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Editorial on the Research Topic

Data science in neuro- and onco-biology

In many fields of biomedical research the development and use of breakthrough

technologies often produce a huge amount of heterogeneous, multi-scale data ranging from

molecular genomic data to images describing the function and structure of tissues [1, 2].

In contrast, at a clinical level the need for real-time, minimally-invasive, and cost-effective

measurements often reduces the quality of the recorded data rendering them to be noisy and

incomplete [3].

Data science approaches based on robust mathematical and statistical methods have

proven themselves to be of crucial importance in both these scenarios. For example, machine

learning and data mining approaches can be used for patients classification and modeling of

disease progression [4, 5]. Similarly, computational models and simulations may be used

to build a patient’s digital twin opening the possibilities for highly personalized therapeutic

plans [6].

The purpose of this Research Topic is to review and present recent mathematical and

statistical developments in the analysis of biomedical data. To this end, we focused on two

specific biomedical fields, namely neuroscience and oncology, motivated by the fact that

cancer and various neurodegenerative dementias, e.g., due to Alzheimer’s and Parkinson’s

diseases, are among the leading causes of death worldwide1.

The Research Topic features two Reviews and three Original Research articles that are

briefly summarized below.

Ioannides et al. reviewed two families of numerical approaches for dimensionality

reduction of complex systems, based on principal component analysis and graph clustering

theory, respectively. The reviewed methods are illustrated on two neuroscientific studies: (i)

the study of correlations between sleep stages and brain activity; (ii) the characterization of

brain response to median nerve stimulation. In both scenarios, magnetoencephalography

and electroencephalography were used for monitoring brain activity. To prove the flexibility

of the reviewed methods, the authors also considered a problem rising from astrophysics,

namely clustering of ultraluminous infrared galaxies based on their spectral energy

distribution.

1 https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates
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Righetti et al. revised recent mechanistic models developed

for modeling at a molecular-scale the homeostasis of α-synuclein,

one of the key drivers of Parkinson’s disease parthenogenesis [7].

Specifically they grouped the considered models in two families:

single-pathway chemical kinetic model of α-synuclein aggregation,

and multiple-pathway models accounting for both α-synuclein

aggregation and degradation. Possible applications of such models

toward quantitative system pharmacologic are discussed.

Reconstructing high quality magnetic resonance images is

a first crucial step in many modern quantitative approaches

for cancer precision medicine, including radiogenomics [8].

Motivated by this consideration, Di Cola et al. proposed

to combine Rudin-Osher-Fatemi (ROF) total variation

minimization with an histogram-matching (HM) approach for

magnetic resonance image denoising. Different combinations

of various implementations of both the ROF denoising

algorithm and the HM approach were tested and validated

on simulated data extracted from a publicly available

database.

Nieus et al. present a multi-class logistic regression algorithm

with l1 penalization to infer sparse connectivity networks within

large populations of neurons from their voltage tracers. The

authors proved the robustness of the proposed methods with

respect to different parameters (such as presence of noise,

network size, and limited data availability) by simulating

realistic networks comprising both excitatory and inhibitory

neurons. Overall, this work is motivated by the spread of

emerging techniques capable of simultaneously recording

spikes and post-synaptic-potential from large populations of

neurons. Such techniques comprise genetically encoded voltage

indicators [9] or proper combination of different optical recording

techniques [10].

Sapienza et al. performed an experimental study on the impact

of parameter initialization on the performance and training time

of a modern autoencoder architecture, called deep image prior

(DIP) [11]. Specifically, they focused on the application of DIP

for denoising x-ray (sparse) computed tomography (CT) images.

First, they used natural RGB images and gray-scaled CT images

of a phantom to select a set of best initial configuration. Then, the

selected initial configurations were applied for artifact removal on

the CT images of a coronavirus (COVID-19) patient’s lungs.
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