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As foreseen by numerous researchers, the worldwide demographic changes of the
elderly population in 2050 will be expected to grow by over 30% in the global pop-
ulation, which has urged to development of cost-efficient and effective automated
sound recognition systems to assist the well-being of the self-living older people
in their homecare environment. Consequently, in recent research in sound event
classification and detection systems, there has been increasing research on adapt-
ing the pre-trained model YAMNet because it can classify 521 sound event classes
trained with a large-scale AudioSet dataset. Despite the huge potential, the main
problem of using the YAMNet predictions was observed in our early investigation
difficulty in finding associated YAMNet classes for the target events predefined in
public benchmark acoustic datasets. This study aimed to investigate this class
mapping complication to adapt the YAMNet pre-trained model into a sound event
detection system with temporal information for monitoring abnormalities in resi-
dential homecare environments. A new Y-MCC methodology was developed based
on the Matthews correlation coefficient (MCC) to resolve the original YAMNet class
map and produce new class maps according to the MCC thresholds. The perfor-
mance of the Y-MCC system successfully demonstrated the SED system feasibility
by achieving the best F1 score of 59.46% in the overall micro-average on the SINS
dataset and class-wise F1-score performance of ‘sheep’ at 100% and ‘brushing teeth’
at 96.8% in ESC-50 and ‘vacuum cleaner’ at 94.7% in SINS, and ‘water tap running’
at 58.5% in TUT-SED 2016 Home datasets. This indicates the potential use of the
Y-MCC method for facilitating automated sound event monitoring systems in smart
homecare applications.

Keywords: Sound event detection system, MCC-based YAMNet class mapping (Y-
MCC), Matthews correlation coefficient (MCC), YAMNet pre-trained model, Smart
homecare application, TUT-SED 2016 dataset, ESC-50 dataset, SINS dataset.
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1 Introduction

In recent years, sound event detection (SED) systems have been broadly investigated
to support homecare for elderly people as a subdomain of the artificial intelligence
(AI) driven smart home market [1]. In terms of the share of the elderly in the global
population in the near future, a study conducted by the World Health Organisation
(WHO) has made predictions about the age older than 65 population, which will
rise rapidly in recent decades and expect to reach 38% of the global population,
approximately 2.1 billion people by 2050 [2]. Similarly, a European level of study
regarding long-term care challenges investigated over 35 countries has estimated
that the age group with over 80 population will be more than double by 2070 [3].
These studies have urged strategic action plans for the glowing demand for long-term
care services dedicated to aging people in the home and institutional care settings
because of critical indications of the lack of care resources and insufficient financial
support [2, 3]. This is why it should be necessary to emphasize that smart home
technologically driven systems, including automated SED systems, should be more
considerably investigated and researched to economically assist the well-being of the
homecare residents and their healthcare professionals [4].

In recent literature publications, there is much evidence that research environments
for the SED system development have been introduced for fostering to support the
needs of the homecare inhabitants. Especially the SED research community has been
considerably grown by the annual Detection and Classification of Acoustic Scenes
and Events (DCASE) challenges and public benchmark dataset providers, such as
the ESC-50 dataset, SINS database, and AudioSet dataset [5, 6]. Moreover, the
SED systems are evolving from the predefined sound detection functionality toward
semantic interpretation of the sound event scene to react to the system according to
the interpretation [1, 7]. Consequently, to develop the SED system for the current
and future needs of smart homecare applications, it could be beneficial to adapt
the YAMNet model suggested in [8], which has established hierarchically structured
sound event ontology with 521 classes trained and evaluated based on AudioSet
dataset. Furthermore, the YAMNet pre-trained model based on the MobileNet ver-
sion 1 depth-wise convolutional architecture, in comparison with the high computa-
tional complexity of the VGGish pre-trained deep neural network model also trained
on the AudioSet dataset, has a much smaller size of the weights in the number of
parameters (3.7M vs. 72.1M). Therefore, the YAMNet model with approximately
16 MB could easily be portable to systems with smaller computing resources, such
as mobile devices and the Internet of Things (IoT) devices.
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Closely looking at the performance of the YAMNet model-based classification sys-
tems in recent years has found that there has been remarkable performance im-
provement using different approaches. As a common approach used in the health-
care field, a study conducted using the YAMNet model in the pre-processing stage
of the COVID-19 cough classification system has achieved an accuracy of approxi-
mately 97%, over 14% significantly higher than their VGGish-based model [9]. And
another approach using the feature extraction functionality of the YAMNet model
for speech event recognition Alzheimer’s dementia classification system has been
introduced with 83% accuracy [10]. As a more advanced approach by retaining
and optimizing the YAMNet model for multi-event classification on three selected
public benchmark datasets, including ESC-10 and UrbanSound8K, has reached over
90% accuracy for both datasets, which was slightly higher than their VGGish-based
model [11].

However, in the YAMNet-based studies, less attention has been paid to unreliable
YAMNet class predictions, which could easily observe mostly the YAMNet model
testing with a publicly available acoustic dataset with its predefined classes. Our
early investigation of the YAMNet model showed that class mapping from YAMNet
521 classes to the multiple target classes in given datasets was often incredibly un-
trustworthy. Firstly, YAMNet predictions with top highest probability were often
from the classes belonging to the higher hierarchy, which might not be strongly
necessary to indicate the target sound event, for example, ‘Inside, small room’ for
the ‘eating’ target class. Secondly, YAMNet might produce multiple classes with
high probability, which seemed unrelated to the target class. For example, the tar-
get class of ‘vacuum cleaner’ could be predicted by YAMNet as multiple ‘Blender,’
‘Hair dryer,’ ‘Tools,’ and ‘Vacuum cleaner.’ Finally, these unpredictable class-label
predictions were more complex with real-life recording datasets and highly overlap-
ping multiple sound events, such as the TUT-SED 2016 Home dataset. As a result,
the performance of YAMNet was extremely poor. Therefore, additional studies are
needed to resolve the class association between the YAMNet and the target classes
specified in the public datasets.

This research proposes a statistical class mapping method based on the Matthews
correlation coefficient (MCC) for a sound event detection system to improve YAM-
Net performance for given target datasets containing essential sound activities for
homecare applications. The method, Y-MCC, consists of two channels and three
stages in each channel. The first channel aims to produce reliable MCC-threshold-
based class maps by computing correlations between the YAMNet predicted classes
and the given target classes. On the other hand, the second channel is designed to
produce system predictions with temporal boundaries based on the MCC-threshold-
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based new class maps, which replace the original YAMNet class map. Therefore, the
performance of the Y-MCC method can be evaluated for the given dataset according
to the SED system evaluation tool used in the DCASE Challenge. Consequently, our
results indicate that the Y-MCC system has achieved close to optimum class-wise
performance scores compared to their baseline systems of carefully selected three
benchmark datasets; TUT-SED 2016, ESC-50, and SINS datasets contain a total of
70 sound event classes mostly related to monitoring indoor homecare activities.

The remaining part of the thesis paper proceeds as follows: Chapter 2 presents
the theoretical background of SED systems and previous related work for Smart
Homecare applications, reviews regarding commonly used acoustic datasets for SED
system training and evaluation, and further details of the YAMNet architecture
and performance evaluation methodologies. Chapter 3 presents the procedures and
processing steps of the proposed Y-MCC methods in detail. The class mapping,
performance results, and analysis of the Y-MCC system using the three benchmark
datasets are presented and analyzed in Chapter 4, and a conclusion is given in
Chapter 5.
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2 Theoretical Background

This chapter presents the most relevant publications that have been the basis of
this study using the YAMNet pre-trained model for homecare applications. The
first Chapter 2.1 explains the fundamental theories for developing the SED system
for smart homecare applications. Next, Chapter 2.2 discusses the SED system design
aspects of adapting the YAMNet pre-trained model for the SED system that could
optimize for achieving adequate performance by understanding hyperparameters
defined in the model and relevant feature extraction methods. Finally, Chapter 2.3
elaborates on benchmark datasets highly recognized as important for domestic SED
system development and standardized evaluation methodologies for SED system
performance evaluation.

2.1 Sound Event Detection System for Smart Homecare

This chapter introduces sound event detection system development for smart home-
care applications that could support elderly people living in assisted environments
and their healthcare professionals. Firstly, review the recent trend of the smart
homecare applications in the acoustic event recognition field and briefly discuss the
sound characteristics and how these are related to sound features and tasks of the
SED system.

2.1.1 Smart Homecare Applications

Sound events in older people’s homes might differ from those commonly observed
in urban life. For example, instead of sound events widely regarded in urban daily
life, such as children shouting and people walking, they might be replaced by sound
events like silence and slow footsteps assisted by a walking bike in the elderly home-
care facilities. Notably, the elderly are highly vulnerable to reacting to protect their
well-being by themselves due to physical disability or psychological problems [12].
Therefore, as a key driver of the Homecare market, the SED system offers plenty of
benefits that can contribute to the safety of the care receivers and the efficiency of
their care providers if they are connected through the network to receive alarms for
emergencies [1, 4].

The SED system for older people can be categorized depending on whether the
system is used in institutions like nursing homes or individual homecare facilities.
One is the acute care domain, where the SED system is applied to nursing home
patients, whereas the homecare domain, where the SED system is used to assist in
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self-management of the elderly living in their home environment [13]. The basic
design concept of the SED system could detect pre-defined abnormal sound event
classes to trigger alarms for homecare patients or healthcare professionals, such
as falling or calling for help as a most interesting sound event for the homecare
domain [14, 15]. The more recent trend of the SED systems investigated to pro-
vide advanced functionality on top of the pre-selected sound event detection called
context-aware functionality, which could be built on the SED system to provide sit-
uational information [13, 16, 17]. For example, specific location (bedroom or bath-
room), situational context (meal or shower), and event duration; this situational
information could be more accurate when multiple ambient sensors are installed in
the homecare or nursing home environment. Unlikely wearable or mobile devices,
ambient sensors could be preferred for monitoring the elderly homecare facilities
because they reduce the burdens of the elderly people no need to wear sensors and
allow them to do natural daily activities [18].

2.1.2 Acoustic Features for Sound Analysis
Understanding sound for sound analysis starts with human perception of sound,
which requires human reaction based on interpreting sound events. Human listeners
could receive waveforms of sounds produced by many different objects traveling
through mediums, such as air, liquid, and solid objects [19, Chap. 3, 20]. The
perception of sounds for human listeners involves complex auditory systems and
brain regions. In the human auditory system, as illustrated in Figure 2.1, the
waveforms of sounds propagate from the external ear to the inner ear, followed
by the peripheral auditory structures (outer, middle, and inner ear, including the
cochlea and auditory nerve) [20–22]. After that, perceptual information, such as
pitch, timbre, and spatial location, is processed in the brain’s auditory circuits (from
cochlear nuclei to the auditory cortex) to transform the sounds into encoded sound
information [23]. Subsequently, it is further analyzed by isolating essential sounds
from background noise and identifying them as sound sources or environmental
indications [19–21]. Furthermore, the auditory system in the brain regions interprets
the acoustic scene in a temporal context, which could lead the human listener to
conduct appropriate behaviors or reactions according to the interpretation of the
sound events [21, 23, 24].

The sound signal recorded with microphones can be characterized by two properties:
frequency and amplitude [26]. Frequency is the number of sinusoidal waves per
second that determine the sound pitch, from low to high, and its scale is measured
in Hertz (Hz). Hearing capability varies significantly between individuals; hence,
those with a sensitive auditory system can listen to frequencies ranging from 20 Hz
to 20 kHz [23]. And the other attribute of a sound signal is the amplitude of the
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Figure 2.1 The physiology of the ear concerning human hearing consists of three periph-
eral auditory structures: outer, middle, and inner ear, that are connected to integrate in-
formation into perception in the auditory cortex in the brain [22]. Image adapted from [25]
under the Creative Commons Attribution license.

vibration, which has a subjective correlation with loudness perceived differently by
different individuals. The objective measure of the sound amplitude scale is called
sound pressure level (SPL), computed in decibels (dB). Ordinary humans can hear
the sound range of amplitudes from 0 to 120 dB.

To analyze the acoustic signal, acoustic features of sound can be represented in
different domains, as many researchers suggested, it can be applied based on the
application of the sound analysis system [27, p. 71-114, 19, Chap. 5, 28, Chap. 3]. Es-
pecially time domain, frequency domain, and time-frequency domain signal analysis
are very well-known. First, for time-domain signal analysis, the signal is repre-
sented by amplitude over a specific duration of time scale. The time-domain signal
representation is a sum of sine waves with phase and amplitude information. In
addition, the time domain signal saved in computing devices is a digital format
sampled with a sampling rate (SR, or fs) by taking the samples according to the
sampling theorem of Nyquist frequency [29, Chap. 4]. The Nyquist frequency is to
avoid the frequency aliasing phenomena by determining the SR to be double the
rate of the maximum frequency sinusoidal present in the audio signal [29, Chap. 4].
Second, the frequency-domain signal analysis called power spectral density (PSD),
or power spectrum (PS), can be obtained by taking power, or square, of the absolute
value of a discrete Fourier transform (DFT) of the time domain signal [30]. In prac-
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tice, the DFT computation can be obtained using the most well-known and efficient
algorithm called fast Fourier transform (FFT) over the finite length of the input
waveform signal [29, Chap. 3]. The PSD can be represented with a decibel scale
(dB) for the magnitude of frequencies presented in the sound signal that provides
more clear acoustic properties than the time-domain analysis. However, a draw-
back of PSD estimation is that it does not contain time information due to PSD
computation over whole signal samples. Finally, the time-frequency domain repre-
sentation, a spectrogram of 2-dimensional representation, is obtained by blocking
and windowing the signal into short analysis frames and then applying the discrete
Fourier transform to each frame. Because it preserves time information and spectral
magnitude, it is a widely used feature extraction method for machine learning.

Figure 2.2 visualizes the three domains of audio signal analysis using a 10-second
audio clip taken from the DESED dataset provided by the DCASE 2019 Challenge
task 4 [31], which contains doorbell ringing sounds overlapped with dog barking
sounds in a domestic environment. The time domain in Figure 2.2 (a) shows the
signal amplitude over the 10 seconds, sampled with a sampling rate of 44.1 kHz. It
can be noticed that the two sound sources have different amplitude ranges (smaller
for alarm bell ringings and larger for dog barking), with events occurring at time
points and their duration; however, it could be hard to differentiate two sound events
when they are overlapped. On the other hand, the PSD of the frequency-domain
representation, Figure 2.2 (b), can easily distinguish two sound events by estimat-
ing the frequency of the sound sources. The PSD estimation using a NumPy library
function of fast Fourier transformation (FFT) [32] decomposed the audio wave sig-
nal into a discrete frequency range [0, 22050] over 10 seconds. The spectrogram
representation of the time-frequency domain, shown in Figure 2.2 (c), was obtained
by applying logarithm operation after performing the short-time Fourier transform
(STFT) function [33] to extract time-frame-wise frequency component representa-
tion with parameters of 1024 frame size and 512 hope length. Using the logarithmic
spectrogram, it can be easily noticed that the alarm bell ringing events with red
horizontal lines contrast the dog sounds with a higher power of magnitude as shown
by many vertical lines, indicating a wider frequency range for dog sounds. Further-
more, it is clear to recognize two different sound events overlapping, for example, at
4.5 seconds. Therefore, the 2-dimensional view of the spectrogram analysis provides
a better possibility to analyze the sound sources even though overlapping sound
events with time and frequency information than the time domain and PSD estima-
tion. Various time-frequency domain feature extract methods used in SED systems
are discussed further in Chapter2.2.3.
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Figure 2.2 Visualization of three audio signal analysis domains using an audio sample
from DESED dataset provided in the DCASE 2019 Challenge task 4 [31]: (a) time-
domain, (b) frequency-domain, and (c) time-frequency domain with a log-scale frequency
representation. The 10-second duration of the audio sample contains doorbell ringings
(starting from approx. 2.5 seconds) and dog barking sounds overlapped (starting from
approx. 3.5 seconds) in a domestic environment.

2.1.3 Sound Event Detection System

Sound event detection (SED), also known as audio event recognition (AER), is a
well-established research area in the signal processing field aiming to research and
develop automated sound event detection systems that can produce class labels with
event occurrence temporal information in real-time or recorded audio streams [34].
The event classes of everyday sound in the urban environment can be used in var-
ious sound categorization methods reflecting cognitive psychology into the SED
system [19, Chap. 7]. As an example illustrated in Figure 2.3, it is common that
sound categorization can be hierarchically divided by the source of the sound from
general to specific. For example, the sound source of humans and animals belongs to
the higher level of animate agents; in comparison, ’door’ and ’window’ are grouped
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under the solid sound source branched from inanimate agents. Moreover, the action
descriptors are grouped under the subcategories of the sound sources, such as ‘yell’
and ‘cough,’ which belong to the vocalization of human stationary sound. Conse-
quently, it is more precise and apparent when the source and action descriptors are
combined, such as children shouting, door opening and car engine accelerating. One
of the studies has suggested that the categorization for everyday sounds could be
based on multiple descriptors: action, source, and context [19, Chap. 7]. The action
descriptors are often related to daily human habits, such as cooking, eating, clean-
ing, exercising, and sleeping. And using the three descriptors of action associated
with the source and context of the sound helps humans to perceive sound events and
analyze the information for what actions are required for the situations [19, Chap. 7].

Sound sources

Animate agents

Animals

Human

Action

OtherClap

Alimentation

Drink

Chew

Bite

Locomotion

Swim

Run

Walk
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Body actions
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Figure 2.3 An example of the taxonomy of everyday sound presents relationships of
sound sources and actions categorized in multiple depths for helping to understand human
perception of sound in the context of an urban environment, adapted from [19, Chap. 7]

Figure 2.4 depicts that a simplified workflow of the polyphonic SED system consists
of three stages: pre-processing, machine learning algorithms, and post-processing.
In the first pre-processing stage, the SED system processes audio recordings and
transforms their temporal characteristics into time-frequency spatial features. In
the next step, the core part of the SED system employs a machine learning algo-
rithm to produce predictions of recognized sound events from the input features.
Finally, post-processing can perform specific tasks to analyze the predictions and
make human-readable output. As a polyphonic SED system illustrated in the fig-
ure, the system output can contain multiple class labels for the same time slices
marked with the onset and offset time boundaries. For instance, three sound events
occurred at the same time, close to the end of the input audio clip with class labels
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of “Object impact,” “People walking,” and “Door closing.” As explained earlier, in
this example, sound event class labels use two descriptors of an action word with
an animate or inanimate agent of the sound source. As can be seen, this is the key
challenge of the SED system, especially in processing real-life audio recordings to
deal with overlapping sound events [35, 36, 19, Chap. 8]. In contrast, a monophonic
SED system can detect only one predefined sound event label, producing the most
prominent sound event in each temporal region [19].

Input
Audio wave

Polyphonic Sound Event Detection System

Water tap
running

Object
impact

People
walking

Door
Closing

Time0 sec 130 sec

Output
Sound event labels

with onset and offset

Figure 2.4 A simplified workflow of the polyphonic SED system shows the relation-
ship between the input waveform data processed through machine learning algorithms and
produced output with multiple event labels, some overlapping, with temporal information.

2.1.4 Tasks of Sound Event Detection System

Generally, tasks of SED systems introduced in the DCASE challenges have changed
accordingly to support its community and the SED system development. The com-
petition is sponsored by IEEE Audio and Acoustic Signal Processing Technical Com-
mittee and provides platforms for baseline systems, public datasets, standardized
evaluation tools, and benchmark results [37]. The first DCASE challenge was orga-
nized in 2013, becoming an annual event in 2016. Most top-ranking submissions are
considered state-of-the-art machine learning methods in this field of study [5, 37].
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The initial fundamental four challenge tasks introduced in the DCASE 2016 chal-
lenge1 were acoustic scene classification, domestic audio tagging, sound event de-
tection in synthetic audio, and sound event detection in real-life audio [5]. The
classification task is an entry point of the challenge, which needs to produce a single
class label for the most prominent sound event per audio recording. On the other
hand, the audio tagging task need to find multiple event labels per audio recording.
Unlike previously discussed SED tasks, the classification and tagging tasks do not
necessarily produce temporal information for the detected event labels.

SED task with the synthetic audio dataset as a counterpart of the real-life audio
dataset can benefit the SED system because it has produced a controlled way that
keeps balance among classes and reliable annotations. Conversely, the real-life audio
dataset could be unbalanced class-wise and often has inadequate class labels and
onset and offset annotations. The real-life annotation made by human annotators
could be a significantly challenging task to annotate precisely, especially for over-
lapping events [5, 36]. Consequently, some degree of mismatching information in
reference files to the real-life audio dataset might affect to decline in the performance
of the machine-learning algorithms.

Classifying domestic activities recorded with multi-channel sensors has been intro-
duced in the DCASE 2018 challenge [38]. The dataset used in the challenges was
taken from the SINS database, which included the sound event from the everyday
daily activities of a person living in a home setting and recorded for one week using
multiple sensors, including a linear microarray [39]. With the multi-channel dataset
recorded in the living room and kitchen, this challenging task enhanced the concept
of the SED system from a basic event detection task toward context awareness in
monitoring home activities.

1https://dcase.community/challenge2016/

https://dcase.community/challenge2016/
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2.2 Deep Neural Networks for Sound Event Detection

This chapter explores important aspects of the SED system using the YAMNet
pre-trained model, firstly discusses a recent trend in the YAMNet-based systems
that have achieved significant performance on their various sound event detection
tasks after that YAMNet model architecture and its hyperparameters are addressed.
Lastly, various feature extraction methods and main aspects from the time-frequency
domain for deep neural network models are explained because of their importance
in the SED system’s performance considering the SED system applications.

2.2.1 YAMNet Pre-trained Deep Neural Networks

Pre-trained Models on AudioSet Dataset

YAMNet2 and VGGish are pre-trained deep neural networks (DNN), which were
trained on the large volume of AudioSet dataset published by Google researchers [8].
These two breakthrough pre-trained models trained on sound samples extracted
from over 2 million YouTube videos. A trend of recent studies showed an increasing
adaptation of the pre-trained models in many research areas. However, it is vital to
know the advantages of the YAMNet pre-trained model against the VGGish model,
which might explain the selection of the YAMNet for this study.

As presented in Table 2.1, despite the two models trained on the same AudioSet
dataset, YAMNet has fewer network parameters used in its CNN core networks than
VGGish, 3.7 versus 72.1 million, respectively. Moreover, the size of the VGGish
model over 500MB is quite huge among the traditional pre-trained models because
its network architecture is based on the traditional CNN model of VGGNet [40].
Conversely, the size of the YAMNet model is much smaller, approximately 16 MB,
because it was built based on the first version of MobileNet [41] designed for mobile
applications. The MobileNet employed depthwise-pointwise separable convolutions
convolutional networks, which reduced the number of parameters and made it easily
portable to systems with limited computational resources and latency problems,
such as mobile and IoT devices.

YAMNet-based Deep Neural Network Systems

To understand the benefits of using the pre-trained YAMNet for sound recogni-
tion tasks, it is crucial to analyze recent research on the YAMNet-based systems
relevant to homecare applications. Different and meaningful approaches to YAM-
Net utilization have been explored for various needs of applications, as summarised

2https://github.com/tensorflow/models/tree/master/research/audioset/yamnet

https://github.com/tensorflow/models/tree/master/research/audioset/yamnet
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Table 2.1 A comparison of pre-trained deep neural network models in connection with
YAMNet.

Pre-trained Model Dataset Parameters Input Classes
MobileNet-v1 [41] ImageNet 4.3M 3-D vector (224x224x3) 1000
VGGish [8] AudioSet 72.1M log-mel spectrogram 527
YAMNet [8] AudioSet 3.7M log-mel spectrogram 521

in Table 2.2. These works of literature show four different approaches to utiliz-
ing YAMNet for classification, detection, and transfer learning tasks to improve its
accuracy for given experimental datasets.

Table 2.2 Recent publications based on the YAMNet pre-trained model for domestic
sound event classification.

Reference YAMNet YAMNet Model Dataset
Method Approach Class Accuracy(%)
[9] Detection of Classification Cough 97.59 COUGHVID
COVID-19 cough COSWARA

VIRUFY
[10] Classification of Feature extraction Speech 83.33 CTP audio
Alzheimer’s dementia
[42] Detection of Feature extraction Wheeze, Crackle 81.49 ICBHI-2017 challenge
abnormal respiratory sound
[11] YAMNet retrained Optimization Multi-classes 96.16 UrbanSound8K

91.25 ESC-10
100.00 Air Compressor

The first approach in [9] applied YAMNet’s classification approach in the pre-
processing phase of their COVID-19 cough detection downstream method. In their
experiment, the identified cough segments by the YAMNet model were collected and
processed to the classification method called ViT; otherwise, non-cough segments
such as silence or speech segments were removed. Implementing the extracting seg-
ments with only the cough event method made their ViT classification model more
robust, which classify healthy or symptomatic decision based on the fractal image of
the pre-processed cough segments. It obtained higher accuracy scores of over 97%
on COVID-19 symptomatic class detection evaluated on the three public COVID-19
datasets: COUGHVID, COSWARA, and VIRUFY. The authors emphasized that
their ViT method outperformed approximately 14% of previous research based on
a fine-tuned VGGish model on the COSWARA dataset [43].

The second approach proposed in [10] confirmed the effectiveness of the YAMNet
pre-trained model compared to MobileNet for classifying Alzheimer’s disease (AD)
based on input from a Cookie Theft Picture (CTP) audio dataset. The similarity of
speech data in AudioSet used for training YAMNet and CTP audio dataset might
be improved the performance of YAMNet. Furthermore, the CPT dataset has a
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relatively small amount of speech samples. Their downstream model of deep neural
network needed to be supported by the learned features from the YAMNet pre-
trained model, which was specially trained on a large scale of speech data to bring
benefits of avoiding overfitting problems. In their proposed model with the YAMNet
pre-trained model, the best accuracy at 83.33% to classify AD and non-AD exceeded
approximately 4.16% more than the YAMNet without trained weights and 4.25%
higher than the MobileNet pre-trained model.

In the same way, the approach of feature extraction from the YAMNet pre-trained
model was applied to a downstream model suggested in [42]. They chose to uti-
lize the YAMNet model because the dataset provided by ICBHI challenge [44] was
small and unbalanced to detect abnormal respiratory sounds, such as wheezing and
crackling. However, combining two feature extraction models, one based on YAM-
Net and the other based on the temporal coefficients extracted from the Discrete
Wavelet Transform method, achieved a marginally better performance than the sin-
gle YAMNet-based model: ICBHI-score of 81.49% vs. 75.88%, respectively.

Finally, the pre-trained YAMNet model can be retrained and optimized for its pa-
rameters to perform classification task better with specific datasets, referred to as
transfer learning. Researchers proposed this method mentioned in [11] explored
the transfer learning for three datasets: UrbanSound8K (10 classes from outdoor
sounds, inc. ’Dog bark’ and ’Car horn’), ESC-10 (10 classes, inc. ’Clock tick’ and
’Person sneeze’), and Air Compressor dataset (8 classes from industrial sound, inc.
’Flywheel’ and ’Rider belt’). They have optimized YAMNet and VGGish models for
the three datasets by using nine different combinations of hyperparameters of the
pre-trained models, for instance, with Adam optimizer to set mini-batch sizes with
64, 128, or 256, and maximum epochs at 10. The performance of the YAMNet over
the three datasets achieved 96.16%, 88.06%, and 100% accuracy, respectively. The
fine-tuned and retrained VGGish model with the same hyperparameters performed
slightly below the retrained YAMNet model. However, their experiment of the two
retrained sound-based models exceeded three image-based pre-trained models, such
as GoogleNet, SqueezeNet, and ShuffleNet.

2.2.2 YAMNet Network Architecture

The YAMNet network architecture can be characterized as a series of depth-wise
and pointwise convolutional neural network blocks that are layered with 14 blocks
of hidden deep neural networks (DNNs) [8], as illustrated in Figure 2.5. YAMNet
extracts meaningful features across the DNNs layers by employing this network
architecture. Furthermore, the number of parameters of YAMNet is 3.7 million,
which is significantly reduced compared to traditional convolutional neural networks
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(CNNs) used in VGGish. These depthwise-separable convolution blocks are fully
connected from the input and output layers, followed by a global average pooling
layer [41]. In each depthwise-separable convolution block, batch normalization and
rectified linear activation function (ReLU) layers are conducted after each depthwise
convolution layer and pointwise convolution layer [41]. Finally, a nonlinear logistic
sigmoid activation function estimates the 521 class-membership probability.
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Figure 2.5 Flows of the YAMNet deep neural network architecture based on MobileNetV1
[41] employed blocks of depthwise-pointwise separable convolution layers followed by the
final global average pooling to produce 521 class membership probability using sigmoid
activation function, adapted from [8].

An S-shaped logistic sigmoid function as an activation function used in the YAMNet
DNNs leads to non-linear decisions, which can be represented with the positive
probability scores ranging in [0, 1] for each class label of 521 multiple events [45].
For example, if the results of the sigmoid denoted as f(x) = 0.7 for class number
10, ’children shouting,’ meaning that the chance of the input sample belonging
to class 10 is 70 percent. The sigmoid function f(x) = 0.7 can be calculated as
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f(x) = P (y = 10|x;w) = 0.7, where given a feature x weighted by w [46]. The
sigmoid function formula is defined as:

f(x) =
1

1 + e−x
, (2.1)

where x is obtained from weights and sample features combined by the classifier’s
fully connected layer, i.e., x = w0x0 + w1x1 + ...+ wmxm = wTx [46, Chap. 3].

For feature extraction, YAMNet uses the log-mel spectrogram method that can be
described as following procedures and hyperparameters [8]:

• Resampling all input audio with sampling rate 16 kHz mono

• Using the magnitude of the input signal and applying a short-time Fourier
transform (STFT) to convert the mono resampled signals into a time-frequency
linear spectrogram set with 25 ms window size, hop-size with 10 ms, default
Hann window filter.

• Simulating triangular Mel filterbank with 64 Mel frequency bands and fre-
quency range to cover with 125 Hz and 7500 Hz as the minimum and maxi-
mum, respectively.

• Applying logarithm multiplication into the Mel-spectrogram to produce the
log magnitude of the Mel spectrogram.

• Divide the feature obtained from the log-mel spectrogram into samples with
0.96 seconds overlapping with 0.48 seconds, producing a patch with a matrix
of 96 frames and 64 Mel bands.

The outcomes of the feature extraction are patches converted and divided from the
input waveform into a log-mel spectrogram covering 0.98 seconds of time frames
per patch. These patches are delivered to the YAMNet classifier model based on
MobileNetV1. The classifier’s output is represented with probability for 521 classes
individually called scores, Sp ∈ R1×n where Sp denoted a matrix with 1 row and
n=521 columns representing scores of a patch with probability values ranged [0, 1].
Figure 2.6 visualized these three steps of YAMNet data handling, starting from in-
put audio, then feature extraction to the log-mel spectrogram, and class predictions
with the top-5 highest scores among the 521 classes.

2.2.3 Feature Extraction for Deep Neural Networks

Feature extraction is obtaining relevant and distinguishable characteristics from the
given input audio signal. The machine learning-based SED classifier learns from
the feature-extracted data, significantly impacting how the classifier performs for



17

0:00 0:50 1:40 2:30 3:20 4:10
Time (m:s)

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Am
pl

itu
de

0 5000 10000 15000 20000
Spectrogram Frame

0

10

20

30

40

50

60

M
el

 B
an

d

0 500 1000 1500 2000
Time Frame

Silence

Inside, small room

Door

Drawer open or close

Sliding doorYA
M

Ne
t P

re
di

ct
io

n 
(To

p-
5)

Figure 2.6 YAMNet inference visualized [8] with an audio sample file taken from
TUT-SED2016Home dataset [47]: (Top) Audio input shown as a waveform in time-
domain down-sampled from SR=44.1kHz to SR=16kHz, (Middle) the log-mel spectrogram
(mel band=64) of the feature extracted from the input waveform, (Bottom) Top-5 highest
class predictions by the YAMNet model, where the probability score has been color-coded
as the darker black color indicating higher probability. As can be seen, the highest scores
of the YAMNet predictions have mostly ’silence’ for the entire audio recording, while very
short ’door’ related events have been recognized in the middle with a medium probability.

its prediction [48]. The feature extraction process involves converting the raw audio
signal in waveform into feature vectors, representing acoustic characteristics in a
much more compact size and form than the waveform, reducing the overload of the
computing resources [48, 49]. For environmental sounds or human voices, capturing
time-variant sound characteristics of the feature extraction is essential, which can
be done in the time domain [27, 49, 48]. The feature extraction methods used in
the temporal domain do not require transformation. Still, they can obtain directly
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from the temporal waveform, such as Zero-crossing rate (ZCR), signal power, and
autocorrelation coefficients [48]. However, a trend of recent SED system studies has
shown great performance improvement using the time-frequency-domain features
such as human perception-based Mel spectrogram and log-mel spectrogram [5, 48]. It
has been more strongly moved toward the log-mel energy feature extraction method
as used by most participants in the DCASE 2022 challenge SED task in domestic
environments [31]. The visualized feature characteristics of the feature engineering
methods are illustrated in Figure 2.7, which shows how various feature extraction
methods can be performed in the time-frequency domain using the input audio
recording, shown in Figure 2.7 (a), a 5-second audio clip of vacuum cleaning sound
event taken from the SINS dataset [39].

To closely examine feature extraction methods shown in Figure 2.7, the audio sig-
nal analysis techniques have heavily involved frequency-domain feature extractions,
which require transforming the waveform audio signal (a) into time-frequency rep-
resentations (b, c, d, e), which can be performed using the DFT method mostly
well-known as a short time Fourier transform (STFT) technique. Moreover, the
STFT technique can yield frequency features and time-variant representation by
dividing the audio recording into short segments [27, 28]. The traditional feature
extraction methods for the SED system commonly used Mel-frequency cepstral co-
efficients (MFCCs) shown in Figure 2.7 (e), which was used in more than half of
submissions of SED task of the DCASE 2016 Challenge for real-life audio3. How-
ever, the recent trend has moved toward the log-mel spectrogram, or log-mel en-
ergy [19, Chap. 3, 13, 31]. The log-mel energy, Mel spectrogram, and MFCCs could
be seen as methods that mimic the human auditory system since they have been pro-
cessed by applying triangular shapes of Mel frequency bands, scaled to imitate the
non-linear perception of human hearing critical frequencies. As seen in (d) Mel spec-
trogram, the lower frequency range is more emphasized and unevenly spaced than
(b) linear-frequency power spectrogram with evenly spaced frequency ranges from 0
to 10 kHz. Therefore, those perceptually motivated feature extraction methods have
proven to impact robust SED system performance by discarding higher frequency
information and larger frequency space for frequency bands closely related to human
hearing perception [50, 51].

Generally, the feature extraction process for the time-frequency domain methods
begins with frame blocking and windowing of the input waveform audio data. The
primary purpose of this stage is to preserve the temporal information when trans-
forming the audio signal into the frequency domain. It could be done by splitting

3https://dcase.community/challenge2016/task-sound-event-detection-in-real-lif
e-audio

https://dcase.community/challenge2016/task-sound-event-detection-in-real-life-audio
https://dcase.community/challenge2016/task-sound-event-detection-in-real-life-audio
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Figure 2.7 Various time-frequency domain feature extraction methods obtained from a
5-second audio clip taken from the SINS dataset [39], mainly containing vacuum cleaning
sound event started approximately 0.5 seconds and lasted until 5 seconds. Figure extraction
methods from top to bottom: (a) Waveform audio signal in the time domain, (b) Linear-
frequency spectrogram in the time-frequency domain, (c) Log-frequency spectrogram in the
time-frequency domain, (d) Mel spectrogram (mel bands=128, hope length = 512) in the
time-frequency domain, and (e) MFCC feature representation (number of MFCC = 40).

the total number of samples into small-length analysis frames and applying window
functions to smooth the boundary of the frame signals edge [19, Chap. 2]. For ex-
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ample, the YAMNet feature extraction employed a frame size of 0.96 seconds, called
patch, and Hann window function by default after resampling the input signal to 16
kHz [8]. If the frame blocking is not performed, the average of the whole input sig-
nal will not reflect the time-varying sound information [27]. In addition, a hop size
smaller than the desired window size controls the window moving by overlapping
with the next consecutive frame, called the overlap-add process, as YAMNet speci-
fied a 0.48-second hop size by default [8]. Therefore, using the techniques of frame
blocking, windowing, and hop size moving signal analysis, the waveform signals can
be transformed by using STFT operation to time-frequency representations.

To elaborate the feature extraction process using mathematical notations, a wave-
form input signal x(n) with length N can be transformed into a frequency domain
using the DFT function for the whole input signal known as the PSD; thus, no time
information is extracted. The DFT algorithm can be written as follows:

Xfreq[k] =
N−1∑
n=0

x[n]e−j 2π
N

nk, (2.2)

where output in magnitude of frequency components Xfreq[k] frequency indices of
k = 0, 1, ..., N − 1 corresponding to evenly dividing the unit circle in [0, 2π] into
N intervals according to time domain N length of input signal samples denoted
as x[n], with n = 0, 1, . . . , N − 1 [28, Chap. 3, 29, Chap. 3]. The DFT function in
equation 2.2 can be rewritten as a function of cos and sin in the complex sinusoidal
plane:

Xfreq[k] =
N−1∑
n=0

x[n]{cos(2π
N

nk)− j sin(
2π

N
nk)}

=
N−1∑
n=0

x[n] cos(
2π

N
nk)− j

N−1∑
n=0

x[n] sin(
2π

N
nk),

(2.3)

where this equation indicates that the coefficients of the DFT are the complex
numbers of the real and imaginary unit representing the magnitude of the sinusoidal
frequency present in the given input signal denoted as x[n] [28, Chap. 3]. Then, the
power distribution of the DFT in equation 2.2 and 2.3 is called the power spectral
density (PSD), which can be calculated by taking the power of the absolute value
of the DFT as follows [30]:

PSD = |Xfreq[k]|2 (2.4)

On the other hand, the STFT feature extraction method provides more useful infor-
mation than the DFT method by using the frame blocking and windowing techniques
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applied to the input signal, which are split with a short length of the desired frame
size and moved by the specified hop length. The most commonly used windowing
functions are Hann, Hamming, or Blackman window functions used to smooth the
signal and prevent discontinuity between consecutive frames [48]. And every short
windowed frame is transformed into a frequency spectrum by computing with the
DFT function, which in practice it is calculated using a fast Fourier transform (FFT)
operation suggested by Cooley and Tukey [52]. The FFT is known as the most effi-
cient way of computing DFT by reducing the computational complexity of the DFT
from N2 to NlogN [52, 53]. The STFT technique to apply the FFT operation to
each short frame [54] could be expressed as:

X[k,m] =
N−1∑
n=0

ω[n]x[n+mH]e−j 2π
N

nk, (2.5)

where X[k,m] as time-frequency matrix obtained for frequency components of k =

0, 1, ..., N−1 for temporal frames m = 0, 1...,M−1 by multiplying the DFT function
and a particular window function ω[n] to a N length of frame data samples x[n],
with n = 0, 1, ..., N − 1, starting at mth hop position [48]. The term spectrogram
is defined as a matrix representing STFT-based time-frequency energy features in
2-dimension, as shown in Figure 2.7 (b), where time frames are shown in the x-axis
and frequency bands in the y-axis [48, 49].

The STFT operation using the equation 2.5 is considered linear frequency repre-
sentation because frequency bins are equally spaced. However, the human auditory
system employs a non-linearity of frequency scales; therefore, mel-filterbank could
be utilized to change the linear frequency scale suggested in [55] to mimic the fre-
quency of human perception [48, 49]. Because the human auditory system is more
sensitive to low-frequency bands than high-frequency bands, the mel-filterbank, as
a triangular shape, takes narrower bands in the low-frequency and wider bands in
higher frequency to map with frequency Hertz. It converges 1000 mel frequency to
1000 Hertz frequency. The mel scale conversion from the linear frequency in Hertz
is computed as follows:

M = 2595 log10 (1 +
f(Hz)

700
), (2.6)

where M refers to the frequency with the Mel scale frequency, converted from f(Hz)

represented frequency in Hertz by multiplying it with the constant value and taking
the logarithm [55]. The triangular shape of the mel-filterbank can be designed
to convert a specified frequency range in Hz to the evenly spaced number of mel
bands that are usually application-dependent parameters. For example, YAMNet
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uses 125 Hz and 7500 Hz as the minimum and maximum frequency range to be
converted to 64 mel bands [8]. Mel-scale filterbank magnitude response, called
mel spectrogram, for the STFT frame denoted as X[k,m] in equation 2.5 can be
computed as follows [50, 56]:

Smel[k,m] =
N−1∑
i=0

|X[k,m]|2Ψi(k), (2.7)

where Smel[k,m] mel spectrogram matrix for the STFT magnitude of a frame
at mth position is the sum of all N number of mel-band energy with in-
dex i, i = 0, ..., N − 1, by multiplying the ith triangular-shaped mel-filterbank de-
noted as Ψi(k) to the STFT power spectrum. For example, the mel spectrogram is
illustrated in Figure 2.7 (d).

The log-mel spectrogram is a powerful representation widely used for the recent SED
systems [49, 57], which employ advanced deep neural networks and also YAMNet
pre-trained model [8]. The log-mel spectrogram takes the log magnitude of the mel
spectrum defined as follows:

Slogmel[k,m] = 10 log10(Smel[k,m]) (2.8)

Finally, the MFCC, as shown in Figure 2.7 (e), has been used for speech recognition
and music classification for decades. It is extremely effective for traditional classifiers
like Gaussian mixture models (GMMs), thus, used for the GMM model baseline of
the TUT-SED2016 dataset [47]. The MFCC is in condensed form, decorrelated the
log-mel spectrum using Discrete Cosine Transform (DCT) [27]. The MFCCs could
be computed as follows:

Mfcc[c,m] =

√
2

K

K−1∑
k=0

Slogmel(k) cos(c(k − 1

2
)
π

K
), (2.9)

where K is the number of Mel frequency bands, k=0, 1,..., K-1 is mel frequency
band index, and Slogmel(k) is the log mel energy of mth frame and c is the index of
the cepstrum coefficient, c=0,1,...,C-1 [48, 58].
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2.3 Evaluation Methodology for Sound Event Detection

This chapter discusses datasets especially common for the SED system development
for homecare applications and used for performance evaluation. It is important
to understand and carefully select relevant benchmark datasets for the SED sys-
tem development that can lead to the transparency of the system’s performance.
Therefore, it could be objectively compared the performance of the system to other
systems in the same research field. After the dataset selection, standardized SED
system evaluation methodology, performance metrics, and SED toolbox used in the
DCASE challenges for generating automated SED system performance metrics are
introduced and further discussed.

2.3.1 Benchmark Datasets

Audio benchmark datasets are packaged mainly with audio data and metadata (an-
notation, reference, or ground truth). Audio data contains audio recording files, on
the other hand, the metadata provides sound event labels for the audio recordings.
The freely available audio benchmark datasets focused on domestic sound events are
listed in Table 2.3. The sound event labels are descriptions of sound events presented
in audio recordings. Because labeling is somewhat subjective, combining the sound
source agent and action descriptors is often suggested to avoid misinterpretation of
the sound events [19, Chap. 6].

Depending on the benchmark dataset’s purpose or task to solve by the system,
the metadata can be provided with single or multiple class labels with or with-
out its time boundary information. Firstly, it can be categorized as a weakly and
strongly labeled dataset depending on the existence of the temporal information in
the reference file. The weakly labeled dataset without onset and offset of the time
boundaries is considered relatively easy to produce, for example, UrbanSound [59],
UrbanSound8K [59], and ESC-50 [60], datasets mentioned in Table 2.3. It is used
mostly in sound scene classification for single class detection and sound event tag-
ging for predicting none or more than one presence of multiple class labels [61].
On the contrary, the strongly labeled dataset with time boundaries, such as the
events’ onset and offset, is commonly used for SED system development. Still, it
is relatively difficult to produce regarding the time and effort of annotations, like
the TUT-SED2016 dataset [47]. It also has some limitations on the ambiguity of
class labeling and setting time boundaries due to different human perceptions from
multiple annotators [19, Chap. 6].

Furthermore, as seen from the view of the overlapping sound events in a tempo-
ral audio recording segment, the strongly labeled dataset can be categorized into
monophonic and polyphonic annotations. The polyphonic annotation method could
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represent mostly occurring in real-life situations where multiple sound events overlap
but have a high degree of challenge to produce, for instance, TUT-SED2016. Con-
versely, the monophonic annotation should mark only the most prominent sound
event in the temporal boundary of each audio segment [19, Chap. 6], the case used
in the ESC-50 dataset.

Table 2.3 A list of freely available benchmark datasets for the SED system development
and evaluation considering the homecare application. Types of the dataset; Collected refers
to data collected from available audio file repositories, while Recorded refers to the dataset
produced by recording newly in sound fields.

Dataset Type Annotation #Classes Tot. Events Size(min)
UrbanSound [59] Collected Strongly-labeled 10 3075 1620

(monophonic)
UrbanSound8K [59] Collected Strongly-labeled 10 8732 525

(monophonic)
ESC−10 [60] Collected Weakly-labeled 10 400 33
ESC−50 [60] Collected Weakly-labeled 50 2000 167
TUT-SED2016 [47] Recorded Strongly-labeled 18 954 ∼ 78

(Polyphonic)
AudioSet [62] Collected Weakly-labeled 527 > 2M > 350K
SINS Database [38, 39] Recorded Weakly-labeled 9 72984 ∼ 12K
DESED [31] Collected Weakly-labeled 18 954 ∼ 550
(Real recordings)

Nevertheless, as stated, producing the strongly labeled is the most complex and
expansive work. Therefore, there is a shortage of datasets that come with strongly
labeled. Furthermore, there are claims that the small size of the strongly annotated
dataset, such as the TUT-SED 2016 dataset, is insufficient for training deep neu-
ral networks [6, 36, 37]. The collected with weakly-labeled metadata has become
a trend in recently organized DCASE challenges because they could reduce the
burden of producing the newly recorded dataset from the field, such cases like the
SINS database [39] and TUT-SED2016. It could be produced relatively large-scale
datasets by collecting audio samples from freely available audio collection reposito-
ries. For instance, Freesound audio clips tailored for ESC-10, ESC-50, UrbanSound,
UrbanSound8K, or YouTube videos extracted for AudioSet [62]. The large scale of
collected datasets could bring benefits of generalizing the SED system learning with
various sources of sound. However, they might have drawbacks of low quality in
labeling and sound recording [6, 19, Chap. 6].

2.3.2 Datasets for Evaluation

It is essential to provide suitable audio datasets to the supervised machine learning
algorithms because they learn from the feature extracted from audio data. Pub-
licly available benchmark datasets are crucial in comparing different algorithms and
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supporting the research process to develop machine learning models. When select-
ing datasets for the neural network model development, three properties must be
considered: coverage, variability, and size [19, Chap. 6]. The coverage means how
many different categories are included in the dataset, and these categories should
be relevant to the application’s use cases. The variability implies that audio record-
ings should be generated in many conditions, considering capturing diverse acoustic
characteristics for each category. It is because the acoustic characteristics can usu-
ally be inevitably dissimilar, even though sound events belong to the same category.
For instance, the sounds of closing a door depends on the type of door material,
the mechanical impact of the door, the size of the door, locations, etc. Finally,
the dataset size should be considered as they have a balanced number of sufficient
samples for each category. Therefore, selecting benchmark datasets considering the
three properties for the application area, training the SED model, and conduct-
ing the performance evaluation will help achieve a robust and well-generalized SED
algorithm development.

The following part of this section describes more details about the benchmark SED
datasets presented in Table 2.3 with respect to this thesis.

AudioSet Dataset

AudioSet dataset4 released in 2017 is an extensive dataset containing 527 sound
classes collected from YouTube videos with approximately 350k minutes of audio
taken from over 2 million videos, which might cover most of the existing sound
categories in the urban environment [62]. The events are 10-second segments ex-
tracted from YouTube videos labeled by human annotators providing one or multiple
sound event labels without start and end time envelopes. The dataset’s performance
trained with the baseline system showed that average precision with the 485 event
classes obtained 0.314. The best precision score was the “Music” class with 0.896,
while the “Rattle” class gained the worst precision score with 0.020 [62]. Despite
the large scale of the AudioSet dataset, some drawbacks have been indicated: low
quality of annotation and the dataset not being shared as waveforms but feature
extractions [6].

The AudioSet research presented a hierarchically structured ontology categorized for
sound events experienced in real-world recordings. In this way, human annotators
involved in the research project could immediately find the corresponding labels to
given audio events. An overall view of urban sound taxonomy from a homecare
perspective is presented in Figure 2.8. The ontology hierarchy is also limited to the

4https://research.google.com/audioset/

https://research.google.com/audioset/
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maximum depth at six levels for rapid scanning, based on earlier research on the
Urban Sound Taxonomy [59]. As an example, the leaf node of “Ambulance siren”
can be found, followed by the node of “Sound of things” to child nodes “Vehicle,”
“Motor vehicle,” “Emergency vehicle,” and “Siren.” Moreover, the research findings
suggest that the hierarchical approach is flexible for ambiguous classes. If sound
event detection algorithms yielded a low performance with the leaf nodes, their
parent node could be used as a target class such that the “Dog” category can be
used instead of “Bark,” “Growl,” and “Howl,” as illustrated in Figure 2.8.

The research released ontology data, with six fields describing each category: Knowl-
edge Graph Machine ID (MID), display name, description, examples, children, and
restrictions. From these fields, the first two fields are taken into use in the YAMNet
class-map [8]: MID and display name. MID is the primary identifier, and the display
name is the actual class label, which can be one descriptor or several acoustic event
descriptors with comma-separated [62].

ESC-50 Dataset

A publicly available ESC-50 dataset5, summarized in Table 2.3, consists of 2000
5-second-long audio clips with a tagging label for each audio file [60]. The recordings
are organized into five folds in every 400 files for cross-validation. Each file contains
one of 50 event classes categorized into five environmental sound groups: human non-
speech sound, domestic sound, animals, urban noises, and natural sound [60]. The
dataset is more suitable for benchmarking the sound classification system; however,
it can be used to some extent for the SED system benchmark. The advantage of
using the dataset is that the audio clips are well balanced, thus 40 clips for each of
the 50 classes. Furthermore, most target classes could be useful for the SED system
to detect critical activities of a home environment, such as ’Door knock,’ ’Toilet
flush,’ and ’Clock alarm.’

The classification performance using the ESC-50 dataset has been reported using
many different machine-learning methods on the dataset’s public site. Initially, a
baseline applied to a random forest ensemble method was achieved at 44.3% accu-
racy [60]. Moreover, the additional baseline of a CNN model with a data augmenta-
tion method [63] improved the performance by approximately 20% higher than the
previous random forest model. Furthermore, recent studies developed with various
machine learning techniques have announced their significant performances evalu-
ated on the ESC-50 dataset, which are noticeably higher than 90%, one of them, as
a multi-stage sequential learning model suggested in [64].

5https://github.com/karolpiczak/ESC-50

https://github.com/karolpiczak/ESC-50
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TUT-SED 2016 Dataset

TUT Sound Events 2016 (TUT-SED2016) dataset6 [47] was recorded in a real-world
environment and introduced for the SED task in the DCASE Challenge 2016 [5].
The dataset has two acoustic scenes: one from a residential area and another from
an indoor home environment. The dataset can be utilized for developing applica-
tion areas such as security and home surveillance. The dataset’s acoustic properties
achieved a high variability and quality by recording with binaural audio in-ear micro-
phones using a 44.1 kHz sampling rate and 24-bit resolution captured audio events
from various locations, including many homes. The recording duration varies from
3 to 5 minutes resulting in a total duration of approximately 78 minutes, as shown
in Table 2.3. However, the TUT-SED 2016 Home scene dataset might not be appro-
priate for training machine learning algorithms due to the limited size of the audio
recordings and class-wise unbalanced instances, as summarized in Table 2.4 [5].

The dataset consists of 18 target sound event class labels, of which 7 classes are
for the residential area, and the other 11 classes are for the home events used to
evaluate the proposed model performance. For example, the home dataset contains
unbalanced event instances of 47 ’water tap running,’ 250 ’object impact,’ and 151
’dishes,’ as summarised in Table 2.4. The dataset’s reference provides time-wise
overlapping sound events strongly labeled as polyphonic annotations with the start-
ing and ending.

Table 2.4 Table presents a list of target classes and instances used in two datasets:
TUT-SED 2016 Home dataset for DCASE 2016 Challenge Task 3 and SINS dataset for
DCASE 2018 Challenge Task 5.

Dataset TUT-SED 2016: Home [5] SINS: DCASE 2018 Task5 [38]
Target Class Instance Target Class 10s segment
(object) rustling 60 Absence 18860
(object) snapping 57 Cooking 5124
cupboard 40 Dishwashing 1424
cutlery 76 Eating 2308
dishes 151 Other 2060
drawer 51 Social activity 4944
glass jingling 36 Vacuum cleaning 972
object impact 250 Watching TV 18648
people walking 54 Working 18644
washing dishes 84
water tap running 47

Total 11 classes 906 9 classes 72984

The baseline system for measuring the TUT-SED 2016 dataset performance sug-
gested employing a Gaussian mixture model (GMM) classifier with features ex-
tracted from MFCC computation [47]. The overall micro average performance was

6https://zenodo.org/record/45759#.YCrtAGj7Sbg

https://zenodo.org/record/45759#.YCrtAGj7Sbg
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quite poor at 18.1% F1 and 0.95 ER. And the class-wise performance of three out of
the 11 target events was reported with no true positive detection, such as ’(object)
snapping’ and ’glass jingling.’ However, the highest F-score was obtained by the
“water tap running” class at 41.2%, followed by ’washing dishes’ at 26.4% [5, 47].

SINS Database

The SINS database contains activities produced by a person in a vacation home for
a week, which scenario was based on the assumption that the dataset could be used
to enhance health and security monitoring for elderly people who require healthcare
professionals’ support in the nursing home environment [39]. Thus, the dataset
contains one week of real-life audio recorded using a sensor technology distributed
to five rooms with 13 sensor nodes. Each node contained a linear microphone array
consisting of four microphones set with a 16 kHz sampling rate. A subset of the SINS
database from the living and kitchen rooms utilized in the DCASE 2018 Challenge
Task 57 as a development dataset for classifying the acoustic events [38]. In terms
of class-wise instances, the development dataset is highly unbalanced with 9 target
classes, as presented in Table 2.4, including the most dominated classes of ’Absence,’
’Watching TV,’ and ’Working,’ while the least instances of ’Vacuum cleaning’ and
’Dishwashing.’ The dataset, as presented in Table 2.3, provides audio recordings
with a 10-second duration and corresponding ground truth of a class label per each
audio segment, resulting in a total audio recording duration of approximately 200
hours, considered a large-scale dataset.

The DCASE 2018 Challenge Task5 baseline system employed a simple architecture
of CNN 2 convolutional layers with dense layers to output 9 classes based on Softmax
activation [38]. The baseline for the SINS dataset was evaluated class-wise, and the
macro average of all classes in the F1-score metric. The overall macro averaged
F1-score was at 84.50%, contributed by the top three classes over 95% F1-score,
such as ‘Watching TV’ at 99.59%, ‘Vacuum cleaning’ at 99.31%, and ‘Cooking’ at
95.14%. On the other hand, the least F1-score obtained by ‘Other’ at 44.76%.

DESED Dataset

The DCASE 2019 Challenge for Task 4 introduced the domestic environment sound
event detection (DESED) dataset8. The DESED dataset consists of two datasets:
a subset of the AudioSet dataset with weakly labeled and a subset of the synthetic
dataset that is strongly labeled [31]. The two subsets of audio clips contain single

7https://zenodo.org/record/1247102#.YClzM2j7Sbh
8http://dcase.community/challenge2019/task-sound-event-detection-in-domesti

c-environments

https://zenodo.org/record/1247102#.YClzM2j7Sbh
http://dcase.community/challenge2019/task-sound-event-detection-in-domestic-environments
http://dcase.community/challenge2019/task-sound-event-detection-in-domestic-environments
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or multiple sound events that can be occurred in the urban domestic environment.
The target detection classes are Speech from the human voice, Cat and Dong animal
sounds, and four different mechanical sounds classified as Vacuum cleaner, Electric
shaver/toothbrush, Blander, Alarm bell ringing, and other sound sources of Dishes
and Frying. Although the first audio subset (called real recordings) is weakly la-
beled due to no time boundary information, the dataset volume of approximately
23 GB might be large enough to train the SED system. Furthermore, the strongly
annotated but smaller size of synthetic data (1.8 GB) suggested improving the SED
system’s performance during training [31]. It was emphasized that the winning team
of DCASE 2019 Challenge Task 4 advanced 10 % of their SED system performance
by comparing the best submission of the DCASE 2018 challenge Task49, which used
only the real audio recordings without the synthetic audio subset [31].

2.3.3 Evaluation Metrics and Toolbox
As the last phase of the SED system development, it is essential to evaluate its per-
formance using standardized evaluation methods. However, the evaluation meth-
ods should be considered at the beginning phase of SED system design, not after-
ward. The purpose of the evaluation methods can be first to benchmark the system
and second to identify performance gaps to improve SED classifiers. The bench-
mark requires discriminative rules that can be used to analyze the performance
of different machine learning classifiers, which should be trained using the same
dataset [65, p.444, 66].

Ground Truth
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Figure 2.9 Classifier confusion matrix consists of four system prediction cases resulting
by comparing it against the ground truth.

The SED performance metrics are driven by comparing the system prediction to the

9https://dcase.community/challenge2018/task-large-scale-weakly-labeled-semi-s
upervised-sound-event-detection

https://dcase.community/challenge2018/task-large-scale-weakly-labeled-semi-supervised-sound-event-detection
https://dcase.community/challenge2018/task-large-scale-weakly-labeled-semi-supervised-sound-event-detection
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ground truth. Figure 2.9 illustrates the confusion matrix, also called contingency
table, that represents possible comparison combinations categorized into a 2 x 2
matrix [19, Chap. 6, 65]. The prediction of the SED classifier for a given sound
event class can be either positive (1) or negative (0), and the same for the ground
truth resulting in four categories of the matrix table named true positive (TP ),
false positive (FP ), true negative (TN), and false negative (FN). Accumulating
these four case statistics for each class can yield a class-wise performance evaluation
known as macro-average and be globally summed to get overall performance known
as overall micro-average [46, Chap. 6, 19, Chap. 6]. The four categories can be
explained as follows:

• True positives (TP ): the system correctly predicted the given event as positive
as the corresponding event in the reference marked as positive.

• False positive (FP ): the system output is falsely predicted as positive in
contrast to the ground truth marked in negative.

• True negatives (TN): the system output predicted the given event negative
correctly aligned with the reference marked in negative.

• False negative (FN): the system output incorrectly predicted the given event
negative against the reference marked in positive.

The most commonly used standardized SED evaluation methods derived from the
confusion matrix are F1, or F1 − score, and Errorrate (ER). In principle, the
metric calculation is based on a fixed size of audio recording called a segment. By
default, it uses a one-second segment to create class-wise confusion metrics, and
overall metrics, called micro-average [19, Chap. 6, 66]. To calculate the F1-score
can be computed with precision and recall beforehand. Let the precision(P ), as
known as a positive predictive value, be computed by:

P =
TP

TP + FP
, (2.10)

where the total number of true positives that are divided by the sum of predicted
condition positive. And the recall (R), as known as sensitivity and a true positive
rate (TPR), is calculated as:

R =
TP

TP + FN
, (2.11)

where the total number of true positives is divided by the sum of the true condition
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positive. Then F1-score based on precision and recall is computed as:

F1 =
2 · P ·R
P +R

. (2.12)

Although F1-score is widely recognized as for SED performance metric, some lim-
itations are encountered. For instance, in most real-life audio recordings hav-
ing a high likelihood of unbalanced event classes, F1-score will be calculated by
averaging across the event classes. Consequently, F1-score gained from the cir-
cumstance might be over-optimistic or under-estimated by classes having many
instances [19, Chap. 6]. Similarly, recent research has argued that the MCC ma-
trix, see Equation 3.4, can give a better-quantified evaluation for imbalanced data
than F1-score because F1-score does not consider TN whereas MCC uses it in the
formulation [67, 68]. Therefore, the overall score and class-wise performance should
be assessed to get every aspect of performance evaluation, especially for real-life
imbalanced event classes.

For certain use cases, when precision is not equally important as recall, F -score
allows adjusting the weight by substituting α by greater than 1. It can be defined
as follows:

Fα = (1 + α2)× P ×R

(1 + α2)× P +R
(2.13)

For example, missing the tumor detection (FN) is more severe than a false alarm
(FP ) to a healthy sample in the medical domain. If we want to weigh Recall as
twice as important as precision, by setting α = 2, we can obtain F2-score:

F2 = (1 + 22)× P ×R

(1 + 22)× P +R
(2.14)

Accuracy (ACC) is also commonly used to measure sound classification or detec-
tion system performance, which can be calculated as the sum of correctly iden-
tified instances of positives and negatives divided by the total population. How-
ever, accuracy might be misleading if the class imbalance has a few TP and TN
predictions [19, Chap. 6]. It is defined as follows:

ACC =
TP + TN

TP + TN + FP + FN
, (2.15)

Errorrate (ER) represents the portion of errors produced by the SED sys-
tem associated with the ground truth. It is an accumulative calculation based
on three measurements: substitution (SUB), deletion (DEL), and insertion
(INS) [19, Chap. 6, 66]. In the segment-based error rate calculation, Substitution



33

is the number of events from the reference that are incorrectly detected. This means
the system produced no true positives but FN or FP . Substitution takes one of the
minimum values by comparing the two values. After substitutions are calculated,
the remaining events wrongly detected are counted by Deletion and Insertion. Dele-
tion calculates the number of reference events wrongly not detected, while Insertion
counts for the wrongly detected system output:

SUB(j) = min(FN(j), FP (j))

DEL(j) = max(0, FN(j)− FP (j))

INS(j) = max(0, FP (j)− FN(j)),

(2.16)

where j is the number of segment j = 1, 2, , N , incorrect detection of FN and FP

for each segment are counted and computed for SUB,DEL and INS.

The segment-wise overall ErrorRate is quantified across the total number of seg-
ments measured with earlier defined three parameters of SUB, DEL, and INS.
The error rate can be calculated using the following mathematical formulation:

ER =

∑N
j=1 SUB(j) +

∑N
j=1 DEL(j) +

∑N
j=1 INS(j)∑N

j=1 SEG(j)
, (2.17)

where N indicates the total number of segments, SEG(j) accumulates the number
of active sound events in the jth segment of the reference. Because the ER is a score
rather than a percentage, it is sometimes difficult to interpret. For example, the
ER value of 1 might obtain when the SED system detects no events. Therefore, ER

should support the F1-score to determine the SED system performance. To obtain
as less as possible, a ER score below 1 and close to zero should be targeted for a
competitive SED system performance [19, Chap. 6].

SED Evaluation Toolbox

Evaluation for the SED system to be standardized primarily for the DCASE chal-
lenges. For this purpose, an evaluation toolbox called sed_eval [66, 69] is provided
and widely used in the DCASE challenges for SED system evaluation. The sed_eval
is open-source software freely downloaded, and its tutorials are available from this
website10. The toolbox provides two types of metrics that can evaluate the per-
formance of SED systems; segment-based metrics and event-based matrices. Users
can define the evaluation’s time resolution; otherwise, it will use one second as de-
fault. Firstly, the segment-based evaluation metrics compute every four categories
of the confusion metrics by comparing the system predictions with the reference

10https://tut-arg.github.io/sed_eval/

https://tut-arg.github.io/sed_eval/
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or ground truth for each time resolution. After that, the statistics are aggregated
overall data and produce a micro-average metrics value, as all the instances have
the same weight. In addition, class-wise metrics, also called macro-average, are
produced from intermediate statistics aggregated for each sound event class, which
is beneficial information to understand the system output for in-depth analysis of
the class level, especially for unbalanced class instances in a dataset. Secondly, the
event-based metrics are an event instance level of measurement compared between
the system output and the ground truth divided by the desired event duration [66].
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3 Methods

This chapter consists of three aspects of the YAMNet-based proposed system:
Chapter 3.1 describes the challenges discovered from the YAMNet model for adapt-
ing to a SED model during the investigation, Chapter 3.2 discusses the Y-MCC
methodology for the SED system how it has designed to overcome the YAMNet
challenges explaining in procedure and process levels, and Chapter 3.3 describes the
core part of the statistical method of MCC-based YAMNet class mapping techniques.

3.1 Challenges with the Pre-trained YAMNet Model

This thesis aims to develop a polyphonic SED solution for homecare applications
using the pre-trained YAMNet classifier. YAMNet based on MobileNetV1, intro-
duced in Chapter 2.2.2, has many advantages. The essential benefit of the YAMNet
classifier trained on the large AudioSet dataset is that it can predict 521 different
sound classes, especially including most of the sound events that possibly happen in
the home environment.

However, the early stage of the YAMNet investigation revealed the critical draw-
backs of YAMNet for utilizing it for the SED system task. The first challenge was
that YAMNet high-scored event predictions were often more likely to provide classes
describing high-level sound scenes, which might not be necessary for the SED sys-
tem running in the indoor home environment. This issue caused more important
sound events to be scored with a lower probability resulting in low SED system
performance. For example, the problem occurred in most of the ten audio record-
ings in the TUT-SED2016 Home Development dataset. As presented in Table 3.1,
the two highest YAMNet predictions of most of the audio files were ’Silence’ and
’Inside, small room.’ These predicted labels considered as general high-level scene
classes might be redundant information. These predictions were the main bottle-
necks for achieving the excellent performance of the SED system designed to detect
prominent sound events occurring primarily in rooms in quiet environments. There-
fore, it could suggest selecting lower-level class predictions rather than the high-level
context descriptor to improve the SED performance in this case.

The second challenge of the YAMNet prediction for a SED system was that multi-
ple correlations existed between many YAMNet classes and target reference classes,
which caused hard to map by human effort due to some degree of illogical and com-
plicated. It could be seen as a set of YAMNet class labels to be combined to detect
a specific target class. Table 3.2 explains this YAMNet prediction phenomenon
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Table 3.1 The top 3 class events detected by YAMNet with the highest probability score
toward audio recordings are included in the TUT-SED2016Home dataset. The observation
indicated an issue of YAMNet that the two top predictions, such as ’ Silence’ and ’Inside,
small room,’ of all audio files seemed unnecessary for the SED system to detect prominent
sound events occurring indoor environments.

Audio File YAMNet Top-3 Predictions
a030.wav ’Silence’, ’Inside, small room’, ’Mechanisms’
a031.wav ’Silence’, ’Speech’, ’Inside, small room’
a034.wav ’Silence’, ’Inside, small room’, ’Door’
a036.wav ’Silence’, ’Inside, small room’, ’Writing’
a038.wav ’Silence’, ’Inside, small room’, ’Door’
b029.wav ’Silence’, ’Inside, small room’, ’Door’
b030.wav ’Silence’, ’Inside, small room’, ’Dishes, pots, and pans’
b032.wav ’Silence’, ’Inside, small room’, ’Sizzle’
b033.wav ’Silence’, ’Inside, small room’, ’Speech’
b044.wav ’Silence’, ’Inside, small room’, ’Clock’

extracted from DCASE 2019 Task4 train audio dataset, refer to DESED dataset
Chapter 2.3.2 with weak labels. As it shows, YAMNet predictions of ’Air horn,
truck horn,’ ’Buzzer,’ and ’Alarm’ were related to the reference label of ’Alarm
bell ring,’ which might be a reasonable inference. By contrast, YAMNet prediction
classes of ’Music,’ ’ Jingle, tinkle,’ and ’Music for children’ were cases that were
hard to map with Cat and Dog reference labels. The same issue was observed with
the SINS database as shown in Table 3.3. For example, with the SINS dataset,
the reference class of ’Vacuum cleaner’ was predicted by YAMNet with ’Aircraft,’
’Helicopter,’ and ’Jet engine’ along with ’Vacuum cleaner,’ considered as challenging
to find corresponding YAMNet classes.

Table 3.2 Examples of YAMNet predictions against 10-second audio files are included in
the DESED dataset. It shows the level of inaccuracy challenging to map between YAMNet
classes and the target reference labels.

Reference Labels YAMNet Top Predictions
Alarm_bell_ringing ’Air horn, truck horn’, ’Buzzer’, ’Alarm’, ’Vehicle horn’
Blender ’Aircraft’, ’Blender’, ’Jet engine’, ’Vehicle’
Blender,Speech ’Aircraft’, ’Vacuum cleaner’, ’Tools’, ’Helicopter’
Cat,Dog ’Music’, ’Jingle, tinkle’, ’Music for children’
Dishes ’Animal’, ’Wild animals’, ’Bird’, ’Inside, small room’
Electric_shaver_toothbrush ’Animal’, ’Alarm clock’, ’Inside, small room’, ’Buzzer’
Frying ’Boiling’, ’Liquid’, ’Frying (food)’, ’Patter’, ’Animal’
Frying,Speech,Dishes ’Frying (food)’, ’Animal’, ’Sizzle’, ’Crumpling’
Running_water ’Animal’, ’Bird’, ’Wild animals’, ’Bird vocalization’
Vacuum_cleaner ’Blender’, ’Hair dryer’, ’Vacuum cleaner’, ’Tools’
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In summary, the problems with YAMNet predictions toward the real-life audio
datasets would require tremendous time and effort to find corresponding YAMNet
classes to the target classes of the selected benchmark datasets. The observed chal-
lenges indicated finding a solution by computing the correlation coefficients between
the 521 YAMNet class labels and the given target classes. Moreover, the evidence
showed that correlation computation for finding class maps between YAMNet classes
and the target reference classes should be done for each dataset. Therefore, to tackle
the challenges of adapting the YAMNet model for the SED task, specifically with
real-life audio recordings, we propose an entirely new approach for YAMNet class
mapping, called the Y-MCC methodology, a reliable YAMNet class mapping based
on Matthews correlation coefficients (MCC). The following chapter explains details
about the Y-MCC methodology.

Table 3.3 Examples of YAMNet event predictions produced for the SINS database. It is
a confusing class prediction that can not be used for a SED system directly but needs to
make a proper map for better predictions and better performance of a SED system.

Reference Labels YAMNet Top Predictions
absence ’Snake’, ’Animal’, ’Silence’, ’Outside, rural or natural’
cooking ’Inside, small room’, ’Spray’, ’Domestic animals, pets’
dishwashing ’Spray’, ’Liquid’, ’Hiss’, ’Steam’, ’Animal’, ’Inside, small room’
eating ’Inside, small room’, ’Wood’, ’Tools’, ’Rub’, ’Silence’
other ’Inside, small room’, ’Door’, ’Drawer open or close’
social_activity ’Speech’, ’Inside, small room’, ’Silence’, ’Snake’, ’Animal’
vacuum_cleaner ’Vacuum cleaner’, ’Vehicle’, ’Tools’, ’Aircraft’, ’Jet engine’
watching_tv ’Snake’, ’Animal’, ’Music’, ’Silence’, ’Speech’
working ’Animal’, ’Inside, small room’, ’Outside, rural or natural’

3.2 Y-MCC Methodology

Y-MCC methodology as the proposed solution has been developed in order to make
YAMNet perform better with the SED task for various benchmark datasets recorded
in the real-life home environment. It utilized the YAMNet pre-trained DNNs and
built on additional stages to automatically produce class maps between YAMNet
521 classes to a set of target classes defined in each benchmark dataset. The de-
velopment environment of the Y-MCC method was on the CentOS Linux version
7 operating system platform installed Anaconda (release=22.9.0) and Python pro-
gramming language (version=3.8.13) with signal processing libraries provided by Li-
brosa (version=0.9.2), TensorFlow (version=2.4.1), SciPy (version=1.7.3), NumPy
(version=1.19.5), data analysis package using Pandas (version=1.5.2), and many
other open source utilities and libraries.

Three benchmark datasets were carefully selected to develop the Y-MCC method;



38

Stage 1

Feature Extraction

Stage 2
YAMNet Classifier

Log-Mel Spectrogram

Audio Waveform

YAMNET 
Class-map

Training
Dataset

Evaluation
Dataset

MCC-based
Class-map

Stage 1

Feature Extraction

Log-Mel Spectrogram

Audio Waveform

Stage 4

MCC-based Class-map
Creation

Predictions

Annotation
Estimated

Files

MCC-based
Class-mapMCC-based

Class-mapMCC-based
Class-map

Stage 3

Post-processing

Stage 5

Post-processing

Estimated
Files

Stage 6

Performance 
Evaluation

Annotation

Predictions

MCC-based
Class-map

MCC-based
Class-map

Figure 3.1 The proposed Y-MCC method consists of a pipeline with two channels for
creating MCC-based class maps (Left) and performance evaluation using the MCC-based
new class maps generated by the first channel (Right).

TUT-SED 2016, ESC-50, and SINS dataset, described in Chapter 2.3.2. The three
datasets’ common property is that they have been recorded from the home envi-
ronment and frequently evaluated by numerous researchers for their SED system
training and evaluation [57]. The datasets available from the DCASE challenges,
such as TUT-SED 2016 and SINS dataset, are well-divided subsets for developing
and assessing the SED system. Thus, this experiment mostly used a development
subset from the datasets firstly to compute the MCC matrix for the MCC-based
class maps and another subset for performance evaluation.



39

The proposed Y-MCC system, as illustrated in Figure 3.1, consists of two channels
and six stages. In the first channel, the procedure aims to create class maps based on
the MCC computation between the YAMNet prediction using the original 521 class
map. After then, in the second channel, replace the original YAMNet class map
with the new MCC-based class maps generated from the first channel containing
the target class labels. Therefore, the YAMNet predictions can be made based on
the target classes defined in the given dataset with temporal event boundaries.

Look more closely, the two channels of the Y-MCC consist of 4 stages. The 4 stages of
the first channel (on the left in Figure 3.1) are; (1) Data pre-processing and feature
extraction, (2) YAMNet prediction using the original class map, (3) Post-processing,
(4) MCC-threshold-based class mapping. On the other hand, the second channel
(on the right in Figure 3.1) includes the following stages; Data pre-processing and
feature extraction, YAMNet prediction using the MCC-threshold-based class maps,
post-processing, and Performance evaluation. The following Chapter 3.3 discusses
mainly the stages of the first channel of the Y-MCC, and Chapter 4 discusses MCC-
based class mapping and performance evaluation following the stages in the second
channel for each 3 selected datasets.

3.3 MCC-based Statistical Methodology for Class Mapping

3.3.1 Pre-processing and Feature Extraction

The Y-MCC SED system core resides in the first channel to create MCC-based class
maps implemented through 4 stages using the YAMNet model. In the first stage,
data pre-processing and feature extraction are to obtain high-level acoustic features
from the raw audio clips. The datasets should be divided so that a sufficient amount
of dataset is allocated to this process than the dataset needed for the performance
evaluation channel. In general, the ratio of the dataset allocation for machine learn-
ing is approximately 60% (70%), 20% (20%), and 20% (10%) for training, testing,
and evaluation, respectively. Because the ML models can learn from the data and
achieve more generalized parameters, assigning more portions of the training dataset
is recommended. However, the YAMNet classifier was already trained; thus, a sim-
ilar proportion of the dataset for the training can be used to create the MCC-based
class maps and the rest of the dataset to evaluate the SED system. Consequently,
the class maps generated with the larger subset of the dataset can produce more
reliable class maps.

A brief description of Stage 1 is first, all the input audio recordings with the wave-
form will be down-sampled to 16 kHz if the sampling rate exceeds 16 kHz. After then,
all the audio samples are sliced into fixed sizes of frames using the frame-blocking
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methods. In this case, the frame size was defined as a one-second length with a
16k sample length of the input audio sample with 50% overlapping moving hop size.
For a strongly-labeled dataset like the TUT-SED2016 dataset, a one-second time
resolution was defined for processing to the YAMNet classifier to get the prediction
score output. These frames are then processed to the YAMNet feature extraction
function to produce an image-like 2-D shape of the log-mel spectrograms, as de-
scribed in Chapter 2.2.3. After then, the log-mel spectrogram is broken down into
a stack of fixed-size patches, xp ∈ Rl×m where l and m denoted number of log-mel
samples per patch l=98 and m=64 Mel-bands. Consequently, one patch per input
frame size with one second was produced and fed to the YAMNet classifier in the
next stage.

This section explains the pre-processing steps common for all three selected datasets,
taking an example audio file from the TUT-SED2016 Home development dataset.
Three steps were followed in the pre-processing to meet YAMNet’s requirements
(according to the YAMNet specification discussed in Chapter 2.2.2). First, normal-
ized the wave data to obtain data values between [-1, 1], and next, multichannel
recordings of the input data were averaged to get mono channel data. Finally, the
averaged-mono channel data was resampled with 16 kHz instead of the original 44.1
kHz sampling rate. After then, the pre-processed data were divided into 1-second
time frames with 0.5-second overlapping windows and fed into the data transfor-
mation function to change the input waveform to log-mel spectrogram followed by
STFT transformation. The transformed 2-D shape of the log-mel spectrogram with
64 Mel bands became the input of the YAMNet CNN model. Figure 3.2 visualize
the three different representations of the data transformed during the Y-MCC pre-
processing stage. These similar pre-processing steps were also applied to the two
other datasets, ESC-50 and SINS dataset, considering their characteristics of audio
recording clips.

3.3.2 YAMNet Classifier and Post-processing
In the second stage of the YAMNet classifier, the patch obtained from the previous
feature extraction stage is fed into the YAMNet classifier. Then the classifier returns
a row vector of scores with a probability value for every 521 multi-label computed
by:

P (ŷp|θ) = θ(z) =
1

1 + e−z
, (3.1)

The probability prediction of ŷp for a patch is computed by the acoustic model of
the classifier θ, obtained by calculating net input z applied to the sigmoid function.

P (ŷp) ∈ R1×n ∈ [0, 1]p, (3.2)
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Figure 3.2 A visualization of an audio data transformation describes the steps of the pre-
processing in the Y-MCC method. A file (b029.wav) selected from the TUT-SED2016Home
dataset shows (a) audio input data in a waveform representing a time-domain signal, (b) A
frequency domain representation transformed from the input time-domain signal using an
STFT converter, and (c) the final form of the input data transformed as a time-frequency
domain with 2-dimensional shapes of the log-mel spectrogram.

where the prediction P (ŷp) with a matrix of a row and n = 521 columns contained
probability value ranged from 0 to 1.

The next post-processing stage is designed to produce estimated output files contain-
ing the detected event labels with temporal information following the SED system
output format suggested by [66]; audio file name, starting time, ending time, and
event class label. To create the estimated file for each input audio recording, all
YAMNet predictions are aggregated into a matrix shape of (Number of patches,
Top5_indices, Top5_probability) as the total frames of a given audio recording. In
this case, the desired number of top probability using top 5, thus TOP5 class indices
have the highest probability among the 521 classes in the patch. It can be obtained
using an argsort function defined by:

Top5 = argsort(P (ŷp)), (3.3)

where the top five classes with the highest probability rank for a patch are obtained
using the argsort function, and all other less significant classes are discarded.
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3.3.3 MCC-Based YAMNet Class Mapping

Matthews correlation coefficient (MCC) was introduced in 1975 by biochemist Brian
W. Matthews in studying lysozyme protein structure predictions [70]. Nowadays,
the MCC is widely used in bioinformatics and also machine learning to evaluate the
performance of classifier models [68, 71] using the four conditions of the confusion
matrix shown in Figure 2.9. The computation of the MCC matrix requires all sta-
tistical information of TP, FP, TN, and FN, whereas the F1-score needs to consider
the three variables except TN. Due to this reason, many researchers claimed that
classifier evaluation based on the MCC is more reliable for imbalanced datasets and
class sizes than the F1 score [67, 68, 72, 73].

The MCC produces a value ranging [−1,+1] in a correlation calculation between
prediction and ground truth. It can be interpreted as a perfect prediction when the
MCC = +1 compared to the ground truth. In contrast, there is a total inverse
association with MCC = −1, and MCC = 0 refers to no correlation between the
predictions and their references [68]. The MCC formula is defined as follows:

MCC(Pre,GT ) =
TP · TN − FP · FN√

(TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)
, (3.4)

where the MCC correlation probability score computation between the Pre (pre-
diction) and the GT (ground truth) is computed based on the 4 conditions in the
confusion matrix [72].

There are mainly three steps in creating and evaluating MCC-based class maps
commonly used for the three selected benchmark datasets. Firstly, for the MCC
matrix creation, two types of files that should be fed to compute for an MCC matrix
computation are estimated and reference files corresponding to the training portion
of the dataset. The estimated files produced in the Y-MCC method channel 1
and stage 2 using the YAMNet model with the original class map according to the
parameter settings, such as for the Y-MCC method top 5 high-probability classes
to be taken into a prediction vector with their time boundaries for writing them
into an estimated file. In the next stage, the confusion matrix must be created
by comparing the pairs of estimated predictions and ground truth in the reference
files to produce output as the four conditions of the confusion matrix (TP, FP,
TN, FN). After that, an MCC matrix can be created using the confusion matrix
concatenated for computing Matthews correlation coefficient. The MCC matrix
will have a dimension of (521 × numberof_target_classes) and coefficients value
ranging in [-1, 1]. The MCC threshold for creating new class maps can be defined
based on the maximum correlation scores of the MCC matrix for the target classes.
Finally, the MCC-threshold-based class maps are created for the Y-MCC method
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evaluation process in the second channel, it will be replaced the original YAMNet
class map with the MCC-threshold-based class maps.

To elaborate on the relationship between the MCC matrix and the MCC-threshold-
based class mapping, a sample of the MCC matrix computed based on the SINS
dataset and its visualized bar plot are presented in Figure 3.3. The MCC matrix
of the SINS dataset has a dimension of 521 × 9, which has 521 YAMNet classes in
rows and 9 SINS target classes in columns. As seen from the top figure, a snapshot
of the MCC matrix, presenting only the first 6 rows from the whole matrix, shows
a trend of the MCC correlation score between YAMNet and the SINS classes. The
overall trend described by the plot shows the MCC matrix score in the range of
MCCmin,max ∈ [−0.369, 0.883]. However, most YAMNet classes have below 0.4
MCC scores, except for only one YAMNet class having the maximum MCC score
of 0.883 for the SINS ‘vacuum_cleaner’ class. Generally, considering the majority
of the maximum MCC score at the class-wise level, it can be decided to define the
MCC threshold for class mapping. If the range of the MCC threshold is defined
with [0. 0.5] with 0.05 steps, there will be 11 class mapping created for the Y-MCC
method evaluation.

absence cooking dishwashing eating other social_activity vacuum_cleaner watching_tv working
0 -0.176 -0.082 -0.042 -0.054 -0.051 0.208 -0.035 0.339 -0.175
1 -0.008 -0.004 -0.002 -0.002 -0.002 -0.004 -0.002 0.023 -0.008
2 -0.042 -0.02 -0.01 -0.013 -0.012 0.001 -0.008 0.111 -0.042
3 -0.089 -0.041 -0.021 -0.027 -0.026 0.031 -0.018 0.214 -0.088
4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Figure 3.3 A visualization of the MCC matrix extracted from the SINS dataset: (Top)
A snapshot of the MCC matrix with the shape of [521, 9], (Bottom) A plot of the MCC
scores obtained by the 521 YAMNet classes against the 9 SINS target classes.

To examine more closely, the first row of the MCC table with the ’0’ index corre-
sponding to the ’Speech’ YAMNet class has the highest MCC value for ’watching_tv’
in the SINS target classes with a 0.339 MCC score. With the rule of class mapping,
only one target class is assigned to the YAMNet class. Therefore, the YAMNet
‘Speech’ can be activated in the MCC-threshold-based class maps from 0 to 0.3 for
7 class maps while deactivated in the higher MCC-threshold-based class maps. The
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same rules apply to all other YAMNet classes. Hence one YAMNet class can be
mapped to one in the target classes, whereas one target class can be mapped with
multiple YAMNet classes if the MCC score is greater than the MCC threshold.

Table 3.4 and 3.5 show concrete examples of how the different class maps can be
generated based on the MCC threshold with 0.5 and 3.0 for the SINS dataset. In the
first table, 3 YAMNet class entries of 0, 2, and 3 have mapped to the SINS target
class of ’watching_tv’. By contrast, other YAMNet classes have not been mapped
and marked with ’998’ as an indication of unmapped classes presented in the ’T_ID’
column. Based on the MCC matrix presented in Figure 3.3, the mapped 3 YAMNet
classes have MCC scores higher than 0.05 with 0.339, 0.111, and 0.214, respectively.
On the other hand, the later class map in Table 3.5 has been generated based on the
MCC threshold of 0.3, which shows the two YAMNet entries of 2 and 3 indices have
been deactivated. However, the first ’Speech’ YAMNet class remains as activated
and mapped to ’watching_tv’ due to its MCC score being higher than the mapping
MCC threshold of 0.3.

Table 3.4 The table presents an example of the MCC-threshold-based class mapping for
the SINS dataset with a 0.05 MCC threshold showing only the first 6 entries of the 521
YAMNet classes mapped to the SINS 9 target classes. The ’index’ column represents the
YAMNet class index and YAMNet class names in ’display_name’, whereas the SINS class
index in ’T_ID’ and class name in ’T_Class’.

index mid display_name T_ID T_Class
0 /m/09x0r Speech 7 watching_tv
1 /m/0ytgt Child speech, kid speaking 998 None
2 /m/01h8n0 Conversation 7 watching_tv
3 /m/02qldy Narration, monologue 7 watching_tv
4 /m/0261r1 Babbling 998 None
5 /m/0brhx Speech synthesizer 998 None

Table 3.5 The table presents an example of the MCC-threshold-based class mapping for
the SINS dataset with a 0.3 threshold showing only the first 6 entries of the 521 YAMNet
classes mapped to the SINS 9 target classes.

index mid display_name T_ID T_Class
0 /m/09x0r Speech 7 watching_tv
1 /m/0ytgt Child speech, kid speaking 998 None
2 /m/01h8n0 Conversation 998 None
3 /m/02qldy Narration, monologue 998 None
4 /m/0261r1 Babbling 998 None
5 /m/0brhx Speech synthesizer 998 None
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The proposed Y-MCC method utilized an MCC library for Python code implemen-
tation found from Scikit-learn1 [74]. The MCC computation in the Y-MCC proposed
method is to obtain an MCC matrix for each given dataset by computing the MCC
association score between the 521 YAMNet classes and the target classes defined in
the given dataset. The MCC matrix creation and the MCC-threshold-based class
mapping are highly dependent on the target dataset; therefore, it is further discussed
in sub-chapters dedicated to the three selected benchmark datasets in Chapter 4
Performance Evaluation.

1https://scikit-learn.org/dev/modules/generated/sklearn.metrics.matthews_corr
coef.html?highlight=mcc

https://scikit-learn.org/dev/modules/generated/sklearn.metrics.matthews_corrcoef.html?highlight=mcc
https://scikit-learn.org/dev/modules/generated/sklearn.metrics.matthews_corrcoef.html?highlight=mcc


46

4 Performance Evaluation

This chapter presents and discusses the performance evaluation results regard-
ing the second channel procedure of the Y-MCC methodology discussed in Chap-
ter 3.2 and continued from Chapter 3.3 MCC-based Statistical Methodology for
Class Mapping for each evaluation dataset. The performance was evaluated ac-
cording to the SED evaluation metrics and tools suggested for the SED tasks of
the DCASE Challenges [66], described in Chapter 2.3.3. And the official evalu-
ation tool sed_eval from the SED evaluation toolbox [66] was used to measure
the segment-based and class-wise performance explained in Chapter 2.3.3. For the
Y-MCC method evaluation, three publicly available datasets were chosen by con-
sidering their significant contribution to the SED system research targeting the
homecare environment. The details of the three selected datasets, TUT-SED2016,
ESC-50, and SINS dataset, can be found in Chapter 2.3.2. Therefore, the following
sub-chapters discuss the MCC-based class mapping and performance evaluation on
the Y-MCC method for the three selected datasets.

4.1 Y-MCC Performance on TUT-SED2016 Home Dataset

As a first evaluation experiment, a subset of the TUT-SED2016 development dataset
consisting of home event recordings [47], hereafter named TUT-SED2016Home, was
considerably chosen to assess the Y-MCC method adaptability for the polyphonic
SED task. The tasks were carried out from the MCC matrix creation for generating
new class maps and performance evaluation using the MCC-threshold-based new
class maps. However, the dataset has been claimed to be quite challenging for many
SED systems because the dataset was recorded in a real-life environment containing
ambient background noises and prominent sound events that often have very low
power intensities [36]. Moreover, the dataset also provides ground truth information
with temporal boundaries of starting and ending of the multiple events with respect
to the SED system to be precisely designed for detecting single or multiple overlap-
ping sound events with precise occurrence time. Despite the challenging facts, the
TUT-SED2016Home dataset was tested for the first performance evaluation experi-
ment for the Y-MCC method because the target sound events are highly important
for understanding real-life indoor home event sounds. Moreover, it has a relatively
small volume of audio recordings, potentially saving computing resources and time
for evaluation.
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4.1.1 MCC-based Class Mapping for TUT-SED2016 Home

The main two steps in MCC-based class mapping of the Y-MCC method consist of
creating an MCC matrix and then generating class maps based on the MCC matrix.
For the MCC matrix creation, two files as input are required to compute for an
MCC matrix computation, estimated and reference files corresponding to the train-
ing portion of the TUT-SED2016Home dataset. The estimated files were produced
in the Y-MCC Stage 2 by the YAMNet model according to the parameter settings,
such as the number of classes taken from the YAMNet prediction, for the Y-MCC
method top 5 high-probability classes were taken into a prediction vector with their
time boundaries and written into an estimated file when all the frames of the input
record were processed. In the next stage, when all estimated files were generated
for all files in the training subset, the confusion matrix was created by comparing
the pairs of estimated predictions and ground truth in the reference files to produce
output as the four conditions of the confusion matrix (TP, FP, TN, FN), as dis-
cussed in the MCC method in Chapter 3.3.3. After that, the confusion matrix was
concatenated for computing Matthews correlation coefficient to create an MCC ma-
trix, with a dimension of 521× 11, for the whole input dataset. Figure 4.1 presents
the trend of the MCC matrix produced for the TUT-SED2016Home dataset. As
can be seen, the general trend of the MCC score was widely spread, ranging in
MCCmin,max ∈ [−0.297, 0.525] over the 11 target classes of TUT-SED2016Home.
The maximum correlation scores in class-wise, around half of all classes were ob-
tained fairly well, with over 0.2, contrary to the other half, with below 0.2.

Looking more closely, Table 4.1 shows the MCC matrix in class-wise statistical
descriptions. The highest MCC value was obtained by ’water tap running’ at 0.525,
followed by ’dishes’ at 0.264 and ’object impact’ at 0.244. On the other hand,
the ’(object) snapping’ class showed very weak positive correlations with YAMNet
classes at 0.056, seen from the maximum MCC value point of view. These class-
wise highest and lowest maximum values indicated to determine the threshold range
for the MCC matrix to be set for 11 stages with MCCthreshold ∈ [0, 0.5] with 0.05
steps. As a result, 11 new class maps were created based on the MCC thresholds
to map between 521 YAMNet classes and the 11 target classes predefined in the
TUT-SED2016Home dataset.

The class correlations between the MCC score over 0.25 obtained by the
TUT-SED2016Home and YAMNet classes are presented in Table 4.2, which was
one of the 11 new class maps produced based on the 11 MCC threshold. It can be
observed that the MCC-based class mapping method effectively resolved the uncer-
tainty of mapping the various YAMNet classes to the target classes. For example, the
’water tap running’ target class mapped with 8 YAMNet classes, including ’Sizzle,’
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Figure 4.1 The boxplot presents a trend of the correlation measured using Matthews corre-
lation coefficient matrix between 521 YAMNet classes and 11 TUT-SED2016 target classes.
The overall MCC minimum and maximum value ranged in MCCmin,max ∈ [−0.297, 0.525].

’Liquid,’ ’Frying (food),’ and ’Hiss,’ with a significant level of positive correlation
values. And the other ’dishes’ target class mapped with the YAMNet’s ’Dishes pots
and pans’ with a higher MCC score than the threshold of 0.25. In general, this
mapping evidence could indicate the reliability of the MCC-based class mapping,
which could be seen as improving the accuracy of finding closely correlated YAMNet
classes among 521 for the 11 TUT-SED2016Home target classes.

4.1.2 Results

The previous studies of the SED system performance measured on the
TUT-SED2016 dataset in the DCASE 2016 challenge have been reported as very
challenging and insignificant [5, 47]. As discussed in Chapter 2.3.2 about the TUT-
SED2016 dataset, the baseline system employed the GMM method with MFCC
feature extraction performed low scores of F1 at 18.1% and ER at 0.95 in segment-
based metrics [5, 47]. The ranked top one system obtained a significantly better
error rate with 47.8% F1-score and 0.80 ER for the TUT-SED2016 dataset (31.0%
F1 and 0.91 ER on the Home development dataset) which employed an RNN ar-
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Table 4.1 A table of the MCC matrix in class-wise statistical descriptions explains
a correlation trend between the 521 YAMNet classes and the 11 target classes of the
TUT-SED2016Home dataset. Average, minimum, maximum, and standard deviation ab-
breviations are denoted as Mean, Min, Max, and STD. The MCC strongest correlation
was found from ’water tap running’ with 0.525 in the TUT-SED2016Home target class.

MCC
TUT-SED2016 Class Mean Min Max STD
(object) rustling -0.0005 -0.067 0.126 0.019
(object) snapping -0.0010 -0.036 0.056 0.007
cupboard 0.0026 -0.078 0.178 0.022
cutlery 0.0017 -0.055 0.149 0.018
dishes 0.0070 -0.296 0.264 0.038
drawer 0.0016 -0.062 0.239 0.024
glass jingling 0.0037 -0.101 0.232 0.027
object impact 0.0026 -0.177 0.244 0.029
people walking -0.0024 -0.060 0.160 0.016
washing dishes -0.0013 -0.086 0.236 0.022
water tap running 0.0093 -0.297 0.525 0.065

Table 4.2 A MCC-based class map with 0.25 threshold contains YAMNet classes mapped
to the target classes of the TUT-SED2016Home dataset. This example shows the reliability
of the MCC-based class mapping to resolve the uncertainty of finding related classes among
521 YAMNet classes to 11 target classes.

YAMNet Class TUT-SED2016 Class MCC value
Hiss water tap running 0.425
Water water tap running 0.269
Dishes pots and pans dishes 0.264
Frying (food) water tap running 0.448
Electric shaver electric razor water tap running 0.286
Liquid water tap running 0.460
Spray water tap running 0.391
Stir water tap running 0.285
Sizzle water tap running 0.525

chitecture with Mel energy feature [5, 47, 75]. Additionally, it was reported that
other systems in the same challenge task ranked from the top 2 to 9 also showed
remarkably lower ER in [0.9, 0.97] (F1-score ranging in [23.9%, 42.9%]) than the
top-ranked system [5]. As overall performance results of the Y-MCC system are
given in Table 4.3, a statistical summary of the 1-second segment-based micro av-
erage over the MCC-threshold based 11 class maps using 5 audio record files of the
evaluation dataset. In addition, Figure 4.2 illustrated the Y-MCC performance
trend in the micro average metrics over 11 MCC-threshold-based class maps, which
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indicated that the improving the performance over the threshold at the beginning
steps. The results indicated that the lowest error rate performance was achieved
with 0.88(±0.97) (corresponding F1 with 25.0%, at 0.25 MCC threshold) and the
best F1-score at 34.5%(±9.5) (corresponding ER with 1.82, at 0.1 MCC threshold).
In general, the Y-MCC performance results could be interpreted as compared to the
previous studies in the DCASE2016 challenge, the Y-MCC method with the best
F1-score at 34.5% achieved similar performance to the average F1-score at 35.2% of
the top 9 systems measured on the TUT-SED2016Home dataset.

Table 4.3 The table presents a statistical description of the 1-second segment-based
overall micro average performance measured for the Y-MCC method using the TUT-
SED2016Home dataset over the 11 MCC-threshold-based class maps.

Micro Average
Statistics F1-score (%) Precision (%) Recall (%) ER
Mean 22.6 44.1 28.2 1.43
Min 6.4 16.1 3.4 0.88
Max 34.5 67.9 71.5 3.72
STD 9.5 17.6 25.9 0.97

Figure 4.2 The line plots show the Y-MCC overall micro average performance measured
on the TUT-SED2016Home evaluation dataset over 11 steps of the MCC-threshold-based
class maps. The general trend has shown that the performance improved over the MCC
thresholds in terms of precision (TOP: blue line), with the highest F1-score of 34.5% at
0.1 MCC threshold (Top: red line), while the recall score steadily dropped (Top: green
line). Additionally, a trend from the error rate (Bottom: red line) has shown remarkable
drops and remained under 1 from the MCC threshold at 0.15 onward and the best ER of
0.88 at the 0.25 MCC threshold.

More details of the Y-MCC class-wise performance are shown in Figure 4.3, and
the maximum F1-score achieved by the 11 TUT-SED2016Home target classes are



51

listed in Table 4.4. The overall trend in the class-wise performance observed over
the 11 MCC-threshold-based class maps that most of the target classes obtained
some positive level of F1-score, which seemed difficult for an unbalanced dataset
for four classes with the small number of sound events as reported in [5, 47]. The
article described that in the baseline system, no true positive event detection was
found for those small volume classes, including ’glass jingling’ and ’(object) snap-
ping.’ As expected, the MCC-threshold-based class maps helped to improve the
Y-MCC performance for all the target classes even though the classes had small
instances, which can be seen as a benefit of the pre-trained YAMNet with a large
amount of AudioSet dataset. Furthermore, it can be seen in Figure 4.4 that most
of the classes improved ER when the threshold increased, especially for ’0: (object)
rustling’ dropped dramatically ER. On the other hand, with ’10: water tap running’
at the threshold zero, F1-score was highest at 58.5% F1 with 1.11 ER, afterward
when thresholds increased, F1 slightly dropped but improved the precision and er-
ror rate resulted in the lowest error rate at 0.84 with precision at 61% and F1 at
50.9%. Moreover, other classes like ‘4: dishes’ and ‘9: washing dishes’ achieved
over 40% F1-score, which can also be seen as a very significant score, considering
the serious difficulty of the polyphonic with strongly labeled SED task using the
unbalanced TUT-SED2016Home dataset. To summarize, the Y-MCC method suc-
cessfully improved the class-wise performance scores for most TUT-SED2016Home
target classes.

Table 4.4 Y-MCC class-wise performance on the TUT-SED2016Home dataset presents
the best F1-score obtained by the 11 target classes from 11 MCC-threshold-based class maps
indicating the best F1-score by the ’10: water tap running’ with 58.5% at 0 MCC threshold.

TUT-SED2016 Index_Class Th F1-score (%) Precision (%) Recall (%) ER
0_(object) rustling 0.10 19.9 11.2 89.3 7.20
1_(object) snapping 0.05 6.7 11.1 4.8 1.33
2_cupboard 0.10 15.6 13.2 19.2 2.08
3_cutlery 0.05 8.5 5.2 22.9 4.94
4_dishes 0.15 42.5 34.2 56.2 1.52
5_drawer 0.00 16.5 16.1 17.0 1.72
6_glass jingling 0.20 38.9 33.3 46.7 1.47
7_object impact 0.05 37.0 26.8 59.9 2.04
8_people walking 0.10 23.3 13.4 90.6 5.97
9_washing dishes 0.10 41.3 30.5 63.9 1.82
10_water tap running 0.00 58.5 46.7 78.2 1.11

Consequently, the results suggested that the statistical method of Matthews corre-
lation coefficient for the Y-MCC method improved the uncertainty of determining
YAMNet classes toward 11 target classes predefined in the TUT-SED2016Home
dataset. Based on the MCC-based class mapping approach, the 1-second segment-
based micro average performance with 34.5% F1-score can be seen as a similar score
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Figure 4.3 The box plots present a trend of the class-wise performance metrics, Top:
F1-score and Bottom: ER, of the Y-MCC method measured on the TUT-SED2016 dataset
over 11 MCC-threshold-based class maps. Overall, it could be observed that all the target
classes achieved some positive level of F1-score, even though the dataset was considered
highly challenging for many known reasons.

to an average top 9 performers of the DCASE 2016 challenge for the SED task.
Obviously, the error rate seems higher for a SED system, but the classes like ’10:
water tap running’ and ‘5: drawer’ improved the error rate below 1 when the MCC
threshold increased. This indicated that The Y-MCC performance in class-wise
showed surprisingly good results considering the many challenging constraints dis-
cussed regarding the polyphonic SED task using the TUT-SED2016Home dataset.
Furthermore, the correlation measurement based on Pearson showed a very strong
relationship at 0.85 between the maximum F1 score and the Maximum MCC score
in the 11 target classes. In conclusion, the observations of the Y-MCC performance
results based on the statistical MCC methodology to map classes between YAMNet
and TUT-SED2016 target classes could be moderately reliable for applying the sys-
tem to the polyphonic SED task, particularly monitoring the home environment for
the water tap running sound event.

4.2 Y-MCC Performance on ESC-50 Dataset

ESC-50 or ESC50 dataset is the class-wise well-balanced dataset with 50 target
classes [60], described in Chapter 2.3.2. The dataset is used mainly for classification
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Figure 4.4 The line plots present a trend of the class-wise performance metrics, Left:
F1-score and Right: ER, of the Y-MCC method measured on the TUT-SED2016Home
dataset over 11 MCC-threshold-based class maps. Overall, it could be observed that the
Y-MCC method successfully improved most target class performance.

tasks. However, it seems beneficial to evaluate the Y-MCC method because of the
high relevance of the many target classes in homecare monitoring, especially sound
groups of non-human speech sound and domestic urban sound highly relevant.

Using the ESC-50 dataset, the procedures to generate the MCC matrix between 521
YAMNet classes and 50 ESC-50 target sound event classes were done similarly to the
TUT-SED2016Home dataset. The three main differences with the ESC-50 dataset
were the fold-based audio file structure, a 5-second short-fixed size of audio clips,
and monophonic reference. Therefore, the MCC matrix procedure and evaluation
for the fold-based dataset have been implemented to handle 5-fold data subsets.
Three out of five folds were used for generating the MCC matrix in 5-second 1200
audio clips. And the other two folds, fold 4 and 5, in a total of 5-second 800 audio
clips, were used for the YMCC method evaluation.

4.2.1 MCC-based Class Mapping for ESC-50

Figure 4.5 illustrates the MCC correlation distribution dimension of 521× 50 com-
puted between 50 ESC-50 target classes and 521 YAMNet classes. As a result, The
MCC correlation values spread in the range of MCCmin,max ∈ [−0.068, 0.704] and
over 24 ESC50 classes obtained over 0.4 MCC correlation values, which showed a
considerably good correlation.
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Figure 4.5 The boxplot presents a trend of the MCC matrix between 521YAMNet classes
and 50 ESC-50 target classes computed based on three folds of 1200 audio clips that were
well-balanced between the classes. Among the ESC-50 50 target classes, 24 obtained an
MCC value higher than 0.4.

A more closely examined statistical description of the MCC matrix is summarised
in Table 4.5 regarding the top 10 classes seen from the MCC maximum value.
The highest three classes were obtained by ‘train’ at 0.704(±0.036) followed by
‘dog’ at 0.608(±0.033) and ‘keyboard_typing’ at 0.573(±0.035). Moreover, among
the other classes, ‘crying_baby,’ ‘clapping,’ and ‘snoring’ yielded good MCC scores
considered to be useful for homecare sound event detection. Conversely, the lowest
MCC maximum value obtained by 10 classes is shown in Table 4.6. Among them,
‘water_drops’ was the lowest with MCCmax0.117(±0.013), followed by ‘cow’ at
0.202(±0.018), and ‘drinking_sipping’ at 0.202(±0.016).

The statistical analysis of the MCC matrix suggested that it could determine the
MCC-based threshold for ESC-50 class mapping to be in the range of [0, 0.7] with
0.05 steps, considering the ’train’ MCC maximum score at 0.704. Therefore the 15
MCC thresholds were used to create 15 MCC-threshold-based class maps between
YAMNet 521 and ESC-50 50 classes. For instance, one of the MCC-threshold-based
class maps based on the MCC threshold at 0.5 is presented in Table 4.7. It can
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Table 4.5 A list of the Top 10 ESC-50 classes measured from the statistical descriptions
of the MCC maximum scores.

MCC
ESC-50 Class Mean Min Max STD
train 0.0003 -0.068 0.704 0.036
dog 0.0001 -0.042 0.608 0.033
keyboard_typing 0.0007 -0.042 0.573 0.035
sheep 0.0005 -0.053 0.536 0.035
crying_baby 0.0005 -0.042 0.536 0.033
clapping 0.0013 -0.042 0.536 0.032
pig 0.0002 -0.053 0.496 0.029
hen 0.0002 -0.053 0.496 0.031
fireworks 0.0006 -0.053 0.464 0.033
snoring -0.0007 -0.029 0.458 0.026

Table 4.6 A list of the Low 10 ESC-50 classes measured from the statistical descriptions
of the MCC maximum scores.

MCC
ESC-50 Class Mean Min Max STD
water_drops -0.0011 -0.042 0.117 0.013
cow -0.0003 -0.038 0.202 0.018
drinking_sipping -0.0011 -0.040 0.202 0.016
mouse_click -0.0009 -0.040 0.202 0.017
door_wood_creaks -0.0010 -0.042 0.202 0.017
car_horn -0.0011 -0.040 0.214 0.015
sneezing -0.0019 -0.042 0.222 0.012
washing_machine -0.0007 -0.053 0.224 0.019
coughing -0.0016 -0.042 0.237 0.015
can_opening -0.0019 -0.042 0.252 0.012

be observed that the ESC-50 classes were reasonably associated with similar class
labels of the YAMNet. Nevertheless, the new 15 class maps replaced the original
YAMNet class map to evaluate the Y-MCC method for the ESC-50 dataset.

4.2.2 Results

As discussed previously, since the ESC-50 dataset released to the public with base-
line system performance, it has been improved the classification accuracy dramat-
ically with various machine learning models. Initially, the baseline performance
based on a simple CNN model was reported at a 64.5% accuracy rate in 2015 [63].
Especially recent advanced models have reached over 90% accuracy; for instance,
the performance of a model named with sequential learning on the ESC-50 dataset
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Table 4.7 A MCC-threshold-based class map created based on the threshold at 0.5 shows
associated classes between the YAMNet and ESC-50.

YAMNet Class ESC-50 Class MCC value
Whimper crying_baby 0.536
Hands clapping 0.536
Bow-wow dog 0.608
Goat sheep 0.536
Railroad car, train wagon train 0.704
Computer keyboard keyboard_typing 0.574

achieved a remarkable accuracy score at 94.1% [64]. The Y-MCC performance
metrics with the ESC-50 dataset in a 5-second segment-based micro average are
statistically described in Table 4.8 and Figure 4.6. It indicates the best F1 score in
a micro average at 41.2% (0.62 ER, 0.4 MCC threshold) and the lowest ER at 0.6
(40.9% F1, 0.35 MCC threshold). The corresponding balanced accuracy score for
41.17% F1-score yielded 68.47%. Although these results seemed considerably lower
than the recent state-of-the-art, the Y-MCC method achieved slightly higher than
the CNN-based baseline model with a 4% improvement in terms of accuracy. The
MCC-threshold trend seen from the figure shows, in most cases, the performance
regarding precision increased when the MCC thresholds increased, whereas F1-score
and recall increased up to 0.35 threshold. Nevertheless, it can be observed that the
Y-MCC method with the lowest error rate of 0.6 at the 0.35 threshold seems to
perform reasonably well. Consequently, the MCC-threshold-based class mapping
used in the Y-MCC model against the ESC-50 dataset performed reasonably well
at micro-average. Still, it showed room for improvement compared to the recent
advanced classification models.

Table 4.8 Table shows a statistical description of the Y-MCC performance measured
against the ESC-50 dataset in the 5-second segment-based micro-average across 15 MCC-
threshold-based class maps. The best performance was achieved in F-score at 41.2% (MCC-
threshold at 0.4)and ER at 0.6 (MCC-threshold at 0.35).

Statistics F1-score (%) Precision (%) Recall (%) ER
Mean 27.1 39.8 25.2 0.75
Min 3.8 32.4 2.0 0.60
Max 41.2 52.6 40.4 0.98
STD 14.3 5.9 15.2 0.15

Looking closely at the class-wise performance metrics of the Y-MCC method is illus-
trated in Figure 4.7, and the top-10 F1-score achieved by the ESC-50 target classes
are listed in Table 4.9. The overall trend in the figure, computed over the 15 thresh-
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Figure 4.6 The line plots present the growing trend of the Y-MCC method performance
measured in the 5-second segment-based micro average on the ESC-50 dataset. The eval-
uation was performed over the 15 MCC-threshold-based class maps ranging [0, 0.7] with
0.05 steps. The performance metrics are shown on the top plot regarding F1, precision,
and recall steadily increased from zero to the threshold of 0.4, reaching the F1-score peak
at 41.2%. At the same time, the error rate (Down) declined from zero to 0.35 threshold,
reaching its lowest point at 0.6.

olds output, shows that 43 classes out of 50 obtained an F1 score higher than zero.
Among them, the highest F1 score at 100% (0 ER) was achieved by ‘8_sheep’ as a
perfect score, followed by ‘27_brushing_teeth’ and ‘16_wind’ at 96.8% F1 and 0.06
ER for both classes. On the contrary, 7 ESC-50 target classes encountered problems
producing meaningful F1 scores, such as ‘21_sneezing,’ ‘33_door_wood_creaks,’
and ’48_fireworks’ yielded zero F1-score. Despite the insignificant performance for
approximately 14% of the total classes, the Y-MCC method achieved relatively high
performance for most target classes including many important domestic sound event
classes. Therefore, the class-wise performance results convinced the Y-MCC method
successfully worked for the ESC-50 dataset in most of the 50 target classes.

A statistical method employing Matthews correlation coefficient for the Y-MCC
noticeably reduced the uncertainty of determining YAMNet classes toward 50 tar-
get classes defined in the ESC-50 dataset. Based on the approach, the 5-second
segment-based micro average performance with 64.47% accuracy (41.2% F1-score)
was almost similar to the CNN baseline system at 64.5% of the dataset. Specifically,
the top 10 F1-score classes obtained over 80% F1-score, including the ‘sheep’ tar-
get event with a 100% perfect detection score. Moreover, homecare-relevant sound
classes like ’brushing_teeth,’ ‘glass_breaking,’ ‘toilet_flush,’ and ‘coughing’ have
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Figure 4.7 The box plots present the Y-MCC method’s positive trend of the class-wise
performance metrics in F1-score (Top) and ER (Bottom) measured on the ESC-50 dataset
over 15 MCC-threshold-based class maps. Overall, it can be observed that many classes
achieved excellent performance, such as ‘8_sheep’ achieved the perfect detection F1-score
of 100% and zero ER, followed by ‘27_brushing_teeth’ and ‘16_wind’ at 96.8% F1-score
and 0.06 ER.

excellent performance over 85% F1-score. The top 10 classes showed a strong Person
correlation score of 0.43, measured between the F1 and MCC scores. Although, some
classes reported poor performance, which indicates room to improve the method.
However, the observation of the class-wise performance results has shown convinc-
ing evidence that the Y-MCC method works effectively on the ESC-50 dataset even
for the diverse sound sources, including human non-speech, domestic, and animal.
These are essential sound events for homecare applications, such as ‘coughing,’ ‘toi-
let flush,’ and ’glass breaking.’ Therefore, the performance results suggest that the
Y-MCC method could be applied for homecare SED applications for those classes
that achieved over 90% F1-score or 100% precision and recall, assuming that the
sound characteristics of the application environment should be similar to the ESC-50
audio clips. Alternatively, as the YAMNet model utilized in [9] to detect segments
with cough sound events for COVID-19 symptomatic detection, the Y-MCC method
confirmed that the highly performed classes, especially classes achieved 100% pre-
cision like ‘coughing’ and ’sheep’ could be used for the sound event detection in
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Table 4.9 A list summarizes the top 10 best class-wise performance metrics measured
over the 15 threshold-based class maps for the ESC-50 dataset. Their F1 scores ranged
from 83.9% to 100%, the perfect score achieved by ’8: sheep’ (0.4 MCC threshold) followed
by ’27: brushing_teeth’ (0.35 MCC threshold) and ’16: wind’ (0.4 MCC threshold) with
96.8% F1-score and 0.06 ER for both classes. Moreover, the target class ’7: insects’
achieved 100% recall, and ’24: coughing’ performed 100% precision.

ESC-50 Index_Class Th F1-score (%) Precision (%) Recall (%) ER
8_sheep 0.40 100.0 100.0 100.0 0.00
27_brushing_teeth 0.35 96.8 100.0 93.8 0.06
16_wind 0.40 96.8 100.0 93.8 0.06
39_glass_breaking 0.45 93.8 93.8 93.8 0.13
7_insects 0.40 88.9 80.0 100.0 0.25
18_toilet_flush 0.35 86.7 92.9 81.2 0.25
39_glass_breaking 0.40 86.7 92.9 81.2 0.25
24_coughing 0.30 85.7 100.0 75.0 0.25
23_breathing 0.15 84.8 82.4 87.5 0.31
18_toilet_flush 0.40 83.9 86.7 81.2 0.31

segment level to assist the upstream model.

4.3 Y-MCC Performance on SINS Dataset

This chapter presents the Y-MCC performance evaluation using the SINS dataset,
introduced in Chapter 2.3.2. The SINS dataset [39] plays a vital role in justify-
ing the SED system’s effectiveness for monitoring the homecare environment. The
dataset with over 88 GB of audio recordings is divided into 4-fold subsets to facilitate
cross-validation for generalizing machine learning methods. For the Y-MCC method
evaluation, the MCC matrix was created using the fold1 subset of the SINS develop-
ment dataset, which consists of the train set with 10-second 54964 audio recordings
and the evaluation set with 18020 audio clips used for the performance evaluation of
the Y-MCC method. This chapter mainly discusses the MCC-threshold-based class
map generation between YAMNet and SINS target classes and assesses the Y-MCC
performance measured on the SINS dataset.

4.3.1 MCC-based Class Mapping for SINS

In the first channel of the Y-MCC method, the MCC matrix was generated to create
new class maps between 521 YAMNet and 9 SINS target classes. The MCC matrix
using the SINS dataset was computed based on the confusion matrix comparing
pairs of files, one from the ground truth of the fold1 train reference files and the
other corresponding YAMNet’s estimated files. Figure 4.8 illustrates the overall
trend of the MCC matrix score in the range of MCCmin,max ∈ [−0.369, 0.883] with a
dimension of 521×9. Seen from the maximum MCC scores of the SINS target classes
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presented in Table 4.10, it can be observed as most of the SINS classes obtained
mild correlations (over 0.2 and below 0.4) with the YAMNet classes. The target
class-wise, the highest correlation was shown by ‘vacuum cleaner’ at 0.883(±0.043),
whereas ‘other’ showed the lowest correlation at 0.098(±0.008). This indicated to
determine the MCC threshold for class map creation to be made in the range of
MCCthreshold ∈ [0, 0.5] with steps of 0.05. Therefore, 11 class maps were created
based on the MCC threshold scores between YAMNet and SINS target classes and
used in the second channel to measure the Y-MCC system performance.

Figure 4.8 The boxplot illustrates the general trend of the MCC matrix showing the
correlation strength in the range of [-0.369, 0.883] between 521 YAMNet classes and 9
SINS target classes. Overall, as seen from the class-wise maximum MCC score, most
of the target classes seemed to have a mild level of correlation under 0.4, except for the
’vacuum cleaner’ at 0.883 as the highest.

A closer look at a class mapping is presented in Table 4.11, which shows the MCC
threshold at 0.25 produced 9 YAMNet classes mapped to 6 SINS target classes. It
can be observed that there were multiple classes from YAMNet mapped to a SINS
class. For example, the SINS ‘vacuum_cleaner’ were mapped with three YAMNet
classes: ‘Vacuum cleaner’ at the highest MCC score of 0.883, ‘Aircraft’ at 0.26, and
‘Tools’ at 0.287. As the second highest MCC correlation, SINS ‘absence’ mapped
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Table 4.10 A statistical summary of the MCC metrics presents a degree of correlation
between YAMNet 521 and SINS 9 target classes. The class-wise maximum MCC scores
were used to determine the MCC threshold for MCC-based class map creation.

MCC
SINS Class Mean Min Max STD
absence -0.0001 -0.369 0.362 0.031
cooking 0.0010 -0.125 0.299 0.020
dishwashing 0.0011 -0.055 0.299 0.016
eating -0.0002 -0.071 0.135 0.011
other 0.0004 -0.051 0.098 0.008
social_activity -0.0004 -0.118 0.208 0.014
vacuum_cleaner 0.0025 -0.076 0.883 0.043
watching_tv -0.0003 -0.276 0.339 0.032
working -0.0011 -0.175 0.328 0.021

YAMNet ‘absence’ at 0.362. SINS ‘watching_tv,’ also multiply mapped with YAM-
Net ‘Speech’ at 0.339 and ‘Music’ slightly over the threshold at 0.255. Inevitably,
the MCC-threshold-based class maps solved the uncertainty of the mapping prob-
lem between the YAMNet and SINS classes. Otherwise, it could be very difficult
to estimate, for example, YAMNet ’Inside, small room’ to map with SINS ’cook-
ing’ and YAMNet ’Snake’ to SINS ’absence.’ As a result, the MCC matrix and its

Table 4.11 The table presents one of the class map examples based on the MCC threshold
with 0.25. It was observed that 9 YAMNet classes were mapped to 6 SINS target classes.
The strongest correlation was found from YAMNet ’Vacuum cleaner’ mapped to SINS
’vacuum_cleaner’ with 0.883. The second highest map was YAMNet ’Snake’ to SINS
’absence’ followed by YAMNet ’Speech’ mapped to SINS ’watching_tv.’

YAMNet Class SINS Class MCC value
Speech watching_tv 0.339
Animal working 0.328
Hiss dishwashing 0.298
Snake absence 0.362
Music watching_tv 0.255
Aircraft vacuum_cleaner 0.260
Vacuum cleaner vacuum_cleaner 0.883
Tools vacuum_cleaner 0.287
Inside, small room cooking 0.299

statistical analysis provided information to determine the MCC-based threshold for
class mapping to be made in the range of [0, 0.5] with 0.05 steps. Although ’vac-
uum_cleaner’ was higher than the maximum threshold of 0.5 and mapped with only
one YAMNet ’Vacuum_cleaner,’ which indicated no need to extend the maximum
threshold. Therefore the 11 MCC-based thresholds were used to create 11 class
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maps to evaluate the Y-MCC performance in the next second channel. In general,
the MCC statistical method suggested a way of solving the uncertainty of the class
mapping and improving the reliability of the class mapping between the YAMNet
and SINS target classes.

4.3.2 Results

In the DCASE 2018 challenge Task 5, the performance of the SED systems to
classy target acoustic events defined in the SINS dataset has shown excellent class-
wise F1-score performance [38]. The top-ranked 5 systems’ performance in the
challenge achieved class-wise macro F1-score averaged at 89.08%(±0.35), which ex-
ceeded nearly 5% higher than the baseline system with approximately 84% (refer
to Chapter 2.3.2). However, the overall performance of the Y-MCC system was far
lower than the baseline performance; the overall macro-average F1-score was 41.45%,
a bit less than half of the baseline F1-score. A bar chart in Figure 4.9 illustrates
the three class-wise F1-score comparisons on the SINS development dataset obtained
by the Y-MCC method, the baseline system, and the average F1-score of the top 5
systems of the DCASE 2018 challenge.

Figure 4.9 The bar chart illustrates the class-wise performance of the Y-MCC in com-
parison with the baseline and top 5 systems (averaged) in DCASE2018 Challenge for the
acoustic classification task using SINS development dataset. Overall the Y-MCC system
performed far below the competing systems, but with ’6: vacuum_cleaner’, the Y-MCC
system showed a significantly high F1-score at 94.7%.

A closer look at the class-wise performance results shown in Table 4.12 provides
important indications that the ’6: vacuum_cleaner’ class in the Y-MCC system
could nearly beat the other competing systems with approximately 95% F1-score,
100% recall, and the lowest ER at 0.113. In contrast, the rest of the SINS target
classes clearly indicated huge performance gaps. Additionally, three more classes
of the Y-MCC system obtained over 50% F1-score, such as ’7: watching_tv’ at
83.9%, ’0: absence’ at 68.1%, and ’8: working’ at 51.1%; however, the competing
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systems achieved higher than 80% F1-score. Similarly, ’4: other’ was the lowest
performance obtained by the other competing systems, closer to 50%, 8.2% for the
Y-MCC system as the second lowest on its own. To summarize, the findings of the ’6:
vacuum_cleaner’ and ’7: watching _tv’ classes from the Y-MCC system measured
on the SINS development dataset could be reliable for homecare applications with
relatively good scores, whereas most of the other classes might not suggest using
directly due to considerably low performance.

Table 4.12 Table presents the class-wise performance metrics of the Y-MCC system
compared to the TOP-ranked 5 and the baseline system published in the DCASE 2018
challenge for Task 5. Considering the F1-score and ER obtained by the Y-MCC system,
’6: vacuum_cleaner’ and ’7: watching_tv’ achieved significantly high F1-score over 80%
and less than 0.4 ER, which could be considered highly reliable detection by the Y-MCC
system.

Y-MCC Baseline Top5
SINS Index_Class Th. F1(%) Pre(%) Rec(%) ER F1(%) [38] F1(%) [38]
0_absence 0.10 68.1 56.5 85.5 0.80 89.4 93.46
1_cooking 0.05 33.9 20.9 90.2 3.52 96.3 96.74
2_dishwashing 0.15 28.0 56.9 18.5 0.96 79.5 87.54
3_eating 0.05 4.4 68.4 2.3 0.99 82.0 87.76
4_other 0.00 8.2 28.1 4.8 1.08 44.1 59.94
5_social_activity 0.00 1.7 69.2 0.9 1.00 96.4 97.64
6_vacuum_cleaner 0.30 94.7 89.9 100.0 0.11 95.9 97.58
7_watching_tv 0.30 83.9 75.0 95.3 0.37 99.9 99.98
8_working 0.30 51.1 47.8 54.9 1.05 81.5 89.08

In addition, the overall micro average performance results summarized in Table 4.13
and Figure 4.10 provide information about a trend of the Y-MCC system perfor-
mance measured on over 11 MCC-threshold-based class maps generated based on
the evaluation subset of fold1 SINS development dataset. It can be observed that the
performance of the Y-MCC improved when the threshold steps moved upward up
to 0.3 as a peak, afterward, it declined noticeably. Based on the 11 MCC-threshold-
based class maps ranging in [0, 0.5] with 0.05 steps, the best performance yielded
with the 0.3 MCC thresholds at 59.46% F1-score with the lowest ER at 0.41, which
was approximately 5% higher and 0.09 lower than the 0.25 threshold. The findings
clearly suggest that the MCC-threshold-based class mapping method used in the
Y-MCC system effectively improved the system’s performance.

To summarise, the main goal of the Y-MCC system evaluation was to determine
whether the system could yield meaningful performance results toward the highly
unbalanced but relatively important indoor home-based sound event classes defined
in the SINS dataset. The performance results of the Y-MCC system indicated in the
overall micro and macro average metrics might be insufficient against the baseline
and the top 5-ranked systems released in the DCASE 2018 challenge task. However,
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Table 4.13 Table shows a statistical description of the performance of the Y-MCC method
using the SINS dataset in the 10-second segment-based micro average across 11 thresholds-
based class maps ranging in [0, 0.5]. The best performance was achieved in F-score at
59.5% and the lowest error rate at 0.41.

Micro Average
Statistics F1-score (%) Precision (%) Recall (%) ER

Mean 36.8 50.6 36.2 0.64
Min 2.6 33.0 1.3 0.41
Max 59.5 59.8 59.1 0.99
STD 23.2 6.4 23.8 0.24

Figure 4.10 The line plots present a trend of the overall micro averaged performance
metrics of the Y-MCC system measured on the SINS development dataset. Obviously,
the trend showed that over the 11 MCC-threshold-based class maps, the performance of
F1-score and ER improved steadily up to the peak at 0.3 thresholds, afterward declining
the performance.

the class-wise performance results revealed that the two SINS target classes, such
as ‘vacuum_cleaner’ and ‘watching_tv,’ might be significant considering the class
level metrics of F1-score over 80% and ER below 0.4. Moreover, these findings
were supported by the Pearson correlation score of 0.8, meaning there was a very
significant correlation score between that MCC value and F1-score. Therefore, the
MCC-threshold-based class mapping method used in the Y-MCC system showed its
effectiveness toward the SINS dataset for resolving the uncertainty of the class map,
simultaneously improving the performance.
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5 Conclusion

Recent prior publications and acoustic recognition systems based on the YAMNet
pre-trained model, which trained using the large-scale of the AudioSet dataset to
predict 521 acoustic event classes, have successfully demonstrated the benefits of uti-
lizing the YAMNet CNN-based machine learning model for their applications even
in the healthcare field. As a common use case of the YAMNet model utilization
suggested in [9], the research has employed the YAMNet classification inferences in
the pre-processing stage of their classification system, named ViT, to identify cough
or non-cough segments in the audio recordings. The ViT system achieved over
97% accuracy in classifying the COVID-19 symptomatic cough evaluated on the
three public COVID-19 datasets. On the other hand, the feature extraction method
offered by the YAMNet pre-trained model has also been explored to generalize clas-
sification systems suffering from limited training datasets. This approach has been
applied in numerous studies, including classifying Alzheimer’s dementia using YAM-
Net’s feature extraction on the speech event [10] and detecting abnormal respiratory
sounds using wheeze and crackle sound events [42]. Moreover, as a non-healthcare
field published in [11], extensively investigated the YAMNet model by optimizing to
detect numerous target classes defined in the commonly used public audio datasets:
UrbanSound 8K (10 classes), ESC-10 (10 classes), and Air Compressor dataset (8
classes). However, YAMNet-based studies, including these previous pieces of litera-
ture, have failed to address the impact of class ambiguity between the YAMNet 521
classes associated with their target event classes, which could significantly affect the
performance of sound classification or detection systems.

In this study, we investigated the uncertainty of the YAMNet class map based on
the statistical methodology of the Matthews correlation coefficient called the Y-
MCC method, primarily aiming to improve the performance of the sound event
detection system. Additionally, the Y-MCC system has been designed to adapt
the YAMNet model to become stretchable for both classification and polyphonic
SED tasks to support innovative homecare applications. The findings of this study
indicate that the Y-MCC method has achieved higher performance with advanced
steps of the MCC-threshold-based class maps on the three carefully selected pub-
lic sound datasets with predefined sound classes relevant to monitor the homecare
environment. The overall micro-averaged performance of the Y-MCC method evalu-
ated for the three chosen datasets: TUT-SED2016Home, ESC-50, and SINS dataset,
as presented in Figure 5.1, has revealed that the large-scale of the SINS dataset
has obtained the best F1-score of 59.46% and the lowest error rate of 0.41 with
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the MCC-threshold-based at 0.3 class map, which is significantly better than the
other two datasets: TUT-SED2016Home polyphonic real-life dataset and ESC-50
class-wise equally balanced monophonic dataset. Moreover, the general trend of
performance improvement has been observed from all three datasets when the MCC
threshold moved upward up to some threshold steps by reducing error rates remark-
ably, specifically for the TUT-SED2016Home dataset.

Figure 5.1 The line plots illustrate the overall micro average metrics in F1-score and
ER of the Y-MCC performance evaluated on the three datasets: TUT-SED2016Home,
ESC-50, and SINS datasets. The main trend of the three datasets can be seen as the
MCC-threshold-based method effectively improved the F1-score (Left) and ER (Right) for
all three datasets.

In addition, the Y-MCC class-wise performance, especially the top 3 best classes
from the three datasets compared in Figure 5.2. It can be observed that four
classes have F1-score higher than nearly 95% with ER lower than 0.11: three classes
from ESC-50 and one from SINS. Furthermore, the outstanding 100% F1-score ob-
tained by the ’8: sheep’ sound event from the ESC-50 dataset shows convincing
evidence that the Y-MCC has yielded the perfect score. Apart from that, the class-
level F1-score achieved by ‘8: vacuum_cleaner’ from the SINS dataset at 94.7% is
approximately close to the competing systems as the baseline and top 5 systems of
the DCASE2018 Challenge task for monitoring indoor home sound activities. On
the contrary, the Y-MCC performance on the TUT-SED2016Home dataset might
look insignificant. Still, it could be considered an average score obtained by the
top 9 systems ranked in the DCASE 2016 Challenge task for sound event detection
in real-life audio. Therefore, with this compelling evidence for improvement of the
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overall and class-wise performance, the Y-MCC approach has been successful for
the sound event detection system by statistically resolving the inaccurate classes in
the top probability predictions provided by the YAMNet pre-trained model.

Figure 5.2 Class-wise top 3 best performance evaluated by the Y-MCC system on the
three datasets, TUT-SED 2016, ESC-50, and SINS, are presented in terms of class-level
maximum F1-score (Top) and corresponding ER (Down), which indicate the compelling
evidence of the Y-MCC method successfully performed SED tasks specifically those classes
over 90% F1-score, including ’8: sheep’ at 100% F1-score and zero ER in ESC-50 dataset.

To our knowledge, this thesis is the first investigation of the erroneous YAMNet
predictions for the predefined classes in the three benchmark datasets, which mainly
contain domestic indoor home sound events. This study was carried out to assess
the potential benefit of the pre-trained YAMNet model that could be adapted to the
sound event detection system for facilitating smart homecare applications. However,
this method has several weaknesses notified by no detection on some classes, 7 out
of the 50 target classes in the ESC-50 dataset, and the low performance on some
essential sound activities necessary to support elderly homecare, particularly related
to human non-speech sound activities. Therefore, future work should include a
follow-up study to strengthen the Y-MCC method to perform the commercial level
of the overall detection score, especially for essential sound activities considered
important to monitor the health of elderly people in their homecare environment.
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