
Md Feroj Ahmod

JAVASCRIPT RUNTIME
PERFORMANCE ANALYSIS: NODE

AND BUN

Faculty of Information Technology and Communication Sciences (ITC)
Master’s thesis

June 2023

Abstract
Md Feroj Ahmod: JavaScript runtime performance analysis: Node and Bun
Master’s thesis
Tampere University
Master’s Degree Programme in Software Development
June 2023

Online services are seeing a growing demand for various use-cases. Functionality of
web applications are at a premium. With every new application, different function-
ality is being implemented with more and more complicated logic. While there are
newer technologies invented for the sake of increasing the computing power, it has
also been a necessity to support new inventions and improve on existing machines
to create a smoother experience on using those applications.

Node.js, a JavaScript runtime, has been a reliable name in the technical indus-
try. Node.js can generally satisfy the needs of online applications. However, its
performance has been found to be uneven in applications that demand the highest
levels of performance. There has been few attempts to out-weight the performance
of Node.js and the most recent promising one is Bun.

The purpose of this thesis is to compare the performance of Node.js and Bun.
The comparison is carried out with different use cases that includes memory us-
age, execution time, response time, and request throughput. In all cases, multiple
sampling has been used to get a precise picture of the factors that affects the per-
formance.

The outcome of the thesis shows that Bun is significantly faster compared to
Node.js. However, the method of this thesis gives one sided view of the differences
between Node.js and Bun. When considering the implementation of Bun, other
factors such as security, compatibility and reliability should be taken into account.

Keywords: JavaScript, Node.js, Deno, programming, web server, back-end, per-
formance, security.

The originality of this thesis has been checked using the Turnitin Originality Check
service.

Preface
This thesis allowed me to gain some insights on some sophisticated technologies.
Completion of the thesis also marks the end of my Masters degree. I would like
to thank the members of my family for their continuous support. One person who
deserves a lot more gratitude than I could ever give is my mother.

Special thanks to my manager at my work. His support, motivation, and kindness
allowed me to carry on the studies alongside my full-time work.

I would also like to thank the university for allowing me such opportunity. Special
thanks to my thesis supervisors, educational specialist and former course coordina-
tor for helping me throughout the journey.

June 10, 2023
Md Feroj Ahmod

Contents

1 Introduction . 1

2 Background . 3
2.1 JavaScript . 3

2.1.1 History . 4
2.1.2 Current state . 6
2.1.3 Runtimes . 7

2.2 Just-in-time Compilation . 10
2.3 JavaScript Engine . 12

2.3.1 JavaScriptCore . 14
2.3.2 V8 . 17

2.4 Node.js . 19
2.5 Bun . 21
2.6 Influencing factors . 22

3 Performance of JavaScript runtimes . 24
3.1 Software Quality Attributes . 24
3.2 Performance efficiency . 25
3.3 Performance metrics . 26

4 Research methodology . 28
4.1 Description . 28
4.2 Implementations . 30
4.3 Test setup . 32

5 Results . 33
5.1 Performance evaluation . 33
5.2 Discussion . 38
5.3 Limitations . 39
5.4 Future works . 40

6 Conclusions . 41

References . 47

1

1 Introduction
The world wide web, often simply referred to as the web, has undergone a great deal
of changes in terms of every aspect over the course of its relatively short history.
The web relies heavily on the use of hypertext markup language (HTML) which is
a markup language that allows developers to create web pages that can be viewed
in a web browser. JavaScript, that initially started as a simple scripting language
for HTML document object model (DOM) manipulation and form validation, has
become one of the most popular programming languages.

The amount of JavaScript in web applications has grown significantly due to the
responsibility of execution that has increasingly shifted from the server to the client.
The rise of the single-page applications (SPAs) and front–end frameworks such as
React, Angular, Vue and Svelte relies heavily on JavaScript to create dynamic,
responsive and interactive user interfaces. As of today, the usage of JavaScript is
no longer limited to the web and has expanded its reach to other domains as well.
Popular frameworks like Electron enables developers to create desktop applications
using web technologies, for instance, Slack, Discord, Postman and Visual Studio
Code are all made using Electron [35]. Web technologies are also an attractive
choice in mobile application development. This is true especially for the case when
the application deployment target is in multiple platforms. The two most popular
platforms, Google’s Android and Apple’s iOS require separate applications to be
deployed in their own ecosystem. Using web technologies in such cases enables
the developers to share code components. Popular choices are Web-View, hybrid
applications and frameworks such as React Native [36]. The use of JavaScript is also
present in game development. Browser-based games as well as mobile and desk-top
games are also being developed through frameworks such as Phaser and Three.js.
Internet of things (IOT) and robotics also has seen use of JavaScript with the help
of frameworks such as NodeRed, IoT.js Cylon.js and Johnny Five [39]. Artificial
intelligence and Machine learning has also seen a lot of usage of JavaScript through
frameworks like TensorFlow.js and Brain.js. It is also possible to use JavaScript for
server-side applications with the help of Node.js, which is currently a very popular
technology.

While all the major browsers have chosen JavaScript to support the longest,
JavaScript was not the only option for the browsers. Multiple times, other tech-
nologies were proposed and often been achieved, what JavaScript achieved, through
browser plug-ins. Solutions such as Adobe Flash, Microsoft Silverlight and Java
Applet, all had their fair share of support as they helped bring the performance
benefits of native code to the web. However, their reputation kept taking hits by

2

frequent security issues. Due to the growing wariness towards plug-in-based solu-
tions, introduction of HTML5 and the rapid growth of the mobile platforms, major
players like Apple discontinued support for plug-ins led to a significant decline in
their usage. As of today, most of the major plug-ins are deprecated or will be soon.
As a result, JavaScript has remained the top programming language on the web.

Node.js, created by Ryan Dahl in 2009, is an open-source, cross-platform, run-
time environment for JavaScript that exists to execute JavaScript code outside of a
web browser allowing developers to build scalable and high-performance applications
that can handle a large number of simultaneous connections with high throughput.
Node.js is powered by Google’s V8 JavaScript engine, which allows it to run at high
speeds by compiling JavaScript code into machine code. Due to its non-blocking
event-driven architecture, Node.js is known for performance, efficiency and flexi-
bility. However, its performance in complex scenarios has remained inconsistent.
There have been attempts to gain more speed and performance by creating Deno,
a JavaScript runtime from the creator of Node.js. While Deno is an improvement
in many areas, it is built with V8 engine, same as Node.js, thus having similar lim-
itations of Node.js. The newest, very promising, runtime in the context solves the
issues in context while designed to be the drop-in replacement for Node.js, is Bun.
This means that all the existing applications that run in Node.js would be running
the same.

The topic of this thesis is to delve into Bun, its features, relationships with
Node.js, evaluate its current state and future. Furthermore, in this thesis, we im-
plement some sample applications of different computation contexts, evaluate and
analyze the results after running them using Bun and Node.js in a test setup. The
research was conducted based on few research questions, explained in Chapter 4,
mentioned below:

• Is Bun faster than Node.js?

• What affects the performance of runtimes?

• What factors may contribute when selecting a runtime?

Literature review was conducted and Chapter 2 covers related work regarding
JavaScript, JavaScriptEngines, Node.js and Bun. In Chapter 3, software quality
aspects will be covered in detail, especially performance. Chapter 4 will cover the
research methodology including the implementations of the various small test appli-
cations of different contexts. In Chapter 5, we will evaluate and discuss the results
of our test followed by Chapter 6 that will wrap up with conclusions.

3

2 Background
Along with all the other platforms, the web, especially during the last 20 years, has
been quite the attractive platform for applications. While HTML5 opened a door
to natively implement many of the features todays web applications have, those
features were mostly handled by plug-ins, such as Adobe flash, previously, partic-
ularly the multimedia. Eventually, the necessity of plug-ins had run out and the
performance gaps between plug-ins and native solutions were closed by WebAssem-
bly and Web graphics library (WebGL) [1]. While other runtimes have not became
obsolete by the introduction of Node.js, it certainly did place a giant footstep in the
scenario. Node.js is particularly efficient and well-suited for real-time data transfer
and processing applications. It is also better suited for light-weight and fast server-
side rendered applications. Since Node.js is single threaded, complex applications
that re-quire more processing power can put Node.js in a difficult position. Node.js
also uses a large amount of memory for complex scenarios. All these difficulties of
Node.js helped with the design and implementation of Bun and its exclusive appli-
cation programming interfaces (API) [34]. Bun chose JavaScriptCore engine from
the Webkit project unlike Node.js which uses Google’s V8 engine [50], where both
engine uses Just-In-Time compilation.

2.1 JavaScript

Although it shares partial syntactic similarity, JavaScript is largely unrelated to
Java, despite its name, they are completely different programming languages. It
is a dynamically typed, primarily a web programming, scripting language. It is
a high-level programming language that is interpreted and includes features that
are commonly associated with both object-oriented programming (OOP) and func-
tional programming [16]. JavaScript was created originally for Netscape Navigator
browser by Netscape Communication [31]. However, it was subsequently standard-
ized by ECMA International as ECMAScript [11]. JavaScript is widely regarded
as one of the most utilized programming languages in the world [38]. The role of
JavaScript in managing various functionalities on a web page is so integral that it
has become practically impossible to engage in web development without encoun-
tering JavaScript. JavaScript was originally created for web browsers but Node.js,
discussed in Section 2.4, helped extend it’s reach out of web browsers to web server,
desktop, mobile and even embedded scenarios.

Being an interpreted language, JavaScript compiles the code into machine lan-
guage during runtime [16]. An interpreter executes the code line-by-line as it runs.

4

This opens the possibility to a faster development cycle since any changes to the
code can be made quickly without having to compile the entire program. However,
such features being a characteristic of a dynamically typed languages like JavaScript,
they can negatively impact program performance compared to compiled code.

2.1.1 History

JavaScript is a programming language that was initially developed by Brendan Eich
at Netscape in May 1995. It was originally named as Mocha, and later renamed
to LiveScript when it was released as beta software in Netscape Navigator 2.0 [20],
a web browser by Netscape, in September 1995 [2]. However, it was ultimately
renamed JavaScript on December 4, 1995 [31, 2], upon its deployment in a later beta
of Netscape browser version 2.0 [31]. Despite the name sounding similar, JavaScript
has very little to do with Java. At the time of the birth of JavaScript, Java was
a popular choices of programming language among developers. Mocha was created
with syntax inspired by Java [40]. Before being renamed, LiveScript incorporated
many features from Java, and the desire to leverage Java’s growing popularity and
positive associations played a significant role in the decision to ultimately rename it
as JavaScript [20].

Server-side implementation was not a new concept when Node.js first appeared.
Shortly after the release of JavaScript for web browsers, Netscape introduced a ver-
sion of JavaScript for server-side scripting (SSJS) in their Netscape Enterprise Server
[20]. Fast-forward, since the mid-2000s, there has been a significant increase in the
number of server-side JavaScript Implementations available. One notable example
of server-side JavaScript implementation being utilized in real-world applications is
Node.js which has became increasingly popular in recent years [43].

When JavaScript 1.0 made it to the market, its popularity was increasing and
helped Netscape Navigator to hold the leader position. By the time Netscape Nav-
igator 3 was released with JavaScript 1.1, Microsoft, to compete with Netscape,
decided to opt-in for scripting technologies in their browser and, in 1996, introduced
its proprietary implementation of JavaScript with the release of Internet Explorer
3 [20, 40]. It was called ”JScript” to avoid any possible trademark issues by keep-
ing “Java” off the name [40]. Like the name, although it shared many similarities,
JScript was also different in terms of implementation [40].

With the growing competition and from the worry of those implementation
straying too far away from JavaScript, concerning compatibility issues [20] and Mi-
crosoft’s no intention of cooperation, Netscape formally submitted JavaScript to
the European Computer Manufacturer’s Association (ECMA) for consideration as
an industry standard language [20, 23]. ECMA is an organization established in

5

1961 that is dedicated to promoting the standardization of information and com-
munication systems [40]. As a result of ensuing work, the standard version of the
language was developed and named ECMAScript formally and today what is known
as “JavaScript” is only the commercial name for ECMAScript [40]. In June of 1997,
ECMA International published the initial version of the ECMAScript standard, des-
ignated as the ECMA-262 specification [11, 20]. One year later, in June of 1998,
certain modifications were made to adapt the specification to the ISO/IEC-16262
standard, leading to the release of the second edition [40, 12]. The third edition
of the ECMAScript, which was published in December of 1999 [13], is the version
that is base line target for many libraries and most widely supported by current web
browsers [40].

JavaScript and the community struggled in the years between ECMAScript 3.1
and 4. In 2003, Brendan Eich proposed ECMAScript 4, a major update, introducing
some significant new features. However, some of the community stood against it
believing that the changes were too radical and would break backward compatibility.
This result-ed with a ling period of debate and negotiations within the ECMAScript
committee and splitting the group into two. One, led by Brendan Eich, wanted to
move forward with ECMAScript 4 while the other preferred to focus on incremental
updates to ECMAScript 3.1 that would ensure backward compatibility.[40]

In 2005, Jesse James Garret, co-founder of Adaptive Path, introduced the term
AJAX (Asynchronous JavaScript and XML) along with a suite of technologies. The
key goal of this approach was to enable the background loading of data without
the need of full page reloads and resulting more responsive and dynamic applica-
tions [17]. JavaScript served as the foundation for the development of web appli-
cation. This ground-breaking development spurred the creation of several other
open-source libraries, including but not limited to Prototype, jQuery, Dojo and
Mootools. Although it was not part of the ECMAScript 3 standardization, Mi-
crosoft implemented similar technology in it’s Internet Explorer 5 browser named
XMLHttpRequest. Later, XMLHttpRequest was integrated into standards that are
part of the WHATWG and the W3C groups, following its success [40].

Major browser vendors, including Microsoft, Mozilla and Opera, further com-
plicated the debate by implementing their own versions of ECMAScript, in their
browsers, which diverged from the proposed standard. Achieving a consensus of
the future of the language became much more difficult. Fast forward, in 2008, the
ECMAScript committee eventually abandoned ECMAScript 4 and instead focused
on incremental updates to ECMAScript 3.1. ECMAScript 4, despite the contro-
versy, did have a lasting impact on JavaScript. Many of its proposed features such
as classes, generators and iterators were eventually added to ECMAScript in later
versions.[40]

6

JavaScript has often been characterized as a “toy” language, mainly due to its
humble beginning in simple scripting and associated simple use cases [47]. Today,
JavaScript has come a long way and evolved from being a “toy” language to some-
thing that is almost irreplaceable and most desired [45]. Multiple programming
paradigms such as object-oriented, imperative and functional styles are supported
by JavaScript. It has expanded it’s reach out of web browsers and extended to vari-
ous domains such as Server-side, Desktop, Mobile, Robotics and Internet of Things
(IOT) [38].

2.1.2 Current state

JavaScript is one of the most widely used programming languages in the world [45],
with a long history of evolution and development. Today, JavaScript is used in a wide
variety of contexts. It is the primary language used in front-end web development
as well as a back-end server-side development with the rise of Node.js [10]. It is also
quite commonly used for mobile application development, using frameworks such as
React Native and Ionic [27], as well as Robotics and IOT.

Everything that JavaScript does, speed is at the heart of it. JavaScript is an in-
terpreted language, meaning it does not have to be compiled every time it’s run, and
reduces the time required for development and debugging to start with. While run-
ning as a client script, JavaScript finds more speed in the browser without connecting
to the server and saving resources. Client-side operations also saves resources of the
service side which reduces potential server load. JavaScript is backed by a huge com-
munity which makes getting support quicker, easier and ensures rapid development
and faster growth.[10]

Despite its advantages, widespread use and popularity, JavaScript still faces
challenges and limitations. Due to the fact that it is less strict on conventions
and rules, such as assigning types or ending line with semicolon, often lead to bad
habits. By design, JavaScript code can be viewed at the client’s side which may
open opportunities of attack for malicious parties looking to gain access to related
systems, cause damage or deny valid access. Depending on the browser, JavaScript
might be interpreted differently resulting users receiving inconsistent experiences and
inconvenience [10]. Working with large amounts of data or when running complex
calculation may lead to performance issues since JavaScript, by design, is single
threaded and unable to take advantages of multi-core processors. JavaScript has
limited support for low-level operations, such as no direct access to resources, and
Object-Oriented Programming (OOP) [19].

The road ahead of JavaScript looks bright with continued growth and innova-
tion in the language and its ecosystem. The emergence of new technologies such
as machine learning and artificial intelligence is also opening new possibilities for

7

JavaScript. The current state of JavaScript is one of rapid growth and innovation
with vast ecosystem of libraries, frameworks and tools that make it one of the most
versatile and widely used programming languages in the world [16, 45]. Despite its
challenges and limitations, like any other programming language, JavaScript contin-
ues to evolve and adapt to new technologies and uses cases, making it an essential
tool for modern development.

2.1.3 Runtimes

A runtime, standardized library and wrapper for a program written in each lan-
guage, refers to the context within which a programming language is executed.
This is needed to execute the compiled programs, applicable regardless of the spe-
cific language needs compiling or not [30]. Associated runtime system of a program-
ming language facilitates the functions, variables and the management of memory
through the usage of data structure like queues, heaps and stacks. It also provides
the necessary tools to interact with the resources [24]. The runtime often provides
an abstraction layer in order to make system calls to the operating system and as
an OS version update occurs, the runtime is expected to be appropriately updated
to match. Figure 1 illustrates a Java Runtime Environment.

Figure 1 An over-view of Java Runtime Environment (JRE).

A JavaScript runtime, illustrated in Figure 2, is a program that extends the

8

functionality of the JavaScript engine, discussed in Section 2.3, and enables it to
interact with external entities. Additionally, the JavaScript runtime offers features
and APIs to facilitate the development of software that is built on the JavaScript
language. This implies that both browsers and JavaScript-based frameworks have
their respective runtimes, which vary according to their specific requirements.[9, 24]

JavaScript has primarily two types of runtimes: browser based, and server side.
Browser based runtimes execute JavaScript code within the context of a web browser.
This is the most common context of JavaScript code execution. Server-side runtimes
executes JavaScript on a server or anywhere outside of a web browser. This is entirely
a different scenario. While some of the functions may be available, most of the
functions, such as window.alert(), can not be used. Instead, the server-side runtime
environment gives access to the end users a variety of features that is unavailable in
the browser, such as access to the file-system, database and network.[48]

A JavaScript runtime is contextual and can manifest itself in various forms de-
pending on the scenario. For instance, the runtime environment of a browser differs
greatly from that of Node.js. However despite these disparities predominantly ex-
isting at the implementation level, the fundamental concepts outlined below remain
pertinent [9]:

• JavaScript Engine

• Web APIs

• Callback queue

• Event loop

A JavaScript engine, discussed in Section 2.3, is a software program that reads
and executes code by translating it into machine code. This translation process is
followed by the execution of the resulting machine code, allowing a computer to
perform specific tasks defined by the originally written code. JavaScript engines
are typically embedded within JavaScript runtime environments, including browsers
and Node.js.[24, 9]

The main elements of a JavaScript engine are the heap and the call stack. The
heap is often called the ”memory heap”. Heap is a large unstructured data structure
that stores all the dynamic data like function definitions, objects, arrays etc. The
memory heap is where the memory allocation happens. The memory is occupied
until the garbage collector removes it. The call stack is another data structure that
stores the execution context/code for each function.[24, 9]

Web APIs, available in modern browsers, are what allows us to do wide variety
of operations. The most common ones includes manipulating documents, draw

9

Figure 2 An over-view of JavaScript runtime.

and manipulate graphics and fetch data from a server. The Web API container
houses various features such as event listeners, timing functions, and AJAX requests,
until they are invoked by a particular action. Upon completion of a requests data
reception, expiration of a timers set duration, or occurrence of a click event, a
corresponding callback function is promptly added to the callback queue.[24, 9]

It is to be noted that not all APIs are inherent to the browser. Numerous notable
websites and services such as Twitter, Facebook, Google Maps, PayPal, to name a
few, have incorporated APIs in their framework, thereby granting developers the
liberty to exploit their data. Contemporary web browsers encompass a multitude of
distinct technologies, enabling users to stockpile data associated with websites and
fetch it as and when required, thus facilitating the long-term persistence of data,
offline site storage, and various other functionalities.[7]

The Callback queue, illustrated by Figure 3, is a storage unit for callback func-
tions that are transmitted from the Web APIs and are organized in the order in which
they were appended. This queue follows a First-In-First-Out (FIFO) sequence as a
data structure. Callback functions remain in the queue until the call stack is free of
any active functions, at which point the event loop comes into the play and directs
the queue to move them into the stack for execution.[29, 24, 9]

The Event loop, responsible for for executing the code, continuously monitors
the status of both the call stack and the callback queue. In the event that the call
stack is devoid of any functions, the Event loop retrieves a callback from the queue

10

Figure 3 An over-view of JavaScript callback queue.

and positions it onto the call stack, thereby scheduling it for immediate execution.
As the Web APIs send callbacks to the callback queue, the Event loop continuously
adds them to the call stack, thereby inducing the perception of JavaScript’s ability
to execute asynchronously, despite being single-threaded.[29, 24, 9] As a result, the
event loop model of JavaScript has an intriguing characteristic, in contrast to many
other programming languages, is non-blocking. The handling of Input/Output (I/O)
operations is generally accomplished via events and callbacks. As such, when an
application is anticipating the outcome of database query or an XMLHttpRequest
request, it can concurrently process other tasks, such as user input [8].

2.2 Just-in-time Compilation

JavaScript is an interpretive language. The interpreter runs the code line by line
as it is being created, as opposed to turning it into machine language beforehand.
This method permits code modifications without requiring the application to be
completely compiled, which shortens the development time. When running the
same code repeatedly, such as in a loop, the interpreter must translate each it-
eration, which might slow down the program’s speed compared to compiled code.
Browsers began implementing just-in-time (JIT) compilers to improve efficiency and
alleviate some of the interpreter’s drawbacks. Implementing JIT for browsers and
JavaScript was a fresh idea, even though JIT was not a brand-new concept. It had
been utilized in LISP and Java before. JIT for browsers was initially introduced by
Google’s Chrome V8 JavaScript engine, which was motivated by the rising popu-
larity of JavaScript-heavy applications like Google Maps that exposed JavaScript’s

11

performance difficulties. As more browsers adopted this strategy, JIT compiler de-
velopment in browsers advanced quickly due to competition.

Interpreters are convenient, for a dynamically typed programming language, and
quick, since they do not need to go through the compilation of the whole code, it
is not very efficient since they run the code line by line where the same translation
is happening over and over again. Compilers eliminates that but with the cost of
execution time since it needs to compile the whole code beforehand. Just-in-time
compilers is basically the best of both compiler and interpreter. [6]

Although the exact technology varies slightly between browsers, the fundamental
idea is the same. Browsers started employing a profiler to keep track of the types
and frequency of code execution. The code is initially reported as cold after being
executed through the interpreter by the profiler. The code is labeled as warm if
it is performed more than once. Finally, the code will be labeled as hot if it is
frequently executed. The baseline compiler will compile and save functions that
are designated as warm. The function’s internal lines of code are all compiled as
stubs that are indexed by line number and variable type. The profiler can determine
if the same code and the same variable types are executed repeatedly due to this
indexing. If such is the case, it may return the compiled version, which helps to
increase performance. [6]

Figure 4 JIT flow (optimizing and deoptimizing).

Further optimization can be performed after the profiler recognizes a section of
code that is regularly called and marks it as hot. However, the compiler needs make
some assumptions based on the information the monitor has gathered in order to
optimize the code. Loops can be significantly optimized because of how interpreters
work, which causes them to suffer severely. Along with optimization, JIT compiler
workflow may include deoptimization if necessary illustrated in Figure 4. A loop is
presumed to remain true if it has been true for all prior iterations. JIT will give

12

up on the assumptions and the optimized code if the assumption is wrong, such as
when variables entering the loop differ from prior iterations, and will instead revert
to the interpreter or the baseline compiled version that was made from warm code.
This is called deoptimization. [6]

JIT compilers have enhanced JavaScript’s performance [6], especially as opti-
mizations have grown and matured over time. But sometimes this improved perfor-
mance comes at a price. The JIT compiler must record and store information about
code execution statistics, recovery data from bailouts caused by faulty assumptions,
and both the baseline and optimized versions of a function. This requires more
browser memory. When a section of code is repeatedly optimized and deoptimized,
unpredictable performance may occur, leading to slower performance than simply
running the baseline version. Fortunately, browsers include restrictions on how fre-
quently this kind of cycle can happen.

2.3 JavaScript Engine

The inventor of JavaScript himself, Brendan Eich, created the first JavaScript engine
for the Netscape Navigator web browser. It was implemented in C++. This engine
later evolved to SpiderMonkey, which Firefox uses as their JavaScript engine today
[18]. A great feature of modern JavaScript engines is that they are independent of
the browsers in which they are hosted [49], enabling a door to execute JavaScript
codes out-side of the browsers.

JavaScript is known as a interpreted language. However, many of the modern
JavaScript engines no longer just interpret the code, they also compile it using some
internally built in JITs [49]. In order to understand JavaScript engines, let us go
through a little terminology first. The classification of a ’JavaScript engine’ as a
subset of virtual machines is widely acknowledged. Virtual machines, by definition,
are software-based imitations of computer systems, and their various types are cat-
egorized according to their capacity for accurately emulating or replacing physical
machines. ’System virtual machines’ provide comprehensive emulation of platforms
on which operating systems can be executed. For example, Mac users are acquainted
with Parallels, a system virtual machine that facilitates the execution of Windows
on a Mac. ’Process virtual machines’, on the other hand, are less multi-functional
and are capable of running a single program or process. Wine is a process virtual
machine that enables Windows applications to run on Linux machines, but it does
not provide a complete Windows OS on a Linux platform.[28]

A JavaScript engine is a process virtual machine that is specifically designed to
interpret and execute JavaScript code [24, 9, 28]. JavaScript engines are responsible
for translating JavaScript code written by developers into optimized machine code
that can be interpreted by a browser or embedded in an application. JavaScriptCore,

13

Figure 5 General workflow of a JavaScript engine.

a JavaScript engine discussed in Subsection 2.3.1, for instance, is an ”optimizing vir-
tual machine” that focuses on the task of optimizing code for peak performance[28].

Despite different JavaScript being implemented differently, a general workflow,
illustrated in Figure 5, is common among them. JavaScript code is first analysed
and parsed by lexical analysis and tokenization which is a process of dividing code
into pieces such as keywords, identifiers, punctuation, operators etc. An Abstract
Syntax Tree (AST), illustrated in Figure 6, is created from the resultant which is
sent to the Interpreter. The abstract syntactic structure of a particular source file
is represented by the AST as a tree. This implies that it might theoretically be
translated into any other language. The Interpreter, in general, interprets the AST
and generates byte-code. It also collects feedback from the generated byte-code and
send those to the Optimization Compiler, generally JIT, which is responsible for
generating optimized machine code. Different engine may have different kind of
byte-code compilers and syntax.

Since JavaScript is a dialect of ECMAScript [40], each implementation of a
JavaScript engine is an implementation of a version of ECMAScript. The evolution

14

Figure 6 Visual representation of AST.

of ECMAScript is matched by the development of JavaScript engines. These engines
are designed to function seamlessly with diverse web browsers, headless browsers
(browser without user interface, such as PhantomJS), and runtimes such as Node.js,
and Bun, which accounts for the plethora of different engines in existence.

A JavaScript engine serves the singular function of reading and compiling JavaScript
code. However, this doesn’t imply that the engine itself is a simplistic construct.
For instance, JavaScriptCore, discussed in Subsection 2.3.1, incorporates six sophis-
ticated ’building blocks’ that methodically analyze, interpret, optimize, and manage
memory for JavaScript code. [28]

2.3.1 JavaScriptCore

JavaScriptCore is the default JavaScript engine for WebKit, an open source web
browser engine used by Safari and other applications. It adheres to the ECMAScript
standard, as specified in the ECMA-262 specification. Despite its official name, it
is also referred to as SquirrelFish and SquirrelFish Extreme, while within Safari, it
is called Nitro and Nitro Extreme. Nevertheless, the official name for this project
and its library is always JavaScriptCore. Despite its primary use in Safari and

15

WebKit, the engine has been made available for use in other applications and runtime
environments. [53]

JavaScriptCore functions as an optimizing virtual machine. The JavaScript-
Core comprises several constituent components, namely the lexer, parser, start-up
interpreter (LLInt), baseline JIT, a low-latency optimizing JIT (DFG), and a high-
throughput optimizing JIT (FTL), to analyze, compile, and optimize JavaScript
code for better performance. Lexer, hard-coded, performs lexical analysis, such as
breaking down the script source into a series of tokens. Parser, another hard-coded,
follows up with the syntactic analysis, such as building the AST based on tokens
from the Lexer. [53]

Figure 7 JavaScriptCore optimisation architecture.

While JavaScriptCore has similarity with the general JavaScript engine work-
flow, it does things a little different at this point. Instead of one, JavaScriptCore
implements multiple different JIT compilers for code optimization. From this point
on, as illustrated in Figure 7, every stage performs optimizations based on their
previous stage feedback. Triggering of Baseline JIT, DFG JIT and FTL JIT hap-
pens when a certain threshold is reached in terms of invocation or execution. The
path is linear meaning for example, FTL JIT will not start without going through
Baseline JIT and DFG JIT. It is to note that any kind of threshold mentioned is
an approximate and the actual may vary depending on function size and current
memory in use. [53]

The first execution of any function always starts in the interpreter tier [42]. The
Low Level Interpreter AKA LLInt, written in a portable assembly called offlineasm,
executes the resultant byte-codes from the parser. Beside lexical analysis and pars-
ing, the LLInt intends to have minimum start-up cost and includes optimizations
such as inline caching to ensure fast property access. [53]

While the LLInt is optimized for low latency start-up, the Baseline JIT is op-

16

timized for high throughput [42]. This component is responsible for optimizing
functions that are called at least six times or run through a loop at-least 100 times.
When these conditions are met, the Baseline JIT will optimize the code for faster
execution. Baseline JIT acts as a fallback for the functions, that were compiled
by the the Baseline JIT, if they encountered an unhandled case. A sophisticated
polymorphic inline caching is also performed by the Baseline JIT for almost all heap
accesses. Baseline JIT and LLInt collects light-weight profiling information, such
as values of argument, heap or a call return, to enable speculative execution by the
next tier of execution, the DFG JIT. [53]

The DFG JIT starts to act to optimize functions when their invocation reaches
60 times or runs through a loop at-least 1000 times. It is a just-in-time compiler
in JavaScript engines that optimizes functions based on profiling information. It
performs aggressive type speculation to forward-propagate type information and
sometimes speculates on values themselves to enable in-lining. De-optimization
(called OSR exit by the authors) is used to handle cases where speculation fails, and
the Baseline JIT and the DFG JIT share a two-way OSR relationship. Repeated
OSR exits from the DFG serve as a profiling hint for re-optimization, which uses
exponential back-off to defend against pathological code. [53]

Figure 8 JavaScriptCore three-tier architecture prior to the FTL JIT.

When functions are invoked thousands of times or loop tens of thousand of times,
the FTL JIT, enabled by default for Mac and iOS ports, takes over and starts to
optimize code. It is a top-tier optimizing compiler in JavaScriptCore engine and is
a combination of DFG JIT compiler and a lowering phase which is responsible for
high-level optimization and type inference respectively. Despite the FTL JIT largely
reuses existing DFG functionality they are not the same in terms of output. While
DFG focuses on optimizing code that are frequently executed. The FTL JIT primar-
ily concerns about generating code that is as fast as possible, by generating native
machine code that is specialized to the program’s execution context, which can lead

17

to significant performance improvements specially in-terms of memory management.
[42, 52]

Initially, as illustrated in Figure 8, JavaScriptCore used a three-tier strategy for
optimizing code that included the LLInt, Baseline JIT and DFG JIT. The FTL JIT
was later introduced as a resultant of work on a bug and designed to bring C-like
optimizations to JavaScript [42, 52]. Although FTL JIT started with a combination
of DFG and LLVM back-end, it was later updated and replaced LLVM with B3
back-end [41].

As of right now, it is clear that JavaScriptCore prioritizes both quick code ex-
ecution and minimal memory utilization. It accomplishes that with the aid of its
three JIT compilers, which are somewhat complex but performant.

2.3.2 V8

Google first created the Google V8 JavaScript engine as an open-source project to
power Google Chrome, the company’s primary online browser. Nowadays, It is uti-
lized in many different applications such as Node.js and several other web browsers.
For current online applications that extensively rely on client-side scripting, V8 is
built to swiftly execute JavaScript code. The engine combines many methods, in-
cluding just-in-time (JIT) compilation, concealed class transitions, and aggressive
memory management, to accomplish this speed. V8 is a great option for contem-
porary web development because, like JavaScriptCore, it also supports the most
recent iterations of ECMAScript. It is also an engine for WebAssembly and written
in C++. [49, 51]

V8 engine compiles and executes JavaScript code into native machine code just
like any other JavaScript engine. To do so, it consists of few main components
namely the parser, Ignition and TurboFan. Ignition and TurboFan is just a different
name of the interpreter and optimisation compiler[15, 14], similar to what we have
seen in Figure 5, respectively. It also incorporates a profiler to gather information
about different aspects during execution that is used by the compilers to optimize
codes further. [4]

On the road to generate byte-code and machine code, V8 starts by parsing the
given JavaScript code using it’s own parser. The parser takes the code as input and
parses it into an abstract syntax tree (AST). The AST, similar to what we have
seen in Figure 6, is a syntactic tree structure that represents the JavaScript code.
Each line of the source code is transformed to AST and the AST is passed to the
optimizing architecture starting with the interpreter AKA Ignition [4]. Figure 9
illustrates an overview of the architecture.

The interpreter in V8 is called Ignition, As we already know, is in charge of
converting JavaScript source code into byte-code. The machine-code, that has been

18

Figure 9 V8 optimisation architecture.

outcome of a JIT compiler, could occupy a significant portion of the available mem-
ory. Ignition was designed to mitigate, to some extent, this memory consumption
and the resultant machine-code is now about 25-50 percent. Ignition reads and pro-
cesses the JavaScript code, which is at this point a representation of AST, loads it
into the V8 engine to produce a byte-code representation. This byte-code is then
saved in memory for later use and optimized for engine execution. The byte-code
is executed by a high performance interpreter which allows faster execution speed.
Ignition interprets the byte-code during execution and transpiles it into machine
code that the central processing unit (CPU) may use and along the path Ignition
collects feedback, by profiling, which contributes to optimizations later on. [4, 15]

TurboFan, the JIT compiler in V8, optimizes code further when necessary. The
optimizations are performed based on feedback collected by the interpreter, Ignition.
TurboFan accepts these as input along with the profiling information and feedback
produced by Ignition for code that has been executed several times in the same
context. Code created by TurboFan is at the machine-level and executed by the
CPU. TurboFan works based on the feedback and has to make assumptions based
on the collected data from previous steps in order to carry out the optimization. If
it turns out that some assumptions were incorrect for some specific portion of code,
it is then sent back to the interpreter and executions resumes from there. Similar
to what we have seen in Figure 4, This process is called deoptimization. This often
costs memory and sometimes may also lead to slower execution speed. [4, 14]

This chapter provided us with a good overview, illustrated in Figure 10, of how
V8 works under the hood. It is transparent that V8 utilizes Ignition and TurboFan

19

Figure 10 V8 architecture overview.

to achieve a quicker execution time. However, such performance is achieved with a
memory cost.

2.4 Node.js

Node.js is a popular tool for a variety of projects since it is an open-source, cross-
platform JavaScript runtime environment that allows writing JavaScript code out-
side of the browsers. It utilizes the same V8 JavaScript engine that powers Google
Chrome. Node.js can attain excellent performance levels as a result [25]. Npm, the
Node.js packaged ecosystem, hosts the largest collection of open source libraries in
the world. Large companies such as Netflix, Uber and Walmart has chosen Node.js
into one of their technological stack due to it’s unrivaled performance [29].

When utilized in a browser environment, JavaScript used to have a constrained
feature set. It was primarily employed for simple tasks like editing a web page’s
URL, adding click events, or altering its design. With the introduction of Node.js,
programmers can use JavaScript for more difficult tasks that were previously only
possible with Java, Python, or PHP. JavaScript can now be used by developers to
establish web servers, query databases, and manage the file system with Node. These
features, that were not previously possible, have significantly increased JavaScript’s
potential as a programming language due to Node. [29]

20

Despite the fact that JavaScript is single-threaded, and Node.js constrained in
it, Node.js is known for its asynchronous nature. Node.js achieves that with its
event-driven, non-blocking I/O model which also makes it lightweight and efficient.
This allows it to continue running when responses from I/O operations, such as
reading from the network, contacting databases, or accessing the file system, are
available. This prevents thread blocking and the wastage of CPU cycles and enables
it to handle thousands of concurrent connections without adding the complexity of
managing thread concurrency that may lead to bugs [25, 29]. Figure 11 illustrates
an overview of the event-driven architecture of Node.js.

Figure 11 Event-driven architecture of Node.js.

Events are emitted and listeners are registered for them in Node.js’ event-driven
architecture. All of the registered listeners are alerted when an event happens, and
they can then carry out the relevant callback procedures. This enables the efficient
handling of I/O activities as well as asynchronous, non-blocking code execution.
Using a non-blocking I/O architecture, Node.js registers a callback function and
keeps running other code until it receives a response from an I/O operation, as
opposed to blocking a thread while doing so. As a result, Node.js can manage
numerous connections at once without having to create threads for each one. Code
execution is not halted while waiting for I/O operations to finish because Node.js
is built with an asynchronous architecture. Instead, Node.js manages asynchronous
code and makes sure that the right code is performed at the right time by using
callbacks, promises, and async/await. Node.js may achieve excellent performance
and scalability thanks to this asynchronous architecture while avoiding common
issues brought on by blocking I/O. [22]

21

2.5 Bun

Bun.js is a, open-source, complete toolkit for JavaScript that smoothly combines a
number of important server-side JavaScript components to offer a high-performance
solution. Bun integrates the features of several tools, including a runtime, at its
heart, like Node or Deno, a package manager like NPM or pnpm, and a build tool like
Webpack or Vite, despite its humorous moniker. Initially a one-person side project,
Bun has swiftly established itself as a competitive alternative to conventional web
development techniques. [50, 34]

Figure 12 Bun ecosystem compared to an ecosystem with Node.js.

Bun is the newest player in the context of JavaScript runtimes and still un-
der development. The aim of Bun is ambitious which is to become the drop-in
replacement of the current JavaScript ecosystem including runtime. Node.js, dis-
cussed in Section 2.4, is a JavaScript runtime that is currently widely popular for
writing JavaScript code outside of browsers. Bun has already implemented opti-
mized version many of Node.js’s native modules and standard web APIs such as
fetch, WebSocket and ReadableStream. With support for Node-style module res-
olution and integrated Node.js globals and modules like process, Buffer, path, fs,
and http, Bun.js aspires for seamless integration with Node.js. Bun aims towards
full compatibility with Node.js, despite the fact that this is still an active project
and compatibility is not yet complete. To achieve execution of TypeScript and JSX,
today, separate tools/transpilers are needed. The aim of Bun is to be the all-in-one

22

tool so that the support for such features will be available natively, reducing depen-
dencies a software. With little to no changes, existing Node.js projects can use the
quicker test runner, script runner, and package management offered by the bun CLI
tool. Figure 12 illustrates a side by side comparison between ecosystem of Node.js
and Bun. [34]

Designed with the today’s JavaScript ecosystem in mind and written using Zig
programming language, which is not only a C/C++ like lower level language but
also a package manager and build tool, that provides excellent memory management
APIs, Bun is fast and memory efficient. Unlike Node.js and Deno, Bun incorporates
Webkits JavaScriptCore engine, discussed in Subsection 2.3.1, which is complex but
fast in executing code along with minimal memory usage. So, naturally Bun is
very quick at startup with some additional optimizations in its own design. This
is extremely useful in serverless deployments where it helps achieve scalability by
spinning up nodes quickly. This ability denotes that Bun would be well-suited for
edge and serverless computing. While implementing, extensive profiling and opti-
mizations were done in order to improve the efficiency of the performance sensitive
APIs such as buffer, fetch, and response APIs. Bun claims to be 4 times faster than
Node.js [50, 34], which we will evaluate in Section 5.1.

2.6 Influencing factors

One of the purpose of the research topic is to investigate and identify the factors
that affects performance of runtimes. In this case, the comparison is between Bun,
powered by JavaScriptCore, and Node.js, powered by V8, both of which have sophis-
ticated optimization architectures. The goal is to pinpoint the essential components
that Bun’s better performance and memory efficiency are due to.

The JavaScript engine used at runtime is one important component that has an
impact on performance [34]. The use of the JavaScriptCore engine in Bun is essen-
tial in this situation. Bun can produce highly efficient bytecode and machine code
due to the sophisticated optimization architecture of the JavaScriptCore engine,
which consists of three just-in-time (JIT) compilers and an interpreter. Multiple
JIT compilers enable substantial optimization, enhancing the Bun’s overall perfor-
mance and speed of execution. Critical code segments are optimized by the speedy
JavaScriptCore compilation process, allowing the runtime to parse JavaScript code
more quickly than Node.js.

Additionally, the choice of Zig as the programming language for the development
of Bun adds to its performance advantage. A lower-level programming language
similar to C/C++, Zig offers effective memory management APIs. Bun may imple-
ment effective memory management techniques, such as manual memory allocation
and de-allocation [34, 37], which can greatly improve memory efficiency and reduce

23

overhead, due to the use of Zig. Furthermore, Bun’s exceptional performance was
greatly aided by the extensive profiling, benchmarking, and optimizations that went
into it. The resultant data allowed the development team to make Bun achieve such
performance with Zig that has lack of hidden control flow with the excellent control
over memory management. [34]

24

3 Performance of JavaScript runtimes
The performance of any runtime is a critical aspect when developing software appli-
cations. This chapter examines numerous traits and measurements to understand
the effectiveness and responsiveness of JavaScript runtimes as it delves into the
complexities of performance as a software quality attribute. Developers may cre-
ate reliable runtimes by taking performance, security, dependability, and stability
into account. Runtime behavior can be understood through the analysis of tim-
ing, resource use, latency, throughput, and capacity. In order to locate bottlenecks
and improve runtime performance, quantifiable performance indicators like response
time, processing time, throughput rate, and resource consumption are useful. This
chapter gives us the information and resources needed to test and measure JavaScript
runtime performance.

3.1 Software Quality Attributes

In the realm of software development, it is the responsibility of the developers to allot
suitable resources, such as processors and communication networks, in addition to
identifying and implementing the software required to satisfy the application’s needs.
For critical systems, only meeting functional requirements is deemed insufficient
because they are required to adhere to strict criteria of software quality attributes
such as performance, security, safety, dependability, and other related aspects. Thus,
the comprehensive fulfillment of these complex requirements becomes crucial for the
creation of essential systems. [5]

To understand what software quality means, let us understand what quality
itself refers to. Quality can be defined in different ways and the definition of qual-
ity may differ depending on perspectives. Quality can generally be described by a
variety of characteristics, including dependability, usability, efficiency, safety, and
maintainability, among others. Software’s quality can be defined as its capacity
to satisfy both functional and non-functional requirements, as well as the demands
and expectations of its users. Non-functional requirements, commonly referred to
as quality attributes, outline the standards for assessing the system’s overall perfor-
mance rather than any particular actions [3].

A software product’s quality can be assessed using the quality model as a base.
It lists the qualities that will be taken into account while making the assessment.
Software quality describes how well a software product satisfies the needs and ex-
pectations of its users and adds value. Functionality, performance, security, main-
tainability, and other factors are among these needs. The quality model organizes

25

these requirements into distinct characteristics and sub-characteristics, enabling a
thorough assessment of the overall quality of the software product. [26]

Figure 13 ISO/IEC 25010 diagram [26].

The ISO/IEC 25010 standard establishes a benchmark for the quality of soft-
ware products. Based on eight quality characteristics functional suitability, perfor-
mance efficiency, compatibility, usability, dependability, security, maintainability,
and portability, it offers a thorough framework for assessing the quality of software
products. The standard intends to assist businesses in assessing and enhancing the
quality of their software products as well as in fostering interaction and cooperation
between the many parties engaged in the software development process [26].

3.2 Performance efficiency

Similar to software quality attributes, discussed in Section 3.1, performance can also
be defined in different ways. The definition given in the IEEE Standard Glossary of
Software Engineering Terminology is [21]:

The degree to which a system or component accomplishes its designated
functions within given constraints, such as speed, accuracy, or memory
usage.

Performance, as a software quality attribute, refers to the timeliness aspects of how
software systems behave. Smith’s definition of performance is [44]:

“Performance refers to responsiveness: either the time required to re-
spond to specific events or the number of events processed in a given
interval of time

Performance is that attribute of a computer system that characterizes the timeliness
of the service delivered by the system.

A general misconception about performance is that it equates to speed in soft-
ware engineering, believing that improving hardware elements like CPUs or commu-
nication links will result in a performance increase. This, however, ignores the fact

26

that matching the precise timing needs of each service is necessary to achieve timeli-
ness in many systems, notably real-time systems [46]. Hardware features like caching
and pipe-lining can lower response times on average, but they can also provide er-
ratic worst-case response times. As a result, enhancing performance necessitates a
more complex strategy that takes into account the unique temporal restrictions of
the system being designed.

With all that, we can say that performance shows the response of the system
to performing certain action for a certain period. The ISO/IEC 25010 provides a
characteristic model to determine performance efficiency. It consists of three differ-
ent ways, that opens up possibilities to assess performance of a system, including
Time behaviour, Resource utilization, and Capacity. The degree to which a software
product or system’s response and processing times, as well as its throughput rates,
satisfy the necessary specifications when carrying out its activities is referred to as
the system’s or product’s time behavior. Resource utilization refers to the extent to
which a system or product utilises the proper kinds and quantities of resources when
carrying out its functions in line with the given requirements. Capacity describes
the extent to which a feature of a system or product can satisfy the criteria within
its maximum bounds. [26]

3.3 Performance metrics

Software performance is assessed using performance metrics. Every bit of software is
created to serve a particular function. By examining how much time and resources
the software is using to provide the service, performance metrics can be used to
evaluate if the software is meeting user needs efficiently.

Understanding of the performance characteristics is necessary in order to choose
the right performance metrics. The following sub-characteristics make up this char-
acteristic and represents the performance relative to the amount of resources used
under stated conditions [26]:

• Time behaviour

• Resource utilization

• Capacity

The degree to which a system complies with the necessary specifications for re-
sponse and processing times, as well as throughput rates, while carrying out its
functions is referred to as time behavior. It focuses on the system’s capacity to
react quickly and keep its processing speed at its optimal level in order to fulfill
the intended performance targets [26, 32]. In this context, performance concerns

27

or requirements can be further specified to evaluate the system’s performance by
latency and throughput. The amount of time it takes for a system to respond to
an event is referred to as latency. It establishes a response window with minimum
and maximum latency values that can be either absolute times or offsets from a
given event. The quantity of event replies that are finished during a specific ob-
servation interval is known as throughput. It is measured as the number of events
processed per unit of time and shows the system’s processing rate. Key metrics of
time behaviour includes response times, processing time, and throughput rate [5,
32].

Resource utilization refers to how efficiently a system makes use of the various
kinds and amounts of resources needed to run its activities. It entails effectively man-
aging resources, including CPU, memory, disk space, network bandwidth, and oth-
ers, to make sure they satisfy the needs while minimizing waste or under-utilization.
Key metrics includes CPU utilization, memory usage and disk space utilization. [5,
26]

The system’s capacity is measured by how well it can satisfy the upper bounds
of particular parameters as specified by the criteria. It determines if the system can
manage rising workloads, more data sets, more users, or more transaction volumes
without going over set limits. Assessing capacity makes it easier to spot potential
restrictions and guarantees that the system can scale and efficiently meet growing
demand. Key metrics includes scalability, maximum concurrent user and transaction
processing capacity. [5, 26]

28

4 Research methodology
In this chapter, the research approach used to compare the performance features of
two different JavaScript runtimes, known as Bun and Node.js, is presented. This
chapter serves as a crucial component in addressing the research questions and
provides a clear road-map for conducting the performance tests on Bun and Node.js.
The following research questions are the focus of this study’s aim:

• Is Bun faster than Node.js?

• What affects the performance of runtimes?

• What factors may contribute when selecting a runtime?

Empirical evidence and insights into the relative performance of the two runtimes
and identify factors influencing their selection and performance characteristics was
gathered. Appropriate tests were performed on Bun and Node.js, using specific
JavaScript scripts made to assess various performance attributes in order to address
these research objectives. Memory utilization, response time, and overall execution
time are the performance characteristics that was evaluated.

The research methodology consists of three main sub-chapters: Description, Im-
plementation, and Test setup. The Description sub-chapter provides an overview
of the process of test that was carried out. The Implementation sub-chapter ex-
plains the code used in the research. The Test setup sub-chapter provides details
about the machine on which the tests was performed. We will go into greater detail
about each step of the research technique in the next sub-chapters. By adhering
to this systematic approach, we can effectively address the research questions and
contribute to the understanding of the performance aspects of different JavaScript
runtimes.

4.1 Description

In order to compare their performance characteristics, Bun and Node.js was tested
using specialized programs made to assess various performance attributes. These
tests had the explicit objectives of calculating the memory consumption, response
times, and overall execution time for both runtimes. To test network request capabil-
ities, two different code for both runtimes, node-http.js (Program 2) and bun-http.js
(Program 1), were used for the experiments. Although, a single JavaScript code can
be run by both runtimes, the reason for being two different code is that Bun has it’s
own implementation for some specific cases [50], in this case serving a server. So,

29

two different code was used with the runtimes own implementations to get the best
out of them. To test how the runtimes handles a standalone script, a JavaScript
script, find getFibNum.js in Program 8, was implemented.

Bombardier, http benchmark tool, was used for node-http.js (Program 2) and
bun-http.js (Program 1). Using this tool, we could assess how well Bun’s and
Node.js’s HTTP servers performed. In three separate scenarios, 10 million requests
each with 10 concurrent connections, 100 concurrent connections, and 500 concur-
rent connections were made with the intention of overwhelming the servers. We
may evaluate the servers’ performance in terms of response time and throughput
by putting them under these load circumstances. The amount of time spent, the
response time (median, 95th percentile, average, and maximum), and the average
and maximum number of requests per second were all reported by Bombardier. Ad-
ditionally, the peak memory usage of the programs was measured during execution
with each runtime using the built-in ”time” command-line tool accessible in the zsh
shell. As a result, we were able to learn more about how well Bun and Node.js
used memory to handle heavy request loads. The highest memory utilization of
the applications during the testing was determined using the ”time” command-line
tool, which is built into the zsh shell. We were able to learn more about Bun’s
and Node.js’s memory efficiency by running the applications with corresponding
runtimes through the ”time” command.

Hyperfine, command-line process benchmark tool, was used for the standalone
script, find getFibNum.js in Program 8. The goal of this test was to establish the
typical execution time for a script that computes Fibonacci numbers using Bun and
Node.js. Hyperfine was used to run the script 10 times for each runtime, which
delivered accurate statistical data on the typical completion time. We could learn
more about the two runtimes’ relative performance in carrying out computationally
expensive jobs by comparing the average completion times between the two.

Choosing a right tool is essential for testing such scenarios. Node.js based tools
like autocannon is not fast enough for Bun’s functions such as Bun.serve() [34].
Bombardier is written with Go programming language and it incorporates ”fasthttp”
package instead of the default builtin http library of Go. This allows bombardier
to perform faster [33]. Hyperfine is written in Rust programming language and also
has great performance. Using these tools, empirical data on the performance char-
acteristics of Bun and Node.js was gathered by running the customized programs.
The outcomes of these tests will assist in addressing the research questions and shed
light on the relative effectiveness and memory usage of the two runtimes.

30

4.2 Implementations

This section includes information on the benchmark tool configuration and the code
snippets used to implement the performance tests. For network request performance
testing, two different program was implemented with simple structure. The following
are the code snippets for Bun (Program 1) and Node.js (Program 2):

Bun . s e r v e ({
port : 3000 ,
f e t c h (_) {

r e tu rn new Response (’ Test : Bun ’) ;
} ,

}) ;

Program 1 bun-http.js

cons t http = r e q u i r e (’ node : http ’) ;

http . c r e a t e S e r v e r ((_, r e sp) => {
re sp . writeHead (200 , {

’ content−type ’ : ’ t e x t / p la in ’ ,
}) ;
r e sp . end (’ Test : Node ’) ;

}) . l i s t e n (3 0 0 0) ;

Program 2 node-http.js

In order to measure the performance attributes of these programs, Bombardier
http benchmark tool was used. The tool was configured according to the test speci-
fications which included 10Millions of total requests with 10, 100 and 500 concurrent
connections.

bombardier −c 10 −n 10000000 −l http : // l o c a l h o s t : 3000

Program 3 Bombardier command for 10M request and 10 concurrent connections

bombardier −c 100 −n 10000000 −l http : // l o c a l h o s t : 3000

Program 4 Bombardier command for 10M request and 100 concurrent connections

bombardier −c 500 −n 10000000 −l http : // l o c a l h o s t : 3000

Program 5 Bombardier command for 10M request and 500 concurrent connections

31

Simulation of high request loads with different concurrent connection was pos-
sible due to these configuration. This allowed gathering of the statistical data on
response times, throughput, and total time taken. In order to measure peak memory
usage during the high load simulation of network request, ”time”, built in command
line tool in zsh shell, was utilized. It requires simply to run the process through the
tool.

t ime bun bun−http . j s

Program 6 time command for Bun

t ime node node−http . j s

Program 7 time command for Node.js

In order to measure the performance of a standalone script for both Bun and
Node.js, a simple script was implemented. The script calculates the 40th Fibonacci
number. The script was executed by both Bun and Node.js to evaluate their per-
formance in executing computationally intensive tasks.

f u n c t i o n f i b (n) {
i f (n <= 0) r e tu rn 0 ;
i f (n <= 1) r e tu rn 1 ;
i f (n <= 2) r e tu rn 2 ;

r e tu rn f i b (n − 1) + f i b (n − 2) ;
}

c o n s o l e . l o g (f i b (4 0))

Program 8 getfibnum.js

Hyperfine, command line benchmark tool, was employed for this task. The script
was executed 10 times and average completion time was measured. We were able to
assess the effectiveness of Bun and Node.js in carrying out computationally complex
tasks thanks to the use of Hyperfine, which provided us with trustworthy statistical
data on the average time of completion.

h y p e r f i n e ’ bun findFibNum . j s ’ ’ node findFibNum . j s ’

Program 9 Hyperfine command for Bun and Node.js running the Fibonacci script

Using these tools, we were able to gather information on the two runtimes’
performance characteristics and respond to the study questions about their relative
performance and memory utilization thanks to their implementations and setups.

32

4.3 Test setup

In order to ensure a consistent and controlled testing environment a specific set of
hardware and software was chosen. This allowed for reliable comparisons between
Bun and Node.js in terms of performance attributes such as memory usage, response
time and execution time. The tests were conducted on a Macbook Pro 13” with the
following specifications:

• Processor: Intel i7, 2.8GHz Quad-Core

• Memory: 16GB 2133MHz LPDDR3

• OS: macOS Ventura 13.3.1 (a)

The iTerm2 terminal emulator’s zsh shell was used to run the tests. The shell
offered a dependable setting for carrying out the performance testing and acquiring
the required information. The benchmark tools, with versions, utilized for the tests
are follows:

• Bombardier v1.2.6

• Hyperfine v1.16.1

In addition to these benchmarking tools, the built-in ”time” command-line tool
was used to measure the peak memory usage of the programs during the tests. The
specific version of both of the runtimes used were as follows:

• Bun: v0.6.2

• Node.js: v18.16.0 LTS

The selected test configuration made it easier to quantify the runtimes’ perfor-
mance traits precisely and gave useful information about how well they performed
in comparison. The outcomes of this configuration help us better understand the
performance characteristics of various JavaScript runtimes and address the research
questions.

33

5 Results
This chapter presents the findings of the performance tests carried out to contrast
Bun and Node.js’s performance features. The outcomes were obtained by the use
of specific programs, benchmark tools like Bombardier and Hyperfine, as well as
the built-in ”time” command-line tool from zsh. With the aid of these tools, we
were able to evaluate the two runtimes’ performance in terms of memory utilization,
response time, and overall execution time.

Addressing the research questions and develop a thorough grasp of the perfor-
mance facets of Bun and Node.js was possible by evaluating and interpreting the
test data. The next section, ”Performance Evaluation,” provides a thorough exam-
ination of the outcomes collected, and the one after that, ”Discussion,” adds more
information and examines the consequences of these findings.

5.1 Performance evaluation

The performance evaluation provides a comprehensive analysis of the performance
attributes of Bun and Node.js based on the conducted tests. The test results are
shown in the next section, which also compares the two runtimes’ efficiency in terms
of peak memory utilization, processing time, response time, and requests per second.

Figure 14 Peak memory usages.

34

Let us, first, take a look into the peak memory usage by the scripts when ran
through both runtimes per test requirements. Peak memory use is a crucial indicator
that shows how effectively the runtimes use memory. Bun consistently displayed
lower peak memory consumption than Node.js in all three different load circum-
stances. Bun used only 24.90MB of memory for the scenario with 10 concurrent
connections, but Node.js used 72.74MB, a substantial amount more. Similar to
this, Bun maintained a memory advantage in the 100 and 500 concurrent connec-
tion situations, with peak usages of 25.55MB and 27.90MB, respectively, as opposed
to Node.js’s greater memory consumption of 76.85MB and 86.85MB. These results
imply that Bun exhibits greater memory management and efficiency, which may
contribute to result in enhanced performance.

This significant difference in memory usage implies that Bun’s use of Zig, a
lower-level programming language similar to C known for its effectiveness and great
memory management API, as well as the way it was designed, helped to optimize
memory usage. While using V8, Node.js, which includes a JIT compiler and an
interpreter, needs more memory to handle the same workload. The improved mem-
ory economy of Bun indicates possible advantages in terms of scalability and cost-
effectiveness in addition to reflecting its capacity to manage heavier workloads with
constrained resources.

Figure 15 Total time taken - network requests.

Moving on to the total time taken to complete the tests, another important
factor in performance evaluation, Bun consistently outperformed Node.js. This was

35

seen across all three different load circumstances. Bun finished the test in 91 seconds
while Node.js needed 274 seconds in the scenario with 10 concurrent connections.
Similar to this, Bun performed better than Node.js in the case with 100 concurrent
connections, finishing in 94 seconds as opposed to 284 seconds. In the case of 500
concurrent connections, Bun continued to perform better than Node.js, finishing
the test in 99 seconds as opposed to 293 seconds. These outcomes illustrate Bun’s
capacity for speedier execution, demonstrating its effectiveness and responsiveness
in managing multiple concurrent requests.

This considerable performance disparity shows that Bun’s faster execution time
is a result of its optimized machine code, effective interpreter, and three separate
JIT compilers. Due to the interaction of these elements, Bun is able to produce code
that is more highly optimized and performant, which shortens execution times and
enhances responsiveness.

Figure 16 Median response time. Figure 17 95th percentile response time.

The capacity of both runtime, to manage incoming requests and give prompt
responses, is revealed by the response time metrics. Across all load conditions,
Bun consistently demonstrated faster reaction times than Node.js. Bun showed
noticeably lower values for the median reaction time, indicating faster response
times. Similarly, Bun consistently displayed reduced 95th percentile and average
reaction times, demonstrating its capacity to deliver consistent performance even
under heavier loads. Additionally, Bun consistently had a lower maximum response

36

Figure 18 Median response time. Figure 19 95th percentile response time.

time than Node.js, underscoring the fact that it is more responsive than Node.js.
These results indicate that Bun performs better in handling and processing network
requests overall.

Bun has faster response times than Node.js due to its effective memory manage-
ment and optimized machine code, which helps it to handle and process requests
quickly. These results show that Bun is more capable of handling real-time and
latency-sensitive applications that need quick and reliable response times.

Metrics for requests per second gives an idea of the runtimes’ throughput and
capacity for large numbers of requests. Across all load circumstances, Bun performed
better than Node.js in terms of average and maximum requests per second. Bun
achieved better average request per second numbers, demonstrating its capacity to
process more requests in a given amount of time. Similar to this, Bun showed greater
maximum request per second figures, demonstrating its effectiveness in managing
peak loads. These outcomes demonstrate Bun’s higher throughput and its efficiency
in handling several concurrent queries.

The request per second metrics provide insights into the runtimes’ ability to
handle a high volume of requests within a given time frame. Bun recorded an
average of 98,811 requests per second in the scenario with 10 concurrent connections,
while Node.js recorded an average of 36,423 requests per second. Similarly, Bun
consistently showed greater average and maximum request per second numbers than
Node.js in the 100 and 500 concurrent connection scenarios. These findings highlight

37

Figure 20 Median response time. Figure 21 95th percentile response time.

Bun’s superior speed and scalability in managing high traffic levels and point to its
appropriateness for applications that demand rapid request processing.

The evaluation also included a stand-alone script test to gauge how well the 40th

Fibonacci number could be calculated, in addition to the network request bench-
marks. In this case, Bun displayed quicker execution times, taking just 876.4 mil-
liseconds on average to complete while Bun took 465.6 milliseconds. This result
shows that Bun is more effective at completing computational tasks and produces
results more quickly than Node.js.

The outcomes of the test of the standalone script emphasizes the significance of
taking into account the particular workload and processing needs when choosing a
runtime. Applications that rely substantially on CPU-intensive processes, including
calculations or sophisticated algorithms, might greatly benefit from selecting a run-
time like Bun, which specializes at carrying out such tasks quickly. Bun can offer
significant speed advantages and enable quicker completion of CPU-bound processes
by utilizing optimized machine code and enhanced execution techniques.

The performance evaluation demonstrates that Bun consistently outperforms
Node.js in various performance aspects, including memory usage, execution time,
response time, and request throughput. In terms of network requests, Bun was
approximately 3 times faster than Node.js according to the test data. When running
scripts, Bun exhibited a performance advantage of approximately 1.88 times over
Node.js based on the test results. These findings align with the hypothesis that

38

Figure 22 Total time taken - script.

the design and implementation choices of Bun, such as its optimized machine code
from the engine of choice, specialized modules, and efficient memory management,
contribute to its superior performance. The subsequent section, ”Discussion,” will
delve deeper into the implications of these results and provide further insights into
the factors influencing the observed performance differences.

5.2 Discussion

This section aims to address the research questions formulated earlier in the thesis by
analyzing and interpreting the findings obtained from the performance evaluation
tests. The comparison of Bun and Node.js’s performance characteristics will be
discussed, and conclusions based on the test findings will be drawn. The discussion
will also identify topics for further investigation and acknowledge the research’s
shortcomings.

Based on the outcomes of the performance evaluation, it can be said that Bun
performs better than Node.js in terms of performance. Bun regularly beat Node.js
in terms of network requests, showing almost three times faster response times and
better request throughput. Similarly, while executing scripts, Bun had a speed
advantage over Node.js of almost 1.88 times. These results support the claim that
Bun is quicker than Node.js in above mentioned scenarios.

The performance evaluation tests brought crucial factors, to light, that should be
considered while selecting a runtime. The outcomes highlight the value of efficient

39

interpreters, just-in-time (JIT) compilation approaches, and optimized machine code
production in the underlying engine. Due to the engines complex design, which con-
tains a productive interpreter and numerous extremely effective JIT compilers, Bun
offers noticeable speed advantages. By choosing a suitable programming language,
such as Zig in the case of Bun , performance can also be improved. These find-
ings show that factors like engine design, memory management, and programming
language selection have a significant impact on runtime performance. These factors
should be taken into account when selecting a runtime for applications with particu-
lar performance requirements. However, The choice of runtime cannot be restricted
by performance requirements. Security, stability, and reliability are just a few of
the qualities of high-quality software that are equally crucial.

Based on the findings of the performance evaluation, it can be said that Bun
provides better performance than Node.js in terms of making network requests and
running scripts. Bun performs better due to its improved design, effective inter-
preters, and use of the Zig programming language.

5.3 Limitations

It is important to recognize the limits of the research that has been done. The
evaluation may not have included all situations or workload variations because it
concentrated on particular performance factors like response times, throughput, and
execution speed. The tests were performed on a particular system, thus they might
not accurately reflect the performance traits on other hardware setups. Additionally,
because only Bun and Node.js were compared, it’s possible that the results cannot be
applied to other JavaScript runtimes or engines. Specific versions of Bun and Node.js
were used for the evaluation. Performance may be affected if new optimizations and
enhancements are added to runtime versions over time. It is crucial to remember
that the conclusions are particular to the versions that were assessed and might not
be directly transferable to upcoming or other runtime versions.

Although the performance tests were carried out in a controlled setting, runtime
performance may still be affected by outside influences. The performance that was
observed could be impacted by variables like system load, network congestion, or
background operations. It is critical to recognize that these outside influences may
have an impact on real-world runtime performance.

The performance tests’ examined programs were rather straightforward and cen-
tered on a few key capabilities. Applications used in the real world frequently have
code-bases that are more complex and may display various performance traits. The
results might not accurately reflect the runtime behavior in complex code environ-
ments.

Addressing these limitations and acknowledging their potential impact on the

40

findings is essential for a comprehensive and accurate understanding of the perfor-
mance aspects of JavaScript runtimes.

5.4 Future works

The study opens up a number of new avenues for investigation and future develop-
ment. To gain a wider perspective, it would be beneficial to look into the perfor-
mance characteristics of different JavaScript runtimes and engines. A more complete
knowledge of runtime performance would also benefit from taking into account var-
ious workloads and circumstances, such as CPU-bound and I/O-bound processes.
Further research could benefit from examining the effects of runtime configurations,
optimization methods, and memory management techniques.

It should be possible to learn more about how Bun and Node.js function in
practical situations by expanding the evaluation to include benchmarks and real-
world applications. Specific considerations and optimizations necessary for various
use cases might be discovered by examining their performance in well-known frame-
works or large-scale applications.

Executing performance tests in cloud-based settings with different resource allo-
cations and configurations. Insights regarding the performance traits of JavaScript
runtimes under various deployment scenarios, such as varied server capacities and
network conditions, may be gained from doing so.

Researchers and developers may improve runtime choices, extend their under-
standing of the performance features of JavaScript runtimes, and contribute to the
continued development of runtime technology by pursuing these future works.

41

6 Conclusions
In conclusion, this thesis aimed to compare the performance of different JavaScript
runtimes, namely Bun and Node.js, in the context of network requests and run-
ning standalone scripts. We learned important things about how different runtimes
compare in terms of performance through a series of tests and evaluations.

Across a range of concurrency levels, Bun consistently performed better than
Node.js in terms of network requests. The testing showed that Bun outperformed
Node.js in terms of response times, request throughput, and memory use by about
three times, respectively. This shows that Bun is more effective at handling net-
work requests and may offer better performance for web applications that depend on
network interactions. Bun performed 1.88 times better than Node.js when it came
to running independent scripts. The testing revealed that Bun executed computa-
tionally intensive jobs more quickly, demonstrating its effectiveness. As a result, it
seems that Bun would be more appropriate in situations that call for quick script
execution, including data processing or mathematical calculations. Bun could also
be valuable in the scenario of serverless architecture where functions would spin up
and down based on demand.

Based on these results, it can be said that Bun performs better than Node.js in
terms of network requests and the execution of independent scripts. This informa-
tion can be used by developers and system architects to choose the best JavaScript
runtime for their unique use cases while taking the performance needs of their apps
into account.

However, it is crucial to recognize the limits of this research. The performance
assessments were not done in all situations and application domains because they
were done under specific test settings. The workload’s characteristics, hardware se-
tups, and other variables may affect the outcomes. There may be more JavaScript
runtimes on the market with differing performance characteristics, and the compar-
ison was only between Bun and Node.js.

Future research should broaden the study to take into account more JavaScript
runtimes and conduct more thorough benchmark using a variety of application sit-
uations including real-world applications. The effects of runtime settings, mem-
ory management techniques, and concurrency models on performance could be the
subject of further investigation. The compatibility and interoperability of these
runtimes with well-known JavaScript libraries and frameworks would also offer de-
velopers useful information.

In summary, this research advances knowledge of JavaScript runtime perfor-
mance and emphasizes Bun’s benefits in terms of network requests and script ex-

42

ecution. The performance of JavaScript applications can be improved by taking
into account the research findings and addressing the identified limits, which will
increase user experiences and boost system efficiency in general.

43

References
[1] “Adobe announces the end of flash; highlights WebGL”. In: (2017). Accessed:

10.06.2023. Available: https://www.khronos.org/blog/adobe-announces-
the-end-of-flash-highlights-webgl.

[2] Marc Andreessen. “Innovators of the net: Brendan Eich and JavaScript”. In:
(1998). Accessed: 11.03.2023. Available: http://web.archive.org/web/
20080208124612/http:/wp.netscape.com/comprod/columns/techvision/
innovators_be.html.

[3] Nikolay Ashanin. “Quality attributes in software architecture”. In: medium.com
(2018). Accessed: 12.04.2023. Available: https://medium.com/@nvashanin/
quality-attributes-in-software-architecture-3844ea482732.

[4] Edison Augusthy. “Deep dive into JavaScript engine - (Chrome V8)”. In: dev.to
(2020). Accessed: 07.04.2023. Available: https://dev.to/edisonpappi/how-
javascript-engines-chrome-v8-works-50if.

[5] Mario Barbacci, Mark Klein, Thomas Longstaff, and Charles Weinstock. “Qual-
ity Attributes”. In: (1995). Accessed: 04.06.2023. Available: https://www.
researchgate.net/publication/242437986_Quality_Attributes.

[6] Lin Clark. “A crash course in just-in-time (JIT) compilers”. In: hacks.mozilla.org
(2017). Accessed: 08.04.2023. Available: https://hacks.mozilla.org/2017/
02/a-crash-course-in-just-in-time-jit-compilers/.

[7] Mozzila Corporation. Client-side web APIs. https://developer.mozilla.
org/en-US/docs/Learn/JavaScript/Client-side_web_APIs. Accessed:
25.03.2023. 2023.

[8] Mozzila Corporation. The event loop. https://developer.mozilla.org/en-
US/docs/Web/JavaScript/EventLoop. Accessed: 25.03.2023. 2023.

[9] Gemma Croad. “Understanding the JavaScript runtime environment”. In: medium.com
(2020). Accessed: 25.03.2023. Available: https : / / medium . com / @gemma .
croad/understanding-the-javascript-runtime-environment-4dd8f52f6fca.

[10] Ian Deed. “Pros and cons of JavaScript development”. In: www.pangea.ai (2023).
Accessed: 19.03.2023. Available: https://www.pangea.ai/dev-javascript-
resources/best-practices/.

[11] ECMA-262, 1st edition. Accessed: 11.03.2023. Available: https://www.ecma-
international . org / publications - and - standards / standards / ecma -
262/. European Computer Manufacturers Association. 1997.

https://www.khronos.org/blog/adobe-announces-the-end-of-flash-highlights-webgl
https://www.khronos.org/blog/adobe-announces-the-end-of-flash-highlights-webgl
http://web.archive.org/web/20080208124612/http:/wp.netscape.com/comprod/columns/techvision/innovators_be.html
http://web.archive.org/web/20080208124612/http:/wp.netscape.com/comprod/columns/techvision/innovators_be.html
http://web.archive.org/web/20080208124612/http:/wp.netscape.com/comprod/columns/techvision/innovators_be.html
https://medium.com/@nvashanin/quality-attributes-in-software-architecture-3844ea482732
https://medium.com/@nvashanin/quality-attributes-in-software-architecture-3844ea482732
https://dev.to/edisonpappi/how-javascript-engines-chrome-v8-works-50if
https://dev.to/edisonpappi/how-javascript-engines-chrome-v8-works-50if
https://www.researchgate.net/publication/242437986_Quality_Attributes
https://www.researchgate.net/publication/242437986_Quality_Attributes
https://hacks.mozilla.org/2017/02/a-crash-course-in-just-in-time-jit-compilers/
https://hacks.mozilla.org/2017/02/a-crash-course-in-just-in-time-jit-compilers/
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Client-side_web_APIs
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Client-side_web_APIs
https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop
https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop
https://medium.com/@gemma.croad/understanding-the-javascript-runtime-environment-4dd8f52f6fca
https://medium.com/@gemma.croad/understanding-the-javascript-runtime-environment-4dd8f52f6fca
https://www.pangea.ai/dev-javascript-resources/best-practices/
https://www.pangea.ai/dev-javascript-resources/best-practices/
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/

44

[12] ECMA-262, 2nd edition. Accessed: 12.03.2023. Available: https://www.ecma-
international . org / publications - and - standards / standards / ecma -
262/. European Computer Manufacturers Association. 1998.

[13] ECMA-262, 3rd edition. Accessed: 12.03.2023. Available: https://www.ecma-
international . org / publications - and - standards / standards / ecma -
262/. European Computer Manufacturers Association. 1999.

[14] Firing up the ignition interpreter. Accessed: 07.04.2023. Available: https :
//v8.dev/blog/turbofan-jit. Google. 2015.

[15] Firing up the ignition interpreter. Accessed: 07.04.2023. Available: https :
//v8.dev/blog/ignition-interpreter. Google. 2016.

[16] David Flanagan. JavaScript: The Definitive Guide: Master the World’s Most-
Used Programming Language. Accessed: 11.03.2023. Available: https://learning.
oreilly.com/library/view/javascript-the-definitive/9781491952016/
ch01.html. 1005 Gravenstein Highway North, Sebastopol, CA 95472: O’Reilly
Media, Inc, 2020.

[17] Jesse James Garrett. “AJAX: a new approach to web applications”. In: adap-
tivepath.org (2005). Accessed: 12.03.2023. Available: https://web.archive.
org/web/20190226075734/https:/adaptivepath.org/ideas/ajax-new-
approach-web-applications/.

[18] Alireza Hamid. “JavaScript engine, a true story (Part 1)”. In: dev.to (2022). Ac-
cessed: 26.03.2023. Available: https://dev.to/alirezahamid/javascript-
engine-a-true-story-part-1-1hp1.

[19] Malik Haziq. “The limitations of JavaScript as a programming language”. In:
dev.to (2023). Accessed: 19.03.2023. Available: https://dev.to/malikhaziq/
the-limitations-of-javascript-as-a-programming-language-2fd7.

[20] History of JavaScript. https://www.javascriptinstitute.org/javascript-
tutorial/history-of-javascript/. Accessed: 11.03.2023. 2015.

[21] IEEE. “610.12-1990 - IEEE Standard Glossary of Software Engineering Ter-
minology”. In: IEEE Standard Glossary of Software Engineering Terminology
(1993). Accessed: 15.04.2023. Available: https://ieeexplore.ieee.org/
document/238572.

[22] David Ikukoyi. “Understanding the NodeJS architecture”. In: www.turing.com
(2023). Accessed: 08.04.2023. Available: https : / / www . turing . com / kb /
understanding-the-nodejs-architecture.

https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://v8.dev/blog/turbofan-jit
https://v8.dev/blog/turbofan-jit
https://v8.dev/blog/ignition-interpreter
https://v8.dev/blog/ignition-interpreter
https://learning.oreilly.com/library/view/javascript-the-definitive/9781491952016/ch01.html
https://learning.oreilly.com/library/view/javascript-the-definitive/9781491952016/ch01.html
https://learning.oreilly.com/library/view/javascript-the-definitive/9781491952016/ch01.html
https://web.archive.org/web/20190226075734/https:/adaptivepath.org/ideas/ajax-new-approach-web-applications/
https://web.archive.org/web/20190226075734/https:/adaptivepath.org/ideas/ajax-new-approach-web-applications/
https://web.archive.org/web/20190226075734/https:/adaptivepath.org/ideas/ajax-new-approach-web-applications/
https://dev.to/alirezahamid/javascript-engine-a-true-story-part-1-1hp1
https://dev.to/alirezahamid/javascript-engine-a-true-story-part-1-1hp1
https://dev.to/malikhaziq/the-limitations-of-javascript-as-a-programming-language-2fd7
https://dev.to/malikhaziq/the-limitations-of-javascript-as-a-programming-language-2fd7
https://www.javascriptinstitute.org/javascript-tutorial/history-of-javascript/
https://www.javascriptinstitute.org/javascript-tutorial/history-of-javascript/
https://ieeexplore.ieee.org/document/238572
https://ieeexplore.ieee.org/document/238572
https://www.turing.com/kb/understanding-the-nodejs-architecture
https://www.turing.com/kb/understanding-the-nodejs-architecture

45

[23] “Industry leaders to advance standardization of Netscape’s JavaScript at stan-
dards body meeting”. In: Press release (1996). Accessed: 12.03.2023. Available:
https://web.archive.org/web/19981203070212/http:/cgi.netscape.
com/newsref/pr/newsrelease289.html.

[24] Introduction to JavaScript runtime environments. https://algodaily.com/
lessons/introduction-to-js-engines-and-runtimes. Accessed: 12.03.2023.
2023.

[25] Introduction to Node.js. Accessed: 08.04.2023. Available: https://nodejs.
dev/en/learn/introduction-to-nodejs/. OpenJS Foundation. 2023.

[26] ISO/IEC 25010. Accessed: 12.04.2023. Available: https://iso25000.com/
index.php/en/iso-25000-standards/iso-25010. ISO 25000. 2023.

[27] Kai. “JavaScript is everywhere”. In: dev.to (2021). Accessed: 19.03.2023. Avail-
able: https://dev.to/kais_blog/javascript-is-everywhere-5fo0.

[28] Jen Looper. “A guide to JavaScript engines for idiots”. In: developer.telerik.com
(2015). Accessed: 26.03.2023. Available: https://web.archive.org/web/
20181208123231/http://developer.telerik.com/featured/a-guide-
to-javascript-engines-for-idiots/.

[29] Andrew Mead. Learning Node.js development. Accessed: 25.03.2023. Avail-
able: https://learning.oreilly.com/library/view/learning-node-js-
development/9781788395540/b34c7f1b-8ae4-4974-a24b-6051605af3c7.
xhtml. 35 Livery Street Birmingham B3 2PB: Packt Publishing, 2018. Chap. Ba-
sics of Asynchronous Programming in Node.js.

[30] Svetlin Nakov and Team. Programming Basics with C#. Accessed: 21.03.2023.
Available: https : / / csharp - book . softuni . org / Content / Chapter - 1 -
first-steps-in-programming/how-to-write-console-app/runtime-
environments.html. Faber Publishing, Sofia, 2019. Chap. Runtime environ-
ments, low-level and high-level languages.

[31] “Netscape and Sun announce JavaScript, the open, cross-platform object script-
ing language for enterprise networks and the internet”. In: Press release (1995).
Accessed: 11.03.2023. Available: https://web.archive.org/web/20070916144913/
http:/wp.netscape.com/newsref/pr/newsrelease67.html.

[32] University of New Brunswick. “Understanding quality attributes”. In: (2023).
Accessed: 04.06.2023. Available: https://www.cs.unb.ca/~wdu/cs6075w10/
sa2.htm.

[33] Official documentation of Bombardier. Accessed: 08.04.2023. Available: https:
//pkg.go.dev/github.com/codesenberg/bombardie. 2023.

https://web.archive.org/web/19981203070212/http:/cgi.netscape.com/newsref/pr/newsrelease289.html
https://web.archive.org/web/19981203070212/http:/cgi.netscape.com/newsref/pr/newsrelease289.html
https://algodaily.com/lessons/introduction-to-js-engines-and-runtimes
https://algodaily.com/lessons/introduction-to-js-engines-and-runtimes
https://nodejs.dev/en/learn/introduction-to-nodejs/
https://nodejs.dev/en/learn/introduction-to-nodejs/
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://dev.to/kais_blog/javascript-is-everywhere-5fo0
https://web.archive.org/web/20181208123231/http://developer.telerik.com/featured/a-guide-to-javascript-engines-for-idiots/
https://web.archive.org/web/20181208123231/http://developer.telerik.com/featured/a-guide-to-javascript-engines-for-idiots/
https://web.archive.org/web/20181208123231/http://developer.telerik.com/featured/a-guide-to-javascript-engines-for-idiots/
https://learning.oreilly.com/library/view/learning-node-js-development/9781788395540/b34c7f1b-8ae4-4974-a24b-6051605af3c7.xhtml
https://learning.oreilly.com/library/view/learning-node-js-development/9781788395540/b34c7f1b-8ae4-4974-a24b-6051605af3c7.xhtml
https://learning.oreilly.com/library/view/learning-node-js-development/9781788395540/b34c7f1b-8ae4-4974-a24b-6051605af3c7.xhtml
https://csharp-book.softuni.org/Content/Chapter-1-first-steps-in-programming/how-to-write-console-app/runtime-environments.html
https://csharp-book.softuni.org/Content/Chapter-1-first-steps-in-programming/how-to-write-console-app/runtime-environments.html
https://csharp-book.softuni.org/Content/Chapter-1-first-steps-in-programming/how-to-write-console-app/runtime-environments.html
https://web.archive.org/web/20070916144913/http:/wp.netscape.com/newsref/pr/newsrelease67.html
https://web.archive.org/web/20070916144913/http:/wp.netscape.com/newsref/pr/newsrelease67.html
https://www.cs.unb.ca/~wdu/cs6075w10/sa2.htm
https://www.cs.unb.ca/~wdu/cs6075w10/sa2.htm
https://pkg.go.dev/github.com/codesenberg/bombardie
https://pkg.go.dev/github.com/codesenberg/bombardie

46

[34] Official documentation of Bun. Accessed: 08.04.2023. Available: https://bun.
sh/docs. Oven. 2023.

[35] Official documentation of Electron. Accessed: 10.06.2023. Available: https:
//www.electronjs.org. OpenJS. 2023.

[36] Official documentation of React Native. Accessed: 10.06.2023. Available: https:
//reactnative.dev. Meta. 2023.

[37] Official documentation of Zig. Accessed: 10.06.2023. Available: https : / /
ziglang.org. Ziglang. 2023.

[38] Adeyefa Oluwatoba. “JavaScript everywhere — web, mobile and desktop”. In:
medium.com (2019). Accessed: 12.03.2023. Available: https://sainttobs.
medium.com/javascript-everywhere-web-mobile-and-desktop-68131878d22d.

[39] Kassandra Perch. Hands-On Robotics with JavaScript. Accessed: 10.06.2023.
Available: https://learning.oreilly.com/library/view/hands- on-
robotics-with/9781789342055. 1005 Gravenstein Highway North, Sebastopol,
CA 95472: O’Reilly Media, Inc, 2018.

[40] Sebastian Peyrott. “A brief history of JavaScript”. In: auth0.com (2017). Ac-
cessed: 12.03.2023. Available: https://auth0.com/blog/a-brief-history-
of-javascript/.

[41] Filip Pizlo. “Introducing the B3 JIT Compiler”. In: webkit.org (2016). Ac-
cessed: 28.03.2023. Available: https://webkit.org/blog/5852/introducing-
the-b3-jit-compiler.

[42] Filip Pizlo. “Introducing the WebKit FTL JIT”. In: webkit.org (2014). Ac-
cessed: 28.03.2023. Available: https://webkit.org/blog/3362/introducing-
the-webkit-ftl-jit.

[43] Server-side JavaScript: back with a vengeance. https://readwrite.com/
server-side_javascript_back_with_a_vengeance/. Accessed: 11.03.2023.
2009.

[44] C.U. Smith and L.G. Williams. “Software performance engineering: a case
study including performance comparison with design alternatives”. In: IEEE
Transactions on Software Engineering (1993). Accessed: 15.04.2023. Available:
https://ieeexplore.ieee.org/document/238572.

[45] Stackoverflow developer survey 2022. https://survey.stackoverflow.co/
2022/. Accessed: 12.03.2023. 2022.

https://bun.sh/docs
https://bun.sh/docs
https://www.electronjs.org
https://www.electronjs.org
https://reactnative.dev
https://reactnative.dev
https://ziglang.org
https://ziglang.org
https://sainttobs.medium.com/javascript-everywhere-web-mobile-and-desktop-68131878d22d
https://sainttobs.medium.com/javascript-everywhere-web-mobile-and-desktop-68131878d22d
https://learning.oreilly.com/library/view/hands-on-robotics-with/9781789342055
https://learning.oreilly.com/library/view/hands-on-robotics-with/9781789342055
https://auth0.com/blog/a-brief-history-of-javascript/
https://auth0.com/blog/a-brief-history-of-javascript/
https://webkit.org/blog/5852/introducing-the-b3-jit-compiler
https://webkit.org/blog/5852/introducing-the-b3-jit-compiler
https://webkit.org/blog/3362/introducing-the-webkit-ftl-jit
https://webkit.org/blog/3362/introducing-the-webkit-ftl-jit
https://readwrite.com/server-side_javascript_back_with_a_vengeance/
https://readwrite.com/server-side_javascript_back_with_a_vengeance/
https://ieeexplore.ieee.org/document/238572
https://survey.stackoverflow.co/2022/
https://survey.stackoverflow.co/2022/

47

[46] J.A. Stankovic. “Misconceptions about real-time computing: a serious problem
for next-generation systems”. In: IEEE Computer (1998). Accessed: 15.04.2023.
Available: https://ieeexplore-ieee-org.libproxy.tuni.fi/document/
7053.

[47] Antero Taivalsaari, Tommi Mikkonen, Matti Anttonen, and Arto Salminen.
“The death of binary software: end user software moves to the web”. In: 2011
Ninth International Conference on Creating, Connecting and Collaborating
through Computing. Accessed: 12.03.2023. Available: https://ieeexplore-
ieee- org.libproxy.tuni.fi/document/5936687. Kyoto, Japan: IEEE,
2011, Section III(A).

[48] Codecademy Team. “Introduction to JavaScript runtime environments”. In:
codecademy.com (2023). Accessed: 19.03.2023. Available: https://www.codecademy.
com/article/introduction-to-javascript-runtime-environments.

[49] The V8 JavaScript engine. Accessed: 28.03.2023. Available: https://nodejs.
dev/en/learn/the-v8-javascript-engine. OpenJS Foundation. 2023.

[50] Matthew Tyson. “Explore Bun.js: The all-in-one JavaScript runtime”. In: In-
foWorld.com (2023). Accessed: 19.03.2023. Available: https://www.proquest.
com/docview/2779153875.

[51] V8 official documentation. Accessed: 07.04.2023. Available: https://v8.dev/
docs. Google. 2023.

[52] Webkit. FTL JIT. Accessed: 28.03.2023. Available: https://trac.webkit.
org/wiki/FTLJIT. Webkit. 2023.

[53] Webkit. JavaScriptCore. Accessed: 28.03.2023. Available: https : / / trac .
webkit.org/wiki/JavaScriptCore. Webkit. 2023.

https://ieeexplore-ieee-org.libproxy.tuni.fi/document/7053
https://ieeexplore-ieee-org.libproxy.tuni.fi/document/7053
https://ieeexplore-ieee-org.libproxy.tuni.fi/document/5936687
https://ieeexplore-ieee-org.libproxy.tuni.fi/document/5936687
https://www.codecademy.com/article/introduction-to-javascript-runtime-environments
https://www.codecademy.com/article/introduction-to-javascript-runtime-environments
https://nodejs.dev/en/learn/the-v8-javascript-engine
https://nodejs.dev/en/learn/the-v8-javascript-engine
https://www.proquest.com/docview/2779153875
https://www.proquest.com/docview/2779153875
https://v8.dev/docs
https://v8.dev/docs
https://trac.webkit.org/wiki/FTLJIT
https://trac.webkit.org/wiki/FTLJIT
https://trac.webkit.org/wiki/JavaScriptCore
https://trac.webkit.org/wiki/JavaScriptCore

	Introduction
	Background
	JavaScript
	History
	Current state
	Runtimes

	Just-in-time Compilation
	JavaScript Engine
	JavaScriptCore
	V8

	Node.js
	Bun
	Influencing factors

	Performance of JavaScript runtimes
	Software Quality Attributes
	Performance efficiency
	Performance metrics

	Research methodology
	Description
	Implementations
	Test setup

	Results
	Performance evaluation
	Discussion
	Limitations
	Future works

	Conclusions
	References

