displays the

current amplitude ["3D-Spectrogram French horn", 2008].

In order to show a spectrogram in two dimensions, a heatmap is more convenient. Figure 14a
shows the spectrogram of a note played on the open low E string of an electric guitar with the
heat map values representing spectral density normalized between [-1, 1]. The image does not
contain much visual information. In Figure 14b, the heat map has been converted to Decibel
scale (dB) before normalization and more detail is visible. The normalized Decibel scale
version of the spectrogram is used for training the CNN in this Master's Thesis.

In order to construct a spectrogram, a time window of constant length (also referred to as a
frame) is moved across the signal from beginning to end. Along the way, DFTs of the
windowed portion of the signal are calculated and added to the spectrogram as columns. The
length of the moving window is referred to as window size, and it determines both the lowest
frequency that can be detected from an audio signal via DFT and the number of resulting
frequency bins (see Section 4.1.1). Hop size refers to the number of samples between the
starting points of each successive window, with a value of one indicating a sliding window.

The resulting spectrogram is a two-dimensional array, where each row contains the DFT
magnitudes of one frequency bin. In order to prepare the spectrograms for use as CNN input,
the values were converted to Decibel scale and normalized between [-1, 1].

Before constructing the spectrograms, each audio sample was resampled at 24 kHz and
truncated to a length of one second, i.e. 24000 samples. Spectrograms were then calculated
with librosa.stft using a window length of 512 and hop length of 32. The resulting
spectrograms having shape 257 x 50 were converted to Decibel scale and normalized between
[-1, 1]. See Figure 17.
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Figure 14a: Two-dimensional spectrogram of the E2 pitch (82 Hz) played on the open low E
string of an electric guitar. The heat map values represent spectral density.

Figure 14b: Spectrogram shown in Figure 14a converted to Decibel scale before normalizing.
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4.1.3 Feature 2: Mel-spectrogram

On a Mel spectrogram, frequency bins representing consecutive musical pitches (or octaves)
have equal spacing on the frequency axis [Dörfler et al. 2017]. This is not the case with a
regular spectrogram with a linear scale y-axis. As shown in Figure 7, the octave jump between
e.g. E2 (82 Hz) and E3 (164 Hz) is only 82 Hz, while the octave jump between E5 (659 Hz) and
E6 (1318 Hz) is a much larger 659 Hz. This leads to cramped spacing of musical pitches at the
lower end of the frequency spectrum, visible in the spectrograms shown in Figures 14a and
14b, where the E2 pitch and its first and second harmonics appear lumped together.

The Mel scale (as in 'melody') is a scale of frequencies that corresponds to human perception
of pitch in such a way that successive pitches on the Mel scale sound equally distant from each
other. As explained in Section 1.2.3, human perception regarding musical pitch is not linear
but logarithmic, and interprets the distance between any frequencies f and 2f to be equal.
Measuring pitch distances in Hz does not support this mode of interpretation, because a
difference of 100 Hz in between two low frequencies sounds considerably larger than the same
100 Hz difference between two high frequencies. A Mel spectrogram is computed by mapping
a regular spectrogram S onto Mel scale by calculating M.dot(S), where M is a linear
transformation matrix used to project DFT bins onto Mel-frequency bins. The transformation
matrix, also referred to as a Mel filter bank, is determined by the sampling rate, the Nyquist
frequency and number of frequency bins required.

Figure 15a: Mel-spectrogram of the E2 pitch (82 Hz) played on the open E string of an electric
guitar with the heat map values representing spectral density.
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Figure 15b: The Mel-spectrogram shown in Figure 15a converted to Decibel scale.

Figure 15a shows the spectrogram shown in Figure 14a converted to Mel scale and normalized
to [-1,1]. Notice the increased resolution of the fundamental frequency and its harmonics when
compared to Figure 14a. As with the regular spectrogram, the spectral density values of the
Mel-spectrogram were converted to Decibel scale (dB) and normalized between [-1,1] (see
Figure 16b) before using the feature as a CNN input.

4.1.4 Feature 3: Constant-Q transform

The constant-Q transform, like the Mel-spectrogram, is the output of a bank of filters with
geometrically spaced center frequencies to account for the non-linear spacing of successive
musical pitches [Schörkhuber and Klapuri 2010]. What differentiates the constant-Q transform
from a Mel-spectrogram is the Q-factor, defined as the ratio of a filter's center frequency to its
bandwidth, which is constant for all frequency bins. This is not the case with
Mel-spectrograms or spectrograms, as both use a fixed window that covers few (if any)
complete cycles for the lowest frequencies and multiple cycles for higher frequencies.

When using the constant-Q transform, each filter has a width that is a multiple of the previous
filter's width, as shown in Equation 5, where 𝛿fk denotes the bandwidth of the kth filter, fmin
denotes the central frequency of the lowest filter, and n is the number of filters per octave.

Figure 16a shows the constant-Q transform of the E2 pitch (82 Hz), normalized to [-1-1].
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Figure 16a: Constant-Q transformation of the E2 pitch (82 Hz), played on the open E string of
an electric guitar with the heat map values representing spectral density.

Figure 16b: The constant-Q transformation shown in Figure 16a converted to Decibel
scale.Notice the even larger spacing between f0 and the harmonics, when compared to the Mel

spectrogram and spectrogram of the same audio file, shown in Figures 15a and 14a
respectively.
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As with the previous features, the spectral density values of the constant-Q transform were
converted to Decibel scale (dB) and normalized between [-1,1] (see Figure 16b) before using
the feature as a CNN input.

4.1.5 Feature engineering algorithm

Because the upper range of an electric guitar note harmonics is in the 6kHz region, a sample
rate of 24 kHz, was considered sufficient and the 48 kHz audio segments were resampled at 24
kHz. The resulting Nyquist frequency was 12 kHz, yielding ample room for any high
harmonics that could possibly occur in the data. The audio segments were truncated to a length
of 24000 samples after downsampling.

As the dataset consisted of audio samples, i.e. time series data, it had to be transformed into a
format usable as CNN input. Three different transformations were calculated using the librosa
library: a spectrogram, Mel-spectrogram and the Constant-Q transform. All features were built
using the librosa library and the non-default settings for each are shown in Table 2. Figure 17
shows the individual steps of the feature engineering pipeline.

Because of variation in the lengths of the original audio samples, the representations had
varying widths, which had to be truncated or zero-padded to a constant width in order to
conform to CNN input shape requirements. After brief experimentation a feature width of 50
was settled on per feature. As a hop length of 32 was used in feature construction, the
remaining 50 windows represent the first 50 x 32 = 1600 samples of audio, which equates to
the first 67 ms of each audio file when using data downsampled to 24 kHz. This length roughly
corresponds to the length of a 16th-note played at a tempo of 240 beats per minute (i.e. a very
short note) and represents a minimum signal length obtainable for the majority of played notes
in a transcription setting. Using a larger feature width could enhance string prediction accuracy
for notes of longer duration, but would correspondingly increase the number of trainable
parameters in the CNN.

4.2 Convolutional neural network

A simple convolutional neural network (CNN) was constructed using tensorflow.keras [Abadi
et al. 2015] and used to train three models. One model was trained on the spectrograms of the
audio samples, another on the Mel-spectrograms and a third one on the constant-Q transforms.
All models were evaluated using 6-fold cross-validation [Zeng and Martinez 2000] and the
average accuracy over all six folds was reported per model in Table 3 (see Section 5).

The CNN architecture is shown in Figure 18 and descriptions of the layers follow in this
section.
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Figure 17: Feature engineering pipeline
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Table 2: Feature specifications. Source audio was truncated to the first 24000 samples before
feature construction and the width of the two-dimensional features was truncated to 50 values.

4.2.1 Input layer

The input layer of a CNN consists of image data where each image has a height, a width and a
number of channels. All of the three features constructed were two-dimensional grayscale
images representing some variation of an audio spectrogram. (The colors shown in Figures
14-16 are the result of mapping grayscale value ranges to color ranges for perceptual reasons,
not representations of a 3-channel RGB image). The width and height of the images varied per
feature type, as shown in Table 2.

Input layer image height depends on the feature calculation method, e.g. the window size used
to perform DFT during feature construction, and truncating or downsampling it would affect
resolution. Image width corresponds to the number of time windows used, and represents the
duration of the original sample that was covered during feature construction. Height was
therefore left untouched, and a width of 50 samples was considered to be sufficient for all
features, as described in Section 4.2.

4.2.2 Convolutional layers

A convolutional layer consists of one or more filters that move along the input image,
calculating dot products between the filter and the image at multiple locations on the image
and storing the results in a new matrix a.k.a feature map [Li et al. 2022]. On a 2D convolution
layer, each filter is a three-dimensional matrix of shape (h, w, c) where h denotes matrix height,
w denotes matrix width and c denotes the number of channels in the image.

Filters consist of one or more kernels. When using 2D convolution, a kernel is a
two-dimensional matrix that corresponds to a channel in the input image and contains weights
that are multiplied with the values of that channel as the filter moves along. For RGB images,
filter shape is (h, w, 3), meaning that a kernel of shape (h, w) exists for each of the channels R,
G and B. When using grayscale images, as in this Master's Thesis, the filter shape is (h, w, 1)
and, because there is only one channel, the kernel is practically equivalent to the filter. The
values of a kernel, like the nodes of a regular feedforward neural network, are learnable
parameters and each kernel of each filter is initialized independently from each other.
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Figure 18: Convolutional neural network architecture. Convolutional layer dimensions shown
apply to the models trained on spectrogram and Mel-spectrogram data. For the model trained

on constant-Q transform data, Conv1 and Conv2 dimensions were 100x48 and 48x22
respectively. A kernel size of 3x3, a dropout rate of 0.3 and max pooling size of 2x2 were used

throughout.

In convolution, each filter starts at the top left corner of an image where its values are
multiplied with the values of the corresponding part of the image, referred to as the receptive
field, using the dot product. The filter then slides to the right onto the next receptive field, the
location of which is determined by the stride parameter, which indicates the number of matrix
columns to move at each step. In 2D convolution, stride is defined for height and width
separately.

The dimensions of a filter, together with its stride values, define the dimensions of the filter's
output matrix. Figure 19 shows an example filter with dimensions 3x3 traversing a 5x5 input
image. Using a vertical stride of 1 and a horizontal stride of 2, the filter yields a 3x2 output
matrix after convolution is complete. However, as can be seen from Figure 19, the values
towards the edges of the input image are included in a receptive field less often than values
towards the center. It follows that the dimensions of the filter's output matrix are also smaller
than the original image. In order to include edge values better and to preserve dimensionality,
the input image can be extended by padding the edges of the image symmetrically with zero
values.
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Figure 19: Movement of a 3x3x1 convolutional filter across a 5x5 single-channel image using
vertical stride of 1 and horizontal stride of 2.

If a 2D convolution layer has more than one filter, each travels across the input image
independently. Each filter's output values are passed through an activation function (ReLU in
our case) and collected into a two-dimensional matrix. The matrices are then stacked on top of
each other and passed on to the next layer in the CNN as an input.

The model used in this Master's Thesis contains two 2D convolutional layers with 16 and 32
filters respectively. A kernel size of 3x3, a horizontal and vertical stride of 1 and a ReLU
activation function is used for both.

4.2.3 MaxPooling 2D layer

A pooling layer downsamples its input data by sliding a window, also referred to as pool,
across the input and outputting a single value for each window position. The available
functions are average pooling, which outputs the window average, and max pooling, which
outputs the maximum value found in the window. Stride and padding parameters (see Section
4.2.2) are available as well.

A max pooling 2D layer with a pool size of 2x2 was used in the CNN after each Conv2D layer
(see Figure 18).

4.2.4 Dropout layer

When using high-dimensional data, overfitting becomes an issue. This is also true for the
spectrogram variants used in our case, which contained up to 257 x 50 = 12850 values per
training data point. In an effort to make the CNN generalize better, dropout layers were added
with a rate of 0.3 to stages shown in Figure 18, after experimenting with rates in the 0.2-0.4
range. Dropout layers randomly silence a fraction of the nodes (determined by rate), forcing



30

the network to generalize, as it cannot rely on all the nodes being consistently available [Baldi
and Sadowski 2013].

4.2.5 Dense layer

Dense i.e. fully connected layers with a decreasing number of nodes were used towards the
end of the neural network architecture before the final output layer. Dropout layers were again
added between these layers, as seen in Figure 18.

4.2.6 Output

The final output layer of the neural network contained six nodes, one per guitar string. The
output of the CNN was a 6x1 vector, representing the strings of a typical six-stringed electric
guitar. The activation function used was softmax.

Because the experimental setup of this Master's Thesis involved a clean dataset and the
emphasis was not on onset detection or f0 detection, there was no need for a null class. In a
realistic Automated Guitar Transcription system, different kinds of noise artifacts would
probably get past the onset detection stage and the string recognition stage might have to learn
a seventh label for samples with no string information present. Polyphony would have to be
accounted for, and there would be a need for a multi-label classifier (as opposed to the
multiclass classifier presented in this Master's Thesis).

4.3 Training and evaluation

Three models, one per feature type, were trained using sparse categorical cross entropy loss
function and evaluated using stratified six-fold cross-validation on the CNN shown in Figure
18.

In order to establish an estimate of the models' accuracy, each was subjected to stratified k-fold
cross-validation [Zeng and Martinez 2000] during training. The spectrogram data was split
into six subsets of similar size, as shown in Figure 20, and data from all strings was included in
each subset. One subset was kept aside as a test set and the five remaining subsets were
merged to form a training set on which the model was trained for 100 epochs. All
hyperparameters except for filter count, kernel shape and activation type were left at their
default values because of time constraints.

After training for 100 epochs, the validation accuracy from the fold was stored. The test set
was then swapped with another subset and the entire training-evaluation procedure was
repeated, until all of the subsets had been held aside for testing purposes exactly once. The
classification accuracies of all six training episodes were then averaged and reported in Table
3. The entire procedure was repeated for Mel-spectrograms and constant-Q transforms,
resulting in three trained CNN models that had all been evaluated using cross-validation. See
Sections 5 and 6 for results and discussion.
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Figure 20: 6-fold cross-validation of model trained on spectrogram data, fold 1. For the next
fold, the test data subset is swapped with one of the training data subsets until all have been

used for validation and training.

4.4. Prediction

After training was completed, the weights of the final models were stored. The
best-performing model (i.e. the one trained on CQT transforms, see Table 3) can be used to
predict successive string-fret combinations from monophonic electric guitar recordings by
cloning the repository [Simola, 2023], installing the requirements and following the
instructions in the README.

This command runs the pipeline shown in Figure 21, which preprocesses the input file and
predicts string-fret combination for each individual note using the model trained on the
constant-Q transform. The resulting sequence of string-fret combinations is written to a text
file in the format shown in Figure 22. This output is incomplete, as note duration information
is missing entirely and the layout is not very user-friendly, but resembles tablature available on
websites such as Ultimate Guitar - transcriptions from which were used by Burlet and Hindle
[2017] for constructing a synthetic dataset from guitar samples. In order to produce
professional quality tablature transcription, note duration detection should be incorporated into
the algorithm and results should be presented in a more visually appealing format. See
discussion on future work in Section 6.
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Figure 21: Prediction pipeline.
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s1 -------------------------------------------------8-----------

s2 ---------------------------------------------------10--------

s3 -5---------------6-5-3-5-3---1-3-5-------9------------10-9-7-

s4 ---5-4-5-4-2---------------3---------4-5------10-------------

s5 -------------5-3-------------------3-------10----------------

s6 -------------------------------------------------------------

Figure 22: String-fret combinations of a monophonic melody detected by the algorithm. The
output contains no duration information.

5 RESULTS
The average string detection accuracies achieved with the CNN models trained on each of the
feature sets using stratified 6-fold cross-validation are presented in Table 3, along with the
average accuracies reported by previous works.

It should be noted that previous studies have used a variety of datasets and metrics, which
makes direct result comparisons problematic. For example, the GuitarSet dataset used by Kim
et al. [2022]; Maaiveld [2021]; Wiggins and Kim [2019]; Cwitkowitz et al. [2023] and Jadhav
et al. [2022] consists of samples from multiple guitarists using a range of playing techniques
on a single acoustic guitar. In this Master's Thesis, a dataset collected by a single guitarist
using a plectrum and three different electric guitars was used. It is also not necessarily sensible
to compare a study with pure string detection scope to studies that attempt to implement an
entire transcription pipeline, or transcribe polyphonic audio [Dittmar et al. 2013; Jadhav et al.
2022; Kim et al. 2022; Maaiveld 2021; Wiggins and Kim 2019]. Results from such studies are
presented nevertheless for context when accuracy or a metric comparable to accuracy (see
Section 2.2.2) is given.

Table 3: Results comparison. Accuracies marked with an asterisk were achieved with methods
requiring prior estimates or samples from the strings they were used on. Barbancho et al.

[2012] reported results separately for monophonic and polyphonic data, but only monophonic
results are shown here.
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6 DISCUSSION AND CONCLUSION

6.1 Discussion and future work: Dataset

As described in Section 3, the custom dataset used in this Master's Thesis is strictly
monophonic and was collected in a way that does not represent natural guitar playing. The
notes were recorded from one string at a time in order to speed up the labeling task, and as a
result there was practically no overlap between subsequent notes. Three different instruments
with varying physical properties were used, which is an improvement compared to the datasets
used in most previous works - namely GuitarSet, which was recorded using a single(acoustic)
guitar fitted with a custom hexaphonic microphone for labeling purposes [Xi 2018]. On the
other hand, among GuitarSet's many merits is the fact that several human players contributed
their playing styles to it, which was not the case with the dataset used in this Master's Thesis,
which involved only one human player (the author) and a restricted range of playing
techniques.

When considering potential future work, the dataset built for this Master's Thesis has an upside
however. Many of the existing datasets consist of notes extracted from actual played melodies,
which follow familiar patterns and conventions, and all string-fret combinations are not
equally represented. Notes appear in these datasets if they happen to be part of a melody or
chord progression, and some key signatures, patterns and transitions are more prevalent in
guitar music than others. As a result, datasets used in previous work rarely contain dictionaries
of multiple notes from every single string-fret combination of several guitars, as our dataset
does.

In future work, the dataset constructed for this Master's Thesis could be used as a set of
building blocks for constructing a wide range of note combinations that are not limited to
existing compositions, commonly used key signatures or the technical abilities of specific
guitar players. These synthesized chords and progressions would of course lack natural
transitions between notes and lack usefulness in cases where focus is on onset detection, but
they could be useful for studying string-fret combination detection.

It is also worth considering the possible use cases for an automatic guitar transcription system.
For most guitar players, a system that creates tablature from existing multi-instrument
recordings would be in high demand. The complexity of the task is formidable however, and
all previous research on AGT systems that the author was able to find focuses on the
transcription of isolated guitar recordings instead.

When considering the remaining possible users of a system that is limited to transcribing
tablature from isolated guitar recordings, the features expected from the system and the dataset
may change. Teachers or composers dictating exercises and new compositions do not suffer
from the limitations imposed by existing recordings, as they can produce the audio at will,
adjusting tempo if required. They might not require a transcription system that is able to
handle every possible sound variation and color that electric guitars, amplifiers and other
sound processors can provide, but could be satisfied instead with a system that reliably
transcribes carefully articulated and clean sounds into tablature form.
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Lastly, as the pure sound of electric guitars differs greatly from that of acoustic and classical
guitars, trying to build transcription systems that work for all guitar types may not be a feasible
goal. The structural and acoustic differences between hollow-bodied (acoustic/classic) and
solid-bodied (electric) guitars are considerable, and further exacerbated by differences in
playing technique. Acoustic and classical guitars are often played with fingers, while electric
guitars are mostly played with a plectrum, which is essentially a piece of plastic and has
considerable effect on the sound color. String materials vary as well, with some acoustic and
classical guitars using nylon strings instead of the nickel-plated steel strings commonly used in
electric guitars. As mentioned in Section 1, string-fret detection seems to yield better results
with acoustic guitars than electric guitars when both scores are reported separately [Hjerrild et
al. 2019b; Barbanhco et al. 2012]. In light of these observations, the benefits and drawbacks of
treating all types of guitars equally when designing an AGT system could perhaps be
reconsidered.

6.2. Discussion and future work: Methods

The use of CNNs may be overkill for a task as simple as detecting string-fret combinations
from monophonic electric guitar recordings. As reported in Sections 2.2.2 and 5, other
methods have been used successfully and some previous studies [Barbancho et al. 2012;
Hjerrild and Christensen 2019] achieved near-perfect accuracy on the string-fret detection task
on monophonic data when physical characteristics of the guitar and the strings were known in
advance. Considering that most guitar players use a manageable collection of guitars and can
afford to provide a minimum of training material for an AGT system, this is not an
unreasonable prerequisite. Yet when taking into account the challenges of polyphonic tablature
transcription and the promising results achieved in the area using machine learning [Abeßer
2013; Dittmar et al. 2013; Kim et al. 2022; Wiggins and Kim 2019], CNNs and other machine
learning methods are likely to keep playing a role in automatic guitar transcription.

The methods used in this Master's Thesis could have been improved with more systematic
CNN architecture search and hyperparameter tuning, as barely any was attempted and the
results should be considered a mere baseline. Using an autoencoder on the different
spectrogram variants could have helped in dealing with the large feature space by providing
latent representations with greatly reduced dimensionality.

The classification task could also have been fine-tuned by minimizing the effect of
fundamental frequency on the detection task. As it stands, the CNN used in this Master's
Thesis considers every string to be a possible source of the audio sample under observation,
and spends part of its training time learning tasks that are already solved by fundamental
frequency detection. The CNN should perhaps be allowed to focus on its main task, i.e.
differentiating between the sources of identical fundamental frequencies that originate from
different strings. Learning that energy in the low frequencies correlates negatively with
high-pitched strings or vice versa corresponds to events in physical reality, but does not help
the network focus on what exactly differentiates a given fundamental frequency played on one
string from the same fundamental frequency played on other possible strings. The
differentiating features may have much more to do with harmonics and/or inharmonic content
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in high frequency ranges than fundamental frequency. Allowing the CNN to use f0 (which is
prominent and readily available for detection in all of the spectrogram variants) as a feature
may divert its attention from the main task.

One possible way to disrupt the f0-related associations made by the CNN could be the use of
non-standard tunings, including the dropped-D or dropped C# tunings. A capo could be used to
clamp all strings down on a chosen fret, effectively shortening the scale and giving a different
sound character to strings that ring open. Incorporating samples that break up the standard
tuning and normal associations between string-fret combination and musical pitch could
possibly be used to mitigate the degree to which the CNN relies on fundamental frequency as a
feature.

6.3 Conclusion

As described in Section 1.3, detecting string-fret combinations from monophonic guitar
recordings is a subtask related to Automatic Guitar Transcription. The subject of this Master's
Thesis was to validate the possibility of using a CNN to accomplish this subtask, not to
generate a complete end-to-end AGT system. Judging by the results shown in Table 3, this
modest goal was accomplished: the model trained on constant-Q transforms achieved an
average cross-validated accuracy of 0.932, with minimal hyperparameter tuning and short
training times on a laptop with 32 Gb of memory and no compatible GPU.

The obvious shortcomings of this Master's Thesis are related to the limitations imposed by the
monophonic dataset, and the ensuing focus on monophonic string-fret detection only. In a real
usage scenario, polyphonic audio is the norm and monophonic audio is the exception.
Furthermore, in order to construct an actual AGT system, other tasks outlined in Section 1.3,
such as onset detection and polyphonic pitch detection, would have to be addressed as well.
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