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ABSTRACT

In this thesis, we study the use of Model Order Reduction (MOR) methods for accel-

erating and reducing the computational burden of brain simulations. Mathematical

modeling and numerical simulations are the primary tools of computational neuro-

science, a field that strives to understand the brain by combining data and theories.

Due to the complexity of brain cells and the neuronal networks they form, com-

puter simulations cannot consider neuronal networks in biologically realistic detail.

We apply MOR methods to derive lightweight reduced order models and show that

they can approximate models of neuronal networks. Reduced order models may

thus enable more detailed and large-scale simulations of neuronal systems.

We selected several mathematical models that are used in neuronal network sim-

ulations, ranging from synaptic signaling to neuronal population models, to use as

reduction targets in this thesis. We implemented the models and determined the

mathematical requirements for applying MOR to each model. We then identified

suitable MOR algorithms for each model and established efficient implementations

of our selected methods. Finally, we evaluated the accuracy and speed of our reduced

order models. Our studies apply MOR to model types that were not previously

reduced using these methods, widening the possibilities for use of MOR in compu-

tational neuroscience and deep learning. In summary, the results of this thesis show

that MOR can be an effective acceleration strategy for neuronal network models,

making it a valuable tool for building large-scale simulations of the brain.

MOR methods have the advantage that the reduced model can be used to re-

construct the original detailed model, hence the reduction process does not discard

variables or decrease morphological resolution. We identified the Proper Orthogo-

nal Decomposition (POD) combined with Discrete Empirical InterpolationMethod

(DEIM) as the most suitable tool for reducing our selected models. Additionally, we

implemented several recent advanced variants of these methods. The primary obsta-

cle of applying MOR in neuroscience is the nonlinearity of neuronal models, and
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POD-DEIM can account for that complexity. Extensions of the Balanced Trunca-

tion and Iterative Rational Krylov Approximation methods for nonlinear systems

also show promise, but have stricter requirements than POD-DEIM with regards to

the structure of the original model.

Excellent accuracy and accelerationwere foundwhen reducing a high-dimensional

mean-field model of a neuronal network and chemical reactions in the synapse, using

the POD-DEIM method. We also found that a biophysical network, which mod-

els action potentials through ionic currents, benefits from the use of adaptive MOR

methods that update the reduced model during the model simulation phase. We fur-

ther show that MOR can be integrated to deep learning networks and that MOR

is an effective reduction strategy for convolutional networks, used for example in

vision research.

Our results validate MOR as a powerful tool for accelerating simulations of non-

linear neuronal networks. Based on the original publications of this thesis, we can

conclude that several models and model types of neuronal phenomena that were not

previously reduced can be successfully accelerated using MOR methods. In the fu-

ture, integrating MOR into brain simulation tools will enable faster development

of models and extracting new knowledge from numerical studies through improved

model efficiency, resolution and scale.
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TIIVISTELMÄ

Tässä väitöskirjassa tutkimme Model Order Reduction (MOR) -menetelmien käyt-

töä aivosimulaatioiden vaatimien laskentaresurssien pienentämiseksi ja laskenta-ajan

nopeuttamiseksi. Matemaattinen mallintaminen ja numeeriset menetelmät, kuten si-

mulaatiot, ovat tärkeimpiä työkaluja laskennallisessa neurotieteessä, jossa pyritään

ymmärtämään aivojen toimintaa dataa ja teoriaa yhdistämällä. Aivosolujen ja nii-

den muodostamien soluverkostojen monimutkaisuudesta johtuen tietokonesimulaa-

tiot eivät voi sisältää kaikkia biologisesti realistisia yksityiskohtia. MOR-menetelmiä

käyttäen johdamme redusoituja malleja ja näytämme, että niillä on mahdollista ap-

proksimoida hermosoluverkostomalleja. Redusoidut mallit saattavat mahdollistaa en-

tistä tarkempien tai suuren mittakaavan hermosoluverkostojen simulaatiot.

Valitsimme tähän tutkimukseen redusoinnin kohteiksi useita neurotieteessä rele-

vantteja matemaattisia malleja, alkaen synaptisesta viestinnästä aivojen populaatiota-

son malleihin. Simuloimme malleja numeerisesti ja määritimme matemaattiset vaati-

mukset MOR-menetelmien soveltamiseksi jokaiseen malliin. Seuraavaksi tunnistim-

me kullekin mallille sopivat MOR-algoritmit ja toteutimme valitsemamme mene-

telmät laskennallisesti tehokkaalla tavalla. Lopuksi arvioimme redusoitujen mallien

tarkkuutta ja nopeutta. Tutkimuksemme soveltavat MOR-menetelmiä mallityyppei-

hin, joita ei ole aiemmin tutkittu kyseisillä menetelmillä, laajentaen mahdollisuuksia

MORin käyttöön laskennallisessa neurotieteessä sekä myös koneoppimisessa. Tutki-

muksemme osoittavat, että MOR voi olla tehokas nopeutusstrategia hermosoluver-

kostomalleille ja keinotekoisille neuroverkoille, mikä tekee siitä arvokkaan työkalun

aivojen laskennallisessa tutkimuksessa.

MOR-menetelmät ovat hyödyllisiä, sillä redusoidun mallin perusteella on mah-

dollista rekonstruoida alkuperäinen malli. Redusointi ei poista mallista muuttujia tai

heikennä sen morfologista resoluutiota. Tunnistimme Proper Orthogonal Decom-

position (POD) -menetelmän yhdistettynä Discrete Empirical InterpolationMethod

(DEIM) -algoritmiin sopivaksi menetelmäksi valitsemiemme mallien redusointiin.
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Lisäksi otimme käyttöön useita viimeaikaisia edistyneitä muunnelmia näistä menetel-

mistä. Ensisijainen este MOR-menetelmien soveltamiselle neurotieteessä on hermo-

solumallien epälineaarisuus. POD-DEIM -menetelmää voidaan käyttää myös epäli-

neaaristen mallien redusointiin. Balanced Truncation ja Iterative Rational Krylovin

Approximation -menetelmien muunnelmat epälineaaristen mallien approksimoin-

tiin ovat myös lupaavia, mutta niiden käyttö vaatii redusoitavalta mallilta enemmän

matemaattisia ominaisuuksia verrattuna POD-DEIM -menetelmiin.

Saavutimme erinomaisen approksimaatiotarkkuuden ja nopeutuksen redusoimal-

la moniulotteista hermosolupopulaatiomallia ja synapsin kemiallisia reaktioita kuvaa-

vaa mallia käyttämällä POD-DEIM -menetelmää. Biofysikaalisesti tarkan verkosto-

mallin, joka kuvaa aktiopotentiaalin muodostumista ionivirtojen kautta, redusoin-

nin huomattiin hyötyvän simulaation aikana redusoitua mallia päivittävien MOR-

menetelmien käytöstä. Osoitimme lisäksi, että MOR voidaan integroida syväoppi-

misverkkoihin ja että MOR on tehokas redusointistrategia konvoluutioverkkoihin,

joita käytetään esimerkiksi näköhermoston tutkimuksessa.

Tuloksemme osoittavat, että MOR on tehokas työkalu epälineaaristen hermo-

soluverkostojen simulaatioiden nopeuttamiseen. Tämän väitöskirjan osajulkaisujen

perusteella voimme todeta, että useita neurotieteellisesti relevantteja malleja ja mal-

lityyppejä, joita ei ole aiemmin redusoitu, voidaan nopeuttaa käyttämällä MOR-

menetelmiä. TulevaisuudessaMOR-menetelmien integrointi aivosimulaatiotyökalui-

hin mahdollistaa mallien nopeamman kehittämisen ja uuden tiedon luomisen numee-

risten simulaatioiden tehokkuutta, resoluutiota ja mittakaavaa parantamalla.
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1 INTRODUCTION

Neural tissue is characterized by heterogeneous cell types and a myriad of interaction

mechanisms between these cells. Observing neurons or neuronal networks operating

in the living brain is a grand challenge. While large volumes of data can be collected

using a variety of methods, tools to extract the essence of the data are needed to form

a unified view of the brain. In computational neuroscience, mathematical models and

theories attempt to capture this diversity [1].

Numerical simulation of mathematical models is the principal method of analyz-

ing large, nonlinear, multi-scale models of neural systems [2]. In computational neu-

roscience, the sheer number of cells and connections in the brain make simulations

of the brain a challenge. Simulations of models of biologically realistic detail and

scale may need more compute resources than current supercomputers can offer. In

this thesis, we focus on improving the computational efficiency of brain simulations.

The aim of the thesis was to discover and apply new acceleration methods to systems

that are relevant in modeling neuronal networks. We show that approximation via

mathematical Model Order Reduction (MOR) can accelerate simulations by identi-

fying low-dimensional subspaces where reduced models can be simulated efficiently

by lowering the number of equations in the models. During and after simulation,

an approximation of the original model can be reconstructed. The approach we pro-

pose is not specific to any given model type. Moreover, MOR addresses the primary

shortcoming of existing simplification methods, namely MOR does not compromise

biological detail of models. We demonstrate MOR using a collection of neuronal net-

work models and a synapse model that have not been reduced using MOR earlier.

In recent years, several large-scale modeling studies of the brain have been con-

ducted. In [3], a cortical microcircuit of 31 000 morphologically detailed neurons

is reconstructed using scarce experimental data from multiple sources. The model is

able to reproduce many emergent phenomena from in vivo and in vitro experiments.

In [4], a mathematical model was built using 2.5 million simple phenomenological
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spiking neurons. Although phenomenological models trade biological details for

simplicity, the model is able to describe several anatomical areas of the brain and can

perform nine different functional tasks. In [5], a model of the visual cortex was de-

veloped by combining a total of 45 thousand morphologically detailed neurons and

spiking neurons. The model was able to recreate in vivo responses to visual stimuli in

mice. These studies can be considered state-of-the-art among the current multi-scale

brain models.

As an example of the computational challenges of simulation studies in computa-

tional neuroscience, each of the large-scale brain simulation studies of [3]–[5] had to

make compromises in the biological scope and realism of their modeling approaches,

firstly since compute resources are insufficient for even simplified biophysical whole-

brain simulations and secondly because data of the brain is still sparse. In [3] the au-

thors emphasize that despite using supercomputers, it was only reasonable to study

a small portion of a single region of a young rat brain. In [4] the authors write that

many details, neurons and neuron types are missing from the large-scale model, and

that the modeled brain areas only perform a part of their natural functions. More-

over, in [4], a future rise in computing power is expected to allow the model to

perform more advanced tasks. In [5] it was necessary to omit biophysical properties

from dendrites of the compartmental neurons due to boundaries set by computa-

tional resources. Furthermore, parameter optimization was restricted to two stimuli

and was done in part manually as automatic approaches were computationally in-

tractable. All the studies mentioned their ambitions for studying larger-scale models,

once they become computationally feasible. However, it is acknowledged that new

methods may be needed for enabling and understanding such simulations [6]. A class

of such methods is explored in this thesis.

While simplified models of neuronal phenomena have been successful, more can

be done to enable large-scale simulations of the brain. At present, we require su-

percomputers to simulate fractions of biophysically detailed neural networks. The

whole brain level can be coarsely simulated with neuronal population-level simplified

mean-field models, but single neuron level of detail is out of reach in these studies,

not to even mention including detailed synaptic mechanisms or non-neuronal cells

such as glia in the simulations. The lack of sufficient computational power also for-

bids parameter fitting, optimization, as well as perturbation and sensitivity studies

that rely on repeated simulations of the system. Hence, new acceleration approaches
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are needed to enable more efficient and comprehensive simulations.

The objectives of this thesis are to find out which MOR methods are applicable

to models of neuronal networks in computational neuroscience, what are the main

obstacles faced by MOR in computational neuroscience, how to implement MOR

methods efficiently and how effective results simulation speed and accuracy-wise can

be achieved by using MOR. All original publications of this thesis consider these

objectives using different mathematical models of neuronal phenomena and a vari-

ety of MOR methods. The main hypothesis of this thesis is that MOR methods

can accelerate nonlinear neuronal network models directly as well as other network

components, such as detailed synapse models, individually. For example, it could

be rationalized that neuronal networks have redundancies in the network structure

and cellular components that MOR methods could take advantage of. These ques-

tions were studied in this thesis in the scope of model types that are relevant for

constructing large-scale mammalian brain models in computational neuroscience.

MOR is a promising tool, since it can address weaknesses of existing simplifica-

tion methods. The primary drawback of simplification methods is that they discard

variables from the detailed models. On the other hand, MORmethods are able to re-

construct an approximation of the dynamics of the original complex model, despite

simulating a reduced model with a smaller number of equations. The approxima-

tion includes the complete spatial resolution of the original model. Additionally, the

reduced model retains the same input signals and output or readout values as the

original model. MOR methods are not specific to any given model type, as will be

shown in this thesis. Moreover, MOR methods can be applied directly to large-scale

nonlinear models or to already simplified models, making them particularly flexible

tools. Finally, software designed for creating reduced models using MORmethods is

starting to mature. These properties makeMORmethods an interesting and relevant

topic for computational neuroscientists.

With regards to performance of MOR methods, we obtained the following re-

sults. In Publication I it was found that MOR methods can accelerate a chemical

reaction equation based synapse model. The result is useful for network simulations

that can in the future be extended with more detailed models of synapses. In Publi-

cation II we found that networks made of simplified nonlinear biophysical neuron

models can be reduced using recent adaptive MOR methods. In Publication III we

successfully reduced a high-dimensional nonlinear Fokker-Planck neuronal popula-

19



tion model with several orders of magnitude acceleration, showing that MOR meth-

ods can enable more detailed mean-field modeling with complete state probability

distributions. Finally, In Publication IV we compressed models generated using a

new class of deep learning networks, continuous-time Neural Ordinary Differential

Equations (Neural ODEs) [7], by leveraging our result that MOR operations can

be implemented as layers of artificial neural networks. For convolutional Neural

ODEs, MOR methods achieved better results than benchmarked artificial neural

network pruning methods from the literature. With recurrently connected Neu-

ral ODEs, we found that an advanced MOR method for nonlinear reduction was

required to obtain competitive performance with benchmark methods.

The publications of this thesis focus on nonlinear models for which MOR is still

an open theoretical question. Nonlinearity is perhaps the most restricting factor

when it comes to choosing MOR methods, and only a handful of MOR methods

are currently capable of reducing general nonlinear systems [8]–[10]. However, in

computational neuroscience, nonlinear systems are the primary class of models, and

it is important to have tools for reducing them. Other characteristics of models in

neuroscience include multiple inputs and outputs of models as well as mechanisms

such as resets and thresholds, which are discontinuous and hence set constraints

to model reduction performance. Our results show that these challenges can be

overcome with the proper choice and implementation of MOR methods.

MOR research as well as earlier applications of MOR in reducing neuron mod-

els have focused on systems that stem from discretizing partial differential equations

(PDEs) [11], [12]. PDE models typically contain structure that results in very large

systems and fine space resolution, and MOR methods have been successful in reduc-

ing these systems [13]. In addition to a PDE model, the studies in this thesis consider

models that are assembled from small systems of or individual ordinary differential

equations (ODEs) directly, a common approach to creating models in computational

neuroscience, which however does not automatically result in systems with similar

spatial structure as found in discretized PDEs. In the broad scope of model reduction,

this is an unconventional application of MORmethods. In the field of neuroscience,

the results in this thesis provide new knowledge of the efficacy of MORmethods for

these model types.

The impact of MOR methods in the field of computational neuroscience is based

on the simulation acceleration offered by MOR methods without compromising bi-
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ological detail in models. We can now suggest that before resorting into developing

novel neuroscience-specific or even model-specific simplification methods, MOR op-

tions should be exhausted first, since their generic nature and strong theoretical back-

ground supports them. The selection of applicable methods, adjustable approxima-

tion dimensionality, capability to preserve input-output mappings and spatial struc-

ture, a priori error bounds, active research community and available software imple-

mentations should encourage researchers to apply MOR for their specific simulation

acceleration needs. Whereas earlier MOR results in neuroscience were obtained for

cable-equation based branching single neurons, the original publications in this thesis

specifically establish MOR as a valuable approach for accelerating a variety of models

of neuronal network systems, taking into account the specific needs of the field of

computational neuroscience.

In Chapter 2 we give an introduction to mathematical models andMOR and brief

summary of earlier results from MOR in computational neuroscience, covering the

previously employed MOR methods as well as reduced model types. We further

summarize other, perhaps more traditional, model acceleration approaches, namely

those that are based on model simplification. Chapter 3 details the aims of this thesis.

In Chapter 4 we explain the mathematical models and MORmethods that were used

in the original publications of this thesis. The results towards each aim of the thesis

are presented in Chapter 5 and critically discussed in Chapter 6. Finally, Chapter 7

concludes the thesis.
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2 BACKGROUND

There are two main motivations for complexity reduction of nonlinear computa-

tional models in neuroscience. One is accelerating numerical simulations of mod-

els [5], [14]. The other is mechanistic understanding of functional contributions of

the components of the model [15]–[17].

Focusing on acceleration is important, because the compute time required for

simulations of neural systems is prohibitive of large-scale computational studies, es-

pecially those that require repeated simulations of a system. Such studies include

determining the effects of different initial values, model parameters and stimulus

functions. Furthermore, accelerated models are more accessible than their high-

dimensional versions, as it may be possible to study an accelerated system on a laptop,

whereas previously a compute cluster was needed. Finally, accelerated models allow

including a larger and more heterogeneous set of biological entities in mathematical

models, since the price of simulating a single entity is lowered.

Acceleration is the primary purpose of mathematical Model Order Reduction

(MOR) methods [13]. The basic premise of MOR is determining a low-dimensional

space, where the dynamics of an original, high-dimensional and computationally

expensive model can be simulated with improved efficiency. From simulations of

this reduced model, an approximation of the dynamics of the original system is then

reconstructed. In this manner, all variables, parameters, cellular elements and spatial

details of the high-dimensional mathematical model can be included in the model.

Complexity reduction can also be pursued using simplified models. MOR contrasts

model simplification, where the approach is to simulate a cartoon model from which

spatial or mechanistic detail has been discarded.

In this chapter, a brief review of the current state-of-the-art methods for MOR

and model simplification in computational neuroscience is given. First, essential

terms and equations that are used throughout the thesis are introduced, with re-

gards to Model Order Reduction and mathematical modeling in general. Second,
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prior applications of MOR in computational neuroscience are presented. After this

summary, the reader has an understanding of what MOR methods have been used

in computational neuroscience and which models have been reduced using MOR

methods outside of the publications in this thesis. Finally, a brief review of model

simplification approaches is given.

2.1 Overview of Model Order Reduction

In this section, we explain the background knowledge needed for applying MOR

methods. We start with differential equation-based mathematical modeling, and then

move to formulating reduced models.

2.1.1 Theory

In this thesis, we consider time-invariant general nonlinear ordinary differential equa-

tions (ODEs) in state-space form

𝐸
d𝑥(𝑡)

d𝑡
= 𝐴𝑥(𝑡) + 𝑓 (𝑥(𝑡), 𝑡) + 𝐵𝑢(𝑡),

𝑦(𝑡) = 𝑔(𝑥(𝑡), 𝑢(𝑡)),

(2.1)

that describe the time evolution of an 𝑛-dimensional state 𝑥(𝑡) ∈ R𝑛. In this equation,

linear terms of the model are in the state matrix 𝐴 ∈ R𝑛×𝑛, time-dependent inputs in

vector 𝑢(𝑡) ∈ R𝑝, linear input coefficients in input matrix 𝐵 ∈ R𝑛×𝑝 and nonlinear

functions in the vector 𝑓 (𝑥(𝑡), 𝑡) ∈ R𝑛. The outputs or readouts or observables in

𝑦(𝑡) ∈ R𝑜 are a function of the state and inputs but are not modeled with differential

equations. It is common to have only linear readouts 𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡), with

the output matrix 𝐶 ∈ R𝑜×𝑛 and feedforward matrix 𝐷 ∈ R𝑜×𝑝. The system is time-

invariant since parameters of the matrices and functions do not change with time. In

the publications of this thesis, the mass matrix 𝐸 ∈ R𝑛×𝑛 is the identity matrix 𝐼𝑛,

although in general it need not be so. Notice that if 𝐸 had rows of zeros, the system

would be a differential algebraic system of equation, for which the following theory

does not automatically hold. In the case that 𝑝 = 𝑜 = 1, Eq. (2.1) is called a single-

output-single-input (SISO) system, which may permit easier analytical study and

model reduction. In the general case, the system is multiple-input-multiple-output

(MIMO), where the number of inputs and outputs are not constrained.
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The ODE system in Eq. (2.1) is nonlinear if 𝑓 (𝑥(𝑡), 𝑡) ≠ 0. The state-space

representation is generic, and all ODEs can be written in such a form. Moreover,

partial differential equations (PDEs), after discretizing space variables, fit the same

description, typically resulting in very large groups of ODEs. Accordingly, MOR

methods have been traditionally developed and validated with PDE applications or

even specific PDE discretization schemes in mind [13].

In the general nonlinear case Eq. (2.1) cannot be analytically solved. Hence, to

determine a specific solution, the state of the system at a desired time, numerical

methods are used to propage the state 𝑥(𝑡) forward from an initial state, according

to the ODE. In these initial value problems, the beginning state is decided first,

and the solution of the equation is specific to that selection. Given 𝑥(0), numerical

simulation is then used to reach 𝑥(𝑡). The primary tool for simulation is an ODE

solver, which takes small steps in time until the end time or state-based condition is

reached. A reliable fixed-step solver is the fourth order Runge-Kutta method [18],

[19], while adaptive solvers that take varying steps in time can also be used.

Model order reduction (MOR) methods in this thesis are projection-based and can

be called subspace projection methods. We seek 𝑘-dimensional basis matrices 𝑉, 𝑊 ∈

R
𝑛×𝑘 so that 𝑉∗𝑊 = 𝐼𝑘 and 𝑘 < 𝑛, onto which the system in Eq. (2.1) is projected.

This yields the reduced state variables �̃� = 𝑉∗𝑥 ∈ R𝑘 that evolve in a 𝑘-dimensional

subspace. An approximation of the original variables based on the reduced state

can then be computed via the transformation 𝑥(𝑡) ≈ 𝑊�̃�(𝑡). How accurate the

reduced model is and how well it preservers properties of the original model, such as

stability [20], passivity [21] and positivity [22], are determined by the basis matrices

𝑉 and 𝑊 .

MOR is very established for linear systems. For linear systems, MOR methods

can provide error bounds, stability guarantees and positivity results. Linear reduced

models can be computed using a variety of methods, some of which use simulated

or real-world data and some that derive reduced models directly from the system

matrices. On the other hand, for nonlinear systems, the choice of reduction methods

is narrower, and it is challenging to derive results such as error bounds. Additionally,

some reduction methods can take advantage of SISO features. Generally, MIMO

systems are common, and these are more challenging to reduce accurately.

To obtain a reduced order model (ROM) that describes time-evolution in the 𝑘-

dimensional space, Petrov-Galerkin projections of the terms in Eq. (2.1) are com-
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puted as

�̃� = 𝑉∗𝐸𝑊 ∈ R𝑘×𝑘 ,

�̃� = 𝑉∗𝐴𝑊 ∈ R𝑘×𝑘 ,

�̃� = 𝑉∗𝐵 ∈ R𝑘×𝑝,

�̃� = 𝐶𝑊 ∈ R𝑜×𝑘 ,

�̃�
d�̃�(𝑡)

d𝑡
= �̃��̃�(𝑡) +𝑉∗ 𝑓 (𝑊�̃�(𝑡)) + �̃�𝑢(𝑡),

𝑦 = �̃��̃�(𝑡) + 𝐷𝑢(𝑡),

(2.2)

which illustrates that matrices �̃� , �̃�, �̃�, �̃� are constant in time and can be computed

before solving the equation, in the so called offline phase of model reduction. If the

mass matrix 𝐸 = 𝐼, then 𝑉∗𝐸𝑊 = 𝑉∗𝑊 = 𝐼, and hence 𝐸 can be ignored in the

reduction process. Now the number of variables and equations in the system has

been reduced, and solving the reduced ODE is expected to be faster than numer-

ically solving the original initial value problem, resulting in accelerated numerical

simulation.

In the linear case of �̃�′ (𝑡) = �̃��̃�(𝑡) + �̃�𝑢(𝑡) (where 𝑥′ denotes time derivative), the

reduced model would now be completely independent of the original dimension 𝑛.

However, evaluating the nonlinear term 𝑉∗ 𝑓 (𝑊�̃�(𝑡)) of Eq. (2.2) requires that the

𝑛-dimensional state 𝑥(𝑡) ≈ 𝑊�̃�(𝑡) is reconstructed and each 𝑛 functions evaluated.

Additionally, the resulting vector of values from the nonlinear functions must be

projected to the 𝑘-dimensional reduced state. This hampers the efficiency of sim-

ulating the reduced model. Evaluating the nonlinear term efficiently is the primary

challenge of present day MOR methods.

Certain nonlinear systems can be written in quadratic-bilinear (QB) format. There,

the nonlinear term of the state evolution equation is composed only of quadratic non-

linearities and input functions that are multiplied with the state vector. QB systems

are written as

𝐸
d𝑥(𝑡)

d𝑡
= 𝐴𝑥(𝑡) + 𝐻 (𝑥(𝑡) ⊗ 𝑥(𝑡)) +

𝑝∑
𝑖=1

𝑁𝑖𝑥(𝑡)𝑢𝑖 (𝑡) + 𝐵𝑢(𝑡), (2.3)

where 𝐻 ∈ R𝑛×𝑛
2
is a matrix of coefficients for quadratic nonlinearities and 𝑁𝑖 ∈

R
𝑛×𝑛 are coefficients of bilinear inputs. The symbol ⊗ denotes the Kronecker prod-

uct. The matrices 𝐻 and 𝑁 can be transformed to the reduced space to yield a reduced
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model

�̃� = 𝑉∗𝐻 (𝑊 ⊗ 𝑊) ∈ R𝑘×𝑘
2

�̃� 𝑖 = 𝑉∗𝑁𝑖𝑊 ∈ R𝑘×𝑘

�̃�
d�̃�(𝑡)

d𝑡
= �̃��̃�(𝑡) + �̃� (�̃�(𝑡) ⊗ �̃�(𝑡)) +

𝑝∑
𝑖=1

�̃� 𝑖 �̃�(𝑡)𝑢𝑖 (𝑡) + �̃�𝑢(𝑡),

(2.4)

which does not depend anymore on the original dimension 𝑛, even in the nonlinear

term, although the dependency on 𝑘 is quadratic [23], [24]. Similarly, in case of

polynomial nonlinearities, forms corresponding to the QB Eq. (2.3) and Eq. (2.4)

can be derived for higher order polynomials as well, but the 𝐻 matrix quickly grows

to inconvenient dimensions [25].

2.1.2 Algorithms

There are three MOR method families that stand out from the literature. In the

following, we summarize them. More details are given in Chapter 4.

Proper Orthogonal Decomposition (POD) methods are a family of empirical

MOR methods, introduced in [26]. They require data of system dynamics from the

original system. This snapshot data can be collected from sensors that measure a real

system or by simulating the original model. In POD, there is only a single reduction

basis 𝑉 = 𝑊 . It is obtained via the Singular Value Decomposition (SVD) of this

snapshot data matrix. The Discrete Empirical Interpolation Method (DEIM) [27] is

a recent method that applies a similar process in order to evaluate nonlinear vector-

valued functions in a reduced space. POD and DEIM are remarkable because they

can be applied to nonlinear models in a straightforward manner.

Balanced Truncation (BT) methods compute a reduced model directly from the

system matrices [20]. BT is based on reachability and observability of the system.

Reachability and observability can be measured with the reachability gramian and

the observability gramian, respectively. BT is a two-step process, where the system

is first balanced so that states that are difficult to observe become difficult to reach.

Second, the balanced state matrices are truncated in order to obtain a reduced model

that can approximate the most important input-output characteristics of the orig-

inal system. Finding the balanced realization using the gramians require that two
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Lyapunov equations are solved. These are

𝐴𝑃 + 𝑃𝐴∗ + 𝐵𝐵∗ = 0,

𝐴∗𝑄 + 𝑄𝐴 + 𝐶∗𝐶 = 0,
(2.5)

where 𝑃 and 𝑄 are the reachability and observability gramians, respectively. Note

that 𝑃 depends on the input matrix 𝐵 and 𝑄 depends on the output matrix 𝐶, a fact

that closely couples BT to input-output behavior of the system. The following must

be considered when computing the gramians. The Lyapunov equation can only be

guaranteed to have a unique solution if the matrix 𝐴 only has eigenvalues that have

negative real parts. In this case, the system is asymptotically stable and solutions

tend towards zero as 𝑡 → ∞ when no input is present. Furthermore, determining

gramians through Lyapunov equations for nonlinear systems is an open question.

These matters mean that the original BT method is not applicable to general nonlin-

ear systems, although it has extensions for quadratic bilinear systems and empirical

variants for nonlinear models. However, the BT method preserves stability in the

reduced model and it can compute an a priori error bound for the approximation.

MomentMatching (MM)methods aim to approximate a high-dimensional system

through the transfer function. From the state-space format of Eq. (2.1), for a linear

system, we can compute the transfer function

𝐻 (𝑠) = 𝐷 + 𝐶 (𝑠𝐼 + 𝐴)−1𝐵, (2.6)

where 𝑠 denotes the Laplace transform and 𝑥(0) = 0 [28]. The transfer function

offers an additional approach into studying linear systems. A low-dimensional sys-

tem is sought so that the transfer function approximates that of the original system.

The moments of a linear function correspond to the coefficients of the Laurent series

expansion of that function. The MM reduced system will match the first 𝑘 terms

of the Laurent series expansion of the transfer function. Different methods use Lau-

rent expansions around different points in the complex plane (with zero and infinity

being typical choices). However, directly and accurately computing the moments

of a function is numerically challenging. An MM approximation can be computed

iteratively with pure matrix-vector multiplications, without explicitly computing

moments, which is a way to make MM methods numerically robust. Algorithms

that find such MM approximations are known as Krylov methods, the most famous
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implementations being the Arnoldi and the Lanczos methods [29].

2.2 Mathematical modeling in computational neuroscience

Mathematical models of neurons typically characterize three functional regions from

single neurons [30], [31]; the dendrites, the soma and the axon. The dendrites form

a tree-like structure and their cell membrane contains several types of ion channels.

Ion channels are the main source of nonlinear (active) dynamics in neuron models.

Ionic currents through ion channels generate action potentials, where the membrane

voltage at a spatial location rises rapidly. These action potentials propagate through

the neuron to pass information along the cell. The dendrites also receive synaptic

inputs, which connect neurons to others via chemical transmission. The soma and

dendrites integrate dendritic currents. The soma is typically modeled individually

due to its shape that makes electrical properties different from other parts of the neu-

rons. There are ion channels on the somatic membrane as well. The soma connects

the dendrites to the axon of the neuron. The axon is insulated through myelination

and has ion channels only at dedicated locations, at the Nodes of Ranvier. The axon

propagates membrane potential changes to presynaptic terminals, where connections

are made through synapses. Neural cells may also connect to each other through gap

junctions, which is a direct channel between the intracellular domains of two cells.

These core components form the basis of mathematical single neuron models.

Single neuron models cannot and do not aim to explain the functioning of the

whole brain. Instead, models of higher levels of organization are needed [32], [33].

Higher on the level of organization is the network level. Network models connect

single neuron models via synapses and attempt to generate emergent phenomena

that are not seen at or explained by single neuron models alone [15], [33]. The

synapses itself can be described on many levels of detail, from simple currents [15]

to phenomenological systems [34] to detailed molecular reaction networks [35]. The

increase in complexity from the single neuron models is considerable, leading model-

ers to resort to simplified single neuron and synapse models when creating network

models.

Earlier MOR and model simplification efforts in computational neuroscience,

prior to this thesis, have focused on accelerating morphologically detailed models

of single neurons. In the following, we introduce the cable equation that is used
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to model membrane voltage propagation in single neurons. With regards to this

thesis, the cable equation is of historical importance, and the original publications of

this thesis focus on model types that have not been previously reduced using MOR.

However, neuronal network models can use models that are derived from the cable

equation, such as in [15].

The basis of morphologically detailed neuron modeling is that voltage propaga-

tion in dendrites and axons can be described by the one-dimensional cable equation

𝜏
𝜕𝑉 (𝑥, 𝑡)

𝜕𝑡
= 𝜆2 𝜕2𝑉 (𝑥, 𝑡)

𝜕𝑥2
− 𝑓 (𝑉 (𝑥, 𝑡), 𝑥, 𝑡) + 𝐼e(𝑥, 𝑡)𝑟m, (2.7)

where𝑉 is membrane voltage, 𝑡 is time, 𝑥 ∈ [0, 𝐿] is distance along the cable of length

𝐿, 𝜏 = 𝑐m𝑟m is the membrane time constant, 𝑐m is membrane capacitance (capaci-

tance per unit length), 𝑟m is membrane resistance (resistance of the cell membrane

per unit length), 𝜆 =
√

𝑟m/𝑟l is the characteristic length constant and 𝑟l is resistance

along the neurite per unit of length [30]. 𝐼e(𝑥, 𝑡) accounts for currents injected to

the cable. The term 𝑓 (𝑉 (𝑥, 𝑡), 𝑥, 𝑡) contains nonlinear voltage sources at location

𝑥. In the passive (linear) neuron case, this includes commonly only the linear leak

voltage 𝑓 (𝑉 (𝑥, 𝑡), 𝑥, 𝑡) = 𝑉 (𝑥, 𝑡) −𝐸l with 𝐸l being the leak reversal potential. In the

case of an active, nonlinear neuron, 𝑓 (𝑉 (𝑥, 𝑡), 𝑥, 𝑡) can include effects such as of ion

channels and gap junctions.

The nonlinear Hodgkin-Huxley (HH) equations for ionic currents are often used

in detailed models [36] for explaining excitability of single neurons. The equations

for the 𝑖-th ionic current 𝐼𝑖 (𝑡) have the form

𝐼𝑖 (𝑡) = 𝑔𝑖 (𝑉 (𝑡) − 𝐸𝑖)

𝑛∏
𝑞=1

𝑚
𝑝𝑞
𝑞 ,

d𝑚𝑞 (𝑡)

d𝑡
= 𝑎𝑞 (𝑉 (𝑡)) (1 − 𝑚𝑞) − 𝑏𝑞 (𝑉 (𝑡))𝑚𝑞,

𝑎𝑞 (𝑉 (𝑡)) =
𝐴𝑎𝑞 + 𝐵𝑎𝑞𝑉 (𝑡)

𝐶𝑎𝑞 + 𝐻𝑎𝑞𝑒
𝑉 (𝑡 )+𝐷𝑎𝑞

𝐹𝑎𝑞

,

(2.8)

with 𝑏𝑞 (𝑉 (𝑡)) having the same format as 𝑎𝑞 (𝑉 (𝑡)). Here, 𝑉 (𝑡) is membrane voltage,

𝑔𝑖 is the maximum conductance and 𝐸𝑖 the reversal potential of this channel type,

while 𝑚𝑞 are probabilities of ion channel gate activations [37]. For example the

sodium channel has subunits𝑚1 and𝑚2 (commonly named𝑚 and ℎ) that correspond
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to the activation and inactivation gates of the channel. The constants 𝐴, 𝐵, 𝐶, 𝐷, 𝐹, 𝐻

are parameters that can be fit to experimental data in order to model different channel

types [38, p. 293].

When there are no nonlinear voltage sources, the cable equation has an analytical

solution that allows studying the effect of parameters on membrane voltage, or in-

ferring parameters based on measured voltages. With suitable boundary conditions,

several cables can be connected to form a dendritic tree, so that realistic morphologies

can be studied. Typically, membrane voltage dynamics are studied with numerical

simulation as an initial value problem. For simulations, the PDE form of the cable

equation is discretized into a system of ODEs using finite difference methods. This

results in compartmental models where each compartment corresponds to a tiny seg-

ment of a neuronal cable. Each compartment can be described as a resistor-capacitor

electrical circuit. It is possible to define a unique set of ion channels as well as synap-

tic inputs and outputs for each compartment. A very fine discretization leads to

computationally expensive simulations, while a crude discretization is more efficient

but yields inaccurate results.

Many of the following MOR and simplification approaches employ a lineariza-

tion strategy where nonlinear Hodgkin-Huxley dynamics are approximated first by

quasi-active dynamics [39]. Linearization is not always ideal, since it tends to lose

accuracy when compared to the original nonlinear model. However, it does allow

using reduction or simplification methods that are intended for linear systems. The

original publications of this thesis use methods that do not need linearization, and

this is an important difference to most prior MOR and simplification studies in com-

putational neuroscience.

2.3 MOR in computational neuroscience

Early applications of MOR ideas in neuroscience studied the efficient simulation of

the cable equation. In [40], a reduced model was compared to the compartmental

modeling approach for simulating voltage propagation in a passive dendrite under

synaptic stimulation. The idea was to use a global discretization of a neuronal cable,

instead of the typical finite difference discretization using local basis functions that is

also the starting place for the compartmental approximation. The global basis used

in [40] was based on an eigenfunction expansion, where the basis functions are de-
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fined for the full spatial domain. To derive low-order models with just a few basis

functions, which can here be likened to number of compartments, singular pertur-

bation methods were applied. Singular perturbation gives an approximation of the

eigenbasis using a finite number of basis vectors, which correspond to spatial dis-

cretization points. The model was then evaluated using a varying number of spatial

locations, with a small number corresponding to a low-dimensional model, and high

number approaching the true solution. Compared to a compartmental model, it was

shown that the MOR approximation was both more accurate at an equivalent low

number of spatial discretization points and converged to the correct solution faster.

The cost of the method is more work for dealing with boundary conditions imposed

by the soma and cable branch points as well as synapses. The same approach was

later used to accelerate simulations of voltage propagation in myelinated axons [41].

In [42], [43], similar studies were conducted for passive and active dendrites using

Chebyshev polynomials as the basis functions.

It is worth noting that these early studies did not attempt to reduce a fully devel-

oped model, such as a morphologically detailed neuron. Rather, their aim was to find

a sufficient but small dimension for the discretized cable equation. A discretization

of the PDE form of the cable equation is necessary when simulating voltage propa-

gation in neurons, and analytical solutions are not available. Hence, the goals of the

above studies were about finding an efficient numerical solution to the cable equa-

tion, although they did include many of the important properties of MORmethods,

such as choosing a good set of basis functions. In this sense, the approach in these

studies was different than in the original publications of this thesis, where we seek

reduced models that are used to reconstruct an approximation of the original model.

A line of applications of MOR methods for reducing morphologically detailed

neuron models started with [44]. In this work, Kellems et al. considered a morpho-

logically detailed neurons which were finely discretized into compartments. The

models featured linearized conductances around resting potentials at dendritic trees,

although with this simplification only subthreshold events were captured. By sub-

threshold, the authors mean events that do not trigger action potentials in the den-

dritic tree, as capturing those dynamics would require complete nonlinear dynamics.

The models were stimulated to random synaptic locations using low amplitude step

currents and oscillating current input in order to stay in the subthreshold regime.

Reduced models were then computed using two different methods, BT and IRKA.

32



In the study, BT was more accurate at equivalent reduced model dimensions than

IRKA, but computing the matrices of the reduced model with IRKA was more ef-

ficient, since BT requires solving the two Lyapunov equations. The usefulness of

reduced models was demonstrated by stimulating the system at increasingly distant

dendritic locations, and accurate results were obtained. In [45], similar linear and

linearized models were considered. The authors compared their moment matching

method to IRKA and BT proposed in [44] and obtained improved results. Moreover,

the method of [45] included a simulation of a network constructed from reduced

cells.

The work in [44] additionally raised an issue with phenomenological models of

neural dynamics, specifically membrane voltage reset conditions in integrate-and-

fire models. Reset conditions cannot be evaluated directly in the low-dimensional

space where reduced models are simulated, and projecting the system to the original

space, checking reset conditions, and finally projecting the updated variable back

to the reduced space creates computational burden. In [44] a simple approach for

including thresholded variables was studied. The thresholded variable, membrane

voltage at the soma, was not considered as a variable and hence was not projected to

the low-dimensional, reduced space. Instead, soma voltage was taken as an output

(corresponding to 𝑦(𝑡) in Eq. (2.1)) of the system. A spike was recorded after a

threshold-crossing membrane potential and a holding period of constant voltage was

used to record a hyperpolarization period for the output variable without actual

simulation.

An advantage of MORmethods is that a complete approximation of the original,

detailed model can be recovered. However, it is true that in the reduced form, and

when simulated in the low-dimensional subspace, the model does not automatically

have a biophysical interpretation. This matter was investigated in [46] using passive

and linearized single neuronmodels with current and conductance-based stimulation.

They were able to show that a reduction basis with a biological interpretation can

be developed using moment matching. The reduced models were interpretable as a

collection compartments with a corresponding resistor-capacitor circuit. However,

the reduced system may have negative conductances, each compartment will have an

extra current term, and compartments of the reduced system will be fully connected

instead of representing a neuronal morphology.

In [12] Kellems et al. reduced a morphologically detailed neuronmodel, with non-
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linear HH ion channels. This work can be considered state-of-the-art for MOR of

single neurons to this day. The nonlinear model could be reduced without lineariza-

tion by combining the Proper Orthogonal Decomposition (POD) [47] method with

the Discrete Empirical Interpolation Method (DEIM) [27]. POD can be used to

identify least-squares optimal subspaces for reduced order modeling, while DEIM is

used for interpolating nonlinear functions. The combination is critical, since POD

alone cannot find nonlinear reduced models that are completely independent of the

original model dimension. With the help of DEIM, this can be achieved, as the in-

terpolation can be efficiently computed in the POD subspace. The timing of the

work was critical, since DEIM had just been published. The main drawback of the

POD-DEIM method is that it is empirical, meaning that it requires data from sim-

ulations (or experiments) of the original high-dimensional system. While IRKA,

BT and moment matching methods do not have this requirement, they are not as

versatile as POD. Based on the insights of this work, we evaluated the POD-DEIM

method for new model types in the original publications of this thesis.

The results from efficient partitioning of HH neurons [48], reduction of cells

with nonlinear ion channels [12] and reduction of linearized dendrites [46] were

combined in the work byDu et al. [11]. They considered a model of a locust collision

detection neuron that has weakly excitable distal dendrites that produce graded rather

than all-or-none potentials. These weak channels were linearized and it was assumed

sufficient accuracy of the original dynamics would be retained. Weak channels were

reduced with the structure preserving moment-matching method from [46]. One

dendritic branch and the soma were modeled with active HH dynamics and reduced

with the POD-DEIM method. Under injected current stimulation, good accuracy

of membrane voltage at the soma was found. Most recently, linear models of voltage

propagation along myelinated axons were reduced in [49], while retaining nonlinear

dynamics at the nodes of Ranvier.

In summary, the previous work on applyingMOR in computational neuroscience

has considered single neuron models based on the cable equation. Most work has

used linear or linearized dynamics. Nonlinear HH dynamics have been successfully

reduced using the POD-DEIM method. In later sections, we show how the original

publications of this theses extend these results by reducing network and synapse

models, as well as using newer, advanced POD-DEIM methods.
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2.4 Model simplification

In this section, we introduce the most recent and well-known simplification methods

for models in computational neuroscience. These methods can be seen as alternatives

to MOR methods since they attempt to solve a similar problem. We present sim-

plification methods here in order to give the reader a wide picture of the history of

simulation acceleration methods in computational neuroscience. Moreover, it is pos-

sible to reduce the following simplified models further using MOR methods, which

means that MOR and simplification methods can also complement each other. We

will first cover morphological simplification methods that aim to simplify the struc-

ture of single neurons, and move to useful phenomenological descriptions of single

cells and action potential generation mechanisms. Finally, we discuss mean-field ap-

proaches which lead into efficient neuronal population models.

2.4.1 Simplification of neuronal morphology

Morphology simplification is very established in neuroscience, and new methods are

actively developed. Two prevailing approaches to morphology simplification can be

distinguished. Either the aim is to derive a simpler model of a specific cell type from

a given species, or to develop a cell type agnostic simplification method. Cell type

specific methods may produce more specific biological knowledge, but generalistic

approaches are easier to automate and distribute in software packages.

The earliest morphology simplification method is based on the equivalent cylin-

der model (ECM) [50], [51]. The ECM started with Wilfrid Rall, who wanted to

simplify the morphologies of branching dendritic models in order to analyse them

mathematically. The purpose of an ECM is to exactly recover the membrane somatic

membrane voltage after a postsynaptic potential, while using a single cable model in-

stead of a detailed dendritic tree. Moreover, the ECM preserves the dendritic mem-

brane area and electrotonic length, so that it can be used to make predictions of the

properties of complicated morphologies.

It was found that under certain (idealized) conditions, an entire passive model

of a branching dendritic tree can be exactly described by an ECM [50], [51]. The

conditions are as follows. First, all terminal branches need to be at the same electro-

tonic distance (length of the cylinder divided by the space constant) from the soma.
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Second, the terminal branches should use the same boundary conditions. Third, ax-

ial and membrane resistivities must be uniform in the dendritic branches. Finally,

branching must follow the 3/2 power law (also known as 𝑑3/2 rule) [30], which

states that if the diameters 𝑑 of dendrites 𝑘 branching from parent segment 𝑗 follow

𝑑3/2
𝑗 =

∑
𝑘

𝑑3/2
𝑗𝑘 , (2.9)

then the 𝑘 branches can be collapsed to a single equivalent cylinder connected to

the segment 𝑗 . The new cylinder has the diameter 𝑑 𝑗 . This law must hold at all

branches. If these rules are obeyed, an ECM for the dendritic tree can be computed,

making interesting geometries accessible for analytical study.

To study more realistic models where the ECM did not apply, cables were divided

into small compartments, electrical circuits connected in series [17]. In the first ap-

plication of compartmental modeling, the continuous cable equations were approxi-

mated by a series of 10 compartments. This traded the expensive fine resolution finite

difference discretization of the continuous model of Eq. (2.7) into a crude discretiza-

tion where homogeneity of properties was assumed within compartments instead of

within the entire cable. The resulting group of ordinary differential equations could

be analysed numerically. In this manner, geometries breaking the idealized condi-

tions above could be studied more efficiently. Additionally, it was possible to include

excitatory and inhibitory synaptic currents as well as other nonlinear voltage-gated

currents in specific dendritic and axonal locations [52], [53]. The tools for practi-

cal modeling of detailed morphologies had been created. To this day, simplification

of neuronal morphology equates to removing compartments from compartmental

models in a principled manner.

Similar methods to the ECM that collapse branching dendrite or axon into an

approximately equivalent representation have been developed. These approaches are

often referred to as equivalent cable, equivalent profile and equivalent dendrite mod-

els. Most notably, these methods relax or generalize the strict requirements of the

3/2 power law, for example so that the diameters of the collapsed neurites can vary

within the neurite [54]–[57]. In [58] ECM methods are further extended so that

active ion channels and nonlinear synaptic currents can be formally considered in

the approximation, whereas earlier work implemented active membrane currents in

a more heuristic manner. Further simplification approaches have been studied and

approaches to simplify neuronal morphology without aiming for equivalent descrip-
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tions have been developed [59]–[61]. However, no general process of deriving an

equivalent model for arbitrary morphologies exists [62], [63].

Meanwhile, improved numerical methods for solving the compartmentalized [64]

and continuous [65], [66] neuronal cable equation were developed. Some took ad-

vantage of look-up tables for evaluating the Hodgkin-Huxley equations, while others

were developed for passive cables only. The method of Holmes [65] is based on the

Laplace transformation of the cable equation and has complexity that only scales with

the number of branching points of the neuron model. These methods enabled com-

partmental models with improved spatial resolution and made it possible to study

both passive and active single neurons models relatively efficiently. Methods based

on [64] are used in the NEURON simulator to this day [67]. More recently in [48],

the authors partition the discretized HH cables into branches that are described with

tridiagonal matrices, and dynamically control ODE solver accuracy at sites where

membrane voltage is predicted to change in order to accelerate simulation, since

now small time steps are only used at active sites. The method also facilitates parallel

computing of simulations.

An interesting line of work began in [68], where dendritic branches of rat pyrami-

dal and Purkinje cells were assigned scores based on their Strahler’s order, a measure

of branching complexity, originally developed for analysing hydrology networks

such as rivers. In this analogy, high score indicates a functionally significant den-

dritic branch. To create passive neuron models of Purkinje cells, later in [69] den-

dritic branches were scored based on their Strahler’s order. Those branches with a

low Strahler’s order were excluded from the morphological model. The surface area

of the parent dendritic segment was correspondingly increased to compensate for the

lost segments.

A general strategy for simplifying morphologically detailed models with active

synaptic conductances was developed in [70]. These results demonstrated the method

using hippocampal pyramidal neurons by comparing action potential shape and inter-

spike interval distribution at the soma. The simplification is based on the exper-

imental observation that (six week old rat hippocampal) pyramidal neurons have

nine functional regions into which each branch can be clustered [71]. The clusters

are then modeled with a variable number of compartments. Passive properties of

the reduced model and scaling parameters for maximum synaptic conductances are

derived analytically. Moreover, synapses are mapped to the reduced model by con-
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sidering axial path resistance. While the process does not use parameter fitting, it

does require the original model to be simulated so that synapses can be redistributed.

An open question is then how to choose correct stimulation locations, frequencies

and amplitudes for this purpose, and how well does the simplified model generalize

outside this regime.

The method of [70] was further developed in [72]. By clustering dendrites us-

ing Strahler’s order, instead of the experimentally identified functional areas of the

earlier method, a more general simplification process was developed. The process

assigns a Strahler’s order 𝑜 to each branch, with terminal branches receiving a low

number. The low number branches are then merged so that two order 𝑜 branches

create a branch of order 𝑜 + 1, whereas joining an order 𝑜 branch to an 𝑜 + 1 branch

keeps the order at 𝑜 + 1. This is continues until low number branches have been

merged away, resulting in a small number of functional groups which each are as-

signed a compartment. Moreover, less scaling parameters were needed than in the

original work. The method can be used to simplify neurons using active synapses

and arbitrarily distributed ionic currents. However, the effects of these channels in

the reduced model are considered at the soma, and nonlinear dendritic membrane

dynamics are not directly mapped to specific locations in the reduced model [72]. In

summary, at their time the two papers by Marasco et al. [70], [72] pushed the state-

of-the-art of model simplification to new morphologies and dynamics and remained

as the most flexible method for almost a decade.

At the time writing this thesis, the state-of-the-art in creating simplified mor-

phologies in an automatic, analytical manner is the work by Amsalem et al. [73].

The method is based on mapping stem dendrites of a detailed model to single cylin-

drical cables, while preserving specific membrane resistivity, capacitance, and axial

resistivity of the detailed dendrites. Synapses and nonlinear ion channels are mapped

to the simplified model and merged if their parameters are identical. The resulting

model has less compartments, less synapses and less ion channels, while maintaining

biologically realistic characteristics. Notably, all the mappings are computed analyt-

ically and no parameter fitting is used, which makes the method very fast to apply.

Additionally, this work was the first to provide an easily usable automated software

for morphological simplification. Even with this method, local dendritic events are

hard to replicate, although the simplified models achieve good membrane voltage

reproduction at the soma.
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Another interesting collection of research started with the work by Wybo et

al. [74]. They proposed an extreme simplification of the dendritic tree. The method

analytically calculates the transfer function between a synapse and the soma along

a passive dendrite, and replaces the given function, and replaces the given dendritic

segment with this function. The end result resembles a point neuron, since all spatial

structure has been removed. While this method of simplification allows nonlinear

synaptic conductances, dendritic voltage propagation is assumed to be linear along

a uniformly parameterized dendrite. This way, complicated dendritic trees can be

treated efficiently. However, the method scales exponentially in complexity in the

number of synapses in the model, hence it should be used in simulations where

the number of incoming synaptic connections is low. The scaling limitation was

overcome in later work by Wybo et al. [75]. If the synapses are located favourably,

the complexity of the updated method scales only linearly. The downside is that the

synapses still cannot be placed randomly. While the runtime of the simplified models

was improved in the later work [75], the cost was increased initialization time.

In a further study by Wybo et al. [76], the transfer function of a passive dendrite,

as derived in [74], [75], was used to characterize how synaptic inputs to any site on

the dendritic tree affect the membrane voltage and conductance-based dynamics at

other synapses. In comparison, the older work considered only the transfer-function

between a given synapse and the soma. The focus was on modeling the electrical be-

havior of dendrites, while chemical properties were not accounted for. The method

in [76] considers membrane voltage as a superposition of voltage changes generated

at individual synapses, which affect membrane voltage across the full dendritic tree.

This way, an approximation of impedances for modeling the total synaptic input re-

sponse in the dendritic tree can be created. The method allows model creation from

experimental data. While in [76] the method was not used for simplifying models,

it can be used to determine approximate impedance functions in order to accelerate

simulations.

The other state-of-the-art morphology simplification method was published by

Wybo et al. [77], building on top of the results of their earlier work using the trans-

fer function approximation of passive dendritic trees [74], [75], as well as a prior

study of dendritic compartmentalization [76]. In this recent work, simplification is

based on retaining original compartments at user-chosen sites in the dendrites, which

is a new approach. Unlike the other state-of-the-art method [73] that is based on an-
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alytically derived simplifications, the method in [77] relies dominantly on parameter

fitting at the retained compartments. Essentially, nonlinear current propagation be-

tween distant dendritic compartments is simplified to a single coupling conductance.

Additionally, synapses are moved to the closest remaining compartment and given a

scaling factor. To compensate for these changes, at the modeled compartments the

leak and coupling conductances, capacitances, maximal conductances of ion chan-

nels and channel reversal potentials are fitted to data from the original model so that

input response trajectories and resting membrane voltage match the original mor-

phologically detailed model. The authors note that the resulting fitted parameters,

particularly reversal potentials, may be out of physiological range, but the response

to synaptic input will be matched least-squares optimally. In summary, the method

is able to create simplified models that keep the original ion channels and input re-

gions of interest while being flexible with the level of simplification. The authors

also provide open-source software for their method.

2.4.2 Simplification of neuronal dynamics

Several studies have created compartmental single neuron models with a low number

of compartments and selected ion channels, with the aim of providing an efficient

but general model that reproduces qualitatively or quantitatively a set of important

neuronal dynamics. These models do not aim to be exact reconstructions of neu-

rons. For example the Traub model [16] and the Pinsky-Rinzel (PR) model [15] are

classic examples of this approach, with [78] being a more recent one. In these studies,

the aim has not been on developing a simplification method, but rather a generally

usable and efficient model that captures features of morphologically detailed mod-

els. For example, the PR model does not include inhibitory currents in its original

formulation, but it does recreate synchronized population bursting phenomena.

To lower the computational burden of simulating action potential dynamics, sim-

plified phenomenological mechanisms are commonly used in place of the computa-

tionally expensive HH formalism seen in Eq. (2.8). Such models are sometimes

collectively called spiking neuron models. For example, the FitzHugh-Nagumo (FN)
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model [79], [80] is

d𝑣(𝑡)

d𝑡
= 𝑣(𝑡) −

𝑣(𝑡)3

3
− 𝑤(𝑡) + 𝐼e(𝑡),

d𝑤(𝑡)

d𝑡
= 𝑎(𝑣(𝑡) + 𝑏 − 𝑐𝑤(𝑡)),

(2.10)

where 𝑣(𝑡) represents membrane voltage, 𝐼e(𝑡) is stimulus current into the cell (or

compartment) and 𝑤(𝑡) is recovery variable that has no measurable biological mean-

ing. Moreover, 𝑎, 𝑏, 𝑐 are parameters that can be changed in order to obtain spiking

with different frequency and amplitude. This model has fewer equations to solve

than even the most basic HH model, hence it is more efficient to use as a membrane

voltage model when elementary dynamics are enough. However, due to the simple

formulation, this model cannot recreate bursting dynamics, where a neuron rapidly

fires action potentials for a short while. The Hindmarsh-Rose (HR) model [81]

implements spiking dynamics using three variables

d𝑥(𝑡)

d𝑡
= 𝑦(𝑡) − 𝑎𝑥(𝑡)3 + 𝑏𝑥(𝑡)2 − 𝑧(𝑡) + 𝐼e(𝑡),

d𝑦(𝑡)

d𝑡
= 𝑐 − 𝑑𝑥(𝑡)2 − 𝑦(𝑡),

d𝑧(𝑡)

d𝑡
= 𝑟 (𝑠(𝑥(𝑡) − 𝑥R) − 𝑧),

(2.11)

where 𝑥(𝑡) represents membrane voltage while 𝑦(𝑡) models fast ionic currents and

𝑧(𝑡) adaptation to spiking. 𝐼e(𝑡) is a stimulus current and 𝑎, 𝑏, 𝑐, 𝑟, 𝑠 and 𝑥R are

parameters of the model. Compared to the FN model, with the addition of a third

variable this system is able create bursting spike dynamics. Other examples of phe-

nomenological neuron models include the Izhikevich model [14] and the adaptive

exponential integrate-and-fire (AdEx) model [82], among others. For a review of

spiking neuron models, see [83].

In order to simplify models of neuronal networks, a successful strategy has been

to model statistical characteristics of single neuron or network activity instead of

modeling the detailed activity of individual cells. Thesemean-field models exist in dif-

ferent levels of complexity, and an extensive review is found in [84] while early work

on statistical models of neuronal firing can be found e.g. in [85]. The simplest ones

replace network models with an average firing rate in a point-like mass, while more

detailed ones include spatial activity profiles and probability distributions of vari-
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ables. Mean-field models can be derived analytically from stochastic single-neuron

models by making assumptions about population level features. For example, an in-

finite population size and homogeneous connectivity or an asynchronous-irregular

action potential firing regime [84], [86] are common choices. When interested in

stationary states of networks, and if single-neuron time trajectories do not need to

be considered, mean-field models are effective tools.

One example of the more detailed mean-field descriptions can be derived using

the Fokker-Planck (FP) equation. When considering an infinitely large population

of neurons, the activity of each cell becomes uncorrelated of other cells. Then, the

FP equation is a partial differential equation for the time evolution of the joint prob-

ability distribution of the variables of a given neuron model [84]. This limits the use

of FP equations use as nodes in whole-brain simulations and prevents them being de-

rived from detailed single-cell models, since each variable of the underlying single-cell

model leads into an additional dimension in the FP model. In [87], the FP equation

is developed for networks of neurons modeled with FN or HH neurons. Including

synaptic conductances means that even with the simple two-variable FN neuron, the

FP equation will have three dimensions where discretization is needed. Numerically

solving the system derived from FN equations requires using compute clusters [87],

[88]. Solving the HH neuron FP system from [87] has not been demonstrated, due

to insufficient compute resources.
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3 AIMS OF THE STUDY

The goal of the thesis was to evaluate the suitability and efficacy of Model Order

Reduction (MOR) methods for accelerating numerical simulations of mathematical

models that are of interest in computational neuroscience. We selected nonlinear

models for which MOR had not been studied previously. The selected models de-

scribed a biophysical neuronal network, a Fokker-Planck mean-field network and

chemical reactions in the synapse. Additionally, two artificial neural networks were

chosen for study. See Table 4.1 for a summary of these models. These systems were

used to obtain results towards the following aims of this thesis:

1. Determine the requirements that models used in computational neuroscience

set for Model Order Reduction methods.

2. Find Model Order Reduction methods that are applicable for reducing our

selected nonlinear mathematical models of neural activity.

3. Assess the suitability of Model Order Reduction for artificial neural networks

used in machine learning.

4. Study how the chosen Model Order Reduction methods can be implemented

efficiently for reducing the selected models.

5. Evaluate the performance of the studied Model Order Reduction methods

for accelerating simulations of neuronal network models and network com-

ponents that are relevant in computational neuroscience and deep learning.
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4 MATERIALS AND METHODS

In this chapter, we first define the mathematical models of neuronal systems used in

the original publications of this thesis. Then, we explain the Model Order Reduction

(MOR) methods used in the publications.

4.1 Models of neuronal systems

Table 4.1 summarizes the models studied in each of the original publications of this

thesis. We studied these models and evaluated suitable MOR methods for each re-

duction task. We implemented each model in either Python [89] or Matlab [90].

After obtaining ground truth values of model dynamics or other metrics by simulat-

ing the chosen systems, we derived multiple reduced models using different methods,

described below, and simulated the reduced models. We then compared the metrics

and computation time between the original and reduced models in order to assess

the performance of the reduced models.

Table 4.1 Summary of model types studied in each original publication of the thesis.

Article Type System Linearity Input-

output

Publication I Synaptic chemical reaction

network

ODE Nonlinear MIMO

Publication II Biophysical neuronal

network

ODE Nonlinear SIMO

Publication III Fokker-Planck mean-field PDE Nonlinear SIMO

Publication IV Convolutional artificial

neural network

ODE Nonlinear (MI)MO

Publication IV Antisymmetric artificial

neural network

ODE Nonlinear SIMO
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4.1.1 Synaptic chemical reaction network model

A model of chemical reactions in the synapse was reduced in Publication I. This

system contains 44 ODEs and two time-dependent stimuli according to [35]. It de-

scribes the chemical reactions underlying synaptic plasticity in a single dendritic spine

in the striatum of basal ganglia of a mouse. The system is illustrated in Figure 4.1.

Panel A of Figure 4.1 shows an overview of the modeled reaction chains for synaptic

plasticity. Panel B of Figure 4.1 displays how the morphology of the dendritic spine

is considered. These measures are needed to compute concentrations in the model.

This level of detail would be impossible to include in large-scale simulations of the

brain, and accelerating the system would be valuable for network models.

Figure 4.1 Description of the pathways included in the mathematical model of a neuronal spine stud-
ied in Publication I. A: Components of the model and their primary interactions. B: Mor-
phology of the spine, used to estimate concentrations. Image from [35].

This model of synaptic dynamics has been validated against experimental data [35].

In state-space form, the system is quadratic-bilinear, as in Eq. (2.3). Quadratic

nonlinearities stem from the chemical reaction equations that are modeled with

Michaelis-Menten kinetics. Bilinearity rises from the time-dependent inputs of glu-
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tamate and calcium that are multiplied with the state variables of the model. With

these two inputs, we measure several molecular concentrations as outputs, indicating

a MIMO system. We implement the model in Matlab [90] and simulate the system

using ode15s, an adaptive ODE solver.

4.1.2 Biophysical neuronal network model

In Publication II, we studied a network of Pinsky-Rinzel (PS) neurons [15]. The PS

neuron itself is a simplified system that models a neuron using two compartments,

a dendritic compartment for receiving stimuli and a soma-axon compartment that

sends input to other neurons. The compartments contain biophysical Hodgkin-

Huxley (HH) currents as well as phenomenological thresholding mechanisms. The

equation for the current in the somatic compartment is

𝐶m
d𝑉s(𝑡)

d𝑡
= − 𝐼leak(𝑉s(𝑡)) − 𝐼Na(𝑉s(𝑡), 𝑚(𝑡), ℎ(𝑡)) − 𝐼K-DR(𝑉s(𝑡), 𝑛(𝑡))

+
𝑔c
𝑝
(𝑉d(𝑡) −𝑉s(𝑡)) +

𝐼s(𝑡)

𝑝
,

(4.1)

where 𝑉s(𝑡) is the membrane voltage in the soma.

For the current in the dendritic compartment the equation is

𝐶m
d𝑉d(𝑡)

d𝑡
= − 𝐼leak(𝑉d(𝑡)) − 𝐼Ca(𝑉d(𝑡), 𝑠(𝑡)) − 𝐼K-AHP(𝑉d(𝑡), 𝑞(𝑡))

− 𝐼K-C(𝑉d(𝑡), 𝐶𝑎(𝑡), 𝑐(𝑡)) −
𝐼syn

1 − 𝑝

− 𝐼AMPA(𝑉d(𝑡), 𝑊 (𝑡)) − 𝐼NMDA(𝑉d(𝑡), 𝑆(𝑡))

+
𝑔c

1 − 𝑝
(𝑉s(𝑡) −𝑉d(𝑡)) +

𝐼d(𝑡)

1 − 𝑝
,

(4.2)

where 𝑉d(𝑡) is the membrane voltage of the dendritic compartment.

In Eq. (4.1) and Eq. (4.2), 𝐼leak is a voltage-dependent leak current. Furthermore,

𝐼Na, 𝐼K-DR, 𝐼Ca, 𝐼K-AHP and 𝐼K-C are voltage-dependent HH ionic currents and ℎ(𝑡),

𝑛(𝑡), 𝑠(𝑡), 𝑞(𝑡) and 𝑐(𝑡) are their respective gating variables. 𝐶m is membrane capac-

itance, 𝑔c the eletrotonic coupling conductance between compartments, 𝑝 is a ratio

that indicates the size of the somatic compartment as a percentage of total cellular

area and 𝐶𝑎 is free intracellular calcium in the dendritic compartment. 𝐼s and 𝐼d are

currents injected to the soma and dendritic compartments, respectively.
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The synaptic currents 𝐼AMPA and 𝐼NMDA are used in network simulations. They

have activation variables 𝑊 (𝑡) and 𝑆(𝑡) that are functions of the somatic voltages

of excitatory input cells. The NMDA activation of the 𝑖-th cell has the differential

equation

d𝑆𝑖 (𝑡)

d𝑡
=

𝑛∑
𝑗=0

𝐻 (𝑉s, 𝑗 − 10) −
𝑆𝑖

150
,

𝐻 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩
1, if 𝑥 > 0,

0, otherwise,

(4.3)

where the sum is taken over all 𝑛 cells that send synaptic input to the 𝑖-th cell.

Additionally, 𝑆𝑖 (𝑡) has a reset mechanism, so that if 𝑆𝑖 (𝑡) > 𝑆𝑚𝑎𝑥 , then we set 𝑆𝑖 (𝑡) =

𝑆𝑚𝑎𝑥 . For full details of the model equations and parameters refer to Publication II

and [15].

When connecting a population of PS cells into a network, in Publication II the

calcium conductance was drawn from the uniform distribution U[9,11] in order to

make the cells heterogeneous. We used 50 cells with each cell receiving synaptic

stimuli from 20 randomly connected cells. The model allows injected current inputs

into each cell and as outputs we take the somatic voltages of each cell, indicating a

MIMO system. Our implementation follows the original paper [15] and injects a

single current as an input. We simulate the system using a fourth order Runge-Kutta

method [18], [19]. The PS network produces an important emergent phenomena,

synchronized network bursting. Being able to reproduce this behavior using an ef-

ficient reduced model while maintaining an approximation of the original variables

would be beneficial for using these networks in brain simulations. In Publication

II, we qualitatively evaluated the capability of reduced models to reproduce the pop-

ulation bursting phenomenon.

4.1.3 Fokker-Planck mean-field model

The Fokker-Planck (FP) formalism for modeling neuronal networks provides the

complete probability density function of the network state [84]. The state of the

model is comprised of the variables of a single neuronmodel fromwhich the population-

level FP model is derived. In Publication III, we study the acceleration of an FP

mean-field model of FitzHugh-Nagumo (FN) neurons with chemical synapses ac-

cording to [87]. This FP model is a second-order partial differential equation with
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three independent variables. It takes the form

𝜕𝑡 𝑝(𝑡, 𝑉, 𝑊,𝑌 )

=
1

2
𝜎2
J �̄�(𝑡)2

𝜕2

𝜕𝑉2

[
(𝑉 −𝑉rev)

2𝑝(𝑡, 𝑉, 𝑊,𝑌 )

]

+
1

2

𝜕2

𝜕𝑌2

[
𝜎2
Y(𝑉,𝑌 )𝑝(𝑡, 𝑉, 𝑊,𝑌 )

]

+
1

2
𝜎2
ext

𝜕2

𝜕𝑉2

[
𝑝(𝑡, 𝑉, 𝑊,𝑌 )

]

−
𝜕

𝜕𝑉

[(
𝑉 −

𝑉3

3
− 𝑊 + 𝐼ext(𝑡) + �̄� (𝑉 −𝑉rev) �̄�(𝑡)

)
𝑝(𝑡, 𝑉, 𝑊,𝑌 )

]

−
𝜕

𝜕𝑊

[
𝑎(𝑉 + 𝑏 − 𝑐𝑊)𝑝(𝑡, 𝑉, 𝑊,𝑌 )

]

−
𝜕

𝜕𝑌

[(
𝛼𝑟𝑆(𝑉) (1 − 𝑌 ) − 𝛼𝑑𝑌

)
𝑝(𝑡, 𝑉, 𝑊,𝑌 )

]
,

(4.4)

where 𝑉 and 𝑊 correspond to the membrane voltage and recovery variable of the

FNmodel, while the𝑌 variable models excitatory synaptic currents. The joint prob-

ability density of these variables is given by 𝑝(𝑡, 𝑉, 𝑊,𝑌 ) as a function of time. The

model can consider time-dependent bilinear stimuli through the term 𝐼ext(𝑡). The

function �̄�(𝑡) =
∭

𝑦𝑝(𝑡, 𝑣, 𝑤, 𝑦) 𝑑𝑣 𝑑𝑤 𝑑𝑦 depends on the current state of the den-

sity and when squared as in Eq. (4.4), introduces nonlinearity into the model. Other

parameters are related to the single neuron and synaptic current model, as explained

in [87].

As 𝐼ext(𝑡) is the only input, and as outputs we take the marginal distribution over

𝑌 , we get a single-input multiple-output (SIMO) system. For numerical simulations,

we discretized the model using a fourth-order central difference scheme. The number

of ODEs resulting from the discretization of Eq. (4.4) is (𝑛𝑉𝑛𝑊𝑛𝑌 ) where 𝑛𝑖 denotes

the number of discretization points used in each dimension. We solve the system

using a fourth-order Runge-Kutta method.

4.1.4 Artificial neural network models

Artificial Neural Networks (ANNs) are increasingly used as models for neuronal

systems [91], [92]. Computationally these systems are demanding, and often they are

executed using Graphics Processing Units (GPUs) to parallelize matrix multiplica-
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tions. Recent results have made it possible to include ordinary differential equations

as ANN building blocks [7]. These Neural ODEs bring ANNs closer to the models

used in neuroscience, especially recurrent neural network models that have a long

history in computational neuroscience. Hence, Neural ODEs may in the future act

as a bridge for allowing the tools of deep learning to be more effectively applied in

computational neuroscience. In Publication IV we show that Neural ODEs can be

accelerated using MOR methods.

Typical discrete ANNs are assembled from layers of the form

𝑥𝑡+1 = 𝑓𝑡 (𝑥𝑡 , 𝜃𝑡 ), (4.5)

where 𝑥𝑡 is the hidden state of the network at layer 𝑡 and 𝑓𝑡 (𝑥𝑡 , 𝜃𝑡 ) defines a nonlinear

transformation of the data with parameters 𝜃𝑡 to obtain the state at layer 𝑡 + 1. In

ANN training, the parameters 𝜃 are learned to make the network perform a task that

minimizes a cost function. By viewing layers of an ANN as steps forward in time,

Neural ODEs make it possible to include continuous-time differential equations as

building blocks of ANNs. The data transformation applied by these layers is

d𝑥(𝑡)

d𝑡
= 𝑓 (𝑥(𝑡), 𝑡, 𝜃), (4.6)

where 𝑥(𝑡) is the state of the network at time 𝑡 and 𝑓 (𝑥(𝑡), 𝑡, 𝜃) defines a nonlinear

function that maps the data 𝑥(𝑡) into 𝑥(𝑡 + 𝑑𝑡), with 𝑑𝑡 being very small. Such a

block is said to be infinitely deep, since during training of the network and at the

time of inference, we can propagate the data using ODE solvers for time 𝑡 = [0, 𝑇] of

our choice, or until 𝑥(𝑡) reaches a desired state. In this format, the parameters 𝜃 are

tied, being the same at every step. This makes Neural ODEs memory efficient since

the number of unique parameters is typically lower than in deep discrete ANNs and

additionally the algorithm for optimizing Neural ODEs requires less memory than

the traditional backpropagation method [7].

In Publication IV, we compare our MOR approach to traditional ANN com-

pression methods from the literature in two classification tasks, and implement a

different Neural ODE model for each task. In the first task, the Neural ODE model

implements convolutional transformations [93] as

d

d𝑥
(𝑡)𝑡 = 𝑓 (𝐴𝑥(𝑡) + 𝑏), (4.7)
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where 𝐴 implements the convolutional operations in matrix form and 𝑏 is a vector

of constant bias terms applied to each neuron unit. The full state of the ODE block

is taken as an output and propagated downstream in the neural network. If the bias

vector 𝑏 would apply linearly, this could be considered as a MIMO system, and

now that the bias affects inside the nonlinear activation function 𝑓 (·) we say this

is a homogeneous system without inputs, hence we denote it (MI)MO in 4.1. This

has implications for MOR, particularly in how POD-DEIM approximates the linear

and nonlinear terms. We solve the ODE block of the convolutional Neural ODE

using the fourth-order Runge-Kutta method.

In the second model, the Neural ODE model processes time-series data using an

antisymmetric recurrent connection architecture [94]

𝐴 = 𝑊 − 𝑊𝑇 − 𝛾𝐼,

d

d𝑥
(𝑡)𝑡 = 𝜎(𝐴𝑥(𝑡) + 𝑏) + 𝑍𝑢(𝑡),

(4.8)

where 𝐴 is an antisymmetric matrix of connection weights, 𝜃 = 𝑊, 𝑍, 𝑏 are trained

parameters of the network, 𝛾 is a small positive parameter, 𝜎 is a hyperbolic tangent

function and 𝑢(𝑡) is the input data into the network. We feed a single pixel of an

input image to the ODE at a time, with 𝑢(𝑡), building a SIMO system. We solve the

ODE block numerically using the forward Euler method.

All our ANN and Neural ODE models were implemented in Pytorch [95]. In

each task and for each reduced model, we quantitatively evaluated the classification

accuracy of the reduced model as a function of obtained acceleration.

4.2 Proper Orthogonal Decomposition

Proper Orthogonal Decomposition (POD) is a projection-based model reduction

method that is applicable to general nonlinear MIMO systems. PODwas introduced

in [47], [96] and it resembles the Principal Component Analysis, a technique used for

data analysis, and Kosambi-Karhunen-Loève [97], [98] theorem, a technique better

known for analysing stochastic processes.

The PODmethod uses a Galerkin projection, where the projection basis is𝑉 = 𝑊

in Eq. (2.2), in place of a Petrov-Galerkin projection where 𝑉 ≠ 𝑊 . The basis 𝑉

can be calculated empirically using the method of snapshots (sometimes also called

51



strobes in the literature) [26], a flexible and efficient approach. The snapshots are

states {𝑥(𝑡1), . . . , 𝑥(𝑡𝑁 )} ⊂ R of the system that are saved at discrete timesteps for

further processing. Snapshots are collected either from real data that is generated by

a process that the model describes, or by forward simulation of the original high-

dimensional system. Moreover, the collection can be repeated over different initial

values and model parameters to gather a representative set of states. These vectors are

called snapshots, and together they form the snapshot matrix 𝑋 ∈ R𝑛×𝑠, where 𝑠 can

be smaller or greater than 𝑛. In case snapshot data from some variables is missing, a

gappy POD procedure can be used [99], [100].

Finding the projection basis proceeds by computing the singular value decompo-

sition (SVD) of the snapshots ΦΣΨ𝑇 = 𝑋, which from now on are assumed to be

real-valued allowing us to ignore complex conjugates in matrix transposes. Here,

columns of the matrices Φ,Ψ are called left and right singular vectors, respectively.

Each has orthonormal columns, so that Φ𝑇Φ = 𝐼 and Ψ𝑇Ψ = 𝐼. The singular values

Σ = diag(𝜎0, . . . 𝜎𝑛) are the square roots of eigenvalues of 𝑋∗𝑋. They are sorted into

descending order and they are positive or zero by definition. Moreover, from the

SVD of the snapshots, only 𝑛 singular values need to be computed for model reduc-

tion purposes, corresponding to the original dimension of the system. To obtain a

𝑘-dimensional basis (or rank-𝑘 basis) for PODprojection, we choose only the leading

𝑘 left singular vectors from Φ and assemble the projection matrix 𝑉 = [𝜙0, . . . , 𝜙𝑘].

This choice of 𝑉 given 𝑘 is optimal as the least-squares reconstruction error between

the snapshots and reconstructed reduced states is minimized [101]. The correspond-

ing POD reduced matrices, state equation and output function are

�̃� = 𝑉𝑇𝐸𝑉 ∈ R𝑘×𝑘 ,

�̃� = 𝑉𝑇 𝐴𝑉 ∈ R𝑘×𝑘 ,

�̃� = 𝑉𝑇𝐵 ∈ R𝑘×𝑝,

�̃� = 𝐶𝑉 ∈ R𝑜×𝑘 ,

�̃�
d�̃�(𝑡)

d𝑡
= �̃��̃�(𝑡) +𝑉𝑇 𝑓 (𝑉�̃�(𝑡)) + �̃�𝑢(𝑡),

𝑦(𝑡) = �̃��̃�(𝑡) + 𝐷𝑢(𝑡),

(4.9)

which closely resembles Eq. (2.2).

The singular values are informative for choosing a suitable reduced dimension

𝑘. One interpretation is that their magnitude describes the energy captured by the
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corresponding singular vector in Φ. To determine a suitable rank 𝑘 for the reduced

order model, one can look at the decay of the singular values. The decay of singular

values of the snapshot matrices of a convolutional Neural ODE from Publication

IV is illustrated in Figure 4.2. The figure shows the decay of singular values for

POD and DEIM snapshots separately, on a logarithmic y-axis. In this case, the

magnitude of the singular values decays exponentially, indicating that the snapshots

can be approximated in a low-dimensional subspace.

Figure 4.2 The decay of the singular values of the snapshot matrices from the full system (POD) and
nonlinear function outputs (DEIM). Adapted from Publication IV.

By setting a percentage threshold 𝜀 ∈ [0, 1], a cutoff point 𝑘 is found so that∑𝑘
𝑖=0 𝜎𝑖/

∑∞
𝑖=0 𝜎𝑖 > 𝜀 [26]. In practice, the decay of singular values is often exponen-

tial, and 𝑘 < 𝑛 can be determined with this method. The SVD based basis selection

can be summarized into

min
𝑉∈R𝑛×𝑘

‖𝑋 −𝑉𝑉𝑇𝑋 ‖2 =
∞∑

𝑖=𝑘+1

𝜎𝑖 (4.10)

meaning that the least-squares optimal snapshot reconstruction error can be com-

puted from the sum of truncated singular values [13], [101]. Naturally, how 𝑋 is
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chosen plays a large part in the overall quality of the reduced order model.

Some studies advocate for centering, in other words subtracting the mean of the

snapshots from the snapshot set and using POD to approximate the dynamics around

this mean [101], [102]. Likewise, some flow models have shown to benefit from

snapshot normalization [103]. The purpose is to have the reduced model put equal

weight into each phase of the flow. The approach has been used in situations where

the reduction is targeting a PDE system with symmetries.

Snapshot collection is time intensive, making for the largest part of the offline cost

of the POD method. While collecting snapshots at equal intervals of forward simu-

lation of the original high-dimensional system may be a valid strategy, it could also

result in redundant snapshots or a suboptimal projection basis, which wastes offline

computation time. Additionally, in optimal control settings it is not desirable to use

snapshots collected with arbitrary input functions. To this end, updating of snap-

shots and the computed projection basis is a topic of active research. Several strategies

for updating the snapshots in optimal control settings, starting with arbitrary con-

trol or coarsely discretized PDEs have been proposed [104]–[106]. In [107]–[109],

a method to determine an optimal snapshot set is developed. These approaches as-

sume that new snapshot samples of the high-dimensional model can be generated.

For iteratively constructing the reduction basis without access to new snapshot data,

choosing or weighing the basis vectors based on expert knowledge has been explored

in [110], [111].

The collected snapshots may require a lot of memory and it may not be feasible

to store them in a single matrix. In this case, computing the SVD of the snapshots

is challenging, and incremental methods that update the SVD as more snapshots be-

come available or distributed methods that compute the SVD in a manner that does

not use shared memory between processes are required. As an example of a dis-

tributed SVD algorithm that is not domain specific to model reduction, the method

in [112] is useful for computing the POD basis. Moreover, the method in [113] may

be used to incrementally build the SVD. For distributed basis computation in the

POD framework, a method was first proposed in [114], with a more recent method

algorithm given in [115]. A method capable of distributed and incremental basis

computation was recently developed in [116].

As mentioned earlier, with general nonlinear systems the POD method does not

decouple the reduced model from the original 𝑛-dimensional state, and thus cannot
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guarantee accelerated simulations of nonlinear systems. In [25] a method of reducing

quadratic-bilinear systems via POD is developed. It is shown that the usual POD

basis 𝑉 can be used to compute �̃� = 𝑉𝑇𝐻 (𝑉 ⊗𝑉) and �̃� 𝑖 = 𝑉𝑇𝑁𝑖𝑉 of Eq. (2.4), and

all these matrices can be precomputed in the offline phase of the reduction. Now the

QB reduced model no longer depends on the original dimension 𝑛.

Algorithm 1 Proper Orthogonal Decomposition

INPUT: Snapshots 𝑋 ∈ R𝑛×𝑠, matrices 𝐸, 𝐴, 𝐵, 𝐻, {𝑁}𝑝, 𝐶, threshold 𝜀 ∈ [0, 1],
initial value 𝑥(0)
OUTPUT: 𝑉, �̃�, �̃�, �̃�, {�̃�}𝑝, �̃�, �̃�(0)

1: Compute ΦΣΨ𝑇 = 𝑋
2: determine 𝑘 s.t.

∑𝑘
𝑖=0 𝜎𝑖/

∑∞
𝑖=0 𝜎𝑖 > 𝜀

3: 𝑉 = [𝜙1, . . . , 𝜙𝑘]

4: �̃� = 𝑉𝑇𝐸𝑉, �̃� = 𝑉𝑇 𝐴𝑉, �̃� = 𝑉𝑇𝐵, �̃� = 𝑉𝑇𝐻 (𝑉 ⊗ 𝑉), {𝑉𝑇𝑁𝑉}𝑝, �̃� = 𝐶𝑉
5: �̃�(0) = 𝑉𝑇𝑥(0)

Algorithm 1 summarizes the POD process. The inputs to the algorithm are the

snapshot set 𝑋, matrices of the 𝑛-dimensional state-space system in Eq. (2.1) and

the reduction threshold 𝜀. As output, the algorithm gives the 𝑘 < 𝑛-dimensional

reduction basis as well as the reduced system matrices. Notice that is is possible to

provide a large threshold, which will result in relatively large 𝑘, then further truncate

the columns of 𝑉 to derive lower dimensional reduced models without computing

the expensive SVD of the snapshot matrix repeatedly. Overall, the POD method

is flexible, since it imposes practically no limitations on the systems to be reduced.

Computationally, the biggest burden is gathering snapshots of the high-dimensional

system. The snapshots play a large role in the quality of the reduced model, and one

of the challenges of POD reduced models is their accuracy at approximating states

outside the snapshot set.

POD is the most flexible MOR method for reducing nonlinear systems, and

forms the basis of the reduced model in all of the original publications of this thesis.

4.3 Advanced POD variants

The accuracy of the POD approximation will suffer if the reduced model enters a

state which was not covered by the original set of snapshots. In these cases, adaptive

POD methods can be used to update the basis vectors and rank during the model
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simulation phase. Adaptive methods use a relatively small snapshot set, so that up-

dates are efficient. The update will reduce the efficiency of the reduced model, but

the gain in accuracy is expected to be worth the cost. In [117] an adaptive scheme was

proposed, where the snapshot set was updated with new data during the simulation

while old snapshots were removed. Later work included a modification where snap-

shots were eliminated based on importance scores [118]. However, these methods

often lead into oscillating basis size and basis vectors that are not orthogonal, which

reduces approximation quality.

In [119], the above issues are remedied. A new method, called Discrete Adap-

tive POD (DAPOD), considers both the novelty and importance of new snapshots

simultaneously. It updates the reduction bases during the simulation phase while

exhibiting less oscillations in basis size compared to earlier methods. In Publica-

tion III, we demonstrate the efficacy of DAPOD in reducing a biophysical neuronal

network model.

4.4 Discrete Empirical Interpolation Method

An approach to reducing the complexity of the nonlinear term 𝑓 (𝑥(𝑡), 𝑡) in Eq. (2.1)

was proposed in [27] under the name Discrete Empirical Interpolation Method

(DEIM). When combined with POD, the POD-DEIM model reduction approach

is state-of-the-art for deriving nonlinear reduced order models. The core idea is to

separate the approximation of the state of the system, done by POD, from the ap-

proximation of the nonlinear function of the state equation, which will be the re-

sponsibility of DEIM. The two methods will work together seamlessly, so that the

reduced model can be independent of the dimension of the full model. The DEIM

method is closely based on the Empirical Interpolation Method from [120]. Other

methods employing similar ideas are found in [100], [121], [122].

As the name implies, DEIM aims to interpolate the nonlinear 𝑛-component func-

tion using 𝑚 < 𝑛 points in combination with approximation by projection in the

𝑛-dimensional basis. Since the projection is a linear operation, it can be efficiently

computed directly in the POD subspace. DEIM finds an approximation

𝑓 (𝑥(𝑡), 𝑡) ≈ 𝑈 (𝑃𝑇𝑈)−1 �̃� (𝑥(𝑡)) (4.11)

where 𝑈 ∈ R𝑛×𝑚 is the DEIM projection basis and 𝑃 ∈ R𝑛×𝑚 is a sampling map
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that indicates which indices of the original 𝑛-dimensional nonlinear function are used

for interpolation. Here it is important to notice that �̃� (·) (sometimes 𝑃𝑇 𝑓 (·) in the

literature [27]) indicates that the components dictated by 𝑃 are extracted from the

vector-valued nonlinear function. In other words, 𝑓 (𝑥(𝑡), 𝑡) is only evaluated at 𝑚

locations. Moreover, the matrices 𝑈, 𝑃 are chosen so that the approximation of

𝑓 (𝑥(𝑡), 𝑡) is exact at the 𝑚 sampling points. In the case that the i-th component of

𝑓 (·) depends on the i-th component of 𝑥(𝑡) alone, then only components 𝑥𝑖 (𝑡) are

needed in the evaluation. This requires a specific structure (one that can be exploited

in artificial neural networks, as in Publication IV). The components of 𝑓 (·) may

depend on 𝑥(𝑡) in some other sparse manner as well. Under these assumptions, the

nonlinear term can be approximated without needing the full 𝑛-dimensional state of

the system.

The DEIM projection basis 𝑈 is computed using the same process as the POD

basis. However, snapshots are now collected from the nonlinear function only, in

order to construct a matrix 𝐹 = [ 𝑓 (𝑥(𝑡1), 𝑡), . . . 𝑓 (𝑥(𝑡𝑠), 𝑡)]. The SVD of 𝐹 is com-

puted up to 𝑛 singular values, ΦΣΨ𝑇 = 𝐹, and the 𝑚 leading left singular vectors are

chosen as the projection basis so that 𝑈 = [𝜙1, . . . , 𝜙𝑚] (note that 𝑠 and the SVD

results are not to be confused with those in the POD). As in POD, a threshold value

can be set to determine a suitable 𝑚. Once the DEIM basis has been computed, the

interpolation indices can be determined.

Algorithm 2 finds interpolation indices 𝜑 and sampling matrix 𝑃 in a greedy

fashion. As input, the algorithm takes linearly independent vectors, which are com-

monly the columns of 𝑈. The first interpolation point is the index of the maximum

absolute value of the first column of𝑈, 𝑢1. The following steps compute a residual 𝑟

between the i-th basis vector and its current approximation using the 𝑖−1 determined

interpolation points. Where the absolute error of the approximation is largest, a new

interpolation point is inserted, until 𝑚 have been chosen. In this manner, a sampling

matrix 𝑃 = [𝑒𝜑1 . . . 𝑒𝜑𝑚] is constructed so that each column is a standard basis vector

of ∈ R𝑛 with the order of vectors determined by the indices in 𝜑. The matrix 𝑃 is

a map that picks elements from the high-dimensional nonlinear vector into the 𝑚-

dimensional interpolation space. The algorithm guarantees that 𝑃𝑇𝑈 is nonsingular

and its inverse is well defined [27].

To include the DEIM approximation of the nonlinear function into the POD

57



Algorithm 2 Discrete Empirical Interpolation Method

INPUT: {𝑢𝑙}
𝑚
𝑙=1 ⊂ R𝑛 linearly independent

OUTPUT: �⃗� = [𝑝1, . . . , 𝑝𝑚], 𝑃 ∈ R𝑛×𝑚

1: 𝑝1 = argmax( |𝑢1 |)

2: 𝑈 = [𝑢1], 𝑃 = [𝑒𝑝1], �⃗� = [𝑝1]

3: for l = 2 to m do

4: solve (𝑃𝑇𝑈)𝑐 = 𝑃𝑇𝑢𝑙 for 𝑐
5: 𝑝𝑙 = argmax( |𝑢𝑙 −𝑈𝑐 |)
6: 𝑈 ← [𝑈 𝑢𝑙], 𝑃 ← [𝑃 𝑒𝑝𝑙 ], �⃗� ← [ �⃗� 𝑝𝑙]

7: end for

reduced model, the interpolation operation is projected onto the POD basis

𝑀 = 𝑉𝑇𝑈 (𝑃𝑇𝑈)−1 (4.12)

which can be precomputed in the offline phase of the reduction. The dimensions are

𝑀 ∈ R𝑘×𝑚, which confirms that from 𝑚 evaluated nonlinear functions, an interpola-

tion approximation is given directly in the 𝑘 < 𝑛 dimensional space. The combined

POD-DEIM reduced model can then be written as

�̃�
d�̃�(𝑡)

d𝑡
= �̃��̃�(𝑡) + 𝑀 �̃� (𝑉�̃�(𝑡, 𝑡)) + �̃�𝑢(𝑡), (4.13)

where𝑉�̃�(𝑡) indicates that we only pick the rows of𝑉 that reconstruct those variables

of the original system that are needed by the nonlinear functions in �̃� , and the system

is completely independent of the original dimension 𝑛.

4.5 Advanced DEIM variants

An improvement to the DEIM algorithm was proposed in [123]. Their algorithm,

Localized DEIM (LDEIM), uses an unsupervised clustering algorithm to group the

snapshots. For each group, a DEIM basis and interpolation points are computed.

Each group is assigned an indicator, which can be computed efficiently from the value

of the system’s nonlinear function. During simulation, the DEIM approximation

given by the snapshot group closest to the most recent indicator value is used. We

used the LDEIM algorithm in Publication II and Publication III.

A method that adapts the DEIM basis and interpolation points online was pro-
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posed in [124]. This ADEIM, unlike LDEIM, can find a new DEIM basis in the

online phase. The authors term this as nonlinear approximation. ADEIM has the-

oretically promising features for accurately approximating systems outside the col-

lected snapshot space. This adaptivity comes at a relatively high computational cost,

as we show in Publication II.

An improved a priori error bound for DEIM was given in [125] using the Q-

DEIM algorithm. There, interpolation points are selected using a QR factorization

instead of the original greedy iteration. This selection process can be used in place

of the original method, for example in combination with LDEIM and ADEIM. In

the publications of this thesis, we used Q-DEIM in Publication III.

An approach called oversampled DEIM (ODEIM) that uses regression instead of

interpolation in the DEIM algorithm was given in [126]. In vanilla DEIM, the num-

ber of DEIM basis vectors and nonlinear sampling points are equal. The ODEIM

algorithm uses more sampling points than basis vectors, and the authors show this

leads to more stable reduced models. We employed this algorithm in Publication

IV.
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5 RESULTS

In this chapter, the main results towards each aim of Section 3 are given. We selected

biologically relevant mathematical models that are of interest to computational neu-

roscientists, and the focus was in network models and components of neuronal net-

works. These models were not reduced earlier using model order reduction (MOR)

methods, and hence the publications provide value to both fields, MOR and neuro-

science. Our models are summarized in Table 4.1.

The primary results of the thesis are:

1. The dynamics of several nonlinear neuronal network model types and models

were successfully reduced using MOR.

2. From the literature on model order reduction methods, Proper Orthogo-

nal Decomposition (POD) with the Discrete Empirical Interpolation Method

(DEIM) was found to be the most suitable MOR approach for reducing neu-

ronal network models, as it can handle nonlinear multiple-input-multiple-

output systems even with conditions such as membrane voltage resets.

3. Methods that adapt the reduction bases were shown to improve accuracy of

reduced models in comparison to the original POD-DEIMmethod, at the cost

of simulation time.

4. Our studies showed that reduced models can be computed efficiently with par-

allelization and distributed computation, and can benefit from graphics pro-

cessing units.

5. MOR was incorporated in continuous-time deep learning models and reduced

models with competitive classification accuracy versus speed-up trade-offs were

obtained.

In the following, the results of the thesis are described in more detail.
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5.1 Requirements for MOR in computational neuroscience

The first aim of the thesis was to determine which MOR methods are applicable for

accelerating mathematical models that are relevant in computational neuroscience.

The importance of this aim is based on the observation that MOR methods may

have strict requirements about the properties of the mathematical model that is to

be reduced, for example with regards to the type of nonlinearity in the system.

Mathematical models in neuroscience are typically nonlinear, as in all the original

publications of this thesis. Models in the field also commonly have multiple inputs

or multiple outputs (MIMO), as in Publication I. The models we implemented in

Publication II, Publication III and Publication IV also has multiple outputs. In our

studies, sources for nonlinearity in neural networks were the action potential mech-

anism, firing rate functions, chemical reactions and synaptic coupling, which cannot

be described accurately using linear equations. Additionally, there are typically many

outputs of interest, such as the membrane voltage of each cell in a network. Models

may also contain multiple inputs, such as synaptic currents affecting different com-

partments, external currents injected into the cells and molecular perturbations of

synapses. Nonlinearity as well as the number of inputs and outputs greatly affect the

choice of available model reduction methods. As discussed in Chapter 2, MOR is

most established for linear SISO systems. For nonlinear MIMO systems, the choice

of suitable MOR methods is narrower, although most MOR methods have been

extended to MIMO systems as well.

An important additional characteristic of models in computational neuroscience

is that they are often assembled from a large number of small ODE systems that

are discrete in space but continuous in time, as in Publication I, Publication II and

Publication IV. First, not all MOR methods can be applied to this semi-discrete

form of dynamical systems. Second, much of the MOR literature is focused on

accelerating the simulation of discretized PDEs. The spatially discretized form of

a PDE tends to contain a large number of ODEs in a rigid structure, depending

on the PDE and the used discretization method, which MOR methods can then

exploit. This case was studied in Publication III. However, generally in models in

computational neuroscience, such structure is missing.

The choice of applicable MOR methods becomes clear when writing the system

in the state-space format as in Eq. (2.1). In the general nonlinear case, the system will
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have a nonlinear term 𝑓 (𝑥(𝑡), 𝑡), and MOR methods that can be applied to general

nonlinear systems must be chosen. However, it is worth looking for additional

structure in the model, in order to be able to apply a wider range of MOR methods,

perhaps with different properties.

When the nonlinear term is defined by 𝐻 (𝑥(𝑡) ⊗ 𝑥(𝑡)), the system has only

quadratic nonlinearities, increasing the number of applicable MOR methods. When

the inputs interact linearly with the state of the system via the term
∑𝑝

𝑖=1 𝑁𝑖𝑥(𝑡)𝑢𝑖 (𝑡),

methods that work for bilinear systems may be considered. There exist methods that

can lift nonlinear systems to quadratic-bilinear form shown in Eq. (2.3), for exam-

ple [24]. If the system can be written without the nonlinear and bilinear terms, then

the system is linear and can be reduced with multiple methods. If the vectors 𝑢(𝑡)

and 𝑦(𝑡) have only a single element, the system is SISO, again widening the choice

of MOR methods.

Finally, it may be necessary to study the spectral properties of the state matrix 𝐴

in Eq. (2.1). Spectal properties are deduced from the eigenvalues of the matrix. By

investigating the eigenvalues of 𝐴 we can understand the stability properties of the

system. Some methods, particularly those based on balancing transformations (see

Eq. (2.5)), may require that the eigenvalues of 𝐴 have strictly negative real parts.

With these considerations in mind, proper choice of MOR methods can be made.

5.2 Applicable MOR methods for the selected models

With the general requirements of MOR at hand, we made a thorough literature

search and analysis of MOR methods. We then selected methods that fulfilled the

general requirements and were suitable for the models chosen as reduction targets in

this thesis. This section details these findings.

We identified the Proper Orthogonal Decomposition (POD) with the Discrete

Empirical Interpolation Method (DEIM)[27] to be the most promising MORmeth-

ods for computational neuroscience. In computational neuroscience, POD-DEIM

has been used earlier to accelerate the discretized form of the cable equation PDE. In

POD-DEIM, POD finds a subspace for describing the dynamics of the system, while

DEIM approximates the nonlinear part using interpolation. POD-DEIM creates re-

duced models that aim to approximate the state of the system, and the reduction

process does not rely on the number of inputs or outputs, making the method ap-
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plicable to both SISO and MIMO systems.

Furthermore, POD-DEIM allows us to control the dimensionality of the POD

andDEIM approximations separately. As an example, this is illustrated in Figure 5.1,

where reduced models are created using different POD and DEIM dimensions inde-

pendent of each other. In the figure, the left column shows simulation time while the

right column shows approximation error, computed as the root mean square (RMS)

of the difference between the time series of the original and reduced models. POD

dimension is indicated by the x-axis, while different colors show DEIM dimensions.

The original model (from Publication I, here using a shorter simulation time) has

44 equations. In this case, the simulation time is affected linearly by both the POD

and DEIM dimensions. The approximation error is more challenging to quantify;

here it appears that at POD or DEIM dimension 10 the approximation quality de-

teriorates, while POD dimensions greater than 15 affect the accuracy quite linearly.

Analyses like this example are useful for evaluating the suitability of POD-DEIM

and determining useful approximation dimensions.
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Figure 5.1 The effect of different POD and DEIM dimension combinations on the reduced model.
Left column shows simulation time, right column shows root mean square error of the
approximation. POD dimension changes according to the x-axis, while DEIM dimension is
indicated with different colors. Adapted from Publication I.

POD-DEIM is used in all the publications in this thesis. Additionally, the publi-

cations in this thesis study the efficacy of advanced POD-DEIM methods that have

not been used in neuroscience earlier. Specifically, the Discrete Adaptive POD (DA-

POD) [119], Localized DEIM (LDEIM) [123], Adaptive DEIM (ADEIM) [124],

Q-DEIM [125] and Oversampled DEIM (ODEIM) [126] were evaluated in the pub-
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lications of this thesis.

Other potentially useful methods for nonlinear reduction were also found. For

example, the Gauss-Newton with Approximative Tensors (GNAT) method [122],

[127] which works on systems that are discrete in space and time. Earlier methods

that attempt to reduce nonlinear systems include empirical gramians [128], Gappy

POD [100], Missing Point Estimation [121] and Best Point Interpolationmethod [129].

However, the DEIM algorithm is the most generally applicable out of these meth-

ods. It scales to large systems unlike gramian-based approaches, provides a way to

decouple the approximation of linear and nonlinear terms, and at the time of starting

this study, it also had a number of advanced variants developed. Notably, all these

methods, including POD-DEIM, are empirical, in other words they require data of

the system behavior for reduction.

In unpublished work (Appendix A), we evaluated the quadratic-bilinear (QB)

versions of Balanced Truncation (BT) [130] and Iterative Rational Krylov Approx-

imation (IRKA) [10] methods for accelerating a network of Hindmarsh-Rose (HR)

neurons connected with phenomenological Tsodyks-Markram (TM) synapses. This

system is nonlinear and has multiple inputs and outputs. BT and IRKA are interest-

ing since they differ from POD-DEIM methods in that the reduced model is derived

directly from system matrices of the full model and no empirical snapshot collection

phase is required. Both methods are applicable to MIMO systems. However, The

HR+TM model is nonlinear and hence neither BT or IRKA can be used to directly

reduce it. In Appendix A, we have derived a quadratic bilinear lifted form of this

model through a lifting transformation. The lifted model has state variables that

are equivalent to the original model, while also having auxiliary variables modeled

with differential equations. Hence, the dimensionality of the lifted model is higher

than the original model, but it contains a purely quadratic-bilinear structure that can

be taken advantage of by model reduction algorithms such as the advanced BT and

IRKA variations we used. While the lifting transformation is not unique and find-

ing a QB representation is not possible for every nonlinear system, we expect this

approach to find many uses in computational neuroscience in the future.
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5.3 Efficient implementation of the MOR procedure

As the third aim the thesis, we wanted to determine how each step of the model

order reduction workflow can be implemented efficiently. The reduced model is

computed in the offline-stage of model reduction. The cost of this step, which can

involve multiple algorithms, can be significant. The cost of the offline-stage may

determine if the reduction method is feasible for applications that require repeated

computation of the reduced model, such as parameter optimization studies.

An efficient implementation of MOR methods should account for both offline

costs where the reduced model is computed, and online costs where the reduced

model is simulated. On the one hand, when we wish to use a reduced model for

simulation studies where only the initial conditions and inputs to the system are

varied, it is enough to compute a reduced model once. An example of such a situation

could be that many copies of the reduced model are deployed in a large or multi-scale

simulation setting, modeling nodes in a large-scale brain simulation. For this purpose,

a computationally heavy offline phase may be allowed. On the other hand, if a ROM

is used to study the parameter sensitivity of a system with a set of parameters, such as

varying ion channel conductances, steps of the offline phase may have to be executed

repeatedly, in order to derive a reduced model for each permutation of parameters.

In this case, the selection of MOR method greatly impacts the cost of the offline

phase.

The POD-DEIM method is an empirical method that needs samples of the dy-

namics of high-dimensional original model that is to be reduced. To obtain reduced

models that perform well in different initial value and parameter settings, such snap-

shots should be available when computing the bases and interpolation points for

POD and DEIM. This requires several simulations of the high-dimensional model.

Although the snapshot collection is a time-consuming process, snapshots of differ-

ent initial conditions, parameters and input functions can be collected efficiently in

parallel, as done for initial conditions and time-dependent inputs in Publication IV

using batch computing. The snapshot collection step is embarrassingly parallel and

no shared memory between processes is required, thus software implementations for

parallelizing the data collection readily exist (for example through Message Passing

Interface (MPI) or tensor algebra as done in Publication IV using Pytorch).

The next step in the POD-DEIM algorithm is singular value decomposition

66



(SVD) over all the snapshot data. This step will find the basis vectors onto which

the high-dimensional model is projected for reduction. This operation is first and

foremost very memory intensive, since a naive implementation will attempt to load

all snapshots in memory for decomposing with SVD. However, algorithms for dis-

tributed [112], [114], [115] and adaptive [113] SVD do exist and should be leveraged,

as we demonstrate in Publication IV. In addition, it may be possible to remove re-

dundant snapshots and consider coarser sampling to alleviate memory requirements

in the SVD step. In the publications of this thesis, it was never necessary to save

snapshots at every discrete simulation timestep to obtain good results. Moreover,

methods like Discrete Adaptive POD [119] are designed to work with a relatively

small initial snapshot set. Once the SVD over the snapshots has been done, it is pos-

sible to create reduced models with different parameters using the same basis. This

is due to the fact that the projection basis is not computed from the system matrix,

which changes when model parameters are changed. Hence POD-DEIM is efficient

in parameter optimization and sensitivity analysis studies.

For Balanced Truncation methods, solving the Lyapunov equations of Eq. (2.5)

in order to obtain the reduction basis is the heaviest part of the offline phase. This

phase is computationally more demanding than taking the SVD of the snapshots in

the POD-DEIM algorithm, which limits the usability of BT methods for extremely

large systems. Moreover, the solution of the Lyapunov equations depends on the

parameterization of the high-dimensional model that we wish to reduce, hence this

step must be repeated if the parameters change. An efficient and numerically ro-

bust implementation of a Lyapunov equation solver will not attempt to find the full

gramian matrices 𝑋, but instead solves directly a low-rank Cholesky factorization

𝑍𝑍∗ = 𝑋, never forming the full matrix 𝑋 [131]. The complete BT algorithm can

then be computed using the Cholesky factors of controllability and observability

gramians [132], even in the nonlinear (quadratic-bilinear) BT method [130].

Continuous-time recurrent neural networks, with simple nonlinearities, can be

implemented on deep learning frameworks such as Python’s Pytorch or Julia’s Diff-

EqFlux. Using these libraries, the networks can then be efficiently simulated on

graphics processing units (GPUs). In Publication IV we show how the model re-

duction workflow can utilize existing computation tools of deep learning. Specifi-

cally, we showed that the reduced model can be both computed and simulated using

deep learning software. Moreover, we determined that all steps of the POD-DEIM
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algorithm can also be implemented on GPUs, greatly streamlining model reduction

of artificial neural networks.

Reset conditions, which are seen for example in phenomenological neuroscience

models, introduce complexity to the model reduction process. In principle, it is

possible to ignore the reset condition and attempt to derive a low-order model using

data-driven model such as POD-DEIM, but the accuracy of such a reduction would

be poor [133]. An additional transformation of the reduced model to the original

high-dimensional space and back to the low-dimensional space is needed at every

timestep to accurately implement reset conditions in the reduced model, as we did

in Publication II. This is a slowing factor for the simulation time of of the reduced

model. In the MOR literature, these systems are researched as jump systems or hybrid

systems [134]. However, the reset moment can be used to ensure that other variables

have stayed in a biologically meaningful range, at a low additional computational

cost. For example, at the same time as reset conditions are set, it could be checked

that variables describing concentrations have remained strictly non-negative. This

can improve accuracy of the reduced model with minimal further computational

cost.

Since the implementation and simulation of state-space models and reduced order

models uses software for linear algebra (such as ScaLAPACK or MAGMA), the

MOR approach is scalable to large-scale systems [13], [125]. This means that reduced

models itself can leverage parallel computing, distributed computing clusters and

graphics processing units. Moreover, the implementation of MOR is not dependent

on any specific hardware, which contributes to the flexibility of MOR methods.

5.4 Integration of MOR in artificial neural network models

Machine learning models, such as deep neural networks, are increasingly used as

model systems in computational neuroscience. These models are computationally

demanding. In this aim, we wanted to find if MOR can be performed within the

machine learning workflow to accelerate deep neural networks, and hence facilitate

their use in models of the brain as well as in real-time or low-power applications.

Machine learning is struggling with similar computational bottlenecks as neuro-

science; the best models are very large and resource-expensive to run [135]. Novel ar-

chitectures, specifically Neural Ordinary Differential Equations (Neural ODEs) [7],
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have considerable similarities with neural networks that are used in computational

neuroscience. For example convolutional neural networks have been used as models

in studies of the visual system [91]. Machine learning models focus on predicting

outputs from unseen inputs. Neural ODEs improve the capability of deep learn-

ing systems to also consider time-dynamics of the modeled system, which is close

to the modeling paradigm in computational neuroscience. It then makes sense to

ask whether MOR methods are applicable for accelerating deep learning models and

if they are, how well do they perform in prediction tasks. In Publication IV, we

answer these questions.

Neural ODEs offer a natural setting for POD-DEIM model reduction. To create

a Neural ODE model, a large collection of training data is required. Once the model

is trained, the same training data can be used to collect snapshots for the POD-DEIM

method, as we demonstrate in Publication IV. It is important, for both the neural

network and POD-DEIM, that the training data set gives a varying and accurate

description of the data that the model will encounter in a real-world setting. Using

data that has not been employed for model training or reduction, it is possible to

validate the performance of the full and reduced models. Hence the data sets that are

present for machine learning purposes, can be used as is for model reduction.

In Publication IV we show how the POD-DEIM method can be entirely im-

plemented for Neural ODEs by manipulating weight matrices, pruning activation

functions and introducing projection and interpolation layers in the artificial neural

network. For some architectures, such as fully-connected Neural ODEs receiving

time-dependent input, this requires that the network is analysed in the state-space

format. For architectures using convolutional layers, we propose in Publication IV

to write convolution operations as Toeplitz matrices, in order to enable POD-DEIM

reduction in the state-space format. In this manner, the reduced model also becomes

a deep neural network. Then, the entire model reduction workflow can utilize ex-

isting computation tools of deep learning and the reduced model can be used as a

plug-in replacement of the original network.

5.5 Performance of reduced models

In order to measure the performance of MORmethods, we computed reduced mod-

els of several systems of neuroscientific interest, and evaluated their accuracy and
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speed with regards to the original, high dimensional systems as well as other reduc-

tion methods. The results towards this aim should indicate the situations where

MOR methods show the most promise, as well as identify those models that are

challenging to reduce using MOR.

In the publications collected into this thesis, we found model order reduction

methods to be an effective and versatile tool for accelerating simulations of nonlin-

ear models of neuronal populations and synaptic dynamics. Depending on the type

and size of the original model, the achieved acceleration with low approximation

error varied from a few percents to orders of magnitude. The approximation error

is always a function of the desired speedup, although the dependence is rarely lin-

ear. In Publication I, Publication III and Publication IV it was possible to locate

a speedup value after which the approximation error started increasing fast. Fig-

ure 5.2 illustrates this behavior for a convolutional and an antisymmetric recurrent

deep learning models from Publication IV. Here, model accuracy is shown on the

y-axis, with value of 1.0 indicating identical performance to the original model, while

the x-axis indicates achieved speedup as the computation time of the original model

divided by that of the reduced model. Each dot indicates a reduced model dimen-

sion. Reduction for the convolutional model succeeds very well, and the drop in

accuracy happens after dimension 600, when the original model has 1000 ODEs.

For the antisymmetric network model, the point of accuracy drop is seen around

dimension 400, whereas the original model has 512 equations. The point just before

rapid accuracy drop was found to be a good choice for the dimension of the reduced

model, although larger speedups can be obtained if the application of the reduced

model allows the resulting change in accuracy. Overall, with the correct choice of

algorithms and reduction parameters, the model reduction process can be controlled

to be suitable for many different model types.

With the POD-DEIM method [27], we were able to create well performing re-

duced models of chemical reactions in the synapse in Publication I, Fokker-Planck-

type mean-field models in Publication III and convolutional continuous-time neural

networks in Publication IV. In Publication II, we established advanced versions of

the POD-DEIMmethod as necessary tools accelerating this network of biophysically

detailed compartmental models.

Specifically, the DAPOD method [119], [136] together with the DEIM algo-

rithm was found to be efficient and able to derive approximations with more ac-
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Figure 5.2 Model reduction results using POD-DEIM to reduce a convolutional and an antisymmet-
ric neural network model. The x-axis shows model acceleration as factor of achieved
speedup, while the y-axis shows the accuracy of the reduced model relative to the original
model. Each dot indicates a different reduced model dimension. Adapted from Publica-
tion IV.

curate dynamics than the original DEIM method. Moreover in the same study,

the ADEIM algorithm [124], which adapts the DEIM basis during the simulation,

showed favourable approximation capability when compared to DEIM. Without

these adaptive MOR methods, the reduced model showed unstable behavior in the

form of residual network activity which the original model did not have. This is il-

lustrated in Figure 5.3, where the number of neurons spiking as a function of time is

compared between the original model and approximations from DEIM and ADEIM

methods. The DEIM approximation shows continued network activity until the end

of the simulation, whereas the ADEIM approximation correctly returns to zero ac-

tivity.

The performance of QDEIM [125] and LDEIM [123] were evaluated in Pub-

lication II and Publication III. In these studies, the adaptive approach of LDEIM

was not found to achieve enough improvement in accuracy over DEIM when the

increased cost of computation time was considered. Hence, more favourable results

in terms of accuracy versus speedup were achieved with other methods, including the

original DEIM. The QDEIM algorithm improves the interpolation point selection

process of the DEIM method. In the online phase, QDEIM has the same cost as the
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Figure 5.3 Number of neurons spiking in the biophysical neuronal network model. The x-axis shows
time and y-axis the spiking neuron count. The original model, DEIM reduced model and
ADEIM reduced model are shown. Adapted from Publication II.

original DEIM. This method was not found to deliver a difference in accuracy in

Publication III, compared to DEIM.

The QDEIM interpolation point selection process is a recommended part of the

Oversampled DEIM algorithm, which achieved good acceleration results in Publi-

cation IV. In Publication IV we found the Oversampled DEIM (sometimes called

Gappy POD) to outperform the DEIM algorithm for accelerating an antisymmetric

recurrent neural network that receives time-dependent input. Taken together, the

fact that MORmethods keep developing at a rapid pace is leading towards algorithms

that are increasingly robust, even for reducing nonlinear models.

With regards to achieved acceleration results, different amounts of reduction were

feasible for every neural system model of the original publications in this thesis. In

Publication I, the steady-state reduction error of the synapse model was mostly de-

pendent on POD dimension, while speedup was determined by DEIM dimension. It

was possible to find a reduced model that halved the simulation time. In Publication

II a reduction of 5%, from a system of 500 equations to 470-480 equations, was

feasible to still reproduce the original population level behavior of compartmental

neurons in the network. At this level of reduction, MOR does not lead into acceler-

ation compared to the original model. This is primarily due to the reset mechanisms
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Approximation Error

Figure 5.4 Model reduction results using QDEIM to reduce a Fokker-Planck mean-field model de-
scribing an infinitely large population of FitzHugh-Nagumo neurons. The left column il-
lustrates approximation from the QDEIM MOR algorithm, while the right column shows
approximation error. Each row is a different dimension reduced model, from 1 to 8, indi-
cated on the left. POD and QDEIM dimensions are equal here. The original model has
dimension 503. Adapted from Publication III.
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of the single neuron model causing computational overhead into the ROM. In Pub-

lication III, where a discretized PDE mean-field model was reduced, an acceleration

of three orders of magnitude was possible with great accuracy. In Publication IV, it

was possible to retain close to 90% of the classification accuracy of a convolutional

neural network while requiring only 25% of the computation time of the original

model, a 4-fold speedup. For a more densely connected antisymmetric recurrent

neural network, a reduced model with 90% accuracy required about 80% compu-

tation time of the original model, reaching a speedup factor of 1.2. The reported

simulation times in all studies have been obtained on CPUs. The original and re-

duced models were given equal compute resources. No model-specific optimization,

other than efficient matrix multiplications, were implemented.

The most impressive reduction was obtained for the Fokker-Planck mean-field

model, possibly due to the structure that results from the discretization of the PDE

model. Figure 5.4 illustrates the dramatic performance of MOR for reducing model.

The left column illustrates approximation from the QDEIMMOR algorithm, while

the right column shows approximation error. Each row is a different dimension

reduced model. The original model has dimension 503. For this model, MOR con-

verges to the correct solution with dimensions less than 10.

What remains challenging is the model order reduction of densely connected neu-

ronal networks that receive time-dependent input. In Publication II the acceleration

achieved in reducing a network of compartmental neurons was not sufficient when

considering the approximation error introduced in the process. In Publication IV,

the POD-DEIM method found a great balance between speedup gained and accu-

racy lost when reducing a convolutional continuous-time network, improving on

existing neural network pruning methods from the literature, but did not lead into

better results than benchmark methods when reducing an all-to-all antisymmetric

network with time-dependent input. In Publication II, the inputs were included in

the snapshot collection phase, whereas in Publication IV the inputs are novel to the

reduced model. Future studies are needed to quantify the effect of time-dependent

inputs to reduced models in more detail.

In Appendix A a lifting transformation of a nonlinear model into QB format is

shown. While the lifting transformation is very appealing for bringing new mod-

els into the realm of data-free model reduction algorithms, two problems can arise.

Numerically the lifted system may become stiff, which negatively affects simulation
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time. Additionally, the size of the matrix of nonlinear coefficients, 𝐻 in Eq. (2.3),

scales quadratically with lifted system size, and this leads to large memory require-

ments in theMORmethods. While it was possible to compress the high-dimensional,

lifted form of the HR+TM network using BT and IRKA, as of yet the gain in faster

simulation time was not worth the cost of increased approximation error and com-

plexity of the approach.
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6 DISCUSSION

In this thesis we have presented results towards the validity and efficacy of model

order reduction (MOR) methods for accelerating nonlinear neuronal network mod-

els in computational neuroscience. Despite advances in computing power, large-scale

simulations of the mammalian brain using biophysically detailed models are not prac-

tical [6]. To this end, several methods of simplifying single neuron and neuronal

population models have been developed. While these approaches and the resulting

models have been tremendously useful, their primary shortcoming is that spatial res-

olution of neuronal models is compromised [63] and details from the morphology,

network structure or cellular mechanisms are removed. To maintain high fidelity in

reduced models, the publications included in this thesis use MOR methods to accel-

erate simulations. Specifically, we focused on methods that are based on projecting a

high-dimensional model onto a low-dimensional subspace for the simulation phase.

The resulting reduced models are efficient to simulate and an approximation of the

dynamics of the original system variables can be constructed at any time. Moreover,

these reduced models maintain the original outputs of the system, inputs to the sys-

tem and all parameters of the original model, hence spatial resolution is preserved and

interactions between variables can be studied. For this reason, the reduced models

can serve as plug-in replacement of computationally expensive systems, for example

in multi-scale simulations.

6.1 Impact of MOR in computational neuroscience

The full impact of MOR will be realized once these methods can be incorporated

in the toolkit of computational neuroscientists, for example integrated into neu-

ronal simulator software. Neural simulation tools may not always store models in

the state-space format in which MOR is applied. It may be laborious to extract

the high-dimensional models from neural simulators in a format that could be di-
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rectly reduced using MOR. While the state-space formulation is standard in fields

like control-theory, neural simulators tend to use their own internal representations

of models. This means that MORmethods and reduced models do not integrate with

existing neural simulators automatically. On the positive side, in Publication IV we

have demonstrated integration of MOR with deep learning software and artificial

neural networks, which is a promising direction for MOR and a practical step for

integrating MOR into a task-specific tool.

To integrate MOR into neuronal simulators, the reduced model should be linked

to the simulators via inputs and outputs of the original full-order model in the format

of Eq. (2.1). Whether this can be implemented in software differs from simulator

to simulator. The Virtual Brain [137] is an interesting simulation tool in this re-

gard, since users can write new equations to use as nodes in whole-brain simulations.

With this level of modularity, reduced models can be defined as nodes in brain simu-

lations. The NEST [138] simulator is another tool where users can define network

components such as neurons and synapses as code, making it possible to replace com-

ponents with their reduced version. These simulators seem good targets for initial

MOR integration work. In general, open source software is a great way to facilitate

this integration, hence we have made the code of our integration of MOR with deep

learning for Publication IV available with the publication.

Previous work by others has demonstrated applicability of MOR for reducing

morphologically detailed single neurons with passive, linearized and nonlinear dy-

namics [11], [12], [22]. Moreover, MOR has been shown to be effective for ac-

celerating simulations of electrophysiological activity in cardiac monodomain and

bidomain models, although their dynamics are diffusion-driven and hence simpler

than neuronal network activity stemming from action potentials and synaptic pro-

cessing [139], [140]. This thesis establishes MOR as a viable method for reducing

models of chemical reactions in the synapse (Publication I), network models of

biophysically detailed compartmental neurons (Publication II), high-dimensional

Fokker-Planck-type mean-field models (Publication III) and artificial neural net-

works (Publication IV). By studying these classes of models as new targets forMOR,

we expand the range of scenarios where MOR can be useful. We also provide new in-

sights for the MOR community, where our models are an unconventional reduction

target.

The MOR approach does not depend on numerical or manual tuning of parame-
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ters of the reduced model, and all parameters of the original model are kept intact and

adjustable. This is valuable for parameter tuning and sensitivity studies. In morpho-

logically simplified models, starting with the earliest equivalent cylinders and cables,

biophysical parameters are commonly rescaled or optimized after simplifying the

morphology. The rescaling is done for the purpose of maintaining features such as

transfer impedance [73] and electrotonic properties [72] of the original model, which

should improve the accuracy of simplified models. In doing so, the values of adjusted

parameters may eventually be out of biologically realistic ranges [77]. Although the

models still reproduce experimentally observed phenomena, the contribution of pa-

rameters in the original and simplified models may not not comparable. Hence it is

questionable to use such models in parameter sensitivity studies, for example. The

MOR approach may be more theoretically suitable for such use cases. However, not

all MOR methods are computationally efficient for parameter sensitivity studies. If

the reduced model needs to be recomputed after each parameter change, methods

such as Balanced Truncation will become computationally expensive in the offline

phase.

With regards to other desirable properties, MOR can have a priori bounds [13]

for error, guarantees of asymptotic stability [13], preservation of non-negativity [22],

positivity [141] and passivity [45], [142], [143]. Extensions to specific stochastic sys-

tems have also been considered [144], [145]. All these qualities are actively researched

for both linear and nonlinear systems. That is not to say that ad hoc simplification

methods or approaches based purely on numerical optimization could not maintain

biological laws or give error estimates, since it is possible with proper regularization

and heuristic rules. However, it could be challenging to guarantee these properties

for ad hoc methods, and discussion of these questions is missing in morphological

simplification literature. The more properties that can be carried from the original,

complex models to the accelerated models, the higher quality of reduced systems can

be promised.

MOR has an active research and developer base. Existing MOR methods are be-

ing continuously improved and newmodifications studied. As shown in Publication

IV andPublication II, extensions to the original DEIM algorithm have improved the

accuracy and reliability of the method. Once a neuroscientific model is implemented

in suitable state-space format for MOR, reducing the model with a variety of algo-

rithms becomes possible. Likewise, there are tools being developed to apply MOR
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methods with little mathematical or programming effort required [146]–[149]. Since

these tools are more general than any given neuron simplification method, a large

researcher and developer community is incentivized to participate in the develop-

ment. It would be beneficial for neuroscience to embrace this opportunity to lever-

age theoretically validated and professionally developed software. In summary, the

infrastructure that enables model order reduction is large and growing.

Despite the above advantages, knowledge of MORmethods in the computational

neuroscience community appears limited. For example, earlier state-of-the-art MOR

work in neuroscience by Kellems et al. [12], [44] or Du et al. [11] is not acknowl-

edged in some of the latest high-profile simplification publications. Others who do

cite MOR work may have misunderstood the characteristics of projection-based re-

duction, claiming that reduced models do not preserve the biophysical interpretation

of the models. However, the physiological variables can always be reconstructed

while inputs and outputs of the model remain unchanged. We hope that this thesis

expands the knowledge and facilitates the use of MOR in neuroscience.

MOR does not remove the possibility of using other, more traditional simplifi-

cation methods to derive efficient models. The model reduction process could begin

with applying morphological simplification methods or network pruning, using any

of the existing tools or expert knowledge. This would lessen the number of pa-

rameters in the model, and it should be agreed that some loss of spatial resolution

or model variables is acceptable. The next step would be to apply MOR to the

simplified model, as was done in Publication II, in order to take advantage of any

redundancies that were not removed in the simplification step. This "best of both

worlds" approach could potentially lead to very efficient models, but needs to be

studied further in future work.

6.2 Open questions

During the studies of this thesis, the following topics were identified as areas that

could benefit from additional exploration and research. While we were able to find

initial solutions for some of these questions, more rigorous effort could be directed

towards each topic.

The offline cost of MORmethods can be high. Empirical methods such as POD-

DEIM require the collection of samples of system dynamics, which entails simulation
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of the high-dimensional system. Moreover, this snapshot collection may have to be

repeated with several initial values or system parameters. For other methods such

as Balanced Truncation, solving the Lyapunov methods, even in low-rank factorized

form, is a challenging task that requires extensive computing power, time and mem-

ory. Depending on the application, such offline costs may be acceptable, for example

when repeatedly simulating the reduced model or if distributing it online for others

to use. The same can be said for simplification methods that are based partially or

entirely on numerical optimization and fitting on experimental data. So even with

MOR methods at hand, sufficient computing capacity should be available for the

offline phase where reduced models are computed.

Phenomenological models of neural dynamics commonly contain reset or thresh-

old mechanisms where a variable is set manually to a reference value after reaching

a specific level [15]. In Publication II, such a mechanisms was used to model exci-

tatory synaptic currents. From a projection-based model reduction perspective, the

reset mechanism has two implications. First, checking the reset mechanism forces

the reconstruction of a variable from the original high-dimensional space. Since this

is generally a nonlinear operation, the full state of the reduced model must be re-

constructed, as complete state information is required by projection back into the

reduced space. This has a negative effect on the runtime of the reduced model since

thresholding conditions are commonly checked at every timestep (but not at inter-

mediate ODE solver steps). Second, reset conditions can introduce large jumps in

the time-trajectory of the model, and the precise timing of the jumps may be offset by

approximation errors from the reduced model. Over time, these errors can accumu-

late and lead into unexpected behavior of the reduced model. Whether thresholding

operations could be efficiently implemented, perhaps so that the full state of the

model need not be reconstructed at each time step, remains an open question [133].

Fokker-Planck-type (FP) mean-field models describe the time evolution of the

probability density of variables in large-scale neuronal network models [84], [87].

Mathematically the FP models guarantee that the probability density at any point is

equal to or greater than zero and that total probability integrates to one. This holds

as long as discretization is done accurately, with a sufficiently fine grid, although

this does not carry over to reduced order models [150]. The POD-DEIM method,

cannot ensure either of these conditions natively [22]. Despite this shortcoming,

in Publication III we found the POD-DEIM method to achieve several orders of
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magnitude acceleration and good accuracy when reducing a FP system modeling a

network of FitzHugh-Nagumo neurons.

In a similar manner, the POD-DEIM method does not automatically guarantee

positivity of concentrations or rate variables such as those in the synapse model of

Publication I and biophysical network model in Publication II. The Non-negative

DEIM [22] is a step towards such guarantees, although at present requires a specific

PDE discretization scheme to be applicable [151].

In neuroscience, mathematical models may contain phenomena from different

time-scales. Accounting for this information could improve reduction accuracy. One

MOR method that separates fast and slow time-scales is the Singular Perturbation

Approximation, a balancing-related approach [152]. There is no extension of time-

scale aware methods to general nonlinear systems, but bilinear systems have been

studied in [153].

The nonlinear model reduction methods used in the publications of this thesis do

not guarantee asymptotic stability of the reduced models. In general, global stability

of nonlinear systems cannot be determined analytically. For this reason, stability in

an initial value and input regime of interest is commonly verified using numerical

methods. In Publication II, the biophysical network model receives stimulation

and after a period of synchronized network activity returns to resting membrane

voltages. We found that POD-DEIM and LDEIM reduced models of the system

contained instabilities that were not present in the original system. The instabilities

manifested as spontaneous or prolonged activity of the network. Using adaptive

model reduction methods such as DAPOD and ADEIM, it was possible to derive

stable reduced order models. While the adaptive methods improve accuracy, they

are not as efficient as methods that use constant reduction bases.

When modeling neuronal behavior using universal function approximators such

as recurrent neural networks, the dynamics are usually connected to a downstream

linear or nonlinear readout layer that determines model performance. The readout

may be used for classification or regression purposes, as in Publication IV. In these

architectures, the POD-DEIM model order reduction method is not aware of the

overall performance of the model. The focus is purely on approximating the dynam-

ics of the system, as we show in Publication IV. Hence, connecting the reduction

method into downstream network outputs could improve the reduction result on

the full network level. Methods such as BT and transfer function interpolation are
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more faithful in preserving the input-output response of the reduced model, but us-

ing them for accelerating nonlinear neural networks has not been shown. At present

it is not possible to establish a relationship between model reduction methods and

general neural network outputs.

An additional question concerns the applicability of MORmethods in parameter

sensitivity studies. The POD-DEIM algorithm can in principle be employed for this

purpose, as a computed basis can be used to reduce a system where parameters or ini-

tial values have changed. The BT algorithm needs to be executed from the beginning

every time parameters of the model are changed, as the solution of the Lyapunov

equations will change accordingly. The same is true for transfer function interpo-

lation methods that compute the reduced model directly from the system matrices.

Hence, BT and IRKA may not be practical for parameter sensitivity studies. All

three methods can be used for studying the effects of initial value perturbations.

The POD-DEIM method relies on collecting snapshots of the dynamics of the

high-dimensional system. Due to large number of possible states of a neuronal sys-

tem, it is practically impossible, due to time and memory constraints, to collect

a snapshot set that exhaust all possible system dynamics. Quantifying the gener-

alization capability to states for which snapshots were not gathered is a relevant

question in all POD-DEIM model reduction studies. In Publication IV, we found

that POD-DEIM can compute reduced models that work outside the snapshot set.

In Publication IV this was demonstrated in a machine learning task on data that

was not used for reduction. We found that MOR methods can perform better than

two benchmarked acceleration methods, one data-driven and one data-independent.

In Publication I we concluded that the reduced model needed higher dimensional-

ity when studying longer time scales and that generalizing outside the snapshot set

increased approximation error. While data-driven, empirical methods such as POD-

DEIM typically generate accurate reduced models for simulations in the snapshots

space, we conclude that data-dependence remains a challenge for the generalization

capability of reduced models.

To use the BT reduction method, nonlinear models of neuroscience tend to re-

quire a quadratic-bilinear lifting transformation of the system. This transformation

typically does not yield a linear weight matrix that has eigenvalues with strictly neg-

ative real parts, a requirement for solving the Lyapunov equations uniquely during

the BT method. In this case, it is necessary to artificially stabilize the lifted system
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by an eigenvalue shift [130], [150], [154]. The eigenvalue shift may allow the BT

method to find a reduced model of a system that is close to the original, but it un-

avoidably introduces an additional source of error into the reduced model. Whether

models could be designed with stability in mind, or if MOR methods can be devel-

oped to better cope with unstable systems, remains a question for future studies in

computational neuroscience and MOR method research.

6.3 Future directions

Optimizing the performance of MOR methods is an interesting future research

topic. There are a number of hyperparameters in the MOR process. For exam-

ple, the POD-DEIM method requires choosing initial values and parameters for

snapshot generation, snapshot sampling algorithm (e.g. adaptively update the set or

fixed step sampling), and dimensions of POD and DEIM bases separately. Advanced

variations like the Localized DEIM add choices such as clustering method and dis-

tance function. For BT, the algorithms for finding factorized gramians are many,

each with their own parameters. Different system stabilization schemes are available

and the input and output matrices can be augmented to guide the BT algorithm. A

study for optimizing these hyperparameters should be interesting, although it would

have to be completed on a specific model and method basis.

Several directions can be taken to optimize the speed of reduced models, which

was not a goal of the present thesis. For example, choosing the best differential

equation solver for the reduced model is not trivial, as the reduced model may be stiff

even if the original system is not, requiring different numerical treatment. Efficient

distributed and parallel computation of reduced models are interesting topics and

highly dependent on the used MOR method. In neuroscience, implementation of

reduced models on neuromorphic hardware, such as the SpiNNaker system [155],

is an exciting research direction.

A current trend is employing more and more machine learning to derive low-

order models [156]. In neuroscience, it has been shown that a deep convolutional

neural network can mimic the action potential patterns of a cortical neuron [92].

The authors provide an interesting analysis of how the learned weights map into

properties of the original model. Although it was not a primary objective of their

work, the authors observed a speedup of many orders of magnitude when using

84



their deep neural network model. While the method in [92] does not attempt to

reconstruct the original model like MOR does, several lines of research are looking

at combining machine learning and model reduction more tightly. For example,

non-intrusive methods attempt to learn ROMs without knowing the equations of the

original system [157]. Furthermore, machine learning has been used to reconstruct

the original system from a low-dimensional model [158], a clever approach for adding

nonlinearity to the MOR process. Additionally, there are promising methods for

learningODEs from data using gradient-based optimization by leveraging the adjoint

method [7], [159], [160]. Notably these methods depend heavily on training data,

even more so than the regular POD-DEIM reduction method.

It has been observed in both neuroscience (e.g. [161]) and machine learning [162]

that task-specific dynamics, such as neuronal activity during navigation, of neural

networks seem to occupy low-dimensional manifolds. The concept of using low-

dimensional subspaces for model reduction bears many similarities to the manifold

hypothesis. Future work should explore the link between model reduction and low-

dimensional population dynamics further. Being able to connect the reduction sub-

space to the physical world, similarly to how low-dimensional manifolds are cur-

rently found in high-dimensional neural networks [162], [163], would provide a

completely novel use case for MOR in neuroscience, although at the moment this

idea has not been explored in the literature.

A very promising future direction for model reduction is the lifting of general

nonlinear models into structured polynomial nonlinear form [8], [24], [25], [154].

The lifting transformation can lead into an equivalent quadratic-bilinear (QB) form

of a nonlinear state-space model, where the original variables are augmented with

complementary variables. However, there is no guarantee of the existence or unique-

ness of the lifted form, meaning that the process may not find a quadratic-bilinear

format for every model. Additionally, it is challenging to automate the lifting pro-

cess. In Appendix A we demonstrate a lifted form for a network of Hindmarsh-Rose

cells connected by Tsodyks-Markram synapses. The QB form is interesting, as some

MOR methods that were previously only applicable to linear systems have been ex-

tended to the QB case [10], [130]. In the future, cubic nonlinearities may hopefully

be in the scope of these methods, as a lifting transformation into cubic nonlinearities

is easier to find than the QB form, further extending the choice of MOR methods

for nonlinear systems.
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With regards to the publications of this thesis, we want the highlight the following

possibilities for future research questions.

For extending the work in Publication I, we propose further evaluations of the

reduced model under different stimulus conditions. Especially quantifying the per-

formance under more stimuli that were not present in the snapshot collection phase

would be an important step for validating the accuracy of the reduced model.

With the network model reduced in Publication II, it would be interesting to

explore model reduction with constraints. In our study, we reduced the complete

network as a single system. Alternatively, it could be possible to use the DEIM

algorithm to indicate the importance of nodes in the network, instead of individual

variables in the system. MOR could then be targeted only to the least important

nodes. In this manner, it may be possible to improve accuracy of the reduced system.

The main challenge is determining the important nodes, as the DEIM algorithm

does not have a notion of "aggregate" importance of multiple variables. Hence the

reduction would be suboptimal from the perspective of the POD-DEIM method,

but there may be interesting practical implications.

The model studied in Publication III can be forced into QB form if linear meth-

ods are used to compute the triple integrals over the probability density function. In

follow-up studies, model reduction could be attempted with the Balanced Trunca-

tion or Iterative Rational Krylov Approximation methods that have been extended

to QB systems. These methods would have the advantage that the snapshots of the

high-dimensional system would not be required prior to reduction.

With regards to Publication IV, where deep learning models were reduced, next

steps should focus on understanding the contribution of the (connectivity) weight

matrix to the reduction result. We observed that a network with a densely connected

weight matrix with an antisymmetric pattern was challenging to reduce. Follow-up

work could ask how the structure of the weight matrix affects reducibility, while

controlling for factors such as inputs to the system. An additional line of research

would look at connecting the classification or regression accuracy of the complete

network to the reduction process.
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7 CONCLUSIONS

Computational methods are necessary for understanding the brain [1], but the cur-

rently available hardware is not powerful enough for conducting large-scale simula-

tion studies in neuroscience [3]. The hypothesis stated in the introduction of this

thesis was that MOR methods could accelerate nonlinear neuronal network models

and network model components used in computational neuroscience. Based on the

original publications of this thesis, we can conclude that several neuroscientifically

relevant models and model types that were not previously studied can be successfully

reduced usingMORmethods. Additionally, we integratedMOR into the deep learn-

ing workflow. These new applications of MOR are expected to facilitate large-scale

simulations of the mammalian brain.

MOR is interesting, as these methods are able to approximate the complete mor-

phology and connectivity of the high-dimensional model. Earlier MOR studies in

computational neuroscience had studied the acceleration of cable equation-based sin-

gle neuron models [11], [12]. We first selected new targets for MOR in neuroscience;

a model of chemical reactions in the synapse [35], a biophysical network model [15],

a high-dimensional mean-field model [87] and two continuous-time artificial neural

network models. These models were then implemented in the state-space format

and their mathematical properties were analysed in order to choose suitable MOR

methods for accelerating the models.

We found that Proper Orthogonal Decomposition (POD) with Discrete Empiri-

cal InterpolationMethod (DEIM) [27] was the appropriate approach for accelerating

our selected models. For quadratic bilinear (QB) systems the QB extensions of the

Iterative Rational Krylov Approximation (IRKA) method [10] and Balanced Trun-

cation (BT) method [130] appear promising. QB systems are significant because

through lifting transformations [8], [24] some nonlinear systems may be brought to

this form. Moreover, we used several advanced POD and DEIM algorithms that had

not been applied in neuroscience earlier. These results should prove interesting for
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both the neuroscience and the MOR communities.

The largest acceleration results were obtained with the Fokker-Planck mean-field

model, where simulation times were improved by orders of magnitude while retain-

ing satisfactory approximation accuracy. The result is very encouraging for including

additional detail to mean-field based whole-brain simulations. For modeling chemical

reactions in the synapse, the simulation speed was halved while maintaining accurate

results. This result is meaningful for facilitating network simulations with realistic

synapse models. For networks using compartmental neurons we found that adaptive

MOR methods are beneficial, yet more work needs to be done in order to enable

accurate and efficient low-dimensional simulation of these models. For accelerating

nonlinear artificial neural networks with convolution operations, used for example

in vision research, we found that MOR methods performed better than two estab-

lished benchmark methods from the literature. For antisymmetric neural networks

receiving time-dependent input, the Oversampled DEIM [126] was needed to obtain

results on par with benchmark methods. These findings establish the usefulness of

MOR for computational neuroscience.

Application of MOR is not always straightforward. In the present moment, gen-

eral nonlinear models can only be reduced using empirical methods such as POD-

DEIM, while extensions of non-empirical methods such as BT are still being de-

veloped. Additionally, phenomenological mechanisms used in models in computa-

tional neuroscience still restrict the computational speedup that can be obtained using

MOR. Nevertheless, the benefits of MOR methods, for example the capability to

reconstruct the high-dimensional model in full after low-dimensional simulation and

the fact that MOR is not limited to specific model types, outweigh the challenges.

The future of MOR in computational neuroscience will benefit from the contin-

ued development of POD-DEIM methods. Additionally, the lifting of general non-

linear models into more structured polynomial forms will enable the use of MOR

methods that are not dependent on snapshot data like the POD-DEIM is. These

methods include the BT method and transfer function interpolation methods such

as IRKA.We are also excited about the possibilities offered by progress in deep learn-

ing, both as a reduction target and a tool towards identifying reduced models. The

largest impact of MOR methods will be achieved when the methods can be seam-

lessly integrated into neuronal simulation software. At that point, MOR methods

can push the boundaries of multi-scale model simulations beyond the current levels.
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APPENDIX A LIFTING OF A NETWORK MODEL WITH

SYNAPTIC PLASTICITY

Due to the nonlinear nature of mathematical models in computational neuroscience,

MOR approaches have been limited to either linearization-based or empirical meth-

ods like the POD-DEIM. Recent results [10], [130] extend the Balanced Truncation

(BT) and Iterative Rational Krylov Approximation (IRKA) to quadratic-bilinear

(QB) systems that are a group of nonlinear systems with a structure as

𝑥′ (𝑡) =𝐴𝑥(𝑡) + 𝐻 (𝑥 ⊗ 𝑥) +
𝑛∑
𝑖=0

𝑁𝑖𝑥(𝑡)𝑢𝑖 (𝑡) + 𝐵𝑢(𝑡)

𝑦(𝑡) =𝐶𝑥(𝑡),

(A.1)

where 𝐻 ∈ R𝑛×𝑛
2
is a matrix of coefficients of quadratic nonlinearities and 𝑁𝑖 ∈ R

𝑛×𝑛

is a matrix of bilinear coefficients. For these methods, the outputs 𝑦(𝑡) = 𝐶𝑥(𝑡) must

be linear in 𝑥(𝑡). While models of this form are scarce in neuroscience, it may be

possible to apply a lifting transformation that lifts a general nonlinear system into an

equivalent QB form. Notice that the transformation is not guaranteed to exist and

may not be unique if it exists.

The following work is not published. As a case study, we consider theHindmarsh-

Rose (HR) bursting neuron model [81] and the Tsodyks-Markram (TM) short-term

synaptic plasticity model [34] that form a large-scale network. TheHR single neuron

model is
𝑥′ (𝑡) = 𝑦 − 𝑎𝑥3 + 𝑏𝑥2 − 𝑧 + 𝑆𝐸 + 𝐼ext(𝑡)

𝑦′ (𝑡) = 𝑐 − 𝑑𝑥2 − 𝑦

𝑧′ (𝑡) = 𝑟𝑠𝑥 − 𝑟𝑠𝑥R − 𝑟𝑧,

(A.2)

where 𝑥 describes neuronal voltage and 𝑦, 𝑧 are phenomenological adaptation vari-

ables, 𝐼ext(𝑡) is injected current, 𝐸 is synaptic current and 𝑆 is a matrix of synaptic
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weights. Parameters 𝑎, 𝑏, 𝑐, 𝑑𝑟, 𝑠, 𝑥R are constant. The TM model is

𝐸 ′ (𝑡) = −𝐸𝜏−1
TM

+ 𝐴𝑢𝑥TM 𝑓 (𝑣pre)

𝑥′
TM

(𝑡) = 𝜏−1
𝐷 (1 − 𝑥) − 𝑢𝑥TM 𝑓 (𝑣pre)

𝑢′ (𝑡) = −𝜏−1
𝐹 (𝑢 −𝑈) +𝑈 (1 − 𝑢) 𝑓 (𝑣pre),

(A.3)

where 𝑥𝑇𝑀 is portion of available synaptic resources, 𝑢 is synaptic release probability,

𝑓 (·) maps the membrane voltage to a positive value mimicking a synaptic release

event and 𝜏TM, 𝜏𝐹 , 𝜏𝐷 , 𝐴 are constants. We choose 𝑓 (·) ≡ exp(𝑥−𝑥max ) with 𝑥max the

value of an action potential at its peak.

Next, we introduce auxiliary variables

𝑝 = 𝑥2

ℎ = 𝑥𝑝 = 𝑥3

𝑞 = 𝑒𝑥−𝑥max

𝑙 = 𝑢𝑞,

(A.4)

and following [24] calculate their time derivatives to obtain a QB system

𝑥′ (𝑡) = 𝑦 − 𝑎ℎ + 𝑏𝑝 − 𝑧 + 𝑆𝐸 + 𝑢(𝑡)

𝑦′ (𝑡) = 𝑐 − 𝑑𝑝 − 𝑦

𝑧′ (𝑡) = 𝑟𝑠𝑥 − 𝑟𝑠𝑥R − 𝑟𝑧

𝐸 ′ (𝑡) = − 𝐸/𝜏𝑇𝑀 + 𝐴𝑙𝑥𝑇𝑀

𝑥′𝑇𝑀,𝑖 (𝑡) = (1 − 𝑥TM)/𝜏𝐷 − 𝑥TM𝑙

𝑢′ (𝑡) = 𝑈 (𝑞 − 𝑙) − (𝑢 −𝑈)/𝜏𝐹

𝑝′ (𝑡) = 2𝑥𝑥′

= 2(𝑥𝑦 − 𝑎𝑝2 + 𝑏ℎ − 𝑧𝑥 + 𝑆𝐸𝑥 + 𝑢(𝑡)𝑥)

ℎ′ (𝑡) = 3𝑥2𝑥′

= 3(𝑝𝑦 − 𝑎𝑝ℎ + 𝑏𝑝2 − 𝑧𝑝 + 𝑆𝐸 𝑝 + 𝑢(𝑡)𝑝)

𝑞′ (𝑡) = 𝑞𝑥′

= 𝑦𝑞 − 𝑎ℎ𝑞 + 𝑏𝑝𝑞 − 𝑧𝑞 + 𝑆𝐸𝑞 + 𝑢(𝑡)𝑞

𝑙′ (𝑡) = 𝑞𝑢′ + 𝑢𝑞′

= 𝑙𝑥′ +𝑈 (𝑞 − 𝑙)𝑞 − (𝑙 −𝑈𝑞)𝜏−1
𝐹

(A.5)
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that is equivalent to the original nonlinear model in the original state variables, but

also includes ODEs for the lifted variables. Additionally, the inputs and outputs of

the lifted system have not changed, so the lifted system admits the original controls

and readouts. In [24], [25] it is also discussed how to arrive at a system of differential

algebraic equations, however these systems are more challenging to simulate and

reduce than ODEs. The dimension of the lifted system has grown, but the QB

format yields itself to model reduction algorithms that were not applicable in the

original nonlinear form, such as [10], [130].

The systemmatrix 𝐴 of the lifted model has zero eigenvalues. This means that BT

methods may not yield reduced models if applied to this system directly. A solution

is to apply artifical stabilization to the state matrix. We may write

𝐴𝑠 = 𝐴 − 𝜎𝐼, (A.6)

where 𝜎 is a small constant. By subtracting from the diagonal of 𝐴, we create a new

matrix 𝐴𝑠 that has eigenvalues shifted towards negative real parts. After obtaining

the reduction matrices using 𝐴𝑠, the actual reduced system may be computed from

the original system matrix 𝐴. This introduces minor error into the reduced model,

but we can now apply BT as in [130]. With this result, we are a step closer to

reducing biophysical neuronal networks in a data independent manner.
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1. INTRODUCTION

Dimensionality reduction is a commonly used method in
engineering sciences, such as control theory, in improving
computational efficiency of simulations of complex non-
linear mathematical models. In the field of neuroscience,
there is a great demand to incorporate molecular and cellu-
lar level detail in large-scale models of the brain in order to
reproduce phenomena such as learning and behavior. This
cannot be achieved with the computing power available
today, since the detailed models are complex and often
computationally too demanding for large-scale network or
system level simulations.

In the field of systems biology, models are typically simpli-
fied by completely eliminating variables, such as molecular
entities, from the system, and making assumptions of the
system behavior, for example regarding the steady state
of the chemical reactions. However, this approach is not
suitable for the current trend in neuroscience, in which
multiple physical scales of the brain are incorporated in
simulations and the consequent analysis of neural phe-
nomena. Instead comprehensive models with full system
dynamics are needed in order to increase understanding of
different actors in one brain area.

The information loss typically induced by eliminating
variables of the system can be avoided by mathematical
reduction methods that strive to approximate the entire
system with a smaller number of dimensions compared to
the original system. Here we demonstrate the effectiveness

of mathematical model order reduction methods in ap-
proximating the behavior of all the variables in the original
system by simulating a model with a radically reduced
dimension.

In this study, mathematical model reduction is applied in
the context of an experimentally verified signaling pathway
model of plasticity. This nonlinear chemical equation based
data-driven model was published in Kim et al. (2013),
and it describes the biochemical calcium signaling steps
required for plasticity, and hence for learning, in the sub-
cortical area of the brain. In addition to nonlinear charac-
teristics, the model includes time-dependent terms, which
pose an additional challenge both computational efficiency
and reduction wise. The chosen biophysical model is one of
the most comprehensive models out of those that are cur-
rently able to explain aspects of plasticity on the molecular
level with chemical interactions and the law of mass action.
The original model is too detailed for utilization in large-
scale network simulations, which serves as motivation for
the present study. Moreover, with this case study the aim
is to demonstrate that the behavior of the model can be
analysed faster yet with satisfactory accuracy by using a
reduced order model.

The model order reduction method employed in this study
is Proper Orthogonal Decomposition with Discrete Em-
pirical Interpolation Method (POD+DEIM), a subspace
projection method for reducing the dimensionality of non-
linear systems. By applying these methods, the simulation
time of the plasticity model is radically compressed al-
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though approximation errors are present if the model is
reviewed on large time scales. The tolerated amount of
approximation error depends on the final application of
the model. Based on these promising results, POD+DEIM
are recommended for dimensionality reduction in compu-
tational neuroscience.

Algorithms to achieve the elimination-type reduction for
nonlinear neuronal models have been proposed for instance
in Woo et al. (2005), Sorensen and DeWeerth (2006)
and later in Shin et al. (2009). However the studies rely
on several assumptions of the model structure and are
only suitable in very specific scenarios. Recently, a vari-
able elimination strategy was used to reduce a model of
astrocyte metabolism in Diekman et al. (2013). Addition-
ally, mathematical reduction of neuronal dendrite using
a linearization approach has been performed in Kellems
et al. (2009) and a nonlinear model discretized from partial
differential equations has been reduced in Du et al. (2014).

An empirical interpolation method for reducing the com-
plexity of nonlinear functions was first proposed by Bar-
rault et al. (2004). The discrete version Discrete Empir-
ical Interpolation Method (DEIM) was then introduced
in Chaturantabut and Sorensen (2010). The previous five
years have seen DEIM developed further with localized,
adaptive and stability conserving variants in Peherstorfer
et al. (2014); Peherstorfer and Willcox (2015); Amsallem
and Nordström (2016) as well as a monotonicity preserving
variation for reaction diffusion systems in Chaturantabut
(2016). DEIM is a method that complements POD by
reducing the nonlinear term so that together the two arrive
at a reduced model which no longer depends on the original
dimension of the system. Alternatively, DEIM can be used
for standalone reduction of nonlinear functions.

2. PLASTICITY MODEL

We study a mathematical model of signaling pathways in
striatal synaptic plasticity by Kim et al. (2013). The model
is specific for the basal ganglia area of the brain and it de-
scribes how certain molecules in intercellular information
transfer points of neurons, synapses, are responsible for
plasticity, which is presumably a prerequisite for learning
in the brain. It is a biophysicochemical model that is based
on experimental data. Originally the model was employed
in studying the effects of different stimuli to the synapse
and how they could direct plasticity. Additionally, the pre-
dictions from the model have been verified experimentally
and the model itself is based on validated experimental
data.

The model is based on chemical reactions of the molecules
in the synapse. The stoichiometric equations obey the law
of mass action, which leads to a deterministic system of
ordinary differential equations. Our implementation of the
model contains n = 44 ordinary differential equations.

The model has two external stimulus variables, calcium
ion (Ca) and neurotransmitter glutamate (Glu). The state-
space model is of the form

ẋ(t) =A(t)x(t) + F (x(t)) + B ·Glu(t)

=(A0 + A1Ca(t) + A2Ca(t)2 + A3Glu(t))x(t)+

F (x(t)) + B ·Glu(t)

(1)

and the system is nonautonomous due to a Ca stimulus
being part of A(t). In our simulations, both Ca and
Glu stimuli are fixed functions in the model reduction
and testing phases. If Glu and Ca are considered inputs
to the system, the result is a nonlinear control system,
which additionally has bilinear characteristics. The five
first equations of the model are

ẋ1 =kprodAGc
· x4 − kdegAGf

· x1

ẋ2 =kPMCAc
· x15 + kNCXc

· x11 − kLeakf
· x2 · x36+

kLeakb
· x10

ẋ3 =kbufferf · Ca(t) · x19 − kbufferb · x3

ẋ4 =kprodAGf
· x21 · x7 − kprodAGb

· x4 − kprodAGc
· x4

ẋ5 =kDAG3c · x8 − kDAG4f · x5,
(2)

and they illustrate the nonlinearity of the system in
equation of ẋ2, and the time-dependence of the system
in the equation of ẋ3. In Equation (2), terms kn represent
constants and xn chemical species. This nonlinear system
has a sparse linear part and includes a time dependent
stimulus. In the numerical implementation of the model,
the linear coefficients, nonlinear function and external
inputs of the system are separated.

For the following analysis five biologially interesting
species included in the model were chosen as outputs of
the system to be studied in more detail. These were 2-
arachidonoylglycerol (Agpost), external calcium (Caext),
diacylglycerol (DAGpost), G protein with α, β and γ
subunits (Gabgpost) and phospholipase C (PLCpost). In
the present model these species are also included as state
variables. Their behavior is significant as these substances
can connect the current model to a larger, even more
detailed model and they are known to be active influencers
in the two forms of plasticity, LTP (long term potentiation)
and LTD (long term depression) (see Manninen et al.
(2010); Hellgren-Kotaleski and Blackwell (2010)).

3. MODEL REDUCTION USING POD AND DEIM

In this section we outline the Proper Orthogonal Decom-
position (POD) (see Lumley et al. (1993); Sirovich (1987);
Kellems et al. (2009, 2010); Benner et al. (2015)) and Dis-
crete Empirical Interpolation Method (DEIM) (see Chat-
urantabut and Sorensen (2010)) that are used to reduce
the order of the quadratic and nonautonomous model
discussed in Section 2. POD is a well-known method that
is used in model reduction of various types of differential
equations, partial differential equations and dynamical
systems.

The underlying idea of the POD method is to project
the system (1) onto a subspace so that the reduced
system approximates the dynamical behaviour of (1) in
the best possible way in the sense of least squares. The
POD reduction procedure is begun by simulating the full
system (1) and choosing “snapshots” x(tj) of the state

of the system at equally spaced time instances (tj)
Ns
j=1 ⊂

[0, T ] where T > 0 is the length of the time interval
(see Sirovich (1987)). The POD reduction replaces the
system (1) with an approximate system on the space
spanned by the first 1 ≤ k ≤ n singular vectors of the
matrix S = [x(t1), . . . , x(tNs

)] ∈ R
n×Ns . In particular, if
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S = V ΣW ∗ is the singular value decomposition of S and
Vk consists of the first k columns of V , then the POD
reduced order model of (1) has state xk(t) = V ∗

k x(t), and
its dynamics are determined by the Galerkin projection

ẋk(t) = V ∗
k A(t)Vkxk(t) + V ∗

k F (Vkxk(t)) + V ∗
k Bu(t), (3)

where u(t) is the input vector.

The main drawback of the reduced model (3) in terms of
computational efficiency is that the function F (Vkxk(t))
appearing in the nonlinear term needs to be evaluated
for a full-sized vector Vkxk(t) ∈ R

n×n with n = 44. The
computational cost of evaluating the nonlinear term can be
reduced by approximating the function F using the DEIM
procedure.

DEIM extends POD with an interpolation step for nonlin-
ear terms of the model, while also maintaining a subspace
projection approach. The construction of the DEIM ap-
proximation begins with the construction of the so-called
DEIM modes, vectors Um = [u1, ..., um] ∈ R

n×m. The
matrix Um consists of the first m ≤ n left-singular vectors
of the matrix [F (x(t0)), . . . , F (x(tNs

))] (these columns of
the DEIM projection matrix can be collected during the
generation of the snapshots in the POD reduction process
to minimize offline computational burden of DEIM).

In the second step of the DEIM procedure we define

P = [e℘1
, ..., e℘m

] ∈ R
n×m, (4)

where e℘j
∈ R

n are the columns of the identity matrix
I ∈ R

n×n and where {℘1, ..., ℘m} is a set of interpolation
indices. The indices {℘1, ..., ℘m} are chosen based on the
columns of Um using the algorithm presented in (Chatu-
rantabut and Sorensen, 2010, Algorithm 1). By construc-
tion the matrix PTUm ∈ R

m×m is nonsingular.

The function F : R
n → R

n is of the form F (x) =
[f1(x), . . . , fn(x)]T , where fj : Rn → R for j ∈ {1, . . . , n}.
We define Fm : R

n → R
m such that Fm(x) =

[f℘1(x), . . . , f℘m(x)]T . Finally, the DEIM approximation of
the nonlinear term F (Vkxk(t)) in the POD approximation
is given by

F(k,m)(Vkxk(t)) = V T
k Um(PTUm)−1Fm(Vkxk(t)), (5)

where the matrix V T
k Um(PTUm)−1 ∈ R

k×m can be com-
puted in the offline stage. The computational savings of
the DEIM approximation result from the fact that in the
function F(k,m)(·) we only need to evaluate m component
functions of the original nonlinear function F (·).
The final reduced order form of the system (1) becomes

ẋk(t) = Ak(t)xk(t) + F(k,m)(Vkx(t)) + Bku(t),

where xk(t) = V ∗
k x(t), Ak(t) = V ∗

k A(t)Vk, Bk = V ∗
k B, and

F(k,m) is defined in (5).

The orders k and m of the POD and DEIM model
reductions can be chosen independently of each other.

4. SIMULATION RESULTS

In order to compare the original model versus POD+DEIM
reduced models the simulation speed and error of sev-
eral subspace dimensions were measured. The original
and reduced ordinary differential equation systems were
simulated in Matlab for time span t = [0, 10000] using
the variable time step ode15s solver for stiff differential

equations. For each POD dimension k = 2 : 2 : 40 (Matlab
notation), DEIM dimension m = 5 : 5 : 30 reduced mod-
els were calculated. For each combination, 20 simulations
were performed and their average computation times and
system solutions at each time step were stored.

RMS error for all variables summed

Fig. 1. Root mean square error between the original
model and reduced order solutions. X-axis shows POD
dimension and y-axis the error on logarithmic scale.
Each distinctly colored plot corresponds to different
dimensions used in DEIM.

Figure 1 shows the root mean square (RMS) error between
the full dimension model and different reduced models of
each POD+DEIM combination. The y-axis contains the
error values on a logarithmic scale, while x-axis indicates
the number of POD dimensions. Each line in the plot cor-
responds to a DEIM dimension. RMS error was calculated
by

eRMS =

√√√√1

k

k∑
n=1

(Y − Ỹ )2 (6)

where Y is the matrix of solutions of the original system,
Ỹ = VkYreduced is the matrix of reduced order simulation
results transformed back into the original space and k is
the number of elements in the matrices.

From Figure 1 it is seen that regardless of the DEIM mode,
or the nonlinear dimensionality, the error decays exponen-
tially until POD dimension 15 is reached. This suggests
that more than 15 POD dimensions is not necessary ben-
eficial for a reduced order model, since the accuracy will
not improve with additional dimensions. Depending on the
application, as little as five to ten dimensions could be
sufficient for simulating this model while keeping the error
tolerable. Moreover the RMS error is seen to not depend
radically on the DEIM dimension. Increasing the DEIM
modes from 5 to 10 reduces the error if the POD mode is
already over 15. This suggests that the linear part of the
model that is reduced with POD is dominant in terms of
approximation error and that the interpolation approach
to reducing the nonlinear complexity is effective.

Figure 2 displays the relative computational advantage
gained from the reduced model in terms of simulation
speed. In the figure, the simulation time of the original
full dimension model is plotted as a straight red line.
From Figure 2 it is seen that the simulation time is
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Mean simulation times (20 runs)

Fig. 2. Mean simulation times of 20 executions of each
POD+DEIM reduced model compared to the original
model, plotted as a straight red line. The y-axis shows
the simulation time in seconds, and x-axis shows
the POD dimension. Each colored plot corresponds
to a DEIM dimension. Simulation time interval was
t = [0, 10000].

approximately halved by using 20 DEIM modes, which
corresponds to halving the original dimension (44) of the
nonlinear term. The simulation times depend on POD
reduction only when less than 15 modes are chosen. In
summary, for this model, the nonlinear term is the largest
computational burden, since reducing it has the largest
effect on simulation times.

Figure 3 displays how the dynamics of selected output
species given by the reduced order model (red line) com-
pared to the original model (blue line) in the first 5000
seconds. Here y-axis shows the concentration of each sub-
stance and x-axis the time. Analyzing the solutions in
this format is important, for the absolute error measured
earlier does not take into account how the error as a
function of time is affected by dimension reduction. In the
context of neural models, it is important that the dynamics
are preserved. For example, information transmission via
calcium signaling between astrocytes and neurons has been
demonstrated to be amplitude and frequency modulated
in Wade et al. (2011), so even a slight defect might cause
the higher level behavior of the model to change.

The concentrations of molecular species participating in
specific signaling pathways are difficult, or sometimes im-
possible to measure, which emphasizes the importance of
modeling the dynamics of signaling pathways. The exper-
imental challenge is related to measurement techniques:
to this day there is no direct way to estimate the exact
concentrations of molecular entities in as a function of
time nor the possible variability of molecular entities. The
changes in concentrations are measured, as an example,
using fluorescent Ca2+ indicators which do not directly
give absolute concentrations. For some of the variables de-
scribed in this study, such as the calcium, some estimates
of measures can however be obtained from theoretical
studies. The average volume of a spine is 1 fl and resting
level concentration of Ca2+ is 0.1 μM , which means that
there are about 60 calcium ions in one spine. Moreover, it
has been estimated that when 100 calcium ions enter into

the spine head, it increases the calcium concentration in
the spine from 100 to 300 nM (depending on the volume
of the spine), which corresponds to the physiological range
of increases (see Majewska et al. (2000); Holcman et al.
(2004)).

Output variables (POD 10 DEIM 5)

Fig. 3. Solutions of the dynamics of the selected biolog-
ically interesting output variables. Five species were
tracked and their behavior plotted as a function of
time. The y-axis displays the concentration of each
ion/molecule. Blue line is the original model, and red
is the approximation from the reduced order model
with 10 POD and 5 DEIM modes.

However, the reduced order is not able to predict the
behavior of the system when a simulation time longer
than the training time is used. In order to test whether
a low number of POD modes would be able to perform
a near-correct approximation for a very long time span if
the snapshots were also taken from a prolonged simula-
tion, new reduced models were generated. The employed
simulation time was 5 ∗ 109 seconds. Figure 4 shows the
approximation with 10 POD and 5 DEIM modes and it
is seen that Gabgpost and PLCpost significantly different
from the correct solution. However, a very good approxi-
mation was obtained with 30 POD and 10 DEIM modes,
which is seen in Figure 5, while almost maintaining a
simulation time of one third of the original model. The
reduced model has gained more pronounced oscillations,
although their amplitude is extremely low. Moreover, the
steady state concentrations are physiologically very close
to the original and in an acceptable range considering
the inherent errors a deterministic model such as the one
studied here always has. Whether the errors seen here
would affect the behavior of a multi-scale model remains
a question for another study.

The magnitude of the errors with a long simulation time
was further studied using the absolute and relative errors
between the original model and the 30 POD 10 DEIM
reduced model. The errors are visualized in Figure 6 and
Figure 7. The absolute errors are small, with the size being
less than 10−6 for all species except calcium, where the
range is approximately 10−2. The relative errors for PLC
and Gabg confirm that the observed variation is extremely
small. The relative errors for AG, Caext and DAG on
the other hand display oscillations in the reduced order
model and additionally, are in a different magnitude than
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Fig. 4. Behavior the reduced order model in a long duration
simulation using ten POD and five DEIM modes. Blue
line is the original model and red is the reduced model
for each output variable. The simulation time was
5 ∗ 109 seconds.
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Output variables (POD 30 DEIM 10)
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Fig. 5. Behavior the reduced order model in a long duration
simulation using 30 POD and 10 DEIM modes. Blue
line is the original model and red is the reduced model
for each output variable. The simulation time was
5 ∗ 109 seconds.

the two other output species, achieving 108. However, the
magnitude can be explained by numerical inaccuracy of
the denominator, since the true concentration reaches zero
at all points where a high error is seen, except at the
very beginning of the simulation where stimulus is applied.
Moreover, the relative error indicates that these three
species correctly predict the steady state concentration,
eventually, seen as the error degrading to zero.

To conclude, good results are achieved when the reduced
order model is trained in a matching time interval to the fi-
nal use case. The greatest challenge for the present method
is generalizing the reduced model to longer time intervals.
This issue is possibly solved by more recent improvements
of the DEIM algorithm introduced in Peherstorfer et al.
(2014) and Peherstorfer and Willcox (2015).

5. CONCLUSIONS

In this study Proper Orthogonal Decomposition and Dis-
crete Empirical Interpolation Method (POD+DEIM) was

Fig. 6. Relative error between the 30 POD and 10 DEIM
modes reduced model and the original model at every
106 seconds when simulated for 5 ∗ 109 seconds.

Fig. 7. Absolute error between the 30 POD and 10 DEIM
modes reduced model and the original model at every
106 seconds when simulated for 5 ∗ 109 seconds.

applied to a data-driven biological model of plasticity in
the brain. Five important molecules and ions were chosen
for analysis, since these species have the greatest potential
to link the model to a larger system comprising more brain
areas and features of the multi-scale neural system.

Model order reduction is an essential process for improv-
ing the scale and quality of future computational models
of the brain. Moreover, reduction methods will become
increasingly important when models representing other
mammalian species, such as rat and mouse, will be ex-
tended into human models. Although many methods of
model reduction exist, subspace projection methods show
most promise for they can be automatically applied, have
adjustable error bounds and scale to virtually any size
of system without compromising variables in the model.
Additionally, they are applicable to nonlinear systems,
either directly or via linearization, which greatly increases
their applicability to complex models in neuroscience.

Model reduction with POD+DEIM was found to signifi-
cantly reduce the simulation time. An additional benefit
is that the approximation can be tuned by adjusting the
POD and DEIM dimensionality independently. However,
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the reduced order model did not achieve a perfect repro-
duction of the solutions of the original model in long time
intervals and the steady states also had slight deviations
from the original model. Whether the observed error is
tolerable depends on the final purpose of the model.

DEIM has already been developed further and future stud-
ies are needed to test the effectiveness of these new vari-
ations of the algorithm. The recently published Localized
DEIM looks extremely promising for maintaining a low
number of approximation modes for widely varying model
parameters, given that the conditions were present in the
offline training phase of POD+DEIM (Peherstorfer et al.
(2014)). Moreover, the adaptive version ADEIM is able
to react to unanticipated behavior on the online stage of
a simulation by efficiently querying the original system
(Peherstorfer and Willcox (2015)). All in all, subspace
projection methods seem suitable for reducing the dimen-
sionality of signaling pathway models in neuroscience.
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Projection-based order reduction of a nonlinear biophysical neuronal
network model

Mikko Lehtimäki, Lassi Paunonen and Marja-Leena Linne

Abstract— In this study mathematical model order reduction
is applied to a nonlinear model of a network of biophysically
realistic heterogeneous neurons. The neuron model describes a
pyramidal cell in the hippocampal CA3 area of the brain and
includes a state-triggered jump condition. The network displays
synchronized firing of action potentials (spikes), a fundamental
phenomenon of sensory information processing in the brain.
Simulation of the system is computationally expensive, which
limits network size and hence biological realism. We reduce the
network using advanced variations of Proper Orthogonal De-
composition and Discrete Empirical Interpolation Method. The
reduced models should recreate the original spiking activity. We
show that reduction methods with online adaptivity achieve the
most accurate reduction results. Some of the reduced models
consume less computational resources than the original, at the
cost of changes in population activity of the tested network
model.

I. INTRODUCTION

In the field of neuroscience, there is a great demand to
incorporate molecular and cellular level detail in large-scale
models of the brain in order to recreate phenomena such
as learning and behavior [9]. This cannot be achieved with
the computing power available today, since detailed models
are complex and often computationally too demanding for
large-scale network or system level simulations. Model order
reduction (MOR) is a mathematical method for improv-
ing computational efficiency of simulations of mathematical
models. However, in computational neuroscience the use of
MOR is not common. Instead, efficient models are typically
derived by eliminating variables and making assumptions of
system behavior.

Neuronal activity can be modeled in detail with the
Hodgkin-Huxley (HH) formalism [10]. Less detailed, sim-
plified neuron models are motivated by computationally effi-
cient large scale simulations [11]. Morphologically accurate
models of branching neurons have been simplified algorith-
mically to derive efficient models [15], [16]. However, the
simplification approach is not suitable for the current trend in
neuroscience, in which multiple physical scales of the brain
are incorporated in simulations and the consequent analysis
of neural phenomena. Instead comprehensive models with
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full system dynamics are needed in order to increase under-
standing of different actors in one brain area.

In this paper, we study the effectiveness of MOR methods
to reduce a nonlinear biophysical network model describing
synchronized population bursting behavior of heterogeneous
pyramidal neurons in the brain [21]. Modeling studies in
computational neuroscience are typically interested in the
spatial and temporal evolution of the membrane voltage of
neurons. Neurons communicate by swiftly changing their
membrane voltage to create action potentials (spikes) that
propagate from cell to cell. Spiking is the fundamental
method of sensory information processing in the brain, and
synchronized spiking is an emergent property of biological
neuronal networks. MOR should preserve this network be-
havior. Here we reduce the network model with four varia-
tions of Proper Orthogonal Decomposition (POD) [14] and
Discrete Empirical Interpolation Method (DEIM) [4] that are
developed to reduce nonlinear systems. These methods are
DEIM, Localized DEIM (LDEIM) [18], Discrete Adaptive
POD (DAPOD) [28] and Adaptive DEIM [20]. DEIM and
the variations are used here in combination with POD.

The neurons in our network model feature a state-triggered
jump condition. Such resets are often used in simplified
neuron models to efficiently simulate the spiking behavior
of a neuron [11] as an alternative to explicitly modeling ion
channel kinetics. In the present model, the jump condition
implements a biological boundary to ions that are in limited
supply in the neural matter.

Many versions of DEIM have been developed. Unassem-
bled DEIM improves the reducibility of finite element mod-
els [24]. Matrix DEIM improves the efficiency of evaluating
the Jacobian matrix [26]. Localized DEIM uses machine
learning to compute multiple reduced bases offline and
choose between them in the online phase appropriately [18].
Temporally Localized DEIM, a recent approach to rapidly
changing local subspaces was introduced in [3]. Adaptive
DEIM with online updates to the DEIM basis and inter-
polation points has been developed to better handle unseen
states in the simulation phase [20]. Non-negative DEIM adds
structure preservation guarantees to the reduced model [1].
Furthermore, several recent studies address the performance
of DEIM in noisy environments and propose randomized
oversampling and QR-decomposition inspired basis compu-
tation methods [6], [19]. Finally, an algorithm that adapts
the POD basis online, Discrete Adaptive POD, has been
published [29]. It can be combined with many of the DEIM
algorithms. Our reduction methods in choice are described
in detail in Section III.



Mathematical MOR of nonlinear systems in neuroscience
has been studied before in limited settings. Kellems et al.
(2010) reduced a partial differential equation (PDE) model
that described a single branching neuron with HH dynam-
ics [12]. They compared how an action potential travels from
stimulus injection point along the neuron in the original and
reduced models, using POD-DEIM as the MOR method.
Du et al. (2014) built on the work of Kellems et al. by
including linearization of weakly excitable (passive) parts of
the neuron [7]. Amsallem and Nordström (2016) studied a
branching neuron and introduced stability and nonnegativity
properties to the reduced basis [1]. Finally, Lehtimäki et al.
(2017) reduced a chemical reaction based nonlinear model
of synaptic plasticity [13] using POD-DEIM.

Nonlinear MOR studies of population activity of neurons
have been conducted to model the cardiac and muscular
systems. A model of electrical properties of the cardiac
system has been reduced in [2] via POD and in [27] via
POD-DEIM. Both studies used a simple phenomenological
neuron model. Additionally, POD-DEIM has been employed
in reduction of bidomain and monodomain electromyography
models describing muscle fibers in [17], [8], where the more
biophysically accurate HH formalism was employed.

In Section II we describe the biophysics and construction
of the network model. Section III explains our MOR ap-
proach and methods in more detail. Our results are presented
in IV and we conclude by discussing the significance of
our work and ideas for future studies in sections V and VI,
respectively.

II. BIOPHYSICAL NETWORK MODEL

The biophysical network model describes pyramidal neu-
rons from the CA3 area of the hippocampus [21]. The
morphology of the cell is considered by a spatial modeling
approach, where the cell is split into compartments, and the
membrane voltage of each compartment is coupled with the
voltage of adjacent compartments via electrotonic coupling
as described by the neuronal cable theory [22]. Each neuron
is modeled in a biophysical manner, so that the membrane
voltage of one compartment behaves according to ionic
currents in HH formalism [10]. Ion channels model the active
propagation, and cable theory models the passive propagation
of membrane potential along the cell. The single-cell model
itself is a simplified version of an originally 19 compartment
model of the same cell type [25].

A network of these cells is formed by coupling them in
a random, directed graph manner. The interesting property
of the modeled network is its capability to bring about and
sustain periodic, oscillating population level activity, where
neurons spike in their somas in a synchronized manner.
We wish to determine whether this behavior is preserved
throughout the MOR process.

Each single cell model consists of ten ordinary differential
equations (ODEs). The ODE of the somatic membrane

potential Vs is

Cm
dVs

dt
=− Ileak(Vs)− INa(Vs,m, h)− IK−DR(Vs, n)

+
gc
p
(Vd − Vs) +

Is
p
,

(1)
where Vd is the voltage of the dendritic compartment, Ileak
is a leak current, Is is an injected current, INa is a sodium
current, IK−DR is a potassium delayed rectifier current, m,h
and n are HH-type voltage gated ion channel activation
variables of sodium and potassium (delayed rectifier), gc is
the electrotonic coupling conductance between the two com-
partments and p is the relative size of the soma compartment.

The ODE of the dendritic compartment is comparable
to the somatic compartment, however in place of sodium
currents and potassium delayed rectifier current the voltage
of the dendritic compartment depends on calcium, calcium-
activated potassium and afterhyperpolarization potassium
currents. Their respective activation variables are s, c and q.
Additionally, excitatory synaptic currents from NMDA (S)
and AMPA (W ) are included. Moreover, Ca in the dendritic
compartment as well as the synaptic AMPA and NMDA
concentrations are modeled with their respective ODEs. [21]

The kinetics of the gating variables h, n, s, c and q are
modeled by ODEs of the form

dy

dt
=(y∞(U(t))− y)/τy(U(t)), (2)

where U(t) is either the somatic or dendritic membrane
voltage or calcium (Ca) concentration at time t, depending
on the gating variable, and

y∞ =αy/(αy + βy) (3)

and
τy =1/(αy + βy) (4)

where αy and βy are distinct for every gating variable
m,h, n, s, c. For example, for gating variable n we have

αn =
0.016(35.1− Vs)

e(35.1−Vs)/5−1
,

βn =0.25e0.5−0.025Vs ,

hence the model contains very fast nonlinear dynamics. The
sodium activation gate m is instantaneous and is modeled
only with Equation 3.

The ODE of the NMDA concentration is particularly
interesting as it is connected to a reset condition that keeps
the value of S bounded so that

dS

dt
=
∑

jH(Vs,j − 10)− S/150,

S(t) =min(S(t), 125),
(5)

where Vs,j is the somatic voltage of the synaptic connection
from cell j and H(x) = 1 if x ≥ 0 and 0 otherwise. The
constants keep S(t) in a biologically justified range. From
this equation the nonlinear nature of synaptic connections
is also apparent. For full details of the single cell model,



see [21] and for an implementation that accounts for the
errata of the original publication, see [5].

Our network model consists of heterogeneous neurons.
The calcium conductance in the dendritic compartment can
vary by 10%, with the amount drawn from the uniform
distribution. Each cell receives synaptic input from 20 other
randomly chosen cells. We use in total 50 cells, obtaining
an ODE system of 500 variables. To study the population
behavior we use numerical integration with fixed step 4th
order Runge-Kutta method. One cell is stimulated with a
current pulse at t = 5ms for t = 50ms and the simulation
is executed for 1000ms with a timestep of dt = 0.02ms.
To measure population behavior, at each time instance the
number of cells that are spiking is counted. An action
potential (membrane voltage spike) is considered to occur
when a threshold level is exceeded. Here, the threshold is
Vt = −40mV, as in [21].

The network model we study is nonlinear with

x′(t) =Ax(t) + f(x(t)) +Bu(t), (6)

where A is the state matrix, B is the input matrix, u(t) is
a vector of time dependent inputs and f(x(t)) is a vector
of nonlinear functions. A ∈ R10ν×10ν and B ∈ R10ν×4ν

are block diagonal matrices composed of the state and input
matrices of the cells in the network, and f(x(t)) ∈ R10ν ,
where ν is the number of cells in the network. The system
has a stable steady state where each cell in the network is
at resting potential, thus no cell is spiking, and if the system
is stimulated with current injection every cell will eventually
return to the resting potential after the stimulus has stopped.

III. MODEL ORDER REDUCTION

We create reduced order models (ROMs) with variations
of POD [14] and DEIM [4]. These methods are applicable to
general nonlinear systems and their suitability to models with
Hodgkin-Huxley type ion channel kinetics has been studied
before in [1], [7], [8], [12], [17]. Furthermore, we wish to
avoid linearizations, since for the present system it is very
challenging to determine robust linearization points. These
methods also allow the implementation of reset conditions
that are a part of the studied model, similarly as in [2].

POD is a projection based MOR method that approximates
the original n dimensional system in a reduced order linear
subspace. A reduced basis with orthonormal column vectors
Vk ∈ Rn×k where k < n is determined using singular value
decomposition (SVD). This POD basis is constructed from
snapshots Y = [y1, y2, · · · , ys] that are a set of solutions
to the original system [23]. By setting x(t) ≈ Vkx̃(t) and
projecting the system described in Equation 6 onto Vk by
Galerkin projection, a reduced system

x̃′(t) =V T
k AVk︸ ︷︷ ︸

Ã

x̃(t) + V T
k f(Vkx̃(t)) + V T

k B︸ ︷︷ ︸
B̃

u(t)
(7)

is obtained. In Equation 7 Ã and B̃ can be precomputed
before the online (simulation) phase. However, while POD
itself can be applied to nonlinear systems, there is no

guarantee of computational savings as the nonlinear part of
the system must be evaluated in the original space.

Efficient evaluation of the nonlinear term can be achieved
with DEIM [4]. DEIM extends the subspace projection
approach of POD with an interpolation step for nonlinear
functions. To construct a reduced order approximation of the
nonlinear vector, the algorithm determines

f̃(x, t) ≈ Um(PT
mUm)−1PT

mf(x, t), (8)

where the DEIM basis Um = [u1, u2, · · · , um],m < n is de-
termined via SVD of snapshots of nonlinear function outputs,
PT
mf(x, t) := fm(x, t) is a nonlinear function with m com-

ponents chosen from f according to DEIM determined in-
terpolation points p1, · · · , pm and Pm = [ep1

, ep2
, · · · , epm

]
with epi

being the standard basis vector i of Rn. Note that
the POD dimension k and DEIM dimension m do not need
to be equal, although empirically it has been observed that
k = m leads to most accurate reduced models [8], [19].
Together POD and DEIM form a ROM

x̃′(t) =Ãx̃(t) + V T
k Um(PTUm)−1︸ ︷︷ ︸

N

fm(Vkx̃(t)) + B̃u(t),

(9)
where N can be precomputed in the offline phase. Thus in
the online phase it remains to compute Vkx̃ so that fm can
be evaluated at the m interpolation points.

Each cell in the network model has a state determined
jump condition, as seen in Equation 5. This condition must
be checked at every evaluation of the state of the system.
To determine the jump condition, the reduced state vector
x̃ must be projected to the original space. Numerically
we implement this check before every evaluation of the
nonlinear vector fm(x, t), that also requires the state in the
original space. However, after resolving jump conditions the
state needs to be projected back to the reduced space in
order to evaluate Ãx̃, which creates an extra computational
step that would not be otherwise required. The cost of this
step depends on the chosen POD dimension k.

A. Versions of the Discrete Empirical Interpolation Method

In addition to DEIM as described in [4] we test the effi-
cacy of Localized Discrete Empricial Interpolation Method
(LDEIM) [18]. In LDEIM, a clustering algorithm is em-
ployed in the offline phase to group solution snapshots be-
fore DEIM basis generation. Several bases and interpolation
points (Um1

, Pm1
), · · · , (Ump

, Pmp
) are computed to obtain

a set of local bases, one from each cluster of snapshots,
in contrast to the global basis used in DEIM. Each local
basis has the same dimension, and LDEIM should achieve
a similar error estimate as a global basis but with a smaller
dimension. In the online phase a local precomputed DEIM
basis is chosen adaptively. The features used to derive
and choose the bases are a subset of outputs from the
nonlinear function. LDEIM requires the number of clusters
and features as user defined parameters, and the size of the
feature vector is a decision between classification power
and computational efficiency. The premise of LDEIM is



to use multiple smaller yet accurate reduced subspaces to
compensate for the extra online computation time that is
needed for basis selection.

Another further development of DEIM that we use is
Adaptive DEIM (ADEIM) [20]. In ADEIM, the DEIM
basis and interpolation points are updated online. Initially,
(Um, Pm) are computed offline, and at step s of the simu-
lation (Us, Ps) are determined. The adaptivity is performed
via low-rank updates to (Us−1, Ps−1). A random set of size
sp of unique additional sampling points of the nonlinear
function is drawn from the uniform distribution and added to
the set of total sampling points, then the nonlinear function
is evaluated at these points in length w window of past
solutions. The resulting online snapshots are used to compute
an updated basis and sampling points. This online adaptivity
does not change the dimension of the reduced subspace. The
algorithm involves considerable online computation, but is
more capable of reducing models with trajectories that were
not sampled in the offline phase.

Finally, we implement Discrete Adaptive POD (DA-
POD) [29], [28] with DEIM. DAPOD adapts the dimension
and structure of the POD basis V online. In the online phase,
new snapshots are incorporated and existing ones eliminated
from the snapshot ensemble based on adaptivity criteria that
weigh importance and age of snapshots. The basis size is
determined with an error bound parameter ϵ decided by the
user. A smaller ϵ corresponds to a tighter error bound, which
results in a larger POD dimension and greater run time.
DAPOD can be combined with DEIM to reduce nonlinear
models more efficiently. However, as the POD basis V now
changes online, the DEIM projection matrix N of Equation 9
cannot be precomputed, which adds some additional online
computational burden.

IV. RESULTS

The network displays a temporally synchronized activity
pattern, where the majority of the neurons spike at similar
times, which replicates the behavior from [21]. This is seen
as oscillations in the number of neurons spiking at any
given time. Figure 1 illustrates the trajectory of the somatic
membrane voltage of the stimulated neuron (top) along with
network level activity (bottom) as a raster plot. In the raster
plot, a red dot is marked at every time instance on the x-axis
if the somatic voltage of a neuron in the y-axis is greater than
a voltage threshold Vt = −40ms. The stimulated neuron is
at index 0 in the raster plot.

The oscillations of the population activity are an important
phenomenon of the model and one that the ROM should
recreate. The pattern is illustrated in Figure 2, which shows
the number of neurons spiking as a function of time. A
qualitative comparison of the original model to reduced order
models of several parameters, with many reduction methods,
is provided in Figure 2. The behavior of the original model is
shown in every plot, and each row corresponds to a different
reduction method. Combinations of dimensions or reduction
method specific parameters are displayed in different colors.

Fig. 1. Top: trajectory of the somaticmembrane voltage of the stimulated
neuron. Bottom: raster plot of spike events of each neuron as a function of
time.

In Figure 2 it is seen that each reduction method has
their strengths and weaknesses in recreating the original
simulation. With the present model, a 5-10% reduction,
depending on the method, causes numerical overflow errors
or flat trajectories. The overflow errors end the simulation
immediately, and a ROM with a flat trajectory is not useful.
For this reason, the analysis considers DEIM dimensions 480
and 470.

The top most plot in Figure 2 presents the performance of
the standard DEIM method from [4]. Notably, the reduced
order models display a slight temporal shift in population
activity around t = 600ms already with 4% reduction.
Moreover, an additional burst of spikes at t = 750ms is
detected and subsequent residual network activity is observed
in the DEIM reduced models, although the original network
silences itself after the last population burst. This method has
the lowest computational burden and even with the current
slight reduction is faster to simulate than the original model.

The second plot from the top in Figure 2 shows results
obtained with the LDEIM method from [18]. The trajectories
are very similar to original DEIM, although LDEIM produces
the early network activity more accurately. Both methods
show a shift in the times of occurrence and magnitudes
of synchronized spike events as the simulation progresses.
Residual network activity is also observed here. The simu-
lation time of LDEIM is greater than DEIM, since with the
present model LDEIM does not achieve a smaller dimension
than DEIM and the overhead of online basis changes reduces
the computational efficiency of the reduced models.

Results with the DAPOD-DEIM method from [29], [28]
are shown in the third plot from the top in Figure 2. DAPOD



Fig. 2. Comparison of population behavior with different reduction methods
and parameters. Methods from top to bottom are DEIM, LDEIM, DAPOD-
DEIM and ADEIM. In all plots, x-axis is time in milliseconds and y-axis
is number of neurons spiking.

is unique in the set of tested methods because it allows the
POD basis to change online phase of reduction. We keep
the error controlling value ϵ constant while lowering the
DEIM dimension. In our simulations, this online adaptivity
allows DAPOD to use a smaller number of POD dimensions
than what is achieved by other reduction methods. With
ϵ = 1e−13 the POD dimension is in the range [462, 456].
It is seen that at 470 DEIM dimensions, DAPOD-DEIM
fails to recreate the last spike in population activity, whereas
DEIM set to 480 displays it, although with a temporal and
magnitudinal shift. Remarkably, DAPOD-DEIM simulations
do not suffer from the residual activity seen in DEIM
simulations. The simulation time of DAPOD-DEIM with the
present parameters is greater than the original model.

Finally, the bottommost plot in Figure 2 displays MOR
results from the ADEIM method [20]. We used a look-back
window length of w = 25 and sp = 10 additional random
sampling points in our simulations. The results resemble
those of the DAPOD method, as the residual activity toward
the end of simulation is correctly absent. The last activity
peak occurs too early, and some of the earlier peaks have
a smaller magnitude than the original simulation. The first
population activity bursts are recreated accuracy similar to
LDEIM. With regards to simulation time, ADEIM is the
heaviest to compute, having a runtime of over tenfold the
original model.

V. DISCUSSION

There are several differences between prior MOR studies
in neuroscience and our present work. We make the fol-

lowing comparison to publications [1], [7], [12], since those
considered a biophysically detailed and morphologically
complex neuron model. First, the present network model is
built by coupling heterogeneous ODE systems, in compar-
ison to reducing discretized PDEs as in the other studies.
Second, in terms of system dynamics the above studies used
a model of a single neural cell where an action potential
was propagating as a result of current injection, whereas
we now include multiple neurons that receive and process
stimulus from several sources asynchronously. Third, bio-
physically our cells include more complexity due to a larger
number of distinct ionic currents, heterogenic parameters and
functionally specialized compartments over copying identical
compartments to create the single cell model. To make a
final distinction on network topology, we view the single cell
models of [1], [7], [12] as networks of compartments; then,
their connectivity is restricted to neighbouring compartments.
On the other hand, our network of compartmental neurons
allows random connectivity between any number of cells.

A neuron model with a reset condition was reduced
in [2] using POD. There, the reset condition was used
to create spiking behavior in a simple phenomenological
model, whereas in our study a state-dependent jump con-
dition was employed to implement a biophysical threshold
to the synaptic NMDA current. In [2] it was concluded that
significant offline efforts were needed to derive a reliable
reduced model. Our implementation of the state-dependent
jump is explained in detail in Section III. We found that the
jump condition reduces the computational efficiency of our
reduced models. It can also be a major source of reduction
error, if the jumps in reduced models occur at different
timesteps than in the original model.

With the present model, reduction error grows rapidly
as POD and DEIM dimensions get lower, which then pre-
vents the reduction methods from achieving low dimensions
with meaningful results. However, the reduction methods
described in this study were able to replicate the emergent
synchronized population activity seen in our original network
model. This is an encouraging result, especially as these
methods have originally been reported in the context of
discretized PDE systems [4]. In comparison, our model is
based on nonlinearly coupled heterogeneous neurons de-
scribed by nonlinear ODEs, making the model reduction
setting different from those in the MOR method publications.

Based on our study, DAPOD and ADEIM perform best in
preserving the spiking activity of the original network model.
However, ADEIM is too slow to be practically usable, as
the present model does not allow low enough dimensions to
offset the computational costs of online adaptivity. DAPOD
is able to find a lower dimensional POD basis online than
the other methods find offline, and has runtime close to the
original model. We deem DAPOD especially useful if the
system has ”quiet” and ”active phases”, where the slowly
evolving system could be approximated with a relatively
small POD basis and when system-wide activity starts, POD
dimension can increase to maintain a low error.

A shift in oscillation frequency, magnitude or phase of



population activity is a phenomenon seen in the reduced
order models we presented in Section IV, Figure 2. It is
difficult to exactly quantify the significance of this reduction
error. However, with the relatively small computational ef-
ficiency increases seen in this study, the error is difficult to
justify. The additional or missing population bursts in some
of the reduced models are of greater significance. From the
perspective of neuroscience, such behavior could be caused
by intracellular or extracellular factors. The reduced models
would not allow the study of these conditions, if they recreate
an incorrect number of bursts of spikes.

We found residual network activity in DEIM and LDEIM
models, seen as continued spiking activity towards the end of
the simulation when the original model is no longer spiking.
This reduction artifact could be caused by noise amplification
as described in [19]. Especially the delicate ion channel
kinetics are sensitive to approximation errors and noise.
Interestingly, the two methods that adapt the reduced basis
online, DAPOD-DEIM and ADEIM, do not display the same
residual activity seen in DEIM and LDEIM reduced models
with the same dimension. This improvement in accuracy does
come at a cost in simulation speed.

VI. CONCLUSIONS AND FUTURE STUDIES
We constructed a network model of biophysically detailed

compartmental neurons modeled with nonlinear ordinary
differential equations, implemented several projection-based
model order reduction methods and qualitatively evaluated
model reduction results. When the model is stimulated with
a current pulse, it displays synchronized population activity.
The model was reduced with DEIM, LDEIM, DAPOD-
DEIM and ADEIM. The reduced models had challenges
in recreating the desired population behavior with low di-
mensions, possibly due to delicate ion channel kinetics or
the inclusion of state-dependent jump conditions. Simulation
was most efficient with DEIM, although DAPOD-DEIM and
ADEIM capture the behavior of the model more accurately.

Future work will compare these results to reduced mod-
els obtained with TLDEIM [3] and the methods presented
in [19].
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Abstract—Mathematical modeling of biological neuronal net-
works is important in order to increase understanding of the
brain and develop systems capable of brain-like learning. While
mathematical analysis of these comprehensive, stochastic, and
complex models is intractable, and their numerical simulation
is very resource intensive, mean-field modeling is an effective
tool in enabling the analysis of these models. The mean-field
approach allows the study of populations of biophysically detailed
neurons with some assumptions of the mean behaviour of the
population, but ultimately requires numerical solving of high-
dimensional differential equation systems. Mathematical model
order reduction methods can be employed to accelerate the anal-
ysis of high-dimensional nonlinear models with a purely software-
based approach. Here we compare state-of-the-art methods for
improving the simulation time of a neuronal mean-field model
and show that a nonlinear Fokker-Planck-McKean-Vlasov model
can be accurately approximated in low-dimensional subspaces
with these methods. Using Proper Orthogonal Decomposition
and different variations of the Discrete Empirical Interpolation
Method, we improved the simulation time by over three orders
of magnitude while achieving low approximation error.

I. INTRODUCTION

The human brain possesses unmatched information process-
ing and generalization capabilities. Hence, machine learning
has drawn inspiration from neuroscience and understanding
the mechanisms of learning in biological neuronal networks of
the brain continues to be of utmost importance for developing
efficient and effective machine learning algorithms [1]. Some
interesting properties of these networks are their natural capa-
bility to process data with a temporal dimension (see Reservoir
Computing) [2], use of an energy efficient continuous com-
putation paradigm which can be imitated with neuromorphic
hardware [3], [4], and diverse synaptic plasticity rules [5].
Utilizing these features together with brain-like computation
units could result in improved performance in classification
and regression tasks [6]. Indeed, by understanding how the
brain implements biological intelligence, progress can also
be made in deep learning [7], [8]. To that end, insight into
biological neuronal networks can be gained with mean-field
methods [9]. Here, we show how the simulation of a compu-
tationally expensive mean-field model can be accelerated with
mathematical model order reduction (MOR) methods [10].

Biological systems are naturally noisy and rarely behave
identically between repeated measurements [11]. This stochas-
ticity, be it intrinsic or external, is believed to serve a

purpose such as enhancing detection of weak signals [12].
The effects of noise in neuronal signaling have been studied
with stochastic models of neuronal systems in the molecu-
lar [13], single cell [14] and network [15] levels. However, the
added biological relevance achieved with stochastic modeling
comes with the burden of mathematical intractability and
increased computation time, as specialized numerical methods
are needed for simulating stochastic systems and analysis of
system dynamics relies on Monte Carlo methods. Understand-
ing network plasticity in the presence of this randomness is
one step towards more brain-like machine learning algorithms.

The dynamics of stochastic neuronal network circuits can
be studied with mean-field models that use deterministic
descriptions of the underlying network [9]. The mean-field
framework encompasses multiple methods that result in mod-
els of different levels of complexity, ranging from simple
firing rate equations to probability density functions to models
with multiple spatial dimensions. In this work, we will study
a Fokker-Planck-McKean-Vlasov-type mean-field model that
describes the time evolution of the probability density function
of the state of a large neuronal population of stochastic
FitzHugh-Nagumo (FN) neurons [16]–[18]. The model is
mathematically intractable, and studying it requires numerical
solving methods.

We show that numerical simulation of a mean-field model
can be made significantly faster by employing reduced or-
der models, created with mathematical MOR methods. MOR
methods require no simplifications of the modeled system and
allow every variable therein to be reconstructed at any time.
When choosing MOR methods appropriately, no linearization
is required, which allows more dynamics to be retained
in the reduced model [19]. Hence, these methods can be
applied directly to nonlinear systems, which in the field of
computational neuroscience is highly advantageous. Moreover,
the chosen MOR methods allow approximating linear and
nonlinear components independently, in order to approximate
the original system accurately.

In Section II, the model we studied is introduced together
with mean-field theory, and the MOR methods employed here
are described. In Section III, numerical simulation results
of the original and reduced models are shown. Finally, in
Section IV the significance of our results is discussed together
with directions for future research.



II. METHODS

Mean-field approximation was originally used to describe
the spin of electrons in theoretical physics. In the field of
computational neuroscience the method can be used to model
the behaviour of populations of neurons [9]. The single neuron
model, which will be taken to the mean-field limit, is in
itself stochastic. These neurons can prove to be challenging
to incorporate into models, and are often preprocessed by in-
troducing tractable randomness in the form of Markov chains.
In such a Markov chain the transition probabilities of neuronal
states obey the master equation, from which the Fokker-Planck
equation can be derived. In general, the mean-field approxi-
mation consists of dividing neurons into statistically similar
populations, in which the population behaviour is uncorrelated.
This is true when the population size is theoretically infinite.

In this work we examine a mean-field model derived
in [16], representing a population of FN neurons. This second-
order nonlinear partial differential equation (PDE) has three
independent variables and describes the time evolution of the
probability density function p(t, V,W, Y ) of the state of the
neuron population. It gives a deterministic description of the
underlying stochastic system. The model is

∂tp(t, V,W, Y )
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(1)

where ȳ(t) =
∫∫∫

yp(t, v, w, y) dv dw dy, V is the neuronal
membrane voltage, W is the recovery variable of the FN
model, Y is the synaptic conductance of the neurons in this
population, and Iext is external current stimulus. For additional
details of the model, see [16].

Equation (1) must be discretized in space prior to numerical
simulation. The discretization results in a system of ordinary
differential equations of dimension (number of equations to
solve) ν3 with ν being the number of discretization points
in one variable of the PDE, assuming an equal amount of
discretization points in every variable. A fine discretization
grid is required so that fast dynamics of the model are
captured, making ν a large integer.

Spatial discretization of Equation (1) is carried out with a
fourth-order central difference scheme and the triple integral

ȳ(t) is evaluated with the Newton-Cotes method of order six.
After discretization, we write the system in state-space format

x′(t) =Ax(t) + f(x(t)), (2)

where x ∈ Rn is the current state of the system, A ∈ Rn×n

is the state matrix with linear coefficients, f(x(t)) ∈ Rn is
a vector of nonlinear functions, n = ν3, and ν = 50. For
numerical simulations we use parameters from [16].

We construct reduced order models (ROMs) with the Dis-
crete Empirical Interpolation Method (DEIM) [20] and two of
its advanced variants, namely LDEIM and QDEIM. DEIM is
a MOR method that is used in conjunction with the Proper
Orthogonal Decomposition (POD) [21] and is based on the
method from [19]. These methods are applicable to general
nonlinear systems such as the model used here.

POD is a projection based MOR method that approximates
the original system of dimension n in a reduced linear
subspace. A reduced basis with orthonormal column vectors
Vk ∈ Rn×k where k < n is computed using singular value
decomposition (SVD). This POD basis is constructed from
snapshots Y = [y1, y2, · · · , ys] that are a set of solutions to
the original system [22], collected for example with numerical
simulation. Then, a reduced state vector V T

k x(t) = x̃(t) ∈ Rk

is obtained by a linear transformation. Projecting the system
described in Equation (2) onto Vk by Galerkin projection
results in a reduced system

x̃′(t) =V T
k AVk︸ ︷︷ ︸

Ã

x̃(t) + V T
k f(Vkx̃(t)) (3)

where Ã can be precomputed before the online (simulation)
phase. At any point, an approximation of the original, full-
dimensional state vector can be computed with x(t) ≈ Vkx̃(t).

However, while POD itself can be applied to nonlinear
systems, there is no guarantee of computational savings as
the nonlinear part f(Vkx̃(t)) of the reduced system must be
evaluated in the original space. Efficient evaluation of the
nonlinear term can be achieved with DEIM [19], [20]. DEIM
extends the subspace projection approach with an interpolation
step for nonlinear functions. To construct an approximation of
the nonlinear term, the algorithm gives

f̃(x, t) ≈ Um(PT
mUm)−1PT

mf(x, t), (4)

where the DEIM basis Um = [u1, u2, · · · , um],m < n is
computed via SVD of the snapshots of the nonlinear function
outputs, PT

mf(x, t) := fm(x, t) is a nonlinear function with
m components chosen from f according to DEIM determined
interpolation points p1, · · · , pm and Pm = [ep1 , ep2 , · · · , epm ]
with epi being the standard basis vector i of Rn. Together
POD and DEIM form a ROM

x̃′(t) =Ãx̃(t) + V T
k Um(PTUm)−1︸ ︷︷ ︸

N

fm(Vkx̃(t)), (5)

where N ∈ Rn×m can be precomputed in the offline phase.
Thus in the online phase only m nonlinear functions are
evaluated using Nfm(Vkx̃(t)). Note that the dimension k of
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Fig. 1. Original model simulated for t = 2.2 s. The probability density
function is integrated over each of the three independent variables, Y, W and
V (plots 1) to 3) respectively) for visualization purposes.

the linear component of the reduced system does not need to
equal the dimension m of the nonlinear component.

Another algorithm we use to reduce the mean-field model
is QDEIM [23]. In DEIM, the computed basis functions Um

and interpolation points Pm depend on the sequence in which
snapshots were collected. The idea of QDEIM is to find Pm

independent of this specific sequence, and to compute a more
numerically stable basis Mm that replaces Um. Pm and Mm

are obtained with QR factorization of column pivoted U∗
m.

Efficient implementations of these steps are readily available
in high performance computing software packages.

Additionally, we reduce the model with Localized Discrete
Empirical Interpolation Method (LDEIM) [24]. In LDEIM, a
clustering algorithm is employed in the offline phase to group
solution snapshots before DEIM basis generation. Several ba-
sis and interpolation point pairs (Um1

, Pm1
), · · · , (Ump

, Pmp
)

are computed to obtain a set of local bases, one from each
cluster of snapshots, in contrast to the global basis used in
DEIM. In the online phase a local precomputed DEIM basis
is chosen with nearest neighbor classification. LDEIM requires
the number of clusters and features as user defined parameters,
and the size of the feature vector is a decision between
classification power and computational efficiency. The premise
of LDEIM is to use multiple smaller yet accurate reduced
subspaces to compensate for the extra online computation time
that is needed for basis selection.

In general, hardware requirements of our approach are
decided by the model that is reduced. The reduction algorithms
need additional memory proportionally to n, m and k. To
simulate the models we use four Intel Xeon E5-2680 v3 cores
and 350GB RAM. The original model requires a considerable
amount of memory in the state space format as there are
n2, n = ν3 floats in A, here ∼ 125Gb for A. However, we
did not exploit the sparsity of A to reduce memory load, thus

Fig. 2. Reduced models constructed with DEIM. Left column shows the
approximation and right column the absolute difference between the state
seen in Figure 1 in (V, W) space. Lower rows indicate approximation of
higher dimension.

a more economical implementation is achievable. The models
take advantage of multiple cores through differential equation
solvers. We use the 4th order Runge-Kutta method with fixed
step of dt = 0.01 s.

III. RESULTS

The original model from Equation (1) was simulated for
t = 2.2 s with the Gaussian distribution as the initial state. On
average, this takes 200 minutes. The state of the model after
simulation is seen in Figure 1. As the modeled probability
density function has a 3-dimensional domain, for visualization
purposes integration over one variable is required. In plot 1) of
Figure 1, integration is done over the Y-variable, in plot 2) over
W-variable and finally over V-variable in plot 3). The reduced
models should reach the same state with minimal error. From
this point forward, only the (V, W) space will be visualized.

Figure 2 shows reduction results with the DEIM method,
after an approximation of the original system is reconstructed
using the low-dimensional model. Left column shows the state
of the reduced model integrated over the Y-variable, and right
column shows the absolute difference between the original and
reduced model at every point in the (V, W) space. Dimension
of the reduced model grows in each row, with dimensions 1, 2
and 4 illustrated. It can be seen how the reduced model rapidly
converges to the same solution as the original model.



Fig. 3. Top row: approximation error from reduced models in (V, W) space.
Bottom row: factor of acceleration gained using the reduced models. Reduced
model dimension grows to the right and color indicates reduction method.

In Figure 3, upper row shows approximation error as the
sum over point-wise absolute differences between the original
and each reduced model in (V, W) space. Lower row indicates
achieved speedup as median simulation time of each reduced
model divided by the median time of the original model,
with data from 20 simulations per model. Hue indicates MOR
method. Error decreases with increasing dimension using any
method, while the gained acceleration also declines. DEIM
and QDEIM are seen to be equally accurate and fast, while
LDEIM is slower due to the online adaptivity. The cost of
adaptivity diminishes as the dimension of the reduced model
increases. With the present model, LDEIM does not achieve
an increase in accuracy compared to DEIM and QDEIM of
similar dimensions.

IV. DISCUSSION AND CONCLUSIONS

Mathematical model order reduction (MOR) of nonlinear
systems in neuroscience has been studied before in lim-
ited settings. In [25]–[27] a model of a branching neuron
was reduced. A chemical reaction based model of synaptic
plasticity was reduced in [28]. MOR studies of nonlinear
neuronal populations have been conducted in a hippocampal
network [29], in cardiac and muscular systems [30], [31] and
in mono- and bidomain electromyography models [32], [33].
Mean-field models have been reduced in fluid dynamics in the
context of e.g. water flow and flame behaviour [34], [35]. The
authors are not aware of previous applications of mathematical
MOR to neuronal Fokker-Planck mean-field models.

We have shown how the numerical simulation of a high-
dimensional neuronal mean-field model can be accelerated
significantly by the use of mathematical MOR methods. We
achieved an improvement of over three orders of magnitude in
simulation time, with low approximation error. Performing this
type of numerical approximation does not render the model
any less biologically relevant, as happens with simplification
approaches that remove variables and make assumptions about
the dynamics of the system. We note that the magnitude
of acceleration gained using reduced models depends on the
number of discretization points required to numerically solve

the partial differential equation. To accurately reach a steady-
state solution a fine grid is required, and the potential speedup
is greater. The main bottleneck is the rapidly growing memory
consumption of the original model.

Improving the simulation time of computational models of
neural populations is important as the number of neural cells,
and hence variables in the model, must be large in order to
reach satisfactory levels of biological realism. While Fokker-
Planck-type mean-field models make the study of stochastic
networks easier, solving them requires spatial discretization
over every variable of the neuron model, resulting in a rapidly
growing number of dimensions and hence long computation
times. In [36] the present model was simulated efficiently
with graphical processing units (GPUs). The alternative ap-
proach described in this study does not rely on increasing
hardware resources and instead improves simulation time with
mathematical methods based on low-dimensional subspace
approximation.

The present, purely software-based implementation of math-
ematical MOR methods is especially interesting in terms of
integration into neuronal simulators such as NEURON [37],
NEST [38] and The Virtual Brain [39]. In these simulators,
approximated models could be made readily available as
components for network or compartmental cell simulations.
Alternatively, the simulator software could compute reduced
models during long simulations and finish the simulation
efficiently using the low-dimensional model. Integration is
feasible because MOR methods do not require any special
hardware, and software only needs to support matrix arithmetic
and differential equation solvers.

Neuromorphic hardware is state-of-the-art in low energy
computation and is used in neuroscience, robotics and artificial
intelligence research [3], [4]. Neuromorphic chips have paral-
lels with MOR methods in striving for accelerated simulation
of (neuronal) models. Additionally, implementing reduced
models on neuromorphic hardware, such as the SpiNNaker
system [3], could enable the study of neuronal networks in
even larger scales than before. However, not all neuromorphic
chips can be combined with MOR methods.

Based on our results, we suggest MOR methods to be
applied to other mean-field models to see whether we can
reproduce such results with different populations of neurons.
An excellent candidate would be the Hodgkin-Huxley neuronal
mean-field model discussed in [16], for which applying the
present method is straightforward. Follow-up studies should
also address the situation when simulation parameters dif-
fer from parameters used in the snapshot collection phase.
Additionally, the benefit gained from the methods introduced
in [40] should be addressed in the context of computational
neuroscience.
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Accelerating Neural ODEs Using
Model Order Reduction
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Abstract— Embedding nonlinear dynamical systems into arti-
ficial neural networks is a powerful new formalism for
machine learning. By parameterizing ordinary differential equa-
tions (ODEs) as neural network layers, these Neural ODEs
are memory-efficient to train, process time series naturally,
and incorporate knowledge of physical systems into deep learn-
ing (DL) models. However, the practical applications of Neural
ODEs are limited due to long inference times because the
outputs of the embedded ODE layers are computed numerically
with differential equation solvers that can be computationally
demanding. Here, we show that mathematical model order
reduction (MOR) methods can be used for compressing and accel-
erating Neural ODEs by accurately simulating the continuous
nonlinear dynamics in low-dimensional subspaces. We implement
our novel compression method by developing Neural ODEs that
integrate the necessary subspace-projection and interpolation
operations as layers of the neural network. We validate our
approach by comparing it to neuron pruning and singular value
decomposition (SVD)-based weight truncation methods from
the literature in image and time-series classification tasks. The
methods are evaluated by acceleration versus accuracy when
adjusting the level of compression. On this spectrum, we achieve
a favorable balance over existing methods by using MOR when
compressing a convolutional Neural ODE. In compressing a
recurrent Neural ODE, SVD-based weight truncation yields good
performance. Based on our results, our integration of MOR with
Neural ODEs can facilitate efficient, dynamical system-driven DL
in resource-constrained applications.

Index Terms— Acceleration, compression, discrete empirical
interpolation method (DEIM), neural ordinary differential equa-
tions (Neural ODEs), proper orthogonal decomposition (POD),
reduced order model (ROM).

I. INTRODUCTION

DEEP learning (DL) is reaching and surpassing human
performance in domain-specific applications [1]. Accord-

ingly, there is increased demand for including DL-based
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algorithms into consumer devices that may contain only
limited computational capacity and may be battery-powered,
making resource efficiency of DL-based algorithms impor-
tant. An interesting new development in DL research is
artificial neural networks (ANNs) that employ dynami-
cal systems, replacing traditional discrete layers with a
continuous-time layer in the form of ordinary differential
equations (ODEs) [2]–[5]. In these Neural ODEs, the con-
tinuous formalism allows flexible processing of time-series
and irregularly sampled data, such as medical and physio-
logical signals [6]. Moreover, Neural ODEs are useful for
resource-constrained and embedded applications because they
are very memory and parameter efficient [5]. The ODE
layer also facilitates engineering physical details, such as
energy conservation laws or spectral properties, into neural
networks [4]. However, often, a big computational bottleneck
in Neural ODEs is the dynamical system layer since propagat-
ing data through the system requires many evaluations using
numerical ODE solvers. Reducing the computational cost of
the ODE layer is the main motivation of our work.

In this work, we show that Neural ODEs can be accelerated
by compressing them using model order reduction (MOR)
methods. The MOR approach is based on projecting dynamical
systems onto low-dimensional subspaces. Here, we develop
MOR methods that are integrated into Neural ODEs. In this
manner, we lower the required storage size, memory consump-
tion, multiply–adds, and nonlinear activation count needed to
compute predictions from input data. The resulting compressed
Neural ODEs can be deployed for real-time computing and
devices where energy efficiency is paramount. In order to
validate the performance of our MOR method, we compare
it to two established compression methods from the liter-
ature. Our results demonstrate that MOR is a theoretically
grounded and effective method for accelerating Neural ODEs
because it achieves a favorable, adjustable and extensible
balance between speedup and accuracy of compressed models.
We show this result in two different classification tasks that
use different Neural ODE architectures: a convolutional and a
recurrent neural network (RNN).

Compressing ANNs is one of the principal ways of con-
verting high-performing trained networks into more efficient
networks since good accuracy can often be recovered without
long training times, while the size of the compressed network
can be chosen in a flexible manner. Several neural network
compression methods have been proposed for accelerating
ANNs [7]–[9]. These include singular value decomposition
(SVD)-based weight truncation [10], [11] and neuron pruning
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with an importance score based on zero activations [9], which
we implement for comparison to our MOR method. Many
prominent existing approaches rely on assigning importance
scores to neurons based on their connection weights or output
values. However, we argue that such methods are nonoptimal
for compressing Neural ODEs, as it is difficult to quantify
the importance of neurons in the ODE layer based on criteria
such as the output of the layer alone. This is because the
final state of the nonlinear ODE system gives no information
about the dynamics of the actual computations. In contrast,
MOR methods are designed precisely for the approximation of
state trajectories and input–output relationships in dynamical
systems, and hence, they can overcome the shortcomings
of existing compression methods when aiming to accelerate
Neural ODEs.

Our approach to model acceleration is inspired by com-
putational neuroscience. Due to high computational burden,
modeling studies of the brain in realistic scales are limited
to simulating small fractions of the brain using supercom-
puters [12]. To overcome computational resource challenges,
MOR methods have been adapted successfully for reducing
single neuron [13], [14], synapse [15], and neuronal popula-
tion [16], [17] models. Moreover, the similarities in models of
the brain as well as ANNs, which include connectivity patterns
and nonlinear computation units, make us hypothesize that
MOR methods may be a principled approach for accelerating
Neural ODEs.

Our MOR approach for compressing Neural ODEs is based
on the proper orthogonal decomposition (POD) [18] with the
discrete empirical interpolation method (DEIM) [19], a vari-
ant of the empirical interpolation method [20]. Using the
POD-DEIM method, we derive reduced order models (ROMs)
that can be simulated efficiently in low-dimensional subspaces,
even in the presence of nonlinear activation functions. In the
context of Neural ODEs, our method compresses the ODE
block by projecting it onto a low-dimensional subspace using
POD, which reduces the number of state variables in the ODE
system. Linear operations are compressed by transformation
into this subspace. When nonlinear activation functions are
present, using DEIM, we determine the most informative
output neurons based on their time dynamics and prune
the other neurons. This reduces the dimensionality of the
nonlinear operation and removes rows from the weight matrix
since connection weights of pruned neurons are discarded.
We interpolate an approximate response for the pruned neurons
directly in the low-dimensional subspace. In convolutional
layers, the reduced model computes convolutions only at the
selected interpolation points so that every kernel has its own
set of evaluation coordinates.

We integrate the subspace-projection and interpolation steps
of POD-DEIM into the Neural ODEs as layers, and this
introduces additional operations into the neural network (see
Fig. 2). In some network architectures, these steps actually
further reduce the overall number of multiply–adds in the
neural network. The POD-DEIM reduction is applied after
training the model and the reduced model can be fine-tuned
for increased accuracy. In summary, Neural ODEs allow us
to bridge a gap between ANN research and control theory

research so that a substantial amount of previously unem-
ployed knowledge in model reduction can be utilized in
ANN compression and acceleration. For example, analyti-
cal optimality results and error bounds exist for our MOR
algorithms [18], [21].

In Section II, we review previous work in compressing
and accelerating neural networks in general and Neural ODEs
specifically. In Section III, we present our proposed MOR
approach and show how to formulate it in the context of
continuous neural networks and introduce two established
acceleration methods that we compare our method to in
benchmark problems. In Section IV, we provide theoretical
compression ratios for the chosen methods and show actual
accuracy and wall-time metrics of compressed Neural ODEs in
two different classification tasks: one using a convolutional and
the other using a recurrent ODE architecture. We discuss the
success of the model reduction approach and the significance
of our work in Section V with future suggestions and conclude
in Section VI.

II. RELATED WORK

Several studies have reported that ANNs contain structures
and redundancies that can be exploited for reducing memory
and power usage [7]. Here, we focus on structural acceleration
approaches that modify trained networks to achieve a more
efficient architecture and leave efforts, such as low precision
algebra, quantization of weights [22], binarization [23], hash-
ing [24], vectorization [25], frequency space evaluation [26],
and adjusting ODE solver tolerances or step size [5] out of the
present study, since those are complementary to the approaches
presented here. Moreover, several hardware accelerators have
been proposed (e.g., [27]), and those will not be addressed
here. Furthermore, computational bottlenecks in ANNs have
also been addressed by first reducing data dimension and
then training simpler models. These techniques range from
feature engineering to data dimensionality reduction. However,
in this work, our focus is on compressing trained networks,
and hence, data compression is considered complementary to
our approach. Structural compression methods can be further
grouped into several categories.

a) Pruning weights: Prior work has addressed weight
pruning [28], [29] and enforcing weight sparsity [30], [31]
during training to obtain weight matrices that require less
storage space and memory than dense weight matrices. Several
methods to evaluate weight importance have been proposed,
see, for example, a recent review addressing 81 pruning
studies [7] and compares the achieved compression rates and
speedups for several ANN models. It is common to include
pruning in the training loop because altering weights after
training leads to accuracy loss. In order to achieve significant
acceleration with weight-pruning methods, the use of spe-
cial software, masking strategies, sparse algebra, or hardware
accelerators is recommended [32], [33].

b) Decomposition: Decompositions and low-rank matrix
factorizations have been used for compressing network
weights so that linear operations in a layer are computed
efficiently [10], [11], [34]–[36]. Decomposition is based on
the observation that weight matrices, especially as their size
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increases, are seldom full rank. The idea is that a fully con-
nected weight matrix or a tensorized convolutional kernel can
be decomposed into compact low-rank matrices that require
less storage space, memory, and multiply–adds during training
and testing. An approximation of the original operation is
then obtained as a product of the low-rank tensors. In addi-
tion to compressing linear operations, prior work has also
addressed decomposition by taking the nonlinear response into
account [37]. The cost of decomposition approaches is that
a single layer is replaced with multiple smaller ones, which
trades parallelism for forward operations, canceling out some
of the obtained acceleration.

c) Pruning neurons: Weight pruning and decomposition
approaches maintain the structure of the compressed network
in which the number of nonlinear activation functions is not
changed. Eliminating activation functions leads to acceleration
as an entire row of weights from a fully connected layer
can be removed [8], [38]. As neuron pruning changes the
number of neurons in a layer, the next layer must take this
into account, for example, by deleting columns (inputs) from
the weight matrix in the case of fully connected layers. Alter-
natively, interpolation can be used to approximate the orig-
inal response, possibly introducing additional computation.
In fully connected architectures, large compression rates in
storage space and memory are obtained when rows or columns
are deleted from fully connected layers. Importance scores,
such as percent of zero activations, have been developed for
identifying prunable neurons [9]. Pruning and quantization
have been combined with Huffman coding into a compression
framework that delivers memory and energy efficiency [39].
An optimization approach has been used to enforce sparse
columns in a fully connected layer so that the corresponding
input neurons can be pruned [38].

d) Pruning filters: Convolutional neural networks
(CNNs) have attracted a lot of attention in the compression
literature. This is not surprising given their good rate of
success in real-life tasks and their high computational cost.
Convolutional operations make the bulk of modern image
and video processing networks and are used in many other
applications, such as sequence processing. It is possible
to approach CNN compression by analyzing either the
convolutional filters or feature maps obtained by applying the
filters on input data [40]–[42]. The filters can be compressed
with decomposition methods, similar to fully connected
layers. Alternatively, entire kernels can be pruned from
filters. Pruning kernels is very effective as intermediate
feature maps are eliminated. The number of methods and
criteria available for identifying pruning targets in CNNs is
very high [42]. In convolutional networks, neuron pruning
corresponds to skipping a kernel evaluation at a single spatial
location. However, such an operation is rarely supported by
DL frameworks, and pruning in convolutional networks has
focused on eliminating parts of or entire filters or feature
maps.

In the context of Neural ODEs, a few studies have addressed
the acceleration of inference and training times. One approach
focuses on learning simple dynamics that do not burden
ODE solvers as much as stiff systems [43]–[45]. In addition,

Fig. 1. Plain discrete feedforward network on the left and a residual network
on the right. The defining feature of residual networks is that the output from
an earlier layer skips layers and is added directly to a later layer.

training times have been reduced by further improving the
adjoint method, for example, by relaxing error criteria [46],
while inference times have been accelerated by introducing
hypersolvers—neural networks that solve Neural ODEs [47].
These methods are complementary to ours since we aim at
compressing the learned architecture with MOR methods. Our
approach is comparable to pruning neurons based on an impor-
tance score [8], [9] so that a number of rows from the weight
matrix and nonlinear activation functions can be removed
altogether. The POD-DEIM method improves on the existing
methods of determining neuron importance, as it accounts
for the complete dynamics of the ODE block. In addition,
POD-DEIM can be combined with many of the prior methods
such as quantization of weights.

III. METHODS

In this section, we present the theory of the continuous
interpretation of ANNs. We then describe our MOR method
and show how to formulate it in the ANN and Neural ODE
context. Finally, we present two other ANN acceleration
methods from the literature, which we use as benchmarks
to our method, and their implementation in the Neural ODE
setting.

A. Continuous Networks

Since the success of residual neural networks
(ResNets) [48], a continuous interpretation of neural
networks has gained traction. The ResNet architecture utilizes
skip connections to deal with the problem of vanishing
gradients, allowing the training of extremely deep neural
networks. In a ResNet block, the output is the sum of the
usual feedforward operations on the data and the unprocessed
data entering the block. The ResNet architecture is shown
in Fig. 1 (right), with a plain feedforward network on the
left. If the hidden layers of the plain network implement a
nonlinear function xk+1 = f (xk), the skip connection of the
ResNet implement xk+1 = xk + f (xk). By introducing a
constant h = 1 to obtain xk+1 = xk + h f (xk), the resemblance
of the skip connection to Euler’s formula for solving ODEs is
seen [2]–[4]. This has led to the continuous-time dynamical
system interpretation of ANNs.

In the continuous interpretation of ANNs, a set of layers is
replaced by one layer that parameterizes a dynamical system
as a group of ODEs with state variable x(t). We assume that
this ODE system has the form

x ′(t) = f (x(t), u(t), θ) (1)
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in general and in our models specifically

x ′(t) = f (Ax(t) + b) + Zu(t) (2)

where x(t) ∈ R
n is the state of the ODE at time t , x ′(t) is the

time derivative of x(t), A ∈ R
n×n is a weight matrix, b ∈ R

n

is a bias vector, u(t) ∈ R
i is a time-dependent input, Z ∈ R

n×i

is an input matrix (may include bias), and f : Rn �→ R
n is a

vector-valued function f (χ) = [ fa(χ1), fa(χ2), . . . , fa(χn)]T .
In Neural ODEs, the activation function fa(χi) is commonly
the hyperbolic tangent, although any differentiable activation
function, or a combination of different activation functions,
can be used. Here, θ = (A, b, Z) are learned parameters of
the ODE. In feedforward Neural ODEs, there are typically
no time-dependent inputs and, hence, Z = 0. On the other
hand, in RNNs where x ′(t) is the hidden state, the input
data enter the system through Z �= 0. The output of the
layer is x(tend), which is the state of the dynamical system
at the user-specified final time tend . Initial values of the ODE
system can be obtained in two ways, either as the output of the
layer preceding the ODE or set explicitly. The former is more
common in feedforward architectures and the latter in RNNs
that receive time-dependent input data. The output x(tend) of
the ODE layer is computed using numerical methods, taking
discrete or adaptive steps with an ODE solver to solve an
initial value problem. Neural ODEs can use the adjoint method
of calculating gradients [5] and have enabled parameterizing
ODEs as several different ANN operations or chains of them.
The primary restriction is that the output size of the ODE layer
must match the input size of the layer. Overall, it is possible
to train a variety of ANN architectures for different tasks as
continuous networks [5].

Training Neural ODEs with the adjoint method is memory
efficient compared to deep discrete networks [5], as the
backpropagation algorithm does not need to store intermedi-
ate ODE states to calculate gradients on the loss function.
However, the use of the adjoint method is not required for
training ODE networks. Parameterizing an ODE in place of
several discrete layers may also lead to parameter efficiency
and correspondingly require less storage space and memory
since the continuous layer can replace several individually
parameterized discrete layers. Other benefits of Neural ODEs
include using ODE solvers for speed versus accuracy tun-
ing and enabling ANNs to flexibly process continuous and
irregularly sampled time-series data [5], [6]. Neural ODEs
have also improved on existing ANN-based density estimation
models [5]. However, the dynamics learned by Neural ODEs
may be unnecessarily complex [44], [45] and result in stiff
systems [49]. Often, the ODE block is the most computa-
tionally demanding part of the network since many numerical
evaluations of the state of the ODE are needed to obtain the
output. Hence, Neural ODEs require more time to evaluate
data, both in training and testing, compared to traditional
discrete networks [44].

It is possible to parameterize the ODE block so that the
model in training has favorable properties that facilitate learn-
ing. Antisymmetric networks are a step toward this direction
since they guarantee that the state x(t) of the ODE system
does not diverge far from or decay to the origin as t → ∞ [4].

This prevents the gradient of the loss function from vanishing
or exploding and makes training the network well-posed.
Antisymmetric networks use an antisymmetric weight matrix
A = W − W T that by definition has eigenvalues λi so that
for all i, Re(λi(A)) = 0. Furthermore, a small shift of the
eigenvalues by γ may be applied so that Re(λi (A − γ I )) =
−γ < 0, which improves the behavior of the ODE system
in the presence of noisy data [4]. Notice that in practical
applications, t is finite, and hence, a small γ value will not
make the gradients of the loss function vanish. In [50], it is
demonstrated that the shifted antisymmetric weight matrix
A−γ I gives the hidden state of RNNs a favorable property of
long-term dependence on the inputs to the system, which helps
classifying data with temporal relationships. In this work,
we implement an ODE-RNN as

A = W − W T − γ I

(3)

x ′(t) = tanh(Ax(t) + b) + Zu(t)

where the weight matrix A gives the network the desired
properties that facilitate learning, and during training, the
parameters W are learned. Other parameters are similar to (2).
In Section IV, we will demonstrate the compression and accel-
eration of this ODE-RNN. Such networks make an interesting
model compression target since their architecture gives the
system temporal memory capacity that the compressed model
must retain.

B. Model Order Reduction

A key contribution of our work is the formalization of
MOR in the context of Neural ODEs and the realization that
the necessary MOR operations can be expressed as layers of
ANNs. A powerful method for MOR of general nonlinear
systems is POD [18] coupled with the DEIM [19], [20],
developed in the fields of systems and control theory. In order
to compress Neural ODEs, we construct ROMs of the ODE
block in trained Neural ODEs with the POD-DEIM method.

Both POD and DEIM utilize the method of snapshots [51].
In POD, snapshots are values of the state xt of the ODE system
at discrete times t . A snapshot matrix X = [x1, x2, . . . , xs] is
collected using numerical simulation of the ODE block with
different initial values and time-dependent input data. ANNs
provide a very natural setting for gathering snapshots since we
have access to training data that can be propagated through the
trained network and the ODE block of Neural ODEs. However,
it is important that the snapshots are collected after the model
is trained so that the snapshots reflect true learned dynamics
of the ODE layer. Moreover, the snapshots are not used for
optimization or model training. The following explains the
purpose of the snapshots.

POD approximates the original system of dimension n via
projection using a low-dimensional subspace. A k-dimensional
POD basis with orthonormal column vectors Vk ∈ R

n×k,
where k < n, is computed using SVD of snapshots V ��T =
SVD(X) [51]. Vk is then the first k left singular vectors of the
snapshot matrix, equaling the first k columns of V . A reduced
state vector V T

k x(t) = x̃(t) ∈ R
k is obtained by a linear



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LEHTIMÄKI et al.: ACCELERATING NEURAL ODEs USING MODEL ORDER REDUCTION 5

Algorithm 1 Discrete Empirical Interpolation Method
INPUT: {ul}m

l=1 ⊂ R
n linearly independent

OUTPUT: 	p = [p1, . . . , pm], P ∈ R
n×m

1: p1 = argmax(|u1|)
2: U = [u1], P = [ep1], 	p = [p1]
3: for l = 2 to m do
4: solve (PT U)c = PT ul for c
5: pl = argmax(|ul−Uc|)
6: U ← [U ul], P ← [P epl ], 	p ← [ 	p pl]
7: end for

transformation, and at any time t , an approximation of the
original, full-dimensional state vector can be computed with
x(t) ≈ Vk x̃(t). Projecting the system in (2) onto Vk by the
Galerkin projection results in a reduced system

x̃ ′(t) = V T
k f (AVk x̃(t) + b) + V T

k Zu(t) (4)

where we can precompute the transformation of the weight
and input matrices into matrices Ã = AVk and Z̃ = V T

k Z
that are used in place of the original weight matrices in the
reduced models. The reduced POD model approximates the
original system optimally in the sense that the POD subspace
has minimum snapshot reconstruction error [18]. However, the
nonlinear form of the equation prevents computational savings
as the number of neurons has not been reduced. The size of A
is still n × k and f (·) is computed in the original dimension n.
This is known as the lifting bottleneck in reducing nonlinear
models.

Efficient evaluation of the nonlinear term can be achieved
with DEIM [19], [20]. DEIM extends the subspace projection
approach with an interpolation step for general nonlinear
functions. To construct an interpolated approximation of the
nonlinear term, we use

f̃ (x, t) ≈ Um
(
PT

m Um
)−1

PT
m f (x, t) (5)

where the DEIM basis vectors Um = [u1, u2, . . . , um] ∈
R

n×m , m < n are the first m left singular vectors of the
snapshot matrix of nonlinear vector-valued function outputs
F = [ f (x1, t1), f (x2, t2), . . . , f (xs, ts)] computed via SVD
as Um�U �T

U = F , and PT
m f (x, t) := fm(x, t) is a nonlinear

function with m components chosen from f according to
DEIM determined interpolation points 	p = p1, . . . , pm and
Pm = [ep1 , ep2 , . . . , epm ] with epi being the standard basis
vector i of Rn . Together POD and DEIM form an ROM

x̃ ′(t) = V T
k Um

(
PT Um

)−1

︸ ︷︷ ︸
N

fm
(

Ãx̃(t) + b
) + Z̃u(t) (6)

where N ∈ R
k×m can be precomputed. Now, in the prediction

phase, only m nonlinear functions are evaluated. Due to the
structure of fm : Rm → R

m , we can then further compress
Ã so that only m rows at indices 	p remain. Correspondingly,
we only select m elements from the bias vector at indices 	p.
Thus, we have obtained the ROM

x̃ ′(t) = N fm
(

Ãm x̃(t) + bm
) + Z̃u(t) (7)

Fig. 2. Neural ODE on the left with the discretized differential equation
block in orange color. A POD-DEIM reduced network on the right illustrates
that the ODE block is evaluated in a low-dimensional subspace, with linear
transformations around the ODE block. The networks have equal inputs and
approximately equal outputs.

where Ãm ∈ R
m×k and bm ∈ R

m . In (6), the dimension k
of the POD projection subspace does not need to equal the
number m of the DEIM interpolation points, as N can be
computed even if k �= m, although in practice, it is common
to choose m = k. This means that m and k can be chosen
either smaller or larger with respect to each other to reflect
the complexity of linear and nonlinear functions of the model.

Algorithm 1 shows the process of determining the DEIM
interpolation points and matrix P . The ordered linearly inde-
pendent basis vector set given as input is the basis Um that is
obtained from snapshots of the nonlinear function. The argmax
function returns the index of the largest value in a given vector
and ei is the i th standard basis vector. For more details, see the
original reference [19], where an error bound for the DEIM
approximation in the Euclidean space is also given. For an
error estimate of the reduced state in POD-DEIM models
specifically, see [21].

An essential part of our work is building the POD-DEIM
subspace-projection operations V T

k and Vk , reduced matrices
Ãm and Z̃ , and low-dimensional interpolation N of (7) into
the Neural ODE. Consider a Neural ODE with an input layer,
an ODE block, and a readout layer, as on the left of Fig. 2.
We add two new layers: one for projecting the ODE block
into a low-dimensional subspace and one for transforming
the result of the ODE block back to the original space,
as shown in the right of Fig. 2. These layers implement
the computations V T

k x(0) and Vk x̃(tend). The cost of these
operations is offset by the cheaper evaluation of the ODE layer,
which typically makes the bulk of the compute time of Neural
ODEs. In the ODE layer, the reduced matrices Ãm and Z̃
replace the corresponding original large weight matrices and
a new linear layer is added to implement the low-dimensional
interpolation N . Furthermore, if the operations around the
ODE block are linear, V T

k and Vk can be computed into those
existing layers, resulting in even cheaper online evaluation.
Finally, we emphasize that this POD-DEIM process is widely
applicable to different model architectures, as long as (1)
defines the ODE block.

The DEIM method is known to exhibit lower accuracy in
the presence of noise or perturbations in the snapshots. The
input function Zu(t) in ODE-RNNs can cause such nonsmooth
behavior and a large number of timesteps taken are sensitive
to instabilities. Hence, for compressing ODE-RNNs, we use
an oversampling strategy that stabilizes the method as shown
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in [52]. In this oversampled DEIM (ODEIM), the number
of nonlinear sampling points in 	p becomes m + o and is
decoupled from the number of basis vectors m of the DEIM
subspace. The matrix P then has size n × (m + o) and the
matrix inverse of (6) is replaced with the Moore–Penrose
pseudoinverse (PT Um)†. In ODEIM, interpolation becomes
approximation via regression. During model evaluation, m +o
activation functions are evaluated. In our results, we evaluate
m+1 nonlinear activation functions, which compared to vanilla
DEIM has a slightly negative effect on model acceleration but
a positive effect on accuracy of the compressed model.

The POD-DEIM method has adjustable parameters that
affect the performance of the reduced model. The dimension k
of the linear projection matrix and the number of interpolation
points m are typically set according to the decay of the
singular values of the snapshot matrices X and F , but both can
be adjusted independently. The number of snapshots can be
controlled in two ways: the number of samples of training data
to use and the number of snapshots of model dynamics to save
per sample. Computing the SVD of the snapshot matrix is the
most computationally demanding step of the MOR pipeline,
with memory being the typical bottleneck.

C. Benchmark Compression Methods

We compare the performance of the POD-DEIM method
to two other ANN compression methods presented in the
literature. To the best of our knowledge, no other studies using
these methods to compress Neural ODEs have been published
before.

The first method compresses the weight matrix of the ODE
block into two low-rank matrices [10], [11] using SVD-based
truncation. This reduces the overall number of multiply–adds
needed to evaluate the layer but, unlike POD-DEIM, does
not change the number of activation functions. Given a fully
connected layer with activation f (Ax + b) and A ∈ R

n×l ,
we apply SVD to the weight matrix to obtain ���T = A.
Then, we only keep the first k < n singular values by trunca-
tion so that �k = diag(σ1, . . . , σk) ∈ R

k×k and the first k left
and right singular vectors so that �k = {φ1, . . . , φk} ∈ R

n×k

and �k = {ψ1, . . . , ψk} ∈ R
l×k . An approximation to A is then

obtained as Ã = �k�k�
T
k . In ANNs, we can implement the

approximation in two consequent fully connected layers that
only use activation and bias after the last layer. The connection
weights of the first layer are �k�

T
k ∈ R

k×l and the second
weights are �k , which changes the parameter count from nl
to k(n + l). Notice that in a single-layer ODE block, we have
l = n. This method is theoretically sound for compressing the
ODE block. It retains most parameters out of the compression
methods we test, meaning that it is expected to yield low-
to-moderate acceleration. Since the weight truncation only
uses the learned weights as inputs, the method does not depend
on any other data, unlike POD-DEIM which requires gathering
snapshots of the ODE dynamics.

The second method we used for comparison is based on
computing an importance score for neurons, called average
percent of zeros (APoZ) method, following [9], where it is
suggested to prune neurons that have the largest number of

zero activation values over the training or testing dataset. The
corresponding rows of the weight, bias, and input matrices
are then removed altogether. Moreover, with Neural ODEs
specifically, for each removed row of the weight matrix,
we also remove the corresponding column. The importance
score of the cth neuron in a layer is defined as

APoZc =
∑N

k

∑M
j f

(
Oc, j (k) = 0

)

N M
(8)

where N is the number of examples used to calculate the score
and M is the dimension of the output feature map O. In Neural
ODEs, it is common to use hyperbolic tangent activations, and
hence, we adapt the scoring so that neurons with the lowest
absolute activation magnitudes are eliminated. We compute
the score after the last timestep of the ODE block, as this is
the value that gets propagated to the following layers in the
network. We only use training data for computing the score.
This method does not account for the dynamics of the ODE
block, as scoring is computed only at the last timestep of
the ODE block, and hence, we evaluate the performance in
detail here. Overall, this method applies the largest amount of
compression out of the methods we test here.

IV. RESULTS

We implemented two Neural ODE models and trained them
on different classification tasks: one Neural ODE with a con-
volutional ODE block to classify digits of the MNIST dataset
and one ODE-RNN to classify digits in the pixel-MNIST task,
where the network is given one pixel at a time as input.
We trained both models using data augmentation with random
rotations and affine translations in order to prevent overfitting,
using a decaying learning rate starting from 0.04, stochastic
gradient descent optimizer, and cross-entropy loss function on
image labels. After training, the POD-DEIM snapshots were
collected by feeding each image in the training data to the
network and saving the ODE state and activation function
values at every second timestep. POD and DEIM bases were
computed using a memory-efficient partitioning strategy [53].
Next, we compressed the models using POD-DEIM, APoZ
trimming, and weight truncation and evaluated their per-
formance directly after compression, after three epochs of
fine-tuning and after excessive fine-tuning on training data.
The performance of each compressed model was compared
to the respective original model using Top-1 accuracy, Top-3
accuracy, and wall time as metrics. We restrict fine-tuning
to the layers following the ODE block in order to get a
better view of how well the compressed blocks maintain their
computational capacity. Our results below have been imple-
mented using the PyTorch machine learning framework [54].
To implement Neural ODEs, we additionally used the TorchD-
iffEq [5] and Torchdyn [55] python packages. Execution times
are true wall times realized on Intel Xeon E5-2680 v3 2.5-GHz
processors and measured as the time it takes to classify every
item in the test dataset. For the convolutional network, we use
a single core, and for the recurrent network, we use four
processor cores.

In Table I, we show the number of parameters in a the-
oretical Neural ODE, and then, it has been compressed with
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TABLE I

THEORETICAL LAYER SIZES

each compression method. We consider a nonlinear ODE block
of the form x ′(t) = f (Ax(t)) where the weight matrix has
dimensions A ∈ R

n×n, and hence, there are n activation
functions. The ODE block is preceded by a layer with weight
matrix W1 ∈ R

n×i and followed by a layer with weight matrix
W2 ∈ R

o×n. In Table I, k denotes the dimension of the
compressed ODE block and n × i and o × n are the number
of weights in the layers preceding and following the ODE
block, assuming that those layers exist. With regard to the
model speed, the complexity of the ODE layer is significantly
more important than the sizes of the surrounding layers. This
is because the ODE function is evaluated multiple times,
at least once for each intermediate time point in [t0, tend]. The
architecture of the original ANN affects the achieved com-
pression. The POD-DEIM and APoZ methods can reduce the
ODE layer to a dimension that is independent of the original
size n, although the interpolation in POD-DEIM requires an
additional k2 operations compared to APoZ. Moreover, for
POD-DEIM, the best case is realized when the preceding and
following operations are linear, whereas the APoZ method
reaches the best case even if they are nonlinear. With the APoZ
method, some nonlinear operations, such as max pooling,
require that we maintain a lookup table of pooled indices or
insert the k compressed values to their respective indices in an
n size vector, which is the worst case result for the method.
SVD truncation is not affected by the surrounding layers.

A. Convolutional Neural ODE

We illustrate the performance of reduced models on the
MNIST dataset of handwritten digits [56]. For our first task,
we train a convolutional Neural ODE that uses 16 convo-
lutional kernels and tanh activation in the ODE block, with
Z = 0 (see (2)). Before the ODE block, we use a convolutional
layer with 3 × 3 kernels and rectified linear unit (ReLU)
activations that outputs 16 channels into 3 × 3 max pooling.
After the ODE block, we use 3 × 3 max pooling into a
linear readout layer with ReLU activations. The ODE block
propagates the data for t = [0, 1] with timestep dt = 0.1 using
a fourth-order fixed-step Runge–Kutta solver. The initial value
of the ODE is the output from the prior layer. We use the
adjoint method for training the ODE weights [5]. In order to
implement MOR and model compression of the convolutional
ODE block, the convolution operator is needed in the matrix
form. After training, we replaced the original convolution

operator with an equivalent operation implemented as a linear
layer. The conversion yields a sparse Toeplitz matrix. With this
operation, 16 convolution channels correspond to 1024 neu-
rons and activation functions. All reported wall times are
obtained with this conversion and compressed models are
compared to these times. The reported wall times are medians
of ten consecutive evaluations of the entire validation dataset.
The trained network achieves 97.9% top-1 and 99.7% top-3
accuracies on held-out test dataset of 10 000 MNIST images
and it takes 11.2s to run the model on the test dataset on CPU.

In order to determine the suitability of our chosen com-
pression methods, we looked at several metrics of the trained
Neural ODEs, namely, decay of singular values in the
POD-DEIM snapshot matrices X and F and the weight
matrix A. Moreover, we looked at the distribution of APoZ
scores and their relation to DEIM interpolation indices. Fig. 3
shows these metrics for the convolutional Neural ODE. The
left plot shows sorted singular values of the solution snapshot
matrix X (POD) and F (DEIM) of the ODE block, gathered
from training data, in purple and green, respectively. The log-
arithmic y-axis shows the magnitude of a given singular value
divided by the sum of all singular values. Both POD and DEIM
singular values collapse rapidly, indicating that a small number
of singular vectors can span a space where the majority of
dynamics are found. This is an important indicator for the
suitability of the POD-DEIM method. In the same plot, the
yellow plot shows the singular values of the weight matrix A of
the ODE block. These values are useful for determining a rank
for the SVD-based truncation method that we compare against
POD-DEIM. Singular values of A also decay exponentially,
meaning that a good low-rank approximation to A can likely
be found. The right of Fig. 3 shows APoZ scores for each
neuron in the ODE block, with low-scoring neurons being
the least important. In addition, we have indicated the first
100 interpolation points pi chosen by the DEIM method in
green. All neurons seem to contribute to the model, with only
a small number of relatively low-scoring neurons seen, which
could make the APoZ method challenging to apply in the
Neural ODE context. Some consensus between the methods
is seen, as neurons with low APoZ scores are not in the top
DEIM selections either.

We wanted to find out how the POD-DEIM method com-
pares to existing model compression methods when com-
pressing only the ODE block of a convolutional network.
For POD-DEIM dimensions, we have chosen k = m and
use dimension k compressed models, which corresponds to
the number of activation functions to dimension k APoZ
trimmed models. The results on the MNIST dataset are shown
in Fig. 4, where y-axis, model accuracy, is computed as
reduced model top-1 accuracy divided by the original model
result, and x-axis, achieved speedup, is computed as original
model test time divided by reduced model test time. Each dot
represents a compressed model dimension, which decreases
in the direction of increased speedup. While the dimensions
are not comparable between methods, the graphs indicate
how much accuracy is maintained at a given acceleration
amount. Table II presents the absolute performance values
of compressed models without fine-tuning, with three epochs
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Fig. 3. Metrics for the convolutional Neural ODE. Left: singular values POD (purple) and DEIM (green) snapshot matrices and singular values of the weight
matrix of the ODE block (yellow). Right: histogram of APoZ scores, with the first 100 DEIM indices indicated in green.

Fig. 4. Performance of reduced convolutional Neural ODEs on the MNIST dataset, relative to the original model. Left plot shows the results without
fine-tuning, and right plot shows the results with three epochs of tuning. The x-axis shows achieved acceleration, while the y-axis shows reduced model top-1
accuracy divided by full model accuracy. Reduced model dimension decreases in the direction of improving speedup. Absolute performance can be seen in
Table II.

of fine-tuning after model compression, and with retraining
(30 epochs of training after compression).

Fig. 4 shows that the POD-DEIM method retains the highest
accuracy when compared to similar speedups from other meth-
ods. Our POD-DEIM reaches over fourfold speedup in run
time in this task. The SVD method is also accurate but cannot
reach speedups greater than two times the original run time,
explained by the method having to evaluate all the original
nonlinear activation functions. The APoZ method reaches the
fastest run times but loses the most amount of accuracy. After
three epochs of fine-tuning, the APoZ method improves in
accuracy, but not to the level of performance that the other
methods show even without tuning. Overall, the POD-DEIM
method achieves the best profile in terms of accuracy retained
for speedup gained. A big contributor is the interpolation
matrix N , which makes the method slower compared to APoZ,
but the cost is justified by the better accuracy. When looking at
absolute performance values, Table II shows that at dimension
350, the POD-DEIM method is two times faster to run than
the original model while achieving 93.1% top-1 accuracy.
At dimension 50, the POD-DEIM model is over four times

faster than the original model, still reaching 91.1% top-1
accuracy without fine-tuning.

B. Recurrent Neural ODE

For our second study, we designed a task in which Neural
ODEs have an advantage over discrete networks. ODE-
RNNs [6] and antisymmetric RNNs [4], [50] are one such
example. Using a continuous hidden state, ODE-RNNs enable
flexible inference on continuous-time data even with irreg-
ularly sampled or missing values and antisymmetric mod-
els have spectral properties that are favorable for RNNs,
as described in Section III. We implemented a shifted anti-
symmetric ODE-RNN for the pixel MNIST task. In this task,
the network sees a pixel of a handwritten digit at a time and
after iterating over each pixel outputs the class of the image.
The length of the input sequence is 784 steps, corresponding
to a flattened MNIST image, and the network sees each pixel
for dt = 0.1s. Following [50], we initialize the ODE weights
from zero mean, unit variance normal distribution, as well as
train and test the network with the Euler discretization method.
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TABLE II

ABSOLUTE PERFORMANCE OF REDUCED CONVOLUTIONAL
NEURAL ODES

We use 512 hidden units with a hyperbolic tangent nonlinearity
and the shifted antisymmetric weight matrix as shown in (3).
The initial value of the ODE is set to x(0) = 0. The ODE
block is followed by a linear readout layer. Compared to the
convolutional network, this model is smaller in neuron count
but needs to incorporate the time-dependent input data. The
trained network achieves 96.2% accuracy on held-out MNIST
test data in 48.1s.

Fig. 5 shows the compression metrics for the ODE-RNN.
The left plot shows the sorted relative singular value magnitude
of the solution snapshot matrices X (POD) and F (DEIM) and
the weight matrix A of the ODE block in purple, green, and
yellow. For this model, the singular values of the snapshot
matrices as well as the weight matrix also decay rapidly.
However, with regard to POD-DEIM, the singular values of the
snapshot matrices do not decay as fast as those obtained from
the convolutional model and there is a considerable amount of
total energy contained in the singular values until rank 500.
This indicates that the dynamics of the ODE block are more
difficult to approximate in low dimensions than those learned
by the convolutional model. Such a result is expected because
the ODE-RNN has a time-dependent input contributing to
the hidden state and the forward propagations are computed
for a longer time span than in our earlier example, allowing
for richer dynamics. On the other hand, singular values of

TABLE III

ABSOLUTE PERFORMANCE OF REDUCED ODE-RNNS

the shifted antisymmetric weight matrix decay more rapidly
than in the earlier task, indicating suitability of SVD-based
truncation of weights. The APoZ scores on the right of Fig. 5
show the same pattern as earlier, where it is not straightforward
to detect the most important neurons conclusively. This is
expected, given that in the context of ODE blocks, the output
activity at the last timestep is not a conclusive measure of
neuron importance.

We then evaluated the selected compression methods on the
pixel MNIST task using our ODE-RNN. The results relative
to the performance of the original model are shown in Fig. 6.
Absolute results of compressed models without fine-tuning,
with three epochs of fine-tuning, and with exhaustive tuning
are shown in Table III. This task is more challenging for the
reduction methods than the convolutional network. Possible
factors are the dense structured antisymmetric weight matrix
or the time-dependent input. Here, the SVD truncation method
maintains the most accuracy. As predicted by the singular
values of the snapshot matrices, the overall performance of
the POD-DEIM method on this model is not as satisfying as
with the convolutional model. On this model, the POD-DEIM
method is faster than the original model until dimension
425, at which point the accuracy is 94.6%, while the APoZ
method remains faster at all times. With regard to the tradeoff
between run time and accuracy, the SVD method maintains
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Fig. 5. Metrics of the ODE-RNN. Left: singular values of POD (purple) and DEIM (green) snapshot matrices and singular values of the weight matrix of
the ODE block (yellow). Right: histogram of APoZ scores, with the first 50 DEIM indices indicated in green.

the most accuracy for speed gained. POD-DEIM shows good
accuracy at high dimensions, although accuracy drops rapidly
so that the overall performance is level with the APoZ method.
With exhaustive fine-tuning, the APoZ method may be fit for
compressing the ODE-RNN to a low dimension since APoZ
yields the best absolute acceleration. The APoZ compressed
model also seems easier to fine-tune than the POD-DEIM
version since more accuracy is recovered in three fine-tuning
epochs.

V. DISCUSSION

In this work, we have studied the compression of ANNs
that contain ODEs as layers (Neural ODEs). After training
and compressing the networks, we evaluated their accuracies
as well as execution speeds. Although in the literature many
compression methods are applied in the training loop, the
training of Neural ODEs is slower than discrete networks to
begin with, making it attractive to compress the network in a
separate step after training. We also assessed fine-tuning of the
compressed network to see how much accuracy can be recov-
ered. We focused on the run time and classification accuracy
of compressed models since Neural ODEs are already very
memory and parameter efficient by design.

Here, we showed how to formulate the POD-DEIM into
compressing Neural ODEs. This method has been developed
for accurately approximating dynamical systems in low dimen-
sions and the continuous-time network formalism of Neural
ODEs makes it possible to use POD-DEIM in deep learning
applications. In addition, we compared the POD-DEIM and
APoZ methods to SVD-based truncation. The performance
was measured with two different architectures, a convolutional
Neural ODE and a recurrent ODE architecture, which were
trained on the MNIST digit classification task.

We hypothesized that some existing neuron pruning meth-
ods that measure neuron importance based on the final output
of the layer only, such as the APoZ approach, are not optimal
for compressing Neural ODEs. The reason is that these meth-
ods do not account for the dynamics of the ODE block when
identifying pruning targets. Based on our results, the proposed

approach for Neural ODE compression depends on the model
architecture. We found the POD-DEIM method to achieve
the most favorable continuum between accuracy and speedup
on compressing the convolutional architecture, as shown in
Fig. 4. The SVD-based weight truncation is the simplest of
the studied methods and it performed well on both tasks,
although it yielded less absolute acceleration than the other
methods. The ODE-RNN was challenging to accelerate, and
here, the weight truncation method is our favored choice based
on Fig. 6. In this task, the APoZ method performed better or
equally to POD-DEIM. While the POD-DEIM method is based
on approximating the time trajectory in a low-dimensional
subspace, there are also MOR methods, such as the balanced
truncation, which are designed to approximate input–output
behavior of high-dimensional systems. Such a method could be
a good tool for compressing RNN models with time-dependent
input, once the applicability of these methods to nonlinear
systems develops further [57].

In this study, we only fine-tuned the layers following the
ODE block, keeping results more indicative of raw perfor-
mance of the methods. If the entire model were tuned, POD-
DEIM and SVD truncation have more parameters available
for fine-tuning than the APoZ method, allowing for greater
accuracy. On the other hand, the small number of parameters
is what makes APoZ compressed models the fastest out of the
three methods, and hence, it should be favored if there are
no restrictions on fine-tuning and retraining time. Moreover,
compared to POD-DEIM, the APoZ method is more data
and memory efficient since it does not need snapshots of
trajectories of ODE dynamics nor does it compute large
matrix decompositions. Overall, we found that POD-DEIM
can achieve good acceleration and accuracy of compressed
models, it has a solid theoretical foundation and several exten-
sions while also being the most adjustable and optimizable
approach of the methods used in this study.

We expect that our results with the POD-DEIM method
motivate machine learning researchers to look into the possible
applications of other MOR methods developed in control the-
ory and related fields. For example, we assessed here only the
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Fig. 6. Relative performance of reduced ODE-RNNs on the pixel MNIST task. Left plot shows results without fine-tuning, and right plot shows results
with three epochs of tuning. The x-axis shows achieved acceleration, while the y-axis shows reduced model top-1 accuracy divided by full model accuracy.
Reduced model dimension decreases in the direction of improving speedup. Absolute values can be seen in Table III.

original DEIM [19] and the ODEIM [52] methods, although
in recent years, many advanced versions have been developed.
These include novel interpolation point selection methods [58]
and methods with adaptive basis and interpolation point selec-
tion capabilities [59]–[61] that allow the model to change its
dimension or projection subspace online. It is worth noting that
the POD-DEIM method aims at approximating the dynamics
of the original system and is not aware of classification or other
performance indicators of the Neural ODE. A potential future
development could explore connecting the low-dimensional
dynamics to downstream the network performance.

A limitation of the present work is that we could only
study relatively small models, due to known challenges with
training very large Neural ODEs [45]. In small models, the
expected gains from compression methods are lesser than in
large models. Moreover, we only discussed computation times
on CPUs, as on GPUs the differences between original and
compressed models were minor due to the small size of the
models. While the computational speedup from POD-DEIM
needs to be verified on GPUs and extremely large models,
theoretical reductions in parameter, and activation function
count, comparable results from existing literature as well as
our results on the CPU indicate that the method should perform
equally well.

Our results were obtained with fixed-step ODE solvers.
We found that compressing Neural ODEs sometimes induces
stiffness to the low-rank models (data not shown). This could
cause adaptive ODE solvers to be slower, mitigating some of
the speedup from compression. However, a systematic study of
this behavior was not sought here and fixed-step ODE solvers
were chosen to quantitatively compare the methods across
dimensions. A future study is needed to quantify the effects
of stiffness that may rise when compressing Neural ODEs.

VI. CONCLUSION

In this study, we addressed speeding up and compressing
ANNs with continuous layers. Our POD-DEIM method, which
has not previously been used to compress Neural ODEs, pro-
vides attractive results for accelerating convolutional Neural
ODEs and equal results to neural pruning methods for acceler-
ating recurrent Neural ODEs. POD-DEIM properly considers

the trajectory of the ODE layer in an efficient manner. In addi-
tion, POD-DEIM has adjustable parameters and advanced
variations that can be used to optimize the speed versus
accuracy tradeoff for each model.

We expect our acceleration method to be useful when
Neural ODEs are deployed on low-power hardware or battery-
powered devices, for example, wearable devices, medical mon-
itoring instruments, or smartphones. The dynamical system
formalism for neural networks also allows other MOR methods
to be applied in DL, which will provide for interesting future
studies.
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