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ABSTRACT 
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Cardiomyocytes Data 

Master’s Thesis 
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Master's Programme in Computer Science 
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This study examines sequential pattern mining and its applications in various fields. The 

previous research was conducted by examining signal data, from which calcium peaks 

were automatically detected and classified. Before the implementation of sequential pat-

tern mining approach to find out patterns from a dataset of 102 signals, association rule 

mining, frequent itemsets, Apriori algorithm, and rule generation were explored. 

Sequential pattern mining, including time constraints, are defined, before examining a 

knowledge-assisted sequential pattern analysis, from which certain points are considered, 

such as what is a sequential itemset. 

The implementation phase consists of calculating what constitutes a candidate itemset. 

The findings are modified to work with a sequential rule mining algorithm, and the results 

are discussed afterwards. 

Keywords: [Sequential pattern mining, sequential itemset, signal peak data, sequential 

rules] 

(The originality of this publication has been verified by Turnit's OriginalityCheck pro-

gram.)  
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1 Introduction 

The purpose of this thesis is to analyze sequential pattern mining approach to a study 

previously conducted by Juhola et al. [2014 ;2015]. The previous study consisted of au-

tomatically detecting calcium cycling peaks from cardiomyocytes data, classifying peaks 

of signals as either normal or abnormal, and classifying the entire signal into either normal 

or abnormal class. This thesis continues the first phase of detecting the calcium peaks 

with sequential pattern mining approach, where we try to discover interesting sequential 

patterns from a dataset of 102 signals. 

Sequential pattern mining is used to discover patterns in a sequence of items, events, 

or transactions. It is used in various different fields, such as market basket analysis to 

analyze customer shopping behavior, web usage mining to improve website usability, in 

security to identify patterns in network traffic to prevent potential threats, and in health 

care to identify patterns in patient data in order to improve diagnosis, treatment, and dis-

ease management. 

Sequential pattern mining is a data mining technique that is often used in conjunction 

with machine learning algorithms. Data mining is used to extract useful information from 

large datasets, while machine learning involves the use of algorithms to make predictions 

and decisions from data. [Fournier-Viger et al., 2017; Zhao and Bhowmick, 2003] 

 

Calcium participates in most of the vital processes in the body. It is the most abundant 

cation, and it can circulate in free or ionized form (Ca2+). Circulating calcium amounts 

to around half of the total calcium levels and they participate in neuromuscular conduc-

tion, intracellular regulation, blood coagulation, glandular secretion, and control of skel-

etal and cardiac muscle contractility. Calcium levels are better for measuring calcium 

metabolism compared to total calcium levels since they are not influenced by protein 

concentrations. Measuring calcium is useful while monitoring patients undergoing cardi-

othoracic surgery or organ transplantation or evaluating patients in cardiac arrest. [Ca2+, 

2013] 

Calcium (Ca2+) cycling is electrical signaling that links together the cardiomyocyte 

(heart muscle cells) and contraction. Calcium cycling is used to investigate cardiac disor-

ders and dysfunctions. Failures in cardiac functionality can be observed with the changes 

in calcium signals and these signals can be recorded with the help of fluorescent calcium 

indicator dyes. Differentiating cardiomyocytes from human pluripotent stem cells can be 

used to study cardiac functionality. Differentiated cells can be reprogrammed into plu-

ripotent stem cells with induced pluripotent stem cell (iPSC) technology. iPSC gives new 

insights into calcium handling in different cardiac diseases. [Kujala et al., 2012] 
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A signal analysis procedure for detecting calcium cycling ‘peaks’ in cardiomyocyte 

signal data was developed to empower cardiologic investigations. Classifying these peaks 

into either normal or abnormal classes using machine learning methods was done to sep-

arate them for later medical research. [Juhola et al., 2014; Juhola et al., 2015] 
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2 Previous research 

Previous research objective was to automatically detect calcium cycling peaks from a 

dataset of Ca2+ transients of 138 signals, which was increased to 280 signals in later 

research, and to classify the peaks of signals as either normal or abnormal using a devel-

oped signal analysis procedure. Then afterwards the entire signals were classified with 

another procedure, based on previous results, into either normal or abnormal class. The 

dataset contains data from calcium transients of spontaneously beating human induced 

pluripotent stem cell-derived cardiomyocytes with the help of Ca2+ imaging using in-

verted IX70 microscope and recorded with ANDOR camera. According to previous re-

search this kind of research has only been done subjectively and visually. Research pro-

cedures for automatic detection and classification of calcium peaks would help future 

medical research as computational methods are needed. [Juhola et al., 2014, pp. 1444; 

Juhola et al., 2015, pp. 1-2] 

The data is preprocessed first by using the various sampling frequencies of 8, 10, 11 

and 23 Hz to record the signal-data with the help of two different programs [Juhola et al., 

2015. pp 2]. The signals recorded length varied from 11 to 24 seconds. Modified signals 

are created by removing present linear descending trend from all signals one by one to 

facilitate peak detection. Modified signals are used to gain feature data of peaks from the 

original signals. Higher frequency signals of 23 Hz are smoothed out with median filter 

and filtering window of three samples to resemble lower frequency signals. Amplitude 

values are computed from samples in order to explore the distribution of these values. 

[Juhola et al., 2015, pp. 2] 

2.1 Preprocessing signal peaks 

Peaks are determined by locating their beginning, maximum and end. Beginning and end 

are local minima (minimum values of the peak) while maximum, the top of the peak, is 

always a positive local maxima. 

Peaks were first preprocessed by removing a linear trend from signals and calculating 

a rough lower bound estimate for amplitudes of large peaks (Figure 1) by means of the 

amplitude distribution of samples. Next the minimum (non-negative number) was com-

puted from the signals and subtracted from all values. These operations were done only 

for detecting peaks and further computations were made for the original data. Histogram 

mapping, as described by Han et al. [2011, pp. 108], is used to capture dependencies 

between attributes, and it was formed from all samples to represent amplitude distribu-

tion. Similarly, linear regression as described by Han et al. [2011, pp. 90], is used to find 

the best ‘line’ to fit two attributes, and it was computed in the research through successive 

samples with window length in order to differentiate (approximate) first derivative signal 

from a preprocessed one. The first derivative of the original signal was approximated 
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from slope values, also with linear regression. Peak candidates were selected after pre-

processing steps by linearly searching means of derivative values from the beginning of 

the signal to the end. A given threshold T1 was used to find the beginning of the peak 

when the derivative values were less than T1 and there were more values with at least one 

greater than or equal to T1. Current peak maximum was found when there was another 

derivative value less than T1. For finding the end of the peak, threshold T1 was lowered 

to the right side because of slope being less steep at the end of the peak in most signals. 

Threshold values were experimented based on given datasets. [Juhola et al., 2014, pp. 

1445] 

Peak candidates were discarded when they were regarded as erroneous or differing 

considerably from each other. Initially all waveforms were considered to be peak candi-

dates. The following criterion was used to discard them: partial peaks where there was no 

beginning or end, if the peak was too small (noise), or if the left or right side of a larger 

peak was considered to be much higher than its other side. [Juhola et al., 2014, pp. 1445-

1446] 

 

 

Figure 1: A signal of 19.2 seconds sampled at 10.4 Hz, after the removal of a linear 

trend. [Juhola et al., 2015, pp. 2] 

In Figure 1 we have a signal length of 19.2 seconds with average amplitude A that 

was computed for an average amplitude of the large peaks. With distribution estimate A 

we can aid the subsequent peak detection. Normal calcium peaks are usually larger than 
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A however this is not always the case. The black arrows indicate abnormal peaks while 

the green arrows are normal peaks. The only abnormal peak that was above the average 

A was deemed abnormal because of asymmetry. The whole signal was determined ab-

normal because of these abnormal peaks. Vertical axis has no quantitative unit since ab-

scissa values are ratios of two measured values. [Juhola et al., 2015, pp. 2] 

 

 

Figure 2: An example of a single peak from beginning to end. [Juhola et al., 2019, pp. 

18] 

In Figure 2 there is a single peak with various variables: left and right amplitudes, left 

and right durations, duration to first derivate maximum and minimum (steepness of peak 

sides). Imaginary slopes are visualized with short red lines of the first derivative curve of 

the signal, in which upward is positive, downward is negative and horizontal is zero slope 

value. The peak begins from location a, maximum is at c, and ends at e. Locations b and 

d illustrate the maximum of the first derivative and its minimum, respectively. Beyond 

these six variables another variable was calculated as interval (in time) from the preceding 

peak maximum to the current peak maximum. Interval was used to detect if peaks appear 

regularly in subject to time since irregularity denoted abnormal peaks and signals. After-

wards individual peaks and entire signals were classified as either normal or abnormal 

with the help of these variables. [Juhola et al., 2014, pp. 1446; Juhola et al., 2019, pp. 18] 
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2.2 Signal peak classification 

Two subsets of signals were classified depending on their sampling frequencies, number 

of samples and number of peaks. Algorithm findings were compared to an expert’s find-

ings who individually assessed each signal as either normal or abnormal. The idea of the 

algorithm was to automatically classify all accepted peaks as either normal or abnormal. 

The peak classification was performed with the seven variables to all accepted peaks. If 

the larger side of the peak was greater than or equal to the preceding normal peak with 

the given threshold T2 or greater than given threshold T3 of estimate A, it was classified 

as normal, and if not, abnormal. If the current peak was the first peak of the signal or no 

large predecessor peaks or normal peaks were found, estimate A was used as a compari-

son with threshold T3. If the other side of the peak was asymmetrical compared to the 

other, it was classified as abnormal. In Figure 1 there are lower than average amount of 

accepted peaks, only nine, however variability was large due to many signals being very 

small containing only few peaks. [Juhola et al., 2014, pp. 1446] 

2.3 Results of the previous research 

The two subsets of signal samples were used for classification with various different fre-

quencies and afterwards with all the signal samples together in the first research. The 

individual signals varied greatly having peaks from 1 to 43, or 45 in later research, per 

signal. The average amount of peaks of a signal in the first research was 14.1, and 14.7 

in later research. Subsets contained 43 and 93 signals, and later up to 280 signals com-

bined, and 234 and 1690 peaks respectively, and up to 4120 peaks combined. Seven var-

iables were standardized to have zero mean and unit variance. [Juhola et al., 2014, pp. 

1446; Juhola et al., 2015, pp. 5] 

Signal peaks were classified with leave-one-out validation where a single signal, one 

at a time, formed a test set while others were used as a learning set. This way all signals 

were run. Classification accuracy for peaks and whole signals were computed along with 

true positive and true negative rates. According to Han et al. [2011, pp. 327] classification 

is used to extract models describing important data classes, which are called classifiers 

that are used to predict categorical (discrete or unordered) class labels. K-nearest neighbor 

searching (K = 1, 2, … 21), linear and quadratic discriminant analysis, naïve Bayes rule 

and classification trees along with various support vector machines with kernel functions, 

were used for classification [Juhola et al., 2015, pp. 5-6]. These are described as follows: 

K-nearest neighbor searching is described by Han et al. [2011, pp. 423] as a classifier that 

learns by analogy by comparing a given test tuple with training tuples similar to it. Dis-

criminant analysis is a technique that is used to predict a categorical response variable, 

where it assumes that the independent variable follows a multivariate normal distribution 

[Han et al., 2011, pp. 600]. Naïve Bayes classifier assumes a class-conditional independ-

ence, in which the effect of an attribute value on a given class is independent of the values 
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of other attributes [Han et al., 2011, pp. 385]. Classification trees or decision trees contain 

multiple different algorithms in which they are typically constructed in a top-down recur-

sive divide-and-conquer manner, where a training set is recursively partitioned into 

smaller subsets as the tree is being built [Han et al., 2011, pp. 332]. Support vector ma-

chines uses a non-linear mapping to transform original data into a higher dimension [Han 

et al., 2011, pp. 408]. 

 The smaller subset of forty-three was more difficult to classify than the bigger ninety-

three signal set because of imbalanced class distribution. After peak classification, whole 

signals were classified as abnormal if even one peak in the signal was classified as abnor-

mal. If a signal was deemed normal in the classification visually by the expert, the result 

was correct. Otherwise, it was classified as incorrect. Discriminant analysis, along with 

3-nearest-neighbor searching in later research, proved to be the most accurate in peak and 

signal classification with all sets, approximating ~80% accuracy. [Juhola et al., 2014, pp. 

1447; Juhola et al., 2015, pp. 5-6] 

2.4 Further development of the previous research 

The research has continued further in later studies, where healthy calcium transient sig-

nals (controls) were classified with different machine learning algorithms (K-nearest 

neighbor searching, random forests, least square support vector machine) from abnormal 

ones in order to tell them apart from different genetic cardiac diseases called catechola-

minergic polymorphic ventricular tachycardia (CPVT), long QT syndrome (LQT1) and 

hypertrophic cardiomyopathy (HCM). Random forests are described by Han et al. [2011, 

pp. 378 & 383] as a type of ensemble method (combines models with the aim of creating 

an improved classification model) which combines different decision trees together, 

hence the name ‘forest’. The number of variables used for signal peak detection increased 

from 7 to 10, and later up to twelve. New variables include maximum of the second de-

rivative s′′ on the right side of a peak, absolute minimum s′′ of the second derivative on 

the right side of a peak, area R of the peak, duration from peak beginning [s] to left side 

maximum of first derivative and duration from peak maximum [s] to right side minimum 

of first derivative. Accuracy of 90% was acquired classification with the new variables 

with a total of 5290 recognized disease peaks and 2291 control peaks. [Juhola et al., 2018, 

pp. 2; Juhola et al., 2019, pp. 17-18] 

Preliminary analysis was made to separate the three different diseases (along with 

controls) with one-way variance analysis (comparing means) as data classes from each 

other, in which almost all of the pairs with every variable (except two variables for LQT1 

vs CPVT) differed significantly from each other (p < 0.001). A total of 394 signals from 

three different diseases along with added 133 controls (healthy subjects) to a total of 527 

signals, or 593 in later research, were put into these four data classes. [Juhola et al., 2018, 

pp. 2 & 5; Juhola et al., 2019, pp. 15] 
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The main analysis consisted of classifying the four classes with different machine 

learning algorithms using leave-one-out principle where a model was constructed with n-

1 training signals from the entire dataset of all of the signals and tested n times with each 

individual signal. The results indicate that separating the diseases with random forests 

yielded the best results with an accuracy of ~87% and with control data included ~79%. 

[Juhola et al., 2018, pp. 4-6; Juhola et al., 2019, pp. 19-20] 
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3 Association rule mining 

Association rule mining is considered an important research technique of data mining and 

it was first introduced by Agrawal et al. [1993]. The idea is to discover frequent patterns, 

interesting correlations, and associations from among set of items in transaction data-

bases. It is best explained by Zhao and Bhowmick [2003, pp. 3] as when purchasing a 

book called Data Mining Concepts and Techniques, you get related books which are Da-

tabase System and Data Warehouse. The latter books are bought together with the first 

book 40% and 25% of the time. These discovered rules (if-then statements) from the da-

tabase can be used to better market the said books together in order to make these books’ 

associations stronger and thus sell more books. Association rules are widely used in stores 

to promote a specific product in order to sell related products, and they are also used in 

inventory control, market and risk management, telecommunications network etc. 

3.1 Frequent itemsets and association rules 

Mining association rules consists of finding frequent patterns, which are itemsets that 

frequently appear in each data set. An itemset is defined by Agrawal and Srikant [1995, 

pp. 1] as a non-empty set of items. An itemset I {I1 I2 … In}, contains items Ij. Large 

itemset (or frequent) must satisfy minimum support (minsup). Minimum support is de-

scribed by Srikant and Agrawal [1996, pp. 2] as a user specified percentage of transac-

tions that contain the pattern. [Agrawal and Srikant, 1995, pp. 4] 

Association rules are constructed with if-then statements, which can be split into two 

parts: antecedent and consequent. This is called a rule-based classifier. The if-then rule is 

expressed as follows: 

 

IF condition THEN conclusion 

 

where a concrete example could be 

 

Rule1:  IF age = youth AND student = yes THEN buys_computer =  yes. 

 

The “IF” part is called antecedent or precondition, while the “THEN” part is called 

consequent. The “IF” part can consist of one or more attributes, for example in this case 

age = youth and student = yes. With the above rule we are predicting whether, with the 

given attributes, a customer buys a computer or not. The rule is said to be satisfied, and 

therefore covers the tuple (ordered list of values), if the condition in a rule antecedent 

holds true for a given tuple. [Han et al., 2011, pp. 355-356]  

A given rule R can be assessed by its coverage and accuracy as follows: 
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Coverage(R) =
ncovers

|D|
 

 

Accuracy(R) =
ncorrect

ncovers
 . 

 

Given a tuple X, let ncovers be the number of tuples covered by R, ncorrect be the number 

of correctly classified by R, and |D| be the number of tuples in D, where D is a class 

labeled dataset. The percentage of tuples that are covered by the rule, where their attribute 

values hold true for the rule’s antecedent, is called coverage. The percentage of correctly 

classified covered tuples is called accuracy. [Han et al., 2011, pp. 356] 

In order to find meaningful and interesting rules, association rule mining uses primar-

ily two different constraints, support, and confidence. Let I = {I1, I2, …, In} be an itemset. 

Let A and B be a set of items. Let d be a transaction database that contains transactions 

T, where T is a non-empty itemset (T ⊆ I), which is said to contain A if A ⊆ T. Each T is 

associated with an identifier TID. An association rule is an implication of the form:  

 

A ⟹ B, where A ⊂ I, B ⊂ I, A ≠ Ø, B ≠ Ø, and A ∩ B ≠ ϕ 

 

A ⟹B rule holds in the transaction set d with support s, where s is the percentage of 

transactions in d that contain the union of A and B. This is assumed to be the probability 

 

P(A ∪ B). 

 

In the transaction set d, the rule A⟹B has confidence c, where it is the percentage of 

transactions in d, which contains A that also contains B. This is assumed to be conditional 

probability 

 

P(B|A) 

 

that is: 

 

Support(A ⟹ B) = P(A ∪ B) 

 

Confidence(A ⟹ B) = P(B|A). 

 

Rules are called strong when they satisfy both the user given minimum support 

threshold and minimum confidence threshold. [Han et al., 2011, pp. 246-247] 
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When support and confidence are insufficient to filter out the uninteresting rules, a 

correlation measure can be used to augment said association rules. Lift is called a corre-

lation measure and it is defined as: 

 

lift(A, B) =
P(A ∪ B)

P(A)P(B)
 

 

where the occurrence of an itemset A is independent of B if P(A ∪ B) = P(A)P(B); 

otherwise itemsets A and B are correlated and dependent as transactions. Negatively cor-

related A with B is marked with resulting value less than 1, where one implies the absence 

of the other. That is to say positively correlated where the resulting value is more than 

one, implies that the occurrence of one is dependent of the other. If the resulting value is 

equal to 1, then there is no correlation between the itemsets A and B, thus them being 

independent. [Han et al., 2011, pp. 265-266] 

Finding frequent patterns helps in generating rules. A frequent itemset is typically 

referred to as a set of items which usually appear together, such as bread and milk in a 

shopping basket [Han et al., 2011, pp. 17]. Frequent itemset Z is closed when there exists 

no super-itemset Y in a dataset D. Itemset Z is closed frequent itemset in dataset D if Z is 

both closed and frequent. Itemset Z is maximal frequent itemset (max-itemset) in dataset 

D if Z is both frequent and no super-itemset Y exists such that Z ⊂ Y and Y is frequent 

in dataset D. [Han et al., 2011, pp. 247] 

Frequent itemsets are typically mined with Apriori algorithm. In this analysis cus-

tomers shopping habits are analyzed by examining the contents of their shopping baskets. 

Discovering frequently appearing items helps to gain insight into the shopping habits of 

the customer, such as in the previous example of how likely a customer will buy a sec-

ondary book if they have bought the first one. A typical association rule in this case could 

be: 

 

Data Mining Concepts and Techniques →  Database System [support = 2%,

confidence = 40%] 

 

where the interestingness of a rule is examined with the previously mentioned two 

measures: support and confidence. These measures reflect the usefulness and certainty of 

discovered rules. Support in this case would mean that 2% of all the transactions under 

analysis show that Data Mining Concepts and Techniques and Database System are pur-

chased together. Confidence would mean that 40% of those who purchased the first book 

bought the second book as well. The association rule is considered interesting if both the 

user given minimum support threshold and minimum confidence threshold (minconf) are 

satisfied. [Han et al., 2011, pp. 243-245] 
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3.2 Apriori algorithm 

Apriori algorithm is used to mine frequent itemsets from a database and it was first pro-

posed by Agrawal and Srikant [1994]. The algorithm uses prior knowledge of itemset 

properties, and it employs an iterative approach known as level-wise search, where fre-

quent k-itemsets are used to explore (k+1)-itemsets. Frequent 1-itemsets (I1), which sat-

isfy the minimum support, are counted first. Then I1 are used to find frequent 2-itemsets 

(I2), which are used to find frequent 3-itemsets (I3) up until no more frequent k-itemsets 

(Ik) are found. Because the algorithm does a full scan with every single k-itemset search, 

the efficiency of the level-wise generation is improved with Apriori property in order to 

reduce search space. Apriori property is defined as follows: All non-empty subsets of a 

frequent itemset must also be frequent. This means that itemset I, which does not satisfy 

minimum support threshold: 

 

P(I) < minsup 

 

is not frequent. If an item a is added to the itemset I, then the resulting itemset union 

of I and a cannot occur more frequently than I. This means that: 

 

P(I ∪ a) < minsup 

 

is not frequent either. If a set cannot pass a test, it is called antimonotonicity, because 

all its supersets fail the same test as well. [Han et al., 2011, pp. 248-249] 

Apriori algorithm consists of a two-step process, join and prune actions. In the join 

step in order to find frequent itemset Ik, a set of candidates, k-itemsets, are generated by 

joining the collection Ik-1 of frequent itemsets with itself. This collection of candidate sets 

is denoted as Ck. Next let L1 and L2 be itemsets in Ik-1. Here the notation Li[j] refers to the 

jth item in Li. Apriori assumes, for efficient implementations sake, that items within a 

transaction or itemset are sorted in lexicographic order. This means that for (k-1)-itemset, 

Li, the items are sorted such that 

 

Li[1] < Li[2] <  … Li[k − 1]. 

 

The join step is performed when the members of Ik-1⨝Ik-1, are joinable if their first 

(k-2) items are in common. This means that L1 and L2 of Ik-1 are joined if 

 

(L1[1] = L2[1])^(L1[2] = L2[2])^ … ^(L1[k − 2] = L2[k − 2])^(L1[k − 1]

< L2[k − 1]). 
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To ensure that no duplicates are generated, the condition: 

 

L1[k − 1]  <  L2[k − 1] 

 

 is in place. The resulting itemset from the joining of L1 and L2 is 

 

{L1[1], L1[2], … , L1[k − 2], L1[k − 1], L2[k − 1]}. 

 

In the pruning step, candidate set Ck is a superset of frequent itemset Ik, which implies 

its members might not be frequent, but all the frequent k-itemsets are included in Ck. 

Counting frequency for each candidate of Ck would result in the determination of Ik, since 

all candidates which have a count no less than the minimum support count are frequent 

by definition, and thus belong to Ik. To lessen the burden on computation from a database 

scan, and reduce the size of Ck, Apriori is used. Non-frequent (k-1)-itemsets cannot be a 

subset of a frequent k-itemset. If any (k-1)-subset of a candidate k-itemset is not in Ik-1, 

then the candidate cannot be frequent either and is removed from Ck. [Han et al., 2011, 

pp. 249-250] 

 

TID List of item_IDs 

T100 

T200 

T300 

T400 

T500 

T600 

T700 

T800 

T900 

I1, I2, I5 

I2, I4 

I2, I3 

I1, I2, I4 

I1, I3 

I2, I3 

I1, I3 

I1, I2, I3, I5 

I1, I2, I3 

Table 1: Transactional Database example. [Han et al., 2011, pp. 250] 

In Table 1 we have a transactional database (d), in which there are nine transactions 

from T100 to T900 (d=9) and list of item_IDs or itemsets. In the first iteration every 

single item is a candidate 1-itemset, C1, and their occurrences are counted. If the user 

given minimum support threshold is 2 (minsup = 2), all of the candidates of C1 in L1 

satisfy the minimum support threshold. In order to discover frequent 2-itemsets, L2, join 

step of L1⨝L1 generates a set of 2-itemset candidates, C2. Next, the support count of 

each candidate itemset in C2 are counted. Itemsets of L2: 

 

({I1, I2}, {I1, I3}, {I1, I5}, {I2, I3}, {I2, I4}, {I2, I5}) 
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are deemed frequent since their minimum support threshold ≥ 2. The generation of 

candidate 3-itemsets, C3 = L2⨝L2, yields us itemsets: 

 

({I1, I2, I3}, {I1, I2, I5}, {I1, I3, I5}, {I2, I3, I4}, {I2, I3, I5}, {I2, I3, I5}). 

 

 Apriori property demands that all subsets of a frequent itemset must also be frequent. 

With this we can determine that the last four candidate itemsets of C3, namely: 

 

({I1, I3, I5}, {I2, I3, I4}, {I2, I3, I5}, {I2, I4, I5}) 

 

cannot be frequent. For example {I3, I5} is not a member of L2 and as a subset of 

{I1, I3, I5} can be removed. Therefore, C3 after pruning yields us itemsets: 

 

({I1, I2, I3}, {I1, I2, I5}). 

 

Lastly, L3⨝L3 are used to generate a candidate set of 4-itemsets, C4. The subsequent 

joining generates an itemset {I1, I2, I3, I5}, but the subset {I2, I3, I5} is not frequent, and 

the algorithm stops having generated all the frequent itemsets. [Han et al., 2011, pp. 250-

252]  

3.3 Generating association rules 

After frequent itemsets have been found, it is time to generate strong association rules. 

These must satisfy both minimum support and minimum confidence, although frequent 

itemsets by definition already satisfy minimum support. Association rules are generated, 

according to Han et al., [2011, pp. 254] as follows: 

 

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝑖𝑡𝑒𝑚𝑠𝑒𝑡 𝐼, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑎𝑙𝑙 𝑛𝑜𝑛𝑒𝑚𝑝𝑡𝑦 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 𝑜𝑓 𝐼. 

 

𝐹𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑛𝑜𝑛𝑒𝑚𝑝𝑡𝑦 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑠𝑏 𝑜𝑓 𝐼, 𝑜𝑢𝑡𝑝𝑢𝑡 𝑡ℎ𝑒 𝑟𝑢𝑙𝑒 sb→(I-sb) 𝑖𝑓 
𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑐𝑜𝑢𝑛𝑡(𝐼)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑐𝑜𝑢𝑛𝑡(𝑠𝑏)

> min_𝑐𝑜𝑛𝑓, 𝑤ℎ𝑒𝑟𝑒 𝑚𝑖𝑛_𝑐𝑜𝑛𝑓 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 

 

This means that based on the previous chapters frequent itemsets, which were calcu-

lated from Table 1, the nonempty subsets of the two frequent itemsets 

({I1,I2,I3},{I1,I2,I5}) are: {I1,I2}, {I1,I5}, {I2,I5}, {I1}, {I2}, and {I5}. The resulting 

association rules are shown with confidence: 
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{𝐼1, 𝐼2} → {𝐼5}, 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =
2

4
= 50% 

{𝐼1, 𝐼5} → {𝐼2}, 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =
2

2
= 100% 

{𝐼2, 𝐼5} → {𝐼1}, 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =
2

2
= 100% 

𝐼1 → {𝐼2, 𝐼5}, 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =
2

6
= 33% 

𝐼2 → {𝐼1, 𝐼5}, 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =
2

7
= 29% 

{𝐼5} → {𝐼1, 𝐼2}, 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =
2

2
= 100%. 

 

With minimum confidence of 70% only the second, third and last outputs are consid-

ered strong. [Han et al., 2011, pp. 254] 
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4 Sequential pattern mining 

Sequential pattern mining was first introduced by Agrawal and Srikant [1995] who ap-

plied it with different algorithms to a database filled with customer transactions. The da-

tabase consists of Customer Id, Transaction Time, and Items Bought attributes. These are 

sorted with Customer Id and Transaction Time in Table 2. Customer Id represents a single 

customer, Transaction Time when the items were bought and Items Bought what those 

items are. A sequence is defined by Agrawal and Srikant [1995, pp. 1] as an ordered list 

of itemsets. A frequent sequence is constructed from a sequence that satisfies a minimum 

support constraint. Formally a sequence S contains (S1 S2 … Sn) itemsets Sj. A formal 

definition of a subsequence according to Srikant and Agrawal [1996, pp. 5] is that a se-

quence (a1 a2 ... an) is a subsequence of another sequence (b1 b2 ... bm) if there exist 

integers i1 < i2 < ... < in such that a1 ⊆ bi1, a2 ⊆ bi2 , ..., an ⊆ bin. All transactions bound 

to a single customer can be viewed as a customer-sequence where each transaction cor-

responds to a set of items, and the list of transactions, ordered by increasing transaction 

time, corresponds to a sequence. [Agrawal and Srikant, 1995, pp. 1] 

 

Customer Id Transaction Time Items Bought 

1 

1 

June 25 ‘93 

June 30 ‘93 

30 

90 

2 

2 

2 

June 10 ‘93 

June 15 ‘93 

June 20 ‘93 

10, 20 

30 

40, 60, 70 

3 June 25 ‘93 30, 50, 70 

4 

4 

4 

June 25 ‘93 

June 30 ‘93 

June 25 ‘93 

30 

40, 70 

90 

5 June 12 ‘93 90 

Table 2: Database Sorted by Customer Id and Transaction Time. [Agrawal and Srikant, 

1995, pp. 2] 

In Table 2 the problem is to find all desired maximal user specified minimum support 

sequences, from which sequential patterns are formed. With a minimum support of 25% 

i.e., at least two customers, we get sequences ({30}{90}) and ({30}{40,70}). Customers 

1 and 4 ({30}{90}) and 2 and 4 have ({30}{40,70}) sequences. The subsequences of 

these sequences are {30}, {40}, {70}, {90}, ({30}{40}), ({30}{70}) and ({40,70}). 

These subsequences satisfy the minsup condition, but they are not what we are looking 

for since maximal sequence S in a set of sequences is not contained in any other sequence. 

[Agrawal and Srikant, 1995, pp. 1] 
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4.1 Time constraints 

A time constraint contains a user specified minimum and maximum time gaps (min-gap 

& max-gap), window size (ws) and maximum span (maxspan) and are defined by Mooney 

and Roddick [2013, pp. 25] as follows; min-gap is a minimum required time difference 

between the earliest occurrence of an item in an itemset and the latest occurrence of an 

item in its immediately preceding itemset (transaction). It is formally defined by Masse-

glia et al. [2009, pp. 5] as: 

 

transactiontime (dsli
) − transactiontime (dsui−1

) >  mingap, 2 ≤ i ≤ n 

 

where ds is a data sequence = (ds1 … dsm) that supports a sequence S = (S1 … Sn) 

if there exists integers l1 ≤ u1 < l2 ≤ u2 < … < ln ≤ un such that: 

 

Si is contained in ∪
uI

k = lI
dsk, 1 ≤ i ≤ n. 

 

Max-gap is the maximum allowed time difference between the latest occurrence of 

an item in an itemset and the earliest occurrence of an item in its immediately preceding 

itemset. It is formally defined as: 

 

transactiontime (dsui
) − transactiontime (dsli−1

) ≤ maxgap, 2 ≤ i ≤ n.  

 

Window size is the maximum allowed time difference between the latest and earliest 

occurrences of items in any itemset. It is formally defined as: 

 

transactiontime (dsui
) –  transactiontime (dsli

)  ≤  ws, 1 ≤  i ≤  n. 

 

Maxspan is the maximum allowed time difference between the latest and earliest oc-

currences of items in the entire sequence. It is formally defined as: 

 

transactiontime (dsum
) − transactiontime (dsl1

) ≤ maxspan, 2 ≤ m ≤ n. 

 

[Masseglia et al., 2009, pp. 5; Mooney and Roddick, 2013, pp. 25] 

 

In order to better illustrate the above time constraints, we have a data sequence: 

 

ds = ( 1{a} 2{b, c} 3{d} 4{e, f} 5{g}) 
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containing five itemsets or transactions which are timestamped from day one to day 

five. These itemsets contain seven items from a to g. Let us consider the following sub-

sequence: 

 

ds1 = ({a, b, c, d}{e, f, g}) 

 

with time constraints min-gap = 0, max-gap = 4, window size = 2 and maxspan = 6 

in order to see how they are handled with the above data sequence ds. Window size for 

each itemset is marked with [l,u]: 

 

ds = ( l1[ 1{a} 2{b, c} 3{d} u1] l2[ 4{e, f} 5{g} u2]) 

 

 where l is the earliest occurrence of an item, while u is the latest occurrence in the 

itemset. Window size = 3 allows us to group itemsets 1{a} & 2{b,c} with 3{d} and 4{e,f} 

with 5{g}. Since the earliest occurring item 1{a} of the first itemset of ds1 in data se-

quence ds is l1 = 1 and latest occurring item 3{d} u1 = 3 and the earliest 4{e} in the 

second itemset l2 = 4 and latest 5{g} u2 = 5, window size = 3 time constraint holds. With 

the above window size formula, we get to group together the first itemset: 

 

transactiontime (3) –  transactiontime (1) ≤  ws (3), 1 ≤  i ≤  n 

 

and consequently, group together the second itemset: 

 

transactiontime (5) –  transactiontime (4) ≤  ws (3), 1 ≤  i ≤  n. 

 

If window size were zero, itemsets {a,b,c,d} and {e,f,g} would have to occur simul-

taneously and using items from different itemsets would not be allowed. 

 

The sequence ds1 is included in the data sequence ds since itemsets 3{d} = u1 and 

4{e,f} = l2 can occur in consecutive days since with the above min-gap formula we get: 

 

transactiontime (4) − transactiontime (3) >  mingap (0), 2 ≤ i ≤ n. 

 

If min-gap were increased to 1, the time constraint would not hold since 4{e,f} occurs 

immediately after 3{d}. With max-gap = 4, itemsets 1{a} = l1 and 5{g} = u2 are 4 days 

apart. With the above max-gap formula we get: 

 

transactiontime (5) − transactiontime (1) ≤ maxgap (4),2 ≤ i ≤ n.  
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If max-gap were decreased to less than 4, the time constraint would not hold with ds1. 

With another subsequence: 

 

ds2 = ({a, b, c}{d}{e, f, g}) 

 

max-gap = 2 would hold since 5{g} = u3 and 3{d} = l2 with the above max-gap 

formula would give us: 

 

transactiontime (5) − transactiontime (3) ≤ maxgap (2),2 ≤ i ≤ n  

 

and the preceding itemset 3{d} = u2 and 1{a} = l1 we get: 

 

transactiontime (3) − transactiontime (1) ≤ maxgap (2),2 ≤ i ≤ n.  

 

With maxspan being 6 the earliest occurrence of an item in the entire data sequence 

is l1 = 1 and latest u2 = 7, which means with the above maxspan formula: 

 

transactiontime (7) − transactiontime (1) ≤ maxspan (6), 2 ≤ m ≤ n 

 

the time constraint holds. If we add another itemset {h} into the data sequence: 

 

ds3 = ({a, b, , c}{d}{e, f, g}{h}) 

 

maxspan value of 6 would not hold since: 

 

transactiontime (8) − transactiontime (1) ≤ maxspan (6), 2 ≤ m ≤ n. 

 [Masseglia et al., 2009, pp. 6-7] 

4.2 Time series mining 

Database that consists of transactions with an added timestamp attribute is called time-

series database. Mining time series can be divided into four different kind of pattern min-

ing: trend analysis, similarity search, sequential patterns, and periodical patterns. Trend 

analysis consists of long term or cyclic movements, and it is widely used in predicting 

prices in a stock market such as if business stock goes up earlier in the week and down 

similarly later in the week. Similarity search consists of matching slightly different se-

quences. This can be divided into whole sequence matching or subsequence matching. 

Similarity search can also be used in stock markets to find similar ups and downs between 

different businesses. [Zhao and Bhowmick, 2003, pp. 6-7] 
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Sequential patterns are used to find relationships between ordered transactions from 

data. A transaction can be a set of items in a transaction between a customer and a pro-

vider, such as goods or services. Finding if there is an occurring specific pattern between 

items from data is sequential pattern mining. Such pattern in a sequence can be if a cus-

tomer bought an item A and then an item B within a week. If a sequence happens regu-

larly, it is called a periodical pattern. These periodical patterns can be viewed as sequen-

tial patterns if they are taken as a set of sequences. Periodical patterns can be mined from 

data that consists of a long period of time. These periods can be from days to years of 

worth of transactions. Splitting periods to smaller partitions can also be taken as a set of 

sequences. Timestamp is an essential attribute of sequential pattern mining when used on 

time-series databases, but the notion of time can be non-concrete in sequential databases 

if it is implied as an ordered sequence. These databases without an added timestamp can 

still be used to find these frequently occurring transactions to describe or predict data. 

With more accurate rules, such as adding timestamp attribute into an association rule 

mining, businesses can make better predictions and gain more value from data. [Zhao and 

Bhowmick, 2003, pp. 7] 

4.3 Symbolic sequence mining 

Sequence data is defined by [Han et al., 2011, pp. 587] as long sequences of transaction 

or nominal data, which typically are not observed at equal time intervals. An ordered list 

of numbers can have long lapses of time between them and thus the notion of time can be 

non-concrete. A string of letters ({A}{B}{C}) can be taken as a sequence as long it is 

read as {A} comes before {B} comes before {C}. Symbolic sequences consist of activi-

ties such as biological sequences, web click streams, customer shopping sequences, pro-

gram execution sequences, and sequences of transactions in science and engineering and 

in natural and social developments. [Han et al., 2011. pp. 589] 

4.4  Biological sequence mining 

Biological sequences are generally referred to as nucleotides (DNA/RNA) and amino ac-

ids (proteins) sequences and are conducted in the field of bioinformatics and modern bi-

ology. These sequences are typically very long and carry complicated semantic meaning 

while posing many challenging research issues. Biological sequence analyses are used to 

compare, index, align and analyze these above sequences in order to find out significant 

patterns in genomic data. [Han et al., 2011. pp. 586-591] 

An example of a biological sequence could be function n(s) where n represents nu-

cleotides (Adenine, Cytosine, Guanine and Thymine) in a DNA sequence S. Because 

there are only 4 possible nucleotides A C G T, we know n(S) is ≤ 4. This is called an 

invariant sequence. [Wang et al., 2006. pp. 111-112] 
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5 Other sequential pattern mining applications 

Sequential pattern mining has been used in several other researches such as mining neg-

ative sequential patterns (absent itemsets) in e-commerce for practical use [Hsueh et al., 

2008], predicting next prescribed medications for diabetes patients [Wright et al., 2014], 

creating an automatic classifier for predicting occurring heart diseases in patients with 

congestive heart failure [Gladence et al., 2014], analyzing historical records for recom-

mending new optimal clinical pathways [Uragaki et al., 2016], using various algorithms 

for extracting information from databases, and developing models for predicting uterine 

contractions to achieve maximal efficacy during labor [Huang et al., 2013 & 2014]. 

5.1 Knowledge-assisted sequential pattern analysis 

Sequential pattern analysis framework was proposed by Huang et al. [2013] in their re-

search for predicting uterine contractions in order to maximize analgesia efficacy during 

contractions and minimize the impact of medications between those contractions. The 

proposed framework consists of predicting intrauterine pressure in real time, anticipating 

the next contraction, and using the developed sequential pattern mining approach to iden-

tify the patterns of the contractions from historical patient tracings. A sequential associa-

tion rule-based collaborative training dataset selection component was developed to dy-

namically select a training dataset from historical patient tracings (HT), and from the cur-

rent patient’s most recent training time series (d). Collaborative filtering [Linden et al., 

2003] is used to filter information from multiple data sources in order to predict the user’s 

preferences, interests, or behaviors from similar users, and in this case, it is used to solve 

the contraction prediction problem. In the proposed framework collaborative filtering is 

used with the assumption that the current patient’s contraction is similar to previous pa-

tient’s contractions in the database, and thus can be predicted. The database contains data 

(in the form of sequential association rules) from historical patient’s labor tracings. The 

current patient’s contraction pattern is searched from the database in order to predict the 

current patient’s next contraction pattern. The prediction models are trained through the 

matching process by selectively utilizing the available data. Afterwards a long-term time 

series prediction is employed by using k-nearest neighbors least squares support vector 

machine (LS-SVM) approach with heuristic parameter tuning. Prediction results are fur-

ther enhanced in the post prediction process. [Huang et al., 2013, pp. 1290-1291] 
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Figure 3: Intrauterine pressure time series. [Huang et al., 2013, pp. 1291] 

In Figure 3 is an example of a contraction cycle. The period is approximately 5 

minutes, and the individual contractions are shown as a ‘peak’, with the contraction be-

ginning at the start of the peak and subsiding towards the end after reaching the peak 

maximum. The values of the contractions were discretized, which according to Han et al. 

[2011, pp. 112] is used to convert raw values of numeric attributes into interval labels, 

into two tables consisting of the time (period) between the contractions (pd), and the 

height of the peak (ht) in mmHg (intrauterine pressure). The period varied between pd < 

25 seconds up to pd ≥ 385 seconds long periods, and the height of the peak from ht < 40 

up to ht ≥ 100. Equal-width discretization was used to create nominal markers for both 

values from a to f for height, and A to H for period. In the Figure 3 is a contraction with 

a height of 75, which was marked with nominal marker d, and a period of 300 seconds, 

which was marked with nominal marker F. Together the aforementioned contraction pe-

riod was given a value dF. The original intrauterine pressure time series were sampled at 

each quarter second with a value range of [0, 100]. However due to loss of data and the 

consequent generated noise, preprocessing step was necessary to reduce noise as much as 

possible, by subsampling the data at each second in order to detect the peak points. The 

signal was rebuilt by applying the shape-preserving piecewise cubic Hermite interpola-

tion method [Miranda, R. 2003], which is used to find polynomial functions with speci-

fied values. [Huang et al., 2013, pp. 1291-1293] 
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Figure 4: Collaborative training dataset selection component. [Huang et al., 2013, pp. 

1292] 

In Figure 4 the collaborative training dataset selection consists of individual patients 

training time series (d) and historical patients tracings (HT). The numerical features are 

extracted from both of these groups of data and period and height are discretized into 

nominal values. In the process of mining sequential association rules, the generated rules 

should be meaningful and interesting. An item is one contraction, and it contains two 

letters, which represents its period and height. Two consecutive contractions as a sequen-

tial itemset are described as follows: 

 

(wX ∪   yZ) 

 

where w and y are discretized heights and X and Z are discretized periods. The rule 

set process returns a set of rules (R) as the output in the form of 

 

wX → yZ. 

 

Frequent sequential itemsets are searched for each individual patient separately (local 

frequent sequential itemsets). Multiple discretized contractions series are obtained from 

HT, which contains patients intrauterine pressure tracings. Afterwards overall global fre-

quent itemsets are generated based on the local frequent sequential itemsets. In order to 
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evaluate the interestingness of the sequential association rule, three measurements and 

thresholds are defined. Definition 1 (supL): the local support value. Let Nc be the total 

number of contractions in one patient’s intrauterine pressure tracing. Let σ(wX ∪ yZ) be 

the occurrences of the local sequential itemset wX ∪ yZ. SupL is defined as follows: 

 

𝑠𝑢𝑝𝐿 (𝑤𝑋 → 𝑦𝑍 =  
σ (wX ∪ yZ)

𝑁𝑐
). 

 

Definition 2 (minSupL): the minimum support value for deciding the local frequent 

sequential itemsets. The itemset is considered as a local frequent sequential itemset of the 

patient if the frequency of one itemset in one patient’s discretized tracings, i.e., supL is 

no less than minSupL. Definition 3 (supG): the global support value. Let M be the total 

number of patients in the HT. Let Np be the number of patients who have the sequential 

itemset as one of the local frequent itemsets. SupG is defined as follows: 

 

𝑠𝑢𝑝𝐺 (𝑤𝑋 → 𝑦𝑍) =  
𝑁𝑝

𝑀
. 

 

Definition 4 (minSupG): The minimum support value for deciding the global frequent 

sequential itemsets. The itemset is considered as a global frequent sequential itemset of 

the patient if the percentage of those patients who share one local frequent sequential 

itemset, i.e., supG, is no less than minSupG. Definition 5 (PS): Piatetsky-Shapiro, the 

interestingness measure. The rule: 

 

𝑑𝑋 → 𝑦𝑍.  

 

is derived from a global frequent sequential itemset. Let P(wX ∪ yZ) be the probabil-

ity of wX ∪ yZ, and P(wX) and P(yZ) be the probabilities of wX and yZ. PS is defined 

as:  

 

𝑃𝑆(𝑤𝑋 → 𝑦𝑍) = 𝑃(𝑤𝑋 ∪ yZ) − P(wX)P(yZ). 

 

Definition 6 (minPS): the minimum PS measure. The rule is considered interesting if 

the PS measure of a sequential association rule derived from a global frequent sequential 

itemset is no less than minPS. The proposed sequential association rule mining approach 

consists of three steps. At first, it generates local frequent sequential itemsets, which are 

items that occur no less than minSupL in each patient’s tracing. Second, it generates 

global frequent sequential itemsets. Third, it generates sequential association rules from 

the frequent global itemsets. The first step is similar to Apriori algorithm, where a set of 
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candidate m-itemsets is generated connecting the frequent (m-1)-itemsets generated in 

the previous iteration. Concerning Apriori algorithm, the sequence is taken into consid-

eration. In the second phase, the local frequent sequential itemsets derived from all the 

historical patient’s tracings and generating candidate global frequent m-itemsets are com-

bined based on local frequent m-itemsets. Whereas if global support of one candidate m-

itemset is no less than minSupG, it is recognized as a frequent global m-itemset. In the 

third phase only one item consequent sequential association rules are generated, i.e., one 

contraction in the consequent part since the plan is to predict the occurrence of the next 

contraction. It is recognized as an interesting sequential association rule if the PS measure 

of the derived rule is no less than minPS. Rule set R is formed from all lengths of the 

interesting sequential association rules. The larger the PS value the more interesting the 

rule is i.e., when the condition part occurs the chance for the consequent part occurring is 

high. [Huang et al., 2013, pp. 1293-1294] 

Rule matching: by selectively employing available contractions from both HT and 

the current patient’s most recent intrauterine pressure tracing to train the prediction 

model, is the purpose of the collaborative training dataset selection process. The predic-

tion model is made more adaptive to the changing contraction of the patient with this 

dynamic selection. The inputs for this process are as follows: first, the current patient’s 

most recent contraction pattern, and second, the rules set R extracted from HT. The rules 

,in R, are sorted with PS values in descending order. The rule matching process is to 

compare the current patient’s recent contraction pattern with the condition part of the 

generated sequential rules. The first matched rule is kept for instance selection. Sliding 

window technique, as described by [Koç, 1995], is an exponentiation algorithm used for 

partition strategies, and it is used to form the selected training dataset in the intrauterine 

pressure sequence of the current patient’s most recent Cn contractions in d, if no matched 

rule is found by searching the entire rule set. If there is a matched rule, i.e., the current 

patient’s contraction pattern matches with the condition part of one rule, the same number 

Cn of contraction tracings from the HT are selected. These correspond to the consequent 

part of the rule, and in turn are combined with the current patient’s most recent tracing of 

Cn contractions in d to form the selected training dataset SD using the sliding window 

technique. Usually, the number of contraction tracings that follow one interesting sequen-

tial association rule is much larger than Cn. Euclidean distance, which measures the dis-

tance between two points [Han et al., 2011, pp. 72], is calculated between the current 

patient’s recent feature vector and each of the feature vectors in HT that follows the se-

lected sequential association rule. The feature vector of one contraction contains the nor-

malized period and normalized height of the corresponding peak. The smallest distance 

Cn contraction tracings are selected. The selected training dataset SD is one of the inputs 

of the k-NN based LS-SVM component for long-term time series prediction modelling. 
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This proposed CF approach selectively utilizes the data from HT and combines them with 

the current patient’s most recent intrauterine contraction tracing. The sequential associa-

tion rule-based dataset selection enables incorporating similar patients recommended pat-

terns. However, using the current patient’s most recent intrauterine contraction tracing 

helps to discover and preserve the current patient’s own contraction patterns. These are 

different from the sequential contraction patterns learned from the database, and the com-

bination of these two sources facilitates adaptive prediction and enhances the robustness 

of the obtained model and its prediction ability. [Huang et al., 2013, pp. 1294] 

 

Figure 5: Postprediction process [Huang et al., 2013, pp. 1294] 

In the Figure 5 the postprediction process consists of boundary constraint, multivalue 

integration and vertical correction components. These are used to postprocess the predic-

tion results, further improve the prediction precision, and ensure valid results. The bound-

ary constraint is used to bound the predicted values rendered by LS-SVM regressors. The 

prediction model might not be able to capture the changing patterns of the time series 

very well when the prediction horizon is very large. Real world time series data should 

fall within a certain reasonable range. Multivalue integration component is used to com-

bine prediction results from individual models. Models which are not suggested to be 

combined are very similar with each other by having access to the same information set 

and capturing similar patterns. However, it is also important to combine forecasts from 

very similar models. Utilizing multiple models for estimation and prediction could reduce 

uncertainty. Vertical correction component consists of two steps: first to smooth out the 

prediction results from the multivalue integration component. Second, to smooth out the 

sharp pulses and peaks with very low heights. The smoothing in the first step can reduce 
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inconsistency of the models, which combines data subsampling, peak detection, and in-

terpolation processes. In the second step, three conditions are set to determine if a peak 

should be smoothed out or not.  

Condition 1: if the height of a peak is lower than a given threshold, minHeight, it is 

considered as candidate noise.  

Condition 2: if the width of a peak is smaller than a given threshold, minWidth, it is 

considered as candidate noise. 

Condition 3: for the candidate noise that satisfies either one of the previous condi-

tions, if the starting point value of the peak is smaller than a threshold, minSPV, it is 

considered as noise.  

In order to smooth out the noise peak, the peak area is reset to be the value of the 

starting point value of the peak. The vertical correction component generates the final 

prediction results as an output. These are the sequences of the intrauterine pressure which 

are predicted multiple seconds ahead. [Huang et al., 2013, pp. 1294-1295] 

The prediction model was compared to two existing methods, LS-SVM and LL-

MIMO (Long Term Multi-Input Multi-Output). The proposed model’s purpose is to pre-

dict the coming contractions ahead of time in order to relieve labor pain with an analgesic 

injection. The dataset consists of samples from 2041 women. Two error measurements 

were used to measure the performance of the prediction model, RMSE (root mean squared 

error) and SMAPE (symmetric mean absolute percentage error). The experimental results 

indicate that the proposed prediction model is better on average compared to the above 

two methods (LS-SVM, LL-MIMO). In the postprediction process, prediction accuracy 

was 40.3% higher than LS-SVM and 76.8% higher than LL-MIMO. [Huang et al., 2013, 

pp. 1295-1296] 
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6 Classifier performance metrics 

Evaluating classifier performance can be measured in several ways: accuracy or recogni-

tion rate, sensitivity or recall, specificity, precision, F1 (harmonic mean of precision and 

recall) and Fβ (where β is a non-negative real number). Accuracy as defined by [Han et 

al., 2011, pp. 366] is used to measure a classifiers correctly classified percentage of a 

given test set tuples (samples), with the given formula: 

 

Accuracy =
TP + TN

P + N
100% 

 

where true positive (TP) refers to the number of positive tuples which are correctly 

classified by the classifier, true negative (TN) refers to negative tuples which are correctly 

classified, and positive (P) and negative (N) refers to number of positive and negative 

tuples. Along with true positive and true negative there are opposite terms called false 

positive (FP) and false negative (FN) which both refers to incorrectly classified tuples. 

Sensitivity or recall refers to true positive rate: 

 
TP

P
 100% 

 

which is calculated as true positive divided by number of positives, while specificity 

refers to true negative rate: 

 
TN

N
 100% 

 

in which true negative is divided by number of negatives. 

Precision is calculated as: 

 
TP

TP + FP
 100% 

 

where true positive is divided with the sum of true positive and false positive. 

For measuring a given classifiers error rate or misclassification rate: 

 
FP + FN

P + N
100% 

 

can be calculated by dividing the sum of false positive and false negative with the 

sum of positive and negatives. [Han et al., 2011, pp. 364-366] 
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Classes 

Predicted 

buys_computer = 

yes 

Predicted 

buys_computer 

= no 

Total Recognition 

(%) 

Actual 

buys_computer = 

yes 

Actual 

buys_computer = 

no 

6954 

 

 

412 

46 

 

 

2588 

7000 

 

 

3000 

99.34 

 

 

86.27 

Total 7366 2634 10000 95.42 

Table 3: Confusion matrix for the classes buys_computer = yes and buys_computer = 

no [Han et al., 2011, pp. 366] 

The terms of true positive, false negative (first row), false positive and true negative 

(second row) are summarized in Table 3 as a confusion matrix for classes buys_computer 

= yes and buys_computer = no. The idea is that with a quick glance a researcher can 

analyze how well a classifier is getting things right with true positive and true negative, 

and wrong with false positive and false negative. Buys_computer = yes with 6954 tuples 

determines true positive and buys_computer = no with 2588 tuples determines true neg-

ative. False positive happens when a classifier classifies a given tuple incorrectly as 

buys_computer = yes when it is a false positive as buys_computer = no, which is marked 

in the confusion matrix with 412 tuples. The same goes with false negative when classifier 

incorrectly classifies something as false when it is true, which is marked in the confusion 

matrix with 46 tuples. Ideally false positives and false negatives are around zero for the 

classifier to be considered accurate. Recognition consists of accuracy, which is shown as 

95.42%, sensitivity with 99.34% and specificity with 86.27%. 

Estimating the accuracy of a given classifier is better suited for test sets rather than 

tuples which were used to train the model in order to avoid misleading estimates due to 

overspecialization. Confusion matrixes can be drawn for multiple classes rather than for 

only two in the example shown in Table 3. [Han et al., 2011, pp. 364] 
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7 Implementation 

7.1 Methodology 

This research uses quantitative research method to mine sequential patterns from calcium 

peak data by using a study “Knowledge-assisted sequential pattern analysis framework” 

proposed by Huang et al. [2013] as a rough example. 

7.2 Calcium peak data 

According to the previous study the calcium signal data was recorded in fall of 2013 from 

various individuals, from which the region of interest was collected from between 1 and 

5 different areas where cells were beating spontaneously. Two different groups were 

tested with different intervals: one with every recording happening between 0.043-0.044 

seconds and the second with 0.088-0.089 seconds. Signal length varied from 11 to 24 

seconds between signals and there are in total 102 different signals from three subjects. 

Each signal is measured along with time in seconds, and as amplitude values called ratio 

values. [Juhola et al., 2014; Juhola et al., 2015] 

7.3 Preprocessing phase 

This research is conducted with MATLAB R2020 version. MATLAB was chosen from 

among a few different programming platforms, mainly because of previous experience, 

although R and Python were considered as alternatives. Afterwards during the research, 

it was concluded that MATLAB is not the most viable programming language for this 

kind of study, since it lacks built-in algorithms for sequential pattern mining and sequen-

tial rule mining, which were necessary to conduct this study. A viable alternative was 

found “The SPMF Open-Source Data Mining Library”, which was developed by Four-

nier-Viger et al. [2016]. The library contains 254 data mining algorithms, from which we 

found TRuleGrowth algorithm that was compatible with our dataset. 

The first objective was to extract data from multiple excel files, each containing a 

single signal, into raw data containing the previously mentioned two variable columns: 

time and (ratio) value. The signals were detrended to remove a linear trend, like in the 

previous study, by using MATLAB’s detrend function. Next, the detrended signals were 

further processed by removing negative values caused by the detrend function, by raising 

every signal individually by its minimum value up to zero (zero minimum). Afterwards 

the two variables were further processed into sequential pairs of letters, which is based 

on previously reviewed study by Huang et al. [2013]. The letters assigned for time values 

are small letters (a, b, c, d, etc.) and for ratio values as capital letters (A, B, C, D, etc.).  
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Figure 6: Rough estimate A for peaks in a detrended, zero minimum signal 

In Figure 6 an amplitude A was calculated for every signal individually. The values 

were sorted and the means of the lowest 10% of values were subtracted from the highest 

10% in order to calculate the average amplitude A. The signals were first pre-treated by 

removing a linear trend by using the MATLAB’s detrend function and furthermore rais-

ing the minimum value to zero (zero minimum). 
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Figure 7: Discretized time and ratio values into categorical values 

Figure 7 shows the same signal as illustrated in Figure 6 with the exception in which 

the time and ratio values have been categorized into small and capital letters. Small letters 

in the x-axis are categorized from a to z, and capital letters in the y-axis from A to Z. 

These two values together create categorical value pairs from which we can mine sequen-

tial patterns. The problem is to find what is classified as a ‘peak’. When does it start, 

reaches its maximum height, and when does it end, and when does the next peak start? 

Two adjacent calcium peaks can be called a sequential itemset, from which we can cal-

culate, with the help of rough estimate A, when the previous peak ends and a new one 

starts. 

The categorical values were split evenly between the time and ratio as in both having 

twenty-six letters from a to z and A to Z, but this was purely experimental decision based 

on the calculations between the various signal lengths in between time and ratio. Some 

signals were over twice as long as others and the height of the peaks varied greatly as 

well. A constant time and ratio were calculated from the longest and largest signal ratio 

wise so that the categories would not run out with varying signal lengths. 
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Figure 8: Discretized time and ratio values into categorical values (14 by 14 categories) 

Later during the research, the twenty-six categories were reduced to the smaller quan-

tity of fourteen categories. The research problem of considering how many categories is 

too few or too many was done at first by a rough estimate. It was concluded that there 

have to be enough discretized categories so the varying signal peaks can be found, yet too 

many feel unnecessary to capture all the signal peaks needed. The maximum ratio value 

was calculated as 0.9268, while the lowest was calculated as 0.1225. The highest maxi-

mum ratio in a signal was over seven times bigger compared to the maximum ratio in the 

lowest signal. With this calculation, fourteen categories is the bare minimum required to 

detect peaks in the smallest signal. The values in the x- and y-axis in Figure 8 are shown 

with two decimal places along with their category letter. 
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Time range Categories 

Time < 1.3615 a 

1.3615 ≤ Time < 2.7231 b 

2.7231 ≤ Time < 4.0846 c 

4.0846 ≤ Time < 5.4462 d 

5.4462 ≤ Time < 6.8077 e 

6.8077 ≤ Time < 8.1692 f 

8.1692 ≤ Time < 9.5308 g 

9.5308 ≤ Time < 10.8923 h 

10.8923 ≤ Time < 12.2538 i 

12.2538 ≤ Time < 13.6154 j 

13.6154 ≤ Time < 14.9769 k 

14.9769 ≤ Time < 16.3385 l 

16.3385 ≤ Time < 17.7 m 

Time ≥ 17.7 n 

Table 4: Time categorized into fourteen categories 

In Table 4 time is categorized into fourteen categories, from a to n. The value range 

is calculated by dividing the longest signal, with the number of categories.  

 

Ratio range Categories 

Ratio < 0.0713 A 

0.0713 ≤ Ratio < 0.1426 B 

0.1426 ≤ Ratio < 0.2139 C 

0.2139 ≤ Ratio < 0.2852 D 

0.2852 ≤ Ratio < 0.3565 E 

0.3565 ≤ Ratio < 0.4278 F 

0.4278 ≤ Ratio < 0.4991 G 

0.4991 ≤ Ratio < 0.5704 H 

0.5704 ≤ Ratio < 0.6417 I 

0.6417 ≤ Ratio < 0.713 J 

0.713 ≤ Ratio < 0.7843 K 

0.7843 ≤ Ratio < 0.8556 L 

0.8556 ≤ Ratio < 0.9269 M 

Ratio ≥ 0.9269 N 

Table 5: Ratio categorized into fourteen categories 
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In Table 5 the ratio is categorized in the same way as time is in Table 4 by having the 

same number of categories. This is done in order for the smallest signal to have enough 

categories to detect peaks. Fourteen categories were the lowest number of categories pos-

sible to detect peaks in the smallest of signals, ratio wise. 

 

In Figure 8 we can see six peaks. The peak maxima can be seen at: bM, dL, fK, hJ, jI 

and lH. In this case the signals first ‘peak’ can be seen as starting at: aA, rising all the 

way towards the maximum height at bM, and ending at bA. The resulting peak yields us 

a subsequence: 

 

𝑠𝑠1 = ({𝑎𝐴}, {𝑏𝑀}, {𝑏𝐴}) 

 

The resulting subsequence is a simplified version, the end result, and there are many 

more categories from which we have to calculate what constitutes a peak from between 

the peak start to its end. The next peak would yield us a subsequence: 

 

𝑠𝑠2 = ({𝑑𝐴}, {𝑑𝐿}, {𝑑𝐴}) 

 

where the peak starts at dA, reaches its maximum height at dL, and ends at dA. A 

sequential itemset would be the union of these two subsequences: 

 

𝑠𝑠3 = ({𝑎𝐴}, {𝑏𝑀}, {𝑏𝐴}, {𝑑𝐴}, {𝑑𝐿}, {𝑑𝐴}) 
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Itemset Amount 

aA 13 

aB 1 

aK 1 

aM 1 

bM 1 

bI 1 

bF 1 

bD 1 

bC 2 

bB 3 

bA 6 

cA 15 

dA 3 

dD 1 

dK 1 

dL 1 

dK 1 

dH 1 

dE 1 

dD 1 

dC 1 

dB 3 

dA 2 

Table 6: Complete itemsets of the first two peaks of a signal 

In Table 6 we have all the itemsets of Figure 8 signal for the first two peaks from the 

beginning of the signal to the end of the second peak. We can see that before the first 

peak starts there are thirteen {aA} itemsets, from which the peak gradually rises towards 

the maxima at {bM} and ends at {bA}. The second peak similarly starts at {dA} having 

three itemsets, rises towards the maxima at {dL} and ends at {dA}. The entire subse-

quence would look like: 

 

𝑠𝑠4 = (({𝑎𝐴} 13, {𝑎𝐵}, {𝑎𝑘}, {𝑎𝑀}, {𝑏𝐼}, {𝑏𝐹}, {𝑏𝐷}, {𝑏𝐶} 2, {𝑏𝐵} 3, {𝑏𝐴} 6), 

({𝑑𝐴} 3, {𝑑𝐷}, {𝑑𝐾}, {𝑑𝐿}, {𝑑𝐾}, {𝑑𝐻}, {𝑑𝐸}, {𝑑𝐷}, {𝑑𝐶}, {𝑑𝐵} 3, {𝑑𝐴} 2)) 
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where the number after itemset, for example {aA} 13, means how many itemsets, re-

cording intervals, there are in a row. The recording intervals of the calcium peak data are 

mentioned in 7.2. 

7.4 Candidate sequential itemsets 

In order to find out meaningful sequential patterns from the data, we must first generate 

candidate sequential itemsets. We know that the data consists of various amounts of cal-

cium peaks, and those peaks have a beginning, peak maxima, and peak end. With this 

information we first generate every single peak candidate that follows the following rules: 

 

1. Starting from the beginning of the signal, find out the beginning of a peak before 

upwards trend begins 

2. Find out the current peak maxima, by following the upwards trend towards the 

maximum ratio value 

3. Find out the current peak end, by following the downward trend, from peak max-

ima, until the first lowest possible value is found between current peak end and 

next peak start 

4. Repeat to the end of the signal until all peak candidates have been found 

 

ID Peak candidate 

1 ({aA}, {bM}, {bA}) 

2 ({dA}, {dL}, {dA}) 

3 ({fA}, {fK}, {gA}) 

4 ({hA}, {hJ}, {iA}) 

5 ({jA}, {jI}, {kA}) 

6 ({kA}, {kB}, {lA}) 

7 ({lA}, {lB}, {lA}) 

8 ({lA}, {lB}, {lA}) 

9 ({lA}, {lH}, {mB}) 

Table 7: Candidate itemsets of a signal 

In Table 7 we have nine different peak candidates of a signal, which is shown in 

Figure 8. Each valid peak candidate calculated thus far must have had a peak beginning, 

which is a value right before an upwards trend starts, a peak maxima which is the highest 

ratio value before a downwards trend starts, and a peak end which is the first lowest pos-

sible value found. With this criteria ratio values that cannot get past category ‘A’, which 

is shown in Table 5, are automatically considered as noise. However, we can see that 

there are still unnecessary peak candidates, which has to be removed. Namely peak can-

didates 6, 7, and 8 are considered noise since those peak candidates hover between two 
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ratio categories ‘A’ and ‘B’. In order to remove these candidates, threshold T was calcu-

lated for each signal individually based on the average amplitude A, which is shown in 

Figure 6. For this particular signal in Table 7, threshold T included only those peak can-

didates where the peak maxima were greater than ‘B’. 

 

𝑝𝑒𝑎𝑘 𝑚𝑎𝑥 > (T =  𝐴 ∗  0.2) 

 

where amplitude A is ‘I’, which is shown in Figure 8. The letters were mapped into 

positive whole numbers, starting from one, and threshold T was rounded towards the 

nearest greater integer value, which was in this case ‘2’. Threshold T was found by ex-

perimenting with different threshold factors, where the intent was to remove only partic-

ular noise, which did not correspond to a signal peak. 

 

ID Peak candidate 

1 ({aA}, {bM}, {bA}) 

2 ({dA}, {dL}, {dA}) 

3 ({fA}, {fK}, {gA}) 

4 ({hA}, {hJ}, {iA}) 

5 ({jA}, {jI}, {kA}) 

6 ({iA}, {iH}, {mB}) 

Table 8: Candidate itemsets of a signal after removing further noise 

In Table 8 we have the updated peak candidates, where the noise between small ratio 

values, which were first treated as peak candidates, have been removed. 

 

In order to develop Sequential Association Rule Mining Algorithm approach [Huang 

et al., 2013] to work with our data, which is explained in 5.1, we need to further prepro-

cess our candidates by calculating the time range of each candidate peak beginning from 

the next peak beginning, and denoting a new mapping table for time that is appropriate 

for the sequential itemset definition: 

 

(wX ∪  yZ) 

 

where, in our case, w and y are discretized time values and X and Z are discretized 

ratio values. In our data the above description corresponds to two consecutive signal 

peaks. 
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Time range Categories 

Time < 1.3615 a 

1.3615 ≤ Time < 2.7231 b 

2.7231 ≤ Time < 4.0846 c 

4.0846 ≤ Time < 5.4462 d 

5.4462 ≤ Time < 6.8077 e 

Table 9: New table for peak beginning time difference 

In Table 9 we calculated the largest found candidate peak beginning time difference 

and denoted small letters from ‘a’ to ‘e’ as our new categories. With this calculation, the 

old calculated constant time (1.3615) denoted for our categories is still valid. There were 

no time differences larger than 6.8077 found in our dataset, and thus the rest of the cate-

gories are no longer needed. 

 

ID Peak candidate 

1 {dM} 

2 {cL} 

3 {cK} 

4 {cJ} 

5 {cI} 

6 {bH} 

Table 10: Further discretized candidate itemsets 

In Table 10 the candidate itemsets of a signal from Table 8 have been further modi-

fied, in which the first small letter of the itemset signifies the time difference of the current 

candidate peak beginning from the consequent peak candidate beginning. The capital let-

ter definition remains the same as before, and the value range is shown in Table 5. The 

entire signal with the candidate peaks would be: 

 

 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 =  ({𝑑𝑀}, {𝑐𝐿}, {𝑐𝐾}, {𝑐𝐽}, {𝑐𝐼}, {𝑏𝐻}). 

 

After all the peak candidates have been calculated from our signal’s dataset, the final 

phase of this research is to find out how to calculate local (within a signal) sequential 

itemsets, and afterwards the global (from all signals) sequential itemsets and find out fre-

quent sequential itemsets which satisfy the minimum, user given, support and confidence. 

7.5 Generating sequential association rules 

In order to start generating sequential association rules, we must decide which algorithm 

to use in our research. Apriori algorithm in 3.2 cannot be used since it does not consider 
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the sequence of events within our dataset. MATLAB unfortunately does not contain built-

in sequential rule mining algorithms, and the Sequential Association Rule Mining Algo-

rithm proposed by Huang et al. [2013] is not very well explained. Creating an entire al-

gorithm in MATLAB from beginning is not feasible within the scope of this thesis. 

From various different sequential rule mining algorithms, the most suitable for our 

candidate peak dataset is TRuleGrowth algorithm [Fournier-Viger et al., 2012]. 

TRuleGrowth algorithm is a variation of RuleGrowth, in which it accepts window 

size parameter as a constraint. RuleGrowth works by first finding 1*1 rules, recursively 

growing them by scanning sequences containing said rules to find single items that can 

expand their left or right parts. The two processes for expanding rules are called left and 

right expansion where adding item to the left side is formally defined as: 

 

X ∪ {i} ⇒ Y 

and right side: 

 

X ⇒ Y ∪ {i}. 

 

Any rule obtained by an expansion has a support lower or equal of the original rule. 

All the rules where support is at least minimum support can be found recursively. The 

parameters accepted by the algorithm are minimum support, minimum confidence, win-

dow size time constraint, and optional parameters are max antecedent size and max con-

sequent size. In our case we only care about two consecutive peaks happening in our 

dataset, and we can leave these optional parameters unused. In order to find out two con-

secutive peaks locally within a single signal (wX ∪ yZ) with window size = 1, our se-

quences would be as follows: 

 

ID (wX ∪ yZ) 

1 ({dM}, {cL}) 

2 ({cL}, {cK}) 

3 ({cK}, {cJ}) 

4 ({cJ}, {cI}) 

5 ({cI}, {bH}) 

Table 11: All sequential itemsets of a signal 

In Table 11 we have all the sequential itemsets of a signal, which is shown in Figure 

8. However, the rules generated from this particular signal are not very interesting. 

  



-41- 

 

Rule: (wX ==> yZ) Support Confidence 

cI ==> bH 1 0.5 

cJ ==> cI 1 0.5 

cK ==> cJ 1 0.5 

cL ==> cK 1 0.5 

dM ==> cL 1 1 

Table 12: Rules of a signal with support 0.2 and confidence 0.5 

In Table 12 we have generated every single rule (wX==>yZ) , where our user defined 

minimum support is 0.2, and minimum confidence is 0.5. The definitions of minimum 

support and confidence are explained in 3.1. This signal does not have many peaks from 

which to draw meaningful rules. 

We have another sequence: 

  

𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒

= ({𝑎𝐸}, {𝑎𝐸}, {𝑎𝐸}, {𝑏𝐸}, {𝑎𝐸}, {𝑎𝐷}, {𝑏𝐸}, {𝑎𝐸}, {𝑎𝐷}, {𝑏𝐷}, {𝑎𝐷}, {𝑎𝐷}, {𝑏𝐷}, {𝑎𝐷}, {𝑎𝐷}, 

{𝑎𝐷}, {𝑏𝐷}, {𝑎𝐷}, {𝑎𝐷}, {𝑎𝐶}, {𝑏𝐶}, {𝑎𝐶}, {𝑎𝐷}, {𝑏𝐷}, {𝑎𝐶}, {𝑎𝐶}, {𝑎𝐶}, {𝑏𝐶}, {𝑎𝐶}, {𝑎𝐶}, {𝑎𝐶}, 

{𝑏𝐶}, {𝑎𝐶}, {𝑎𝐶}, {𝑎𝐶}, {𝑏𝐶}, {𝑎𝐵}, {𝑎𝐶}, {𝑎𝐶}, {𝑎𝐶}, {𝑏𝐶}, {𝑎𝐶}) 

 

which have the most amount of candidate peaks, 42, in the entire dataset. We generate 

the following rules: 

 

Rule: (wX ==> yZ) Support Confidence 

aC ==> bC 5 0.238 

aD ==> bD 4 0.25 

bC ==> aC 4 0.4 

bD ==> aD 3 0.375 

Table 13: Rules of a signal with support 0.05 and confidence 0.05 

In Table 13 we have a sequence with the most amount of candidate itemsets found in 

the entire dataset of 102 signals. 

Generating the global sequential itemsets from all signals yields us the following re-

sults: 
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Rule: (wX ==> yZ) Support Confidence 

aB ==> bB 27 0.574 

bB ==> aB 26 0.722 

aC ==> bC 37 0.685 

bC ==> aC 39 0.75 

aD ==> bD 30 0.698 

bD ==> aD 34 0.642 

aE ==> bE 21 0.778 

Table 14: Global rules of all 102 signals with 0.2 support and 0.5 confidence 

In Table 14 we have calculated with support of 0.2 and confidence of 0.5 frequent 

sequential itemsets from 102 signals in total. We can see that the overall most frequent 

and meaningful rule with support of 39 and confidence of 0.75 is when the antecedent bC 

is followed by the consequent aC, which would give us: 

 

𝐼𝐹 1.3615 ≤ Time <  2.7231 & 0.1426 ≤ Ratio < 0.2139 THEN Time

< 1.3615 & 0.1426 ≤ Ratio < 0.2139. 
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8 Conclusions 

The rule wX ==> yZ, where we want to find two consecutive peaks (wX ∪ yZ), which 

makes a sequential itemset, is not generating meaningful and strong sequential association 

rules. Some signals have too low of a count of candidate itemsets to calculate anything 

beyond 0.2 support or 0.5 confidence at most. The reason for this could be if our candi-

dates are generated poorly with not narrow enough criteria for either time or ratio. The 

time was narrowed into five categories, where the current peak beginning was calculated 

from the consequent peak beginning. Ratio was kept at 14 different categories, since the 

ratio values were over seven times bigger in the tallest signals compared to the smallest 

signals. The generated sequential rules might have generated more meaningful rules if 

these discretized heights were narrowed down from 14 closer to five.  

More kinds of rules could have been tried to mine from our dataset of 102 different 

signals, for example, by using more time constraints with the generated candidate peaks. 

The research came to halt when the association rules package for MATLAB was not vi-

able for sequential data. Fortunately, a viable replacement algorithm program package 

was found. This study would probably have been concluded more quickly if the prepro-

cessing phase were done with something other than MATLAB. For example, Python has 

several popular packages for mining sequential patterns or sequential rules. 

Conducting this kind of study for the first time, when there was no prior knowledge 

or experience about sequential pattern mining, made this endeavor challenging. 

The topics until the implementation phase were done well, but due to time constraints 

the actual results could have been studied much more than what was accomplished in the 

end. For example, implementing and using more sequential pattern algorithms, to mine 

frequent patterns. 

Over 1400 lines of MATLAB code, along with comments, was created all the way up 

to the point where all the candidate peaks were created, according to the criteria men-

tioned by Huang et al. [2013]. Afterwards the dataset was transformed to fit the criteria 

required by the SPMF-program [Fournier-Viger et al., 2016]. 
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