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Non-Hermitian topological quantum states in a reservoir-engineered transmon chain
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Dissipation in open systems enriches the possible symmetries of the Hamiltonians beyond the Hermitian
framework, allowing the possibility of novel non-Hermitian topological phases which exhibit long-living end
states that are protected against disorder. So far, non-Hermitian topology has been explored in settings where
probing genuine quantum effects has been challenging. We theoretically show that a non-Hermitian topological
quantum phase can be realized in a reservoir-engineered transmon chain. The spatial modulation of dissipation
is obtained by coupling each transmon to a quantum circuit refrigerator, allowing in situ tuning of dissipation
strength in a wide range. By solving the many-body Lindblad master equation using a combination of the density
matrix renormalization group and Prosen-Seligman third quantization approaches, we show that the topological
end modes and the associated phase transition are visible in simple reflection measurements with experimentally
realistic parameters. Finally, we demonstrate that genuine quantum effects are observable in this system via
robust and slowly decaying long-range quantum entanglement of the topological end modes, which can be
generated passively starting from a locally excited transmon.

DOI: 10.1103/PhysRevB.107.115146

I. INTRODUCTION

Non-Hermitian (NH) phenomena in open systems have
motivated proposals of new families of topological states
[1–10], which have been theoretically predicted to also be
applicable to fermionic systems [11–19] and exciton-polariton
condensates [20], but the paradigmatic experiments probing
the NH topology have so far concentrated on photonic sys-
tems, electrical circuits [21–30], spins [31], and cold atoms
[32]. So far, the quantum effects of the NH topology have
not been extensively explored in these systems. Supercon-
ducting circuits, such as arrays of transmon devices [33], are
currently used in the most sophisticated attempts to build a
scalable quantum computer [34–37] and to simulate electronic
properties [38] and topological phases [39,40]. However, their
potential in realizing NH topological quantum phases remains
to be explored.

In reservoir engineering, the idea is to turn the usually
detrimental effects of dissipation into a resource. In this arti-
cle, we demonstrate that the flexibility to engineer dissipation
in a controllable manner in transmon circuits [41–45] can
be utilized for realizing NH topological quantum phases.
In our proposal, the NH topological phase is created by
introducing a spatial modulation of dissipation [7,46] in
the one-dimensional Bose-Hubbard transmon chain [47,48],
where the dissipation strength in each transmon is controlled
by the tunable coupling of the transmon to a quantum circuit
refrigerator (QCR) [41–44] (see Fig. 1). In contrast to ear-

lier realizations of NH topological phases, quantum effects
are important in transmon circuits and therefore we describe
the topological phenomena using the Lindblad master equa-
tion approach. By utilizing the third quantization formalism
[49], we show that the topology of the Liouvillian super-
operator in the noninteracting limit is described by a Chern
number [7], which determines the number of topological
end modes. We discuss the signatures of the topological end
modes and topological phase transition in the reflection mea-
surements, and we utilize the density matrix renormalization
group (DMRG) approach to show that the effects of the non-
trivial topology can be robustly measured in the presence
of a realistic Hubbard interaction caused by the charging
energy of the transmons [47,48]. Finally, we show that the
quantum nature of the NH topological state can be unambigu-
ously demonstrated by utilizing the topologically protected
end modes for the generation of a long-range entangled state
from a local excitation of a single transmon. Importantly,
we obtain robust entanglement between the transmons at the
opposite ends of the chain by just switching on the couplings
of the transmons and QCRs, instead of actively controlling the
system with a sequence of pulses.

II. NON-HERMITIAN TOPOLOGICAL PHASE
IN A TRANSMON CHAIN

The Lindblad master equation for a chain of L transmons
in the rotating frame, as demonstrated in Appendix A, can be
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FIG. 1. Schematic illustration of the NH Bose-Hubbard trans-
mon chain for the ABBA configuration. Top: Each transmon is
described by the resonance frequency ωi and the anharmonicity Ui

determining the on-site energy and the Hubbard interaction strength
for the bosons. The hopping Ji of the bosons between the lattice sites
is determined by the capacitive dipole-dipole interaction between the
neighboring transmons. The dissipation strength gi = (γi + κi )/2 at
each lattice site is caused by the coupling of the transmon to the
measurement circuit κi and the tunable loss caused by the QCR
γi. Bottom: Site population of the topologically protected state for
gA = 0.1J and gB = 3J . Given the symmetry of the setup, only the
six leftmost sites of the 12-site system are depicted.

written as

dρ

dt
= Lρ, (1)

where, at zero temperature, the Liouvillian superoperator L
acting on the density matrix ρ is

L = −i[H� − �H] +
L∑

j=1

g j (2a j�a†
j − a†

j a j� − �a†
j a j ),

(2)

where, in the empty squares, one should put the density matrix
to get the action of L on ρ. Here, H is the Bose-Hubbard
Hamiltonian [47,48],

H = �a†Ĥ �a + �a† �f + �f †�a −
L∑

j=1

Uj

2
a†

j a j (a
†
j a j − 1), (3)

Ĥ is the tight-binding Hamiltonian with number-
valued matrix elements Hi j (i, j = 1, 2, . . . , L), and
�a = (a1, a2, . . . , aL ) are operator-valued vectors living in
the Fock space. The on-site energies Hi,i = ωi − ω are
determined by the driving frequency ω and the resonance
frequencies of the transmons ωi ≈ √

8EC,iEJ,i (EJ,i is the
flux-tunable Josephson energy and EC,i is the charging energy
of the transmon) [33] and the hoppings Hi,i+1 = Hi+1,i = Ji

originate from the capacitive dipole-dipole interaction
between the neighboring transmons. Additionally, the
Hubbard-interaction strength Ui ≈ EC,i is caused by the
anharmonicity of the transmons [33], the driving strength
f j = −i

√
κ jα

in
j is determined by the amplitude of the

incoming signal αin
j and the coupling of the transmon to

the measurement circuit κi, and the dissipation strength
gi = (γi + κi )/2 is mainly controlled by the tunable loss

γi caused by the QCR. We use notations where �x indicates
a column vector, X̂ is a matrix, and ai are the bosonic
annihilation operators. We have set h̄ = 1 and assumed the
zero-temperature limit for simplicity.

The steady-state output field amplitudes αout
j and the input

field amplitudes αin
j are related as

αout
j = αin

j + √
κ jTr(a jρS ), (4)

where ρS is the steady-state solution of Eq. (1). In the linear
response regime, the relationship between the �αout and �αin

can be rewritten with the help of a transmission and reflection
matrix �̂,

�αout = �̂�αin. (5)

Additionally, we also consider nonlinear responses of the
transmons i to a strong driving on one of the transmons
j by computing the ratios αout

i /αin
j . These transmission and

reflection amplitudes are directly measurable in the transmon
circuits and allow the detection of the topological end modes
and phase transition (see below).

The Liouvillian superoperator contains operators acting
from left and right on the density matrix, which we de-
note with superscripts L and R. The Prosen-Seligman third
quantization [49] of the Liouvillian superoperator is based
on the definition of new operators �a0 = �aL, (�a′

0)T = �aL† −
�aR†, (�a1)T = �aR†, and �a′

1 = �aR − �aL, which satisfy the usual
commutation relations of bosonic annihilation and creation
operators; see Appendix B. Using these definitions, the Li-
ouvillian superoperator can be written as

L = −i(�a′
0)T ĤNH �a0 + i(�a′

1)T Ĥ∗
NH �a1 − i(�a′

0)T �f + i �f †�a′
1

− i
∑

j

Uj

2
(2a′

1, ja1, ja1, ja0, j + a′
1, ja

′
1, ja1, ja1, j

− a′
0, ja

′
0, ja0, ja0, j − 2a′

0, ja1, ja0, ja0, j ), (6)

where the non-Hermitian Hamiltonian is defined as

ĤNH (ω) = Ĥ (ω) − idiag(�g). (7)

In the linear response regime, the interaction effects can be
neglected and we obtain, as shown in Appendix D,

�̂(ω) = i
√

K̂ĤNH (ω)−1
√

K̂ + ÎL×L, (8)

where ÎL×L is the identity matrix and K̂ = diag(�κ ). In the
following, we assume that all the transmons have similar
resonance frequencies ωi = ω0 and couplings Ji = J . This
means that the Hermitian part of the ĤNH describes a trivial
tight-binding model with constant on-site energies. On the
other hand, we assume that the dissipation gi is spatially
modulated. For simplicity, we assume that κi = κ , so that
the spatial modulation of gi originates purely from the tun-
able losses γi caused by the QCRs. In the presence of an
arbitrary dissipation modulation, this model always satisfies a
NH chiral symmetry S[Ĥ†

NH − (ω0 − ω)ÎL×L]S = −[ĤNH −
(ω0 − ω)ÎL×L], where S = ÎL/2×L/2 ⊗ σz and the Pauli matri-
ces are denoted as σi (i = x, y, z). Therefore, the topology
of ĤNH is determined by the Chern number C [7] (see
Appendix C), which determines the number of topologically
protected end modes at the transmon resonance frequency
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FIG. 2. (a) Topological phase diagram as a function of dissipa-
tion strengths interpolating between the ABBA (x = −1, C = −1)
and AABB (x = 1, C = 0) pattern [Eq. (9)]. In the clean limit, the
topological phase transition takes place at x = 0 (blue), and the dis-
order influences the topology only close to x = 0 (red). We have used
a supercell containing 20 transmons and taken the disorder average
of C over 100 disorder realizations. The disorder in Ji (gi) is sampled
from a uniform distribution in the interval [−δJ, δJ] ([−δg, δg]).
We have used gA = 0.1J , gB = 3.0J , δJ = 0.1J , and δg = 0.29J .
(b)–(d) Contour maps of the reflection coefficients |�ii(ω)| in the
linear response regime [Eq. (8)] as a function of lattice site i and
frequency ω in the nontrivial, gapless and trivial phases. (b) In the
nontrivial phase with x = −1, the topological end modes show up as
a dip in |�ii(ω)| at the resonance frequency of the transmon ω = ω0

close to the ends of the chain. (c) At the transition (x = 0), the bulk
is gapless, leading to features in |�ii(ω)| at most of the lattice sites in
a wide range of frequencies ω around ω0. (d) In the trivial phase with
x = 1, the resonant features in the |�ii(ω)| are absent at frequencies
inside the gap around ω = ω0.

ω = ω0. In general, it is possible to construct one-dimensional
NH models where C takes all possible integer values [17], but,
for simplicity, we concentrate here on the simplest models
with |C| =: 0, 1 [7]. For this purpose, we consider a unit
cell consisting of four transmons repeating periodically along
the chain. Based on Ref. [7], we know that C = −1 for the
ABBA pattern of dissipation, whereas C = 0 for the AABB
pattern of dissipation. Thus, we can interpolate between the
topologically distinct phases by assuming

g1,3(x) = [gA + gB ± (gA − gB)|x|]/2,

g2,4(x) = [gA + gB ± (gA − gB)x]/2. (9)

The phase diagram as a function of x is shown in Fig. 2(a):
C = −1 for x < 0 and C = 0 for x > 0, so that the phase
transition takes place at x = 0.

Importantly, in transmons, the resonance frequencies ωi

are flux tunable and, in the state-of-the-art experiments, they
can be made equal to each other within relative accuracy of

10−5–10−4 [50]. Therefore, the disorder effects in ωi can be
neglected. On the other hand, we expect that the parameters
Ji and gi will contain a significant amount of variation. In
Fig. 2(a), we demonstrate that the topological phases are
robust even in the presence of strong disorder amplitudes δJ
and δg. These types of disorder can destroy the topology only
if they are sufficiently strong to induce a bulk gap closing,
and therefore they are important only close to the topological
phase transition where the topological gap is small.

III. SIGNATURES OF NH TOPOLOGICAL PHASE
IN REFLECTION MEASUREMENTS

The localization length of the end modes in the topologi-
cally nontrivial phase depends sensitively on the dissipation
parameters. Here we fix them to gA = 0.1J and gB = 3J , so
that the topological end modes are strongly localized at the
end of the chain and numerical calculations can be performed
efficiently using a short chain of length L = 12. We also set
κ = 2gA so that the minimal values of the dissipation origi-
nate from the measurement circuits. We use these parameters
everywhere in the manuscript unless otherwise stated.

The topological phase diagram shown in Fig. 2(a) can be
probed by measuring the reflection |�ii(ω)| as a function of
lattice site i and frequency ω [see Figs. 2(b)–2(d)]. In the
nontrivial phase, the topological end modes show up as a dip
in |�ii(ω)| at the resonance frequency of the transmon ω = ω0

on lattice sites i close to the ends of the chain [see Fig. 2(b)],
whereas such kinds of features are absent in the trivial phase
where the system is gapped around ω = ω0 [see Fig. 2(d)]. At
the transition, the bulk is gapless, leading to a broad feature
in |�ii(ω)| as a function of ω at most of the lattice sites [see
Fig. 2(c)].

IV. ROBUSTNESS OF THE TOPOLOGICAL STATES
IN THE PRESENCE OF INTERACTIONS

In the limit of weak driving, where the interactions be-
tween the bosons can be neglected owing to the small on-site
population, the properties of the steady-state system are com-
pletely determined by ĤNH , and the expectation values of
the normal ordered products of the bosonic annihilation and
creation operators separate into products of the expectation
values; see Appendix E. On the other hand, in the presence
of strong driving, the steady state of the interacting system
is a correlated quantum state with entanglement between the
transmons. We have utilized a generalization of the DMRG
approach, described in Appendix F, to describe the steady-
state density matrix of the driven system. This allows us to
numerically compute the density profile ni = Tr(a†

i aiρS ) and
the reflection coefficients αout

i /αin
i , and representative results

of our numerical calculations are shown in Fig. 3. Importantly,
we find that the resonant feature of the topological end modes
at ω = ω0 is very robust in the presence of strong driving
and interactions Uj = U . Note that despite interaction U be-
ing twice the bandwidth, the main dip of |�ii(ω)| remains
very close to ω0 even for large driving strength, as shown in
Appendix F. Therefore, we argue that the peak originates from
the end states present in the noninteracting case that remain
robust in the presence of the interactions. Additionally, the
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FIG. 3. Contour maps of the reflection coefficients �ii(ω) =
αout

i /αin
i and density ni = Tr(a†

i aiρS ) in a topologically nontrivial
chain [x = −1 in Eq. (9)] as a function of lattice site i and frequency
ω. The driving strength is | f | = 0.4J and the interaction strengths
are (a), (c) U = 1J and (b), (d) U = 4J . In (a), (b), ρS is solved in
each case separately when the driving is applied at the different sites
i. In (c), (d), the driving is always applied at site 1. In addition to
the topological end modes at ω ≈ ω0, there exist multiboson satellite
features at frequencies ω ≈ ω0 − nU/2 (n ∈ Z).

topological end modes give rise to satellite features at frequen-
cies ω ≈ ω0 − nU/2 (n ∈ Z+) corresponding to multiboson
excitations of the interacting system. See Appendix F for the
line plots of the reflection coefficients and the off-diagonal
reflection coefficients |�1i(ω)|.

V. DYNAMICAL GENERATION OF LONG-RANGE
ENTANGLEMENT

While the interactions U are not important for the existence
of the topological excitations, they offer interesting new pos-
sibilities in the utilization of the topological end modes for
the generation of entangled quantum states. Namely, in the
absence of U , the driving initializes the system to a sitewise
product of coherent states, and it turns out that in this case,
there is no entanglement between the transmons developing
during the time evolution of the density matrix described by
Eq. (1), as shown in detail in Appendix G. On the other
hand, it is well known that the anharmonicity of the transmons
U 	= 0 can be utilized for initializing a transmon into a Fock
state [51,52]; see Appendix I. To demonstrate that in this
case it is possible to create a long-range entangled state, we
consider a protocol where the system is initialized to a Fock
state with N bosons in a single transmon in the middle of the
chain at t = 0 and the dissipation strengths are switched on at
time t = t0. The dissipation can be controlled fast using the
QCRs [41–44], and thus for simplicity we assume that the
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FIG. 4. (a) Tr[a†
i a jρS (t )] vs i and j in the presence of time-

dependent dissipation with x = −1 in Eq. (9), and gB,max = 10J and
t0 
 4.1J−1 in Eq. (10). The time instants are t/J−1 =: 0, 1, 3, 10,
from left to right. (b) Mutual information I (1 : L) vs t for a reference
system with uniform dissipation gB,max = 0.01J (green), trivial phase
with x = 1 and gB,max = 5J (magenta), and nontrivial phase with
x = −1 and gB,max/J =: 5, 10 (red, blue). (c) I (1 : L) for the same
dissipation profiles as a function of L at time t1 = t0 + 2J−1, where
I (1 : L)(t ) is maximized at t = t0. The logarithmic plot is shown in
the inset. In addition to the dissipation patterns (9), we have added
one extra site in the middle of the chain with gL/2+1 = gB, which is
excited to a Fock state with N = 5 at t = 0.

time dependence of the dissipation parameters is given by

gA = 0.01J, gB =
{

0.01J, t � t0
gB,max, t > t0.

(10)

We assume that the other transmons have sufficiently small
U so that the interactions can be neglected during the time
evolution. In Fig. 4(a), we show the time evolution of the
expectation values Tr[a†

i a jρS (t )] in the case of a topologically
nontrivial dissipation pattern. It demonstrates that there exists
a quasistable (slowly decaying) state, where the bosons are
dominantly trapped at the end of the chain. We can char-
acterize the entanglement between the end transmons 1 and
L with the help of time-dependent mutual information I (1 :
L)(t ) (see Appendix H for details), and we find that in the
case of a topologically nontrivial NH phase, the generated
entanglement is more stable in time than in the reference cases
of trivial and uniform chains [Fig. 4(b)]. Furthermore, the
entanglement decreases only slowly with the increasing length
of the chain [Fig. 4(c)]. The final state can read out by means
of two-transmon tomography that again relies on interaction
U , as described in Appendix I.

VI. CONCLUSIONS

To summarize, we have shown that a NH topological quan-
tum phase can be realized in a transmon chain by utilizing
a spatial modulation of dissipation obtained by coupling the
transmons to QCRs. The topological end modes and topo-
logical phase transition can be detected with the reflection
measurements, and the effects of the nontrivial topology can
be robustly measured in the presence of interactions. More-
over, the topologically protected end modes can be utilized
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for the generation of a long-range entangled state from a local
excitation of a single transmon, and we expect that in a similar
way, a whole family of more complicated entangled states of
multiple transmons can be generated by creating suitable spa-
tial patterns of domain walls separating topologically distinct
phases. Experiments could also probe the interacting physics
in longer chains where the simulations are not computation-
ally feasible. Therefore, our results open interesting directions
for future research in the topological initialization of qubits
and topological quantum state engineering.

The codes supporting the theory are available from W.B.
upon reasonable request.
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APPENDIX A: DRIVEN BOSE-HUBBARD HAMILTONIAN
IN THE ROTATING FRAME

In the rotating wave approximation, the driven Bose-
Hubbard Hamiltonian can be written as

Hlab =
L∑

j=1

ω ja
†
j a j +

L−1∑
j=1

Jj (a
†
j a j+1 + a†

j+1a j )

+
L∑

j=1

(a†
j f je

−iωt +a j f ∗
j eiωt )−

L∑
j=1

Uj

2
a†

j a j (a
†
j a j −1),

(A1)

where ω is the driving frequency. We can now switch to a
rotating frame with a time-dependent transformation,

U (t ) = exp

(
− iωt

L∑
j=1

a†
j a j

)
. (A2)

In this way, we obtain the driven Bose-Hubbard Hamiltonian
in the rotating frame given in the main text,

H = U (t )†HlabU (t ) − i U (t )† d U (t )

dt

=
L∑

j=1

(ω j − ω)a†
j a j +

L−1∑
j=1

Jj (a
†
j a j+1 + a†

j+1a j )

+
L∑

j=1

(a†
j f j + a j f ∗

j ) −
L∑

j=1

Uj

2
a†

j a j (a
†
j a j − 1). (A3)

APPENDIX B: THIRD QUANTIZATION
OF THE LIOUVILLIAN SUPEROPERATOR

The Liouvillian superoperator contains operators acting
from left and right on the density matrix. Therefore, we use
notations

ALρ := Aρ, ARρ := ρA. (B1)

We are interested in the calculation of expectation values
of observables O of the form Tr(Oρ). Therefore, the above
definition allows us also to determine how the right and left
operators act on the observables,

Tr(OALρ) = Tr(OAρ) ⇒ OAL = OA, (B2)

Tr(OARρ) = Tr(OρA) = Tr(AOρ) ⇒ OAR = AO.

For two operators, we have

ALBLρ = ABρ, ARBRρ = ρBA. (B3)

The third quantization is based on new operators �aν and �a′
ν

(ν = 0, 1), defined as [49]

�a0 := �aL, (�a′
0)T := �aL† − �aR†,

(�a1)T := �aR†, �a′
1 := �aR − �aL. (B4)

The inverse transformation is

�aL := �a0, �aL† := (�a′
0)T + (�a1)T ,

�aR := �a0 + �a′
1, �aR† := (�a1)T . (B5)

The calculation of the commutators yields

[aν, j, a′
ν ′,k]� = δνν ′δ jk�,

[aν, j, aν ′,k]� = 0 = [a′
ν, j, a′

ν ′,k]�. (B6)

Therefore, the operators �aν and �a′
ν act similarly as the bosonic

annihilation and creation operators, respectively. Other useful
properties of the operators and the density matrix are

1�a′
ν = 0, �aνρ0 = 0, Trρ0 = 1, (B7)

where we have denoted the identity observable with 1 and the
density matrix of the vacuum with ρ0 = |�0〉〈�0|. In particular,
the properties described above allow one to define the dual
Fock space for density matrices and observables [49],

| �m〉 =
∏
ν, j

(a′
ν, j )

mν, j√
mν, j!

ρ0, ( �m| = 1
∏
ν, j

(aν, j )mν, j√
mν, j!

, (B8)

with bi-orthonormality

Tr( �m′| �m〉 = δ �m′, �m. (B9)
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Within this dual Fock space, the operators �aν and �a′
ν have

the matrix representations of the bosonic annihilation and
creation operators, respectively. Using these definitions, the
Liouvillian superoperator can be written as

L = −i(�a′
0)T ĤNH �a0 + i(�a′

1)T Ĥ∗
NH �a1 − i(�a′

0)T �f + i �f †�a′
1

− i
∑

j

Uj

2
(2a′

1, ja1, ja1, ja0, j + a′
1, ja

′
1, ja1, ja1, j )

+ i
∑

j

Uj

2
(2a′

0, ja1, ja0, ja0, j + a′
0, ja

′
0, ja0, ja0, j ), (B10)

where the non-Hermitian Hamiltonian is defined as

ĤNH = Ĥ − idiag(�g). (B11)

APPENDIX C: TOPOLOGICAL INVARIANT
IN THE NONINTERACTING LIMIT Ui = 0

In the case of an infinite number of four-site unit cells, ωi =
ω0 and Ji = J , the topological invariant for the noninteracting
non-Hermitian Hamiltonian ĤNH can be written as [7]

C = 1

2π

∫ +∞

−∞
dη

∫ 2π

0
dk 
k,η, (C1)

where


k,η =
∑

n�2
m>2

Im
2
〈
ψn

k,η

∣∣∂kĤ eff
∣∣ψm

k,η

〉〈
ψm

k,η

∣∣∂ηĤ eff
∣∣ψn

k,η

〉
(
E (n)

k,η
− E (m)

k,η

)2

is the Berry curvature corresponding to the two-dimensional
(2D) Hamiltonian

Ĥ eff (k, η) =

⎛
⎜⎜⎝

η − g1 −iJ 0 −iJe−ik

iJ −η + g2 iJ 0
0 −iJ η − g3 −iJ

iJeik 0 iJ −η + g4

⎞
⎟⎟⎠,

(C2)
with |ψn

k,η〉 and En
k,η denoting the eigenstates and eigenen-

ergies of Ĥ eff (k, η) (sorted in ascending order of the
eigenenergy). The effective Hermitian Hamiltonian is related
with ĤNH by the equation

Ĥ eff (k, η) = ηS − iS[ĤNH (k) − (ω0 − ω)Î4×4], (C3)

where S is a chiral symmetry operator related to ĤNH . The
physical meaning of the parameter η is that it is the imaginary
part of an eigenstate of ĤNH whose real part is zero; see
Ref. [7].

APPENDIX D: TRANSMISSION AND REFLECTION
MATRIX IN THE LINEAR RESPONSE REGIME

The effects of interactions can be neglected in the linear
response regime. By transforming the third-quantized bosonic
operators as

�aν = �cν + �xν, �a′
ν = �c ′

ν, (D1)

we obtain

L = −i(�c ′
0)T ĤNH �c0 + i(�c ′

1)T Ĥ∗
NH �c1 − i(�c ′

0)T �f + i �f †�c ′
1.

(D2)

Therefore, we can get rid of the driving terms by requiring that
�xν (ν = 0, 1) satisfy

�x0 = −Ĥ−1
NH

�f , �x1 = �x�
0. (D3)

In this way, we obtain

L = −i(�c ′
0)T ĤNH �c0 + i(�c ′

1)T Ĥ∗
NH �c1. (D4)

The Liouvillian superoperator given by Eq. (D4) can be
diagonalized,

L =
∑

k

[−iEkb′
0,kb0,k + iE∗

k b′
1,kb1,k], (D5)

using a transformation,

�c0 = Û �b0, (�c ′
0)T = (�b′

0)T Û −1,

�c1 = Û ∗�b1, (�c ′
1)T = (�b′

1)T (Û −1)∗,
(D6)

where the matrix Û diagonalizes the non-Hermitian Hamilto-
nian,

Û −1ĤNHÛ = diag( �E ). (D7)

Therefore, the non-Hermitian Hamiltonian fully determines
the spectrum of the Liouvillian superoperator. Here, the op-
erators �bν and �b′

ν (ν = 0, 1) satisfy the bosonic commutation
relations

[bν, j, b′
ν ′,k]� = δνν ′δ jk�,

[bν, j, bν ′,k]� = 0 = [
b′

ν, j, b′
ν ′,k

]
�,

(D8)

and

1�b′
ν = 0. (D9)

Because all eigenenergies of HNH satisfy ImEk < 0, there
exists a unique steady-state solution of the density matrix ρS

and its physical properties are determined by the relations

bν, jρS = 0, TrρS = 1. (D10)

To compute the output fields,

αout
j = αin

j + √
κ jTr(a jρS ), (D11)

we need to calculate the expectation values,

Tr(a jρS ) = Tr(a0, jρS ) = Tr[(c0, j + x0, j )ρS] = x0, j

= −(
Ĥ−1

NH
�f ) j . (D12)

Using f j = −i
√

κ jα
in
j , we obtain

�αout = �̂(ω)�αin, �̂(ω) = i
√

K̂Ĥ−1
NH

√
K̂ + Î, (D13)

where Î is the identity matrix and K̂ = diag(�κ ).

APPENDIX E: EXPECTATION VALUES OF OPERATORS
IN THE NONINTERACTING LIMIT

In the noninteracting limit, we can straightforwardly com-
pute the expectation value of an arbitrary normal-ordered
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FIG. 5. (a), (b) Schematics of the DMRG. (a) The building of the system by expanding two blocks, A and B. (b) The sweeping loop for a
finite open-ends system. (c) The variance of the density �n2

j/nj for lattice sites j = 1 and j = 2 (inset) as functions of frequency ω when the
system is driven at the first lattice site for f = 0.2J and U/J =: 0, 1, 2, 3, 4.

product of creation and annihilation operators,

Tr(a†
i1

. . . a†
iN

a j1 . . . a jM ρS ) = Tr(a1,i1 . . . a1,iN a0, j1 . . . a0, jM ρS )

= x1,i1 . . . x1,iN x0, j1 . . . x0, jM

= Tr(a†
i1
ρS ) . . . Tr(a†

iN
ρS )

× Tr(a j1ρS ) . . . Tr(a jM ρS ). (E1)

The expectation value of the product of operators separates
into a product of expectation values because, in the third-
quantized formulation, the steady state of the system is a
product of a coherent state at each lattice site. The expectation
values of the other operators can be obtained from this formula
by utilizing the commutation relations of the annihilation and
creation operators. In particular, it follows from Eq. (E1) that
the variance of the density in the steady state n j = Tr(a†

j a jρS )
satisfies

�n2
j = Tr(a†

j a ja
†
j a jρS ) − [Tr(a†

j a jρS )]2 = Tr(a†
j a jρS ) = n j,

(E2)
and the covariance of the annihilation operators satisfies

cov[ai, a j] = Tr(aia jρS ) − Tr(aiρS )Tr(a jρS ) = 0. (E3)

APPENDIX F: DENSITY MATRIX RENORMALIZATION
GROUP APPROACH FOR THE INTERACTING PROBLEM

The standard finite-size density renormalization group ap-
proach is described in Ref. [53]. Here we use this approach,
with a few modifications, to solve the third-quantized Lind-
blad superoperator of Eq. (B10) for its right zero vector—a

nonequilibrium stationary state. First, we need to truncate the
local Hilbert space of the boson operators aν, j to a finite value
which becomes a convergence parameter r. Thus, having fixed
r at a certain value, we can have no more than (r − 1) third-
quantized bosons per site. Now, in a finite Hilbert space, we
can always find a (right) zero vector of L: Vacuum is obvi-
ously a left zero state of L, meaning that det LT = det L = 0,
so a right zero vector must also exist. The search for it is thus
equivalent to finding an eigenvector of L with zero eigenvalue.

We adapt the general algorithm described in Ref. [53]. In
the first stage, we want to increase the system size starting
from two sites, j = 1 and j = L; see Fig. 5(a). These two sites
constitute blocks A and B at the first step of the DMRG. Note
that we treat ν = 0, 1 as the internal degree of freedom, so
each dot in Figs. 5(a) and 5(b) represents two bosonic degrees
of freedom so that the dimension of the local Hilbert space
at a given site j is equal to r2. At a given system size, we
search for the eigenvector of L whose eigenvalue is closest to
zero using the Arnoldi algorithm. Then, we use singular value
decomposition (SVD), as usual in DMRG, and truncate the
basis at the cutoff size of d , which is another convergence pa-
rameter. Now we expand the blocks by adding sites. Here we
choose to do it asymmetrically by adding one site to the right
in block A. By doing this, we increase the dimension of the
Hilbert space of block A by r2 and of the whole Hilbert space
by r2 as well. If we decide to do it in a more standard way, by
growing two blocks symmetrically, then the dimension grows
by a factor of r4, which is less handleable. In the next step, we
add one site to the left of block B and we continue until we
reach the desired system size L. All the blocks are stored in
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FIG. 6. Reflection coefficient |�11(ω)| in the nonlinear response regime as a function of frequency ω in the nontrivial phase (x = −1) for
interaction strengths U/J =: 0, 1, 2, 3, 4 in the case of (a) moderate driving f = 0.2J and (b) strong driving f = 0.4J . Multiboson features
are marked with arrows. (c) Position of the global minimum of |�11(ω)| as function of U for moderate and strong driving.

memory, meaning that one can always recover the Linbladian
and any observables for block A or B containing from 1 up to
L/2 sites.

After obtaining the system in the desired size L, we opti-
mize the stationary state by performing sweeps; see Fig. 5(b).
We expand one block and shrink the other each time, asking
for the eigenstate with the eigenvalue closest to zero and
performing SVD followed by the basis truncation. Shrinking
of a block means reading a recorded block of the size that we
need. Sweeps are done left and right, as shown in Fig. 5(b),
until the eigenvalue of our stationary state |ρS〉 is close enough
to zero. Here the important difference with respect to the usual
Hermitian case is how we calculate observables. From the
third quantization, we get that the stationary-state average of
an operator O is given by

Tr(OρS ) = 〈0|O|ρS〉, (F1)

where, in bra, we have vacuum of the aν, j bosons. Thus, to
calculate any averages in DMRG, we need to know current
representation of the vacuum state. This is not trivial because,
from the construction, the converged basis is optimized to
represent the stationary state only. Nevertheless, having L in
a truncated basis, we can always ask for the lowest-magnitude
eigenvector of LT . If the eigenvalues are as close to zero as for
|ρS〉, we can conclude that we have a correct representation
of the vacuum state. In our case, this approach always works
because we drive the system only at one site so that |ρS〉 has a
large component in the |0〉 direction.

Using DMRG, we find that in the presence of the interac-
tions, the simple results for the expectation values (E1)–(E3)
are no longer valid. Instead, the steady state of the interact-
ing system is a correlated quantum state with entanglement
between the transmons. As an example, we show in Fig. 5(c)
that the relation (E2) is not satisfied in the interacting system.
Here we have used the convergence parameters r = 30 and
d = 4 for U/J =: 0, 1, 2, 3 and d = 5 for U/J = 4. With
these parameters, we were able to keep the eigenvalue of
the stationary state below 10−9J . Here we also present the
reflection coefficients |�11(ω)| beyond the linear response for
U/J =: 0, 1, 2, 3, 4 (see Fig. 6), demonstrating that a satellite
dip appears at ω ≈ ω0 − nU/2 and the main dip shifts slightly
away from ω = ω0 position. The other elements of the reflec-
tion matrix |�1i(ω)| are shown in Fig. 7.

APPENDIX G: TIME EVOLUTION
OF THE DENSITY MATRIX

Our starting point in the consideration of the dynamics is
the Lindblad master equation in the absence of driving and
interactions, but allowing time dependence of the parameters
so that the dissipation can be switched on and off as discussed
in the main text. Using the third-quantized operators, it can be
written as

d

dt
ρ(t ) = L(t )ρ(t ),

L(t ) = −i(�a′
0)T HNH (t )�a0 + i(�a′

1)T Ĥ∗
NH (t )�a1.

(G1)

The solution of Eq. (G2) can be written as

ρ(t ) = T exp

[∫ t

0
dt ′L(t ′)

]
ρ(0)

= T exp

[
−i

∫ t

0
dt ′(�a′

0)T ĤNH (t ′)�a0

]
T

× exp

[
i
∫ t

0
dt ′(�a′

1)T Ĥ∗
NH (t ′)�a1

]
ρ(0), (G2)

(b)
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1.5

- 
0)

/J

1 3 5 7 9 11
i
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i 10

FIG. 7. Reflection and transmission coefficients |�1i(ω)| in the
nonlinear response regime as a function of frequency ω in the non-
trivial phase (x = −1) for (a) U/J = 1 and (b) U/J = 4. The driving
strength is | f | = 0.4J . Note that we have chosen a very nonlinear
color-map scale because |�1i(ω)| is close to 1 for i = 1 and close to
0 for i � 2 for all ω.
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where T is the time-ordering operator. By applying this time
evolution to an initial coherent state in the third-quantized
operator representation of the density matrix,

ρ�z(0) = ρ�z0,�z1 (0) = exp
[
�zT

0 �a′
0 + �zT

1 �a′
1

]
ρ0, (G3)

we obtain

ρ�z(t ) = exp
{
�zT

0 Û (t )�a′
0 + �zT

1 Û ∗(t )�a′
1

}
ρ0, (G4)

where

Û (t ) = T exp

[
−i

∫ t

0
dt ′ĤNH (t ′)

]
. (G5)

Thus, the sitewise product of the coherent states keeps this
structure under time evolution. Therefore, we can straight-
forwardly evaluate the time-dependent expectation values of
operators once we have an expansion of the initial state ρ(0)
in terms of the coherent states ρ�z(0).

If the state of the transmons is initialized into a sitewise
product of coherent states in the second-quantized formalism,
the corresponding density matrix translates into a sitewise
product of coherent states also in the third-quantized formal-
ism. Since this structure is kept during the time evolution,
there is no entanglement between the transmons developing
as a function of time.

As discussed in the main text, another possibility is to initialize one of the transmons into a Fock state in the second-quantized
formalism. The Fock state density matrix ρni (0) = 1

n! (a†
i )n|0〉〈0|an

i in the third-quantized formalism can be expressed as

ρni (0) = 1

n!
(a′

0,i + a1,i )
n(a0,i + a′

1,i )
nρ0 =

n∑
k=0

(a′
0,i )

n−kak
1,i(a

′
1,i )

n

k!(n − k)!
ρ0 =

n∑
k=0

n!

k!(n − k)!
|(n − k)0,i(n − k)1,i〉, (G6)

and, after expressing this with the help of the coherent states, we obtain the time-dependent density matrix,

ρni (t ) = 1

π2

n∑
k=0

n!

k!(n − k)!

∫
d2z0,i

∫
d2z1,ie

−|z1,i|2−|z1,i|2 z�(n−k)
0,i z�(n−k)

1,i

(n − k)!
ρ�z(i) (t ), �z(i)

0,k = δi,kz0,i �z(i)
1,k = δi,kz1,i. (G7)

We are interested in the nonlocal entanglement between the transmons 1 and L, and therefore we compute the reduced density
matrix by taking the partial trace of ρni (t ) over the other transmons,

ρred
ni

(t ) = 1

π2

n∑
k=0

n!

k!(n − k)!

∫
d2z0,i

∫
d2z1,ie

−|z1,i|2−|z1,i|2 z�(n−k)
0,i z�(n−k)

1,i

(n − k)!
ez0,iÛi1a′

0,1 ez1,iÛ ∗
i1a′

1,1 ez0,iÛiLa′
0,L ez1,iÛ ∗

iLa′
1,L ρ0

=
n∑

k=0

n!

(n − k)!

1

k!2

(
Û1ia

′
0,1 + ÛLia

′
0,L

)k(
Û ∗

1ia
′
1,1 + Û ∗

Lia
′
1,L

)k
ρ0. (G8)

In the second-quantized form, this density matrix can be written as

ρred
ni

(t ) =
n∑

k=0

n!

(n − k)!

1

k!2

[
Û1i

(
aL†

1 − aR†
1

) + ÛLi
(
aL†

L − aR†
L

)]k|0〉〈0|[Û ∗
1ia1 + Û ∗

LiaL]k

=
n∑

k=0

n!

(n − k)!

1

k!2

k∑
p=0

k!

p!(k − p)!
[Û1ia

†
1 + ÛLia

†
L]k−p|0〉〈0|[Û ∗

1ia1 + Û ∗
LiaL

]k[−Û1ia
†
1 − ÛLia

†
L

]p

=
n∑

k=0

n!

(n − k)!

k∑
p=0

1

p!(k − p)!
(−1)p(P1,i + PL,i )

k|(k − p)u〉〈(k − p)u| =
n∑

q=0

Aq|qu〉〈qu|, (G9)

where

Aq = (1 − P1,i − PL,i )
n−q(P1,i + PL,i )

q

(
n
q

)
, |qu〉 = (Û1ia

†
1 + ÛLia

†
L )q√

q!(P1,i + PL,i )q
|0〉, P1,i = |Û1i|2, PL,i = |ÛLi|2. (G10)

Similarly, we can also compute the reduced density matrix for a single transmon at one end of the chain,

ρred,1
ni

(t ) =
n∑

p=0

B1,p|p〉1〈p|1, ρred,L
ni

(t ) =
n∑

p=0

BL,p|p〉1〈p|1, B1(L),p = (P1(L),i )
p(1 − P1(L),i )

n−p

(
n
p

)
. (G11)

APPENDIX H: NONLOCAL ENTANGLEMENT

We can characterize the entanglement between the sites
1 and L in the reduced density matrix (G9) using different
measures of entanglement. In the main text, we concentrated

on the mutual information I (1 : L), which is defined as

I (1 : L)(t ) = S
[
ρred,1

ni
(t )

] + S
[
ρred,L

ni
(t )

] − S
[
ρred

ni
(t )

]
, (H1)
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FIG. 8. (a) Mutual information I (1 : L) vs t for a reference system with gB,max = 0.01J (green) and nontrivial phases with x = −1 and
gB,max/J =: 5, 10 (red, blue). (b) Quantum discord δ(1 : L) vs t for the same dissipation patterns. (c) Comparison of mutual information
I (1 : L) and quantum discord δ(1 : L) for a uniform system with no dissipation, gA,B = 0. In addition to the usual dissipation patterns, we have
added one extra site in the middle of the chain with gL/2+1 = gB, which is excited to a Fock state with N = 1 at t = 0.

where S(ρ) is the von Neumann entropy,

S(ρ) = −Trρ ln ρ. (H2)

If the system is in a simple product state, we have I (1 : L) =
0, and therefore the mutual information characterizes correla-
tions between the end transmons.

By using Eqs. (G9) and (G11), we obtain

I (1 : L)(t ) =
n∑

q=0

Aq(t ) ln Aq(t ) −
n∑

q=0

B1,q(t ) ln B1,q(t )

−
n∑

q=0

BL,q(t ) ln BL,q(t ), (H3)

where Aq(t ), B1,q(t ), and BL,q(t ) are given by Eqs. (G10) and
(G11). The formula (H3) has been used to compute the mutual
information in the figures shown in the main text.

In general, the mutual information I (1 : L) is not a good
measure of quantum entanglement because it can also be
nonzero in the case of a classically correlated state. However,
we have checked that in our case, the mutual information
originates from the quantum entanglement. For this purpose,
we have considered the quantum discord [54],

δ(1 : L)(t ) = S
[
ρred,1

ni
(t )

] − S
[
ρred

ni
(t )

]
+ S

[
ρred,L

ni
(t )|{� j

1

}]
, (H4)

where the conditional quantum entropy is defined as

S
[
ρred,L

ni
(t )|{� j

1

}] =
n∑

j=0

p jS

[
1

p j
�

j
1ρ

red
ni

(t )� j
1

]
, (H5)

p j are the probabilities of the measurements,

p j = Tr
{
�

j
1ρ

red
ni

(t )
}
, (H6)

and �
j
1 is a complete set of orthogonal projectors at site 1.

Here, we concentrate on the case n = 1, where the projectors
can be written as

�1
1 = (cos θ |0〉1 + eiφ sin θ |1〉1)(cos θ〈0|1 + e−iφ sin θ〈1|1),

(H7)

�2
1 = (e−iφ sin θ |0〉1 − cos θ |1〉1)(eiφ sin θ〈0|1 − cos θ〈1|1).

(H8)

In general, the discord depends on the basis taken to make
the measurement at site 1, i.e., on the values of θ and φ in
Eqs. (H7) and (H8), and therefore a meaningful measure of
entanglement is

D = min{�1
j}

δ(1 : L).

For n = 1, this means minimization over angles θ and φ,
which is numerically feasible. We numerically find that in
our case, dependence on the choice of {�1

j} is weak and
D shows very similar behavior as I (1 : L). In Fig. 8, we
show the comparison between these two quantities in the
case of time-dependent dissipation, which was already con-
sidered in the main text and in the case of no dissipation
at all. We note that quantum discord always takes slightly
lower or the same values as mutual information, but the
shape of the curves is the same. In the main text, we have
reported only I (1 : L) because of the rather high complex-
ity of the calculation of D in the case of a large number
of bosons.

APPENDIX I: INITIALIZATION AND MEASUREMENT
WITH CIRCUIT QUANTUM ELECTRODYNAMICS

In this section, we will briefly review the initialization and
measurement of the transmons with circuit quantum elec-
trodynamics based on Refs. [33,51]. For this purpose, we
consider our transmon chain coupled resonant mode of a
cavity,

Hcqe = �a†Ĥ �a −
L∑

j=1

Uj

2
a†

j a j (a
†
j a j − 1) + ωcc†c

+
∑

j

G j (c
†a j + ca†

j ), (I1)

where

Ĥ =

⎛
⎜⎜⎜⎜⎜⎝

ω1 J1

J1 ω2 J2

J2
. . .

. . .
. . . JL−1

JL−1 ωL

⎞
⎟⎟⎟⎟⎟⎠, (I2)
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and G j describes the coupling of the transmon j and the cavity
mode. The transmon frequencies ωi can be tuned as much
as 1 GHz in as little as 10–20 ns [51]. Therefore, we can
assume that all transmon frequencies are, most of the time,
tuned very far away from the cavity frequency ωc, but we
can selectively tune specific transmon frequencies close to
the cavity frequency ωc so that the coupling between these
systems becomes non-negligible. Notice that even when ωi

is tuned close to ωc, we will still stay in the dispersive
regime ωi − ωc − nU � Gi (n = 0, 1, . . . , nmax, where the
state-dependent cutoff occupation number nmax is defined so
that as a good approximation, the occupations above nmax can
be neglected). However, the other transmons are detuned so
much more away from ωc that their effects can be completely
neglected. We also assume that Jj are sufficiently small so that
while transmons are tuned close to ωc, the couplings to the
other transmons can be neglected. Therefore, we assume that

during these operations, the dissipations gi are always turned
off.

1. Initialization and measurement of the state
of a single transmon

We first consider a single transmon frequency ωi tuned
close to ωc. In this case, the effective Hamiltonian describing
the transmon and the cavity takes a form

Hcqe,i = ωia
†
i ai − Ui

2
a†

i ai(a
†
i ai − 1) + ωcc†c

+Gi(c
†ai + ca†

i ). (I3)

In the dispersive limit, one can utilize the Schrieffer-Wolff
transformation [51] to show that the Hamiltonian (I3) is well
approximated by

Hdisp,i = ωia
†
i ai − Ui

2
a†

i ai(a
†
i ai − 1) + ωcc†c + G2

i a†
i ai

ωi − ωc − Ui(a
†
i ai − 1)

+
[

G2
i a†

i ai

ωi − ωc − Ui(a
†
i ai − 1)

− G2
i (a†

i ai + 1)

ωi − ωc − Uia
†
i ai

]
c†c.

(I4)
Therefore, the resonator frequency is renormalized so that it is dependent on the Fock state n of the transmon as

ωeff
c (n) = ωc + nG2

i

ωi − ωc − (n − 1)Ui
− (n + 1)G2

i

ωi − ωc − nUi
= ωc − G2

i (ωi − ωc + Ui )

(ωi − ωc − nUi )[ωi − ωc − (n − 1)Ui]
. (I5)

In this situation, initializing the transmon to a superposition
of the Fock states |n〉,

|ψtransmon〉 =
nmax∑
n=0

cn|n〉, (I6)

and driving the cavity leads to an entangled transmon-
resonator state of the form

|ψ〉 =
nmax∑
n=0

cn|n, αn〉, (I7)

where αn describes the transmon-state n-dependent coher-
ent state of the resonator. Assuming that ωeff

c (n) (n =
0, 1, . . . , nmax) are sufficiently different from each other, the
different states of the microwave field αn can be resolved
in heterodyne detection, and this measurement serves as a
quantum nondemolition measurement of n̂ = a†a. Thus the
transmon is projected in the measurement to the Fock state
|n〉 with probability |cn|2. In the case of the two lowest states
of the transmons, the measurement can be done with above
99% fidelity in less than 100 ns [51]. In the case of multiple
states of the transmon |n〉 (n = 0, 1, . . . , nmax), we expect the
fidelities to be smaller and the required measurement times to
be longer.

Alternatively, one can also initialize the transmon to a
chosen excited state utilizing the anharmonicity Ui. Namely,
the frequency difference between states |n〉 and |n + 1〉 is dif-
ferent for each value of n, and therefore one can sequentially
apply π pulses at the corresponding resonance frequencies

to go from the ground state to a chosen excited state |0〉 →
|1〉 → · · · → |n〉 [52].

2. Two-transmon tomography

After we have dynamically generated the entangled state,
the reduced density matrix of the transmons 1 and L can be ex-
perimentally determined by using quantum state tomography,
but it requires that we prepare the transmons 1 and L to the
same state many times by repeating the same procedure. For
this purpose, we also always need to decouple the transmons
1 and L from the rest of the chain by tuning the resonance
frequencies ω1 and ωL sufficiently far from the resonance
frequencies of the other transmons.

The quantum state tomography can then be performed
by applying single transmon gates and correlating the single
transmon measurements of the transmons 1 and L. In the case
of two-level systems, the typical approach is to measure the
probabilities of the qubits being in states |0〉 and |1〉, e.g., in
the x, y, and z basis; then the density matrix is constructed
using the maximum-likelihood estimation of ρ (see, e.g.,
[55,56]). This method can be easily generalized to our case
by noticing that we can formally express the states of the
transmon |n〉 as tensor products of qubit states. The single
transmon operations and measurements can be performed, for
example, by driving the transmons with suitable pulses and
utilizing the dispersive readout as discussed above.

Alternatively, the two-transmon tomography can be per-
formed using joint dispersive readout [57]. In this scheme,
one utilizes the Schrieffer-Wolff transformation for two qubits
coupled to the same resonator, leading to the Hamiltonian
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Hdisp,1,L = ω1a†
1a1 − U1

2
a†

1a1(a†
1a1 − 1) + ωLa†

LaL − UL

2
a†

LaL(a†
LaL − 1) + ωcc†c

+ G2
1 a†

1a1

ω1 − ωc − U1(a†
1a1 − 1)

+ G2
L a†

LaL

ωL − ωc − UL(a†
LaL − 1)

+
[

G2
1 a†

1a1

ω1 − ωc − U1(a†
1a1 − 1)

− G2
1 (a†

1a1 + 1)

ω1 − ωc − U1a†
1a1

+ G2
L a†

LaL

ωL − ωc − UL(a†
LaL − 1)

− G2
L (a†

LaL + 1)

ωL − ωc − ULa†
LaL

]
c†c, (I8)

in the dispersive limit. Because the renormalized resonator
frequency is now dependent on the state of both transmons,
the quadratures of the resonator field correspond to an opera-
tor which also comprises two-transmon correlation terms [57].

Therefore, it is possible to construct the density matrix by
performing single transmon operations and the averaged mea-
surements of the transmission amplitudes without the need for
single-shot readout of individual transmons [57].
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