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ABSTRACT 

Aleksi Partanen: Comparative analysis of 3D- depth cameras in industrial bin picking solution  

Master of Science Thesis 

Tampere University 

Master’s Degree Programme in Automation Technology 

May 2023 
 

Machine vision is a crucial component of a successful bin picking solution. During the past few 
years, there has been large advancements in depth sensing technologies. This has led to them 
receiving a lot of attention, especially in bin picking applications. With reduced costs and greater 
accessibility, the use of machine vision has rapidly increased. Automated bin picking poses a 
technical challenge, which is present in numerous industrial processes. Robots need perception 
from their surroundings, and machine vision attempt to solve this by providing eyes to the ma-
chine. The motivation behind solving this challenge is the increased productivity, enabled by au-
tomated bin picking. 

The main goal of this thesis is to address the challenges of bin picking by comparing the per-
formance of different 3D- depth cameras with illustrative case studies and experimental research. 
The depth cameras are exposed to different ambient conditions and object properties, where the 
performance of different 3D- imaging technologies is evaluated and compared between each 
other. The performance of a commercial bin picking solution is also researched through illustrative 
case studies to evaluate the accuracy, reliability, and flexibility of the solution. Feasibility study is 
also conducted, and the capabilities of the bin picking solution is demonstrated in two industrial 
applications. 

This research work focuses on three different depth sensing technologies. Comparison is done 
between structured light, stereo vision, and time-of-flight technologies. The main categories for 
evaluation are ambient light tolerance, reflective surfaces, and how well the depth cameras can 
detect simple and complex geometric features. The comparison between the depth cameras is 
limited to opaque objects, ranging from shiny metal blanks to matte connector components and 
porous surface textures. The performance of each depth camera is evaluated, and the ad-
vantages and disadvantages of each technology are discussed.  

Results of this thesis showed that while all of the technologies are capable of performing in a 
bin picking solution, structured light performed the best in the evaluation criteria of this thesis. The 
results from bin picking solution accuracy evaluation also illustrated some of the many challenges 
of bin picking, and how the true accuracy of the bin picking solution is not dictated purely by the 
resolution of the vision sensor. Finally, to conclude this thesis the results and future suggestions 
are discussed. 
 

Keywords: Bin Picking, Depth Camera, Machine Vision, Stereo Vision, Structured Light, 
Time-of-Flight 
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TIIVISTELMÄ 

Aleksi Partanen: 3D- syvyyskameroiden vertaileva analyysi teollisen kasasta 

poimintasovelluksen näkökulmasta 

Diplomityö 
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Automaatiotekniikan diplomi-insinöörin tutkinto-ohjelma 
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Konenäkö on keskeinen osa automatisoitua kasasta poimintasovellusta. 
Syvyyskamerateknologiat ovat kehittyneet paljon kuluneiden vuosien aikana, joka on herättänyt 
paljon keskustelua niiden käyttömahdollisuuksista. Kustannusten alenemisen, sekä paremman 
saatavuuden myötä konenäön käyttö, erityisesti kasasta poimintasovelluksissa onkin lisääntynyt 
nopeasti. Automatisoitu kasasta poiminta kuitenkin omaa teknisiä haasteita, jotka ovat läsnä 
lukuisissa teollisissa prosesseissa. Motivaatio automatisoidun kasasta poiminnan taustalla on 
tuotettavuuden kasvu, jonka konenäkö mahdollistaa tarjoamalla dataa robotin ympäristöstä. 

Tämän diplomityön tavoitteina on vastata kasasta poiminnan haasteisiin vertailemalla 
erilaisten 3D-syvyyskameroiden suorituskykyä tapaustutkimusten sekä kokeellisen tutkimuksen 
avulla. Syvyyskameroiden toimintaa arvioidaan erilaisissa ympäristöissä sekä erilaisilla 
kappaleilla, jonka seurauksena 3D-kuvaustekniikoiden suorituskykyä vertaillaan keskenään. 
Työn aikana arvioidaan myös kaupallisen kasasta poimintasovelluksen suorituskykyä, jossa 
tutkitaan tapaustutkimusten avulla sovelluksen tarkkuutta, luotettavuutta sekä joustavuutta. 
Tämän lisäksi sovelluksen toimintaa pilotoidaan, ja ratkaisun ominaisuuksia demonstroidaan 
kahdessa teollisessa sovelluksessa. 

Tämä diplomityö keskittyy kolmeen eri syvyyskameratekniikkaan. Vertailu tehdään 
strukturoidun valon, stereonäön sekä Time-of-Flight tekniikoiden välillä. Arvioinnin pääkategoriat 
ovat ympäristön valoisuus, geometristen muotojen havainnointikyky, sekä heijastavat pinnat. 
Syvyyskameroiden välinen vertailu rajoittuu läpinäkymättömiin kappaleisiin, jotka vaihtelevat 
kiiltävistä metalliaihioista mattapintaisiin liitinkomponentteihin ja huokoisiin pintarakenteisiin.  

Tutkimuksen tulokset osoittivat, että vaikka kaikki tekniikat kykenevät automatisoituun kasasta 
poimintaan, strukturoitu valo suoriutui tutkituista teknologioista parhaiten. Kasasta 
poimintasovelluksen tarkkuuden arviointi havainnollisti myös sen monia haasteita, sekä kuinka 
sovelluksen todellinen tarkkuus ei riipu ainoastaan syvyyskameran resoluutiosta. 
Loppupäätelmien lisäksi työ päätetään ehdotuksilla tutkimuksen jatkamiseksi. 

 
Avainsanat: Kasasta poiminta, Konenäkö, Stereonäkö, Strukturoitu valo, Syvyyskamera, 

Time-of-Flight 
 
Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck –ohjelmalla. 
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1. INTRODUCTION 

Traditionally, moving randomly oriented parts from one place to another has required 

human resources to complete (Torres et al., 2022, pp. 1–2). This process, generally de-

fined as bin picking, consists of locating, picking and orientating randomly placed parts 

in a specific manner (Ojer et al., 2022, pp. 1–2). This is a monotonous task, that in the 

context of smart factories and industry 4.0 is no longer suitable. This brings up the “Bin 

picking problem”- What is a simple and easy task for humans, requires an external visual 

sensing system for a robot to complete (Torres et al., 2022, pp. 1–2).  

The problem of bin picking is primarily focused on locating and moving randomly orien-

tated objects from a bin (Pochyly et al., 2012, p. 1). Even after being a research topic for 

years (Martinez et al., 2015, pp. 1–2), and with today’s advances in machine vision tech-

nology (Malik et al., 2019, pp. 1228–1229) – Pure random bin picking have yet to be 

achieved (Boschetti et al., 2023, pp. 1–2). From the perspective of a bin picking solution, 

the machine vision system has to perform in the presence of textureless surfaces, vary-

ing lighting conditions and occlusions. Modern technology has come up with several ap-

proaches for robot guidance, each with different advantages and drawbacks to approach 

these challenges (Pérez et al., 2016, pp. 10–17).  

With the fourth industrial revolution, Industry 4.0 ongoing, higher productivity and effi-

ciency is expected (Lydon, 2016). The expectations are high, because the task is not to 

just match, but to outperform human capabilities across a wide span of applications (Car-

roll, 2021). While the reliability and accuracy of the bin picking solution are crucial for 

success (Tipary et al., 2021, pp. 1–2), the flexibility of the solution is often overlooked. 

The picking solution should also be reusable, when the type of the parts change (Reb-

bouh, 2022, p. 3). 

1.1 Research objectives 

The objective of this thesis is to research different 3D- depth camera technologies to find 

the strengths and weaknesses of each technology from a bin picking applications point 

of view. To compare the technologies, case studies and experimental research is per-

formed with objects ranging from the metal industry to different sub assembly compo-

nents. The goal of this evaluation is to find out what object properties are hard to detect 
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and potentially problematic for a bin picking application. This thesis also aims to evaluate 

the performance of a commercial bin picking solution, based on structured light technol-

ogy. The goal of this research is to present the capabilities of modern bin picking solution 

in different industrial applications. 

1.2 Research problem and research questions 

Automated bin picking systems should be versatile and be able to adjust for the diverse 

and evolving industrial environment. This requires a vision system, capable of performing 

in varying environments and with different object properties. By analysing different 3D- 

depth camera technologies, this thesis attempts to compare and evaluate their perfor-

mance with different object types and environments. The research questions this thesis 

attempts to answer are: 

1. What are the object properties, or a combination of properties that enable or limit 

the use of a specific 3D- depth camera technology? 

2. How different type of 3D- depth camera technologies perform in an industrial bin 

picking environment? 

3. How well does a commercial bin picking solution perform, and are the benefits 

justifiable for the increased initial cost? 

1.3 Limitations 

There are three limitations in this study, that could be addressed in future research: 

 The object properties and materials of the 3D- depth camera comparison were 

limited by the selection of products from participating companies. 

 The 3D- depth camera selection was limited by the hardware available for the 

research work. 

 Only structured light was evaluated in terms of accuracy and precision because 

bin picking solution was not provided for other depth camera technologies. 

1.4 Research methods 

The research plan was based on the research onion framework, with positivism philoso-

phy and deductive approach. This approach was chosen, because it produces quantifi-

able data by objectively observing the results (Tengli, 2020). After the literature review, 
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the first research question is researched through illustrative case studies. These are de-

scriptive studies, that examine the interplay of different variables in attempt to explain 

the outcome of the research. Case studies require a problem that seeks understanding 

through logic, and they answer questions such as “why” and “how” (Bronwyn et al., 

2005). Because the resulting data is quantifiable, this research method was chosen for 

the first research question. As described by (Bronwyn et al., 2005), the questions to de-

fine a case study are: 

1. What questions the study attempts to answer? 

2. What are the subjects of the study? 

3. How is the data collected during the study? 

4. What data is collected during the study, and what data is relevant for the study? 

5. What are the units of analysis and how is the data analysed? 

6. What is the logic that links the resulting data to the questions of the study? 

The second research question is approached through experimental research. This re-

search method studies the relationship how an independent variable affects a dependent 

variable. Experimental research method usually has hypotheses and the experiments 

either confirms or disproves them. This requires comparable subjects, where only the 

independent variable is altered (Bronwyn et al., 2005). When the research question stud-

ies singular variables, such as effects of ambient light, this research method is a good 

approach to the problem. As described by (Bronwyn et al., 2005), experimental research 

is defined by the following steps: 

1. Identify the research problem.  

2. Formulate hypothesis of the results, causal relationships, and the confounding 

variables. 

3. Select the control and treatment groups and conduct the experiment. 

4. Collect and analyse the data. 

5. Discuss the results. 

The third research question is researched through illustrative case study and a feasibility 

study. Feasibility study is a small-scale project consisting of series of interlinked ques-

tions. The goal of a feasibility study is to disclose if a proposed project could be success-

ful, if implemented in full scale (McLeod, 2021, pp. 1–4). Feasibility study was chosen as 
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a research method, because the companies involved with this thesis work all had ques-

tions related to feasibility of a bin picking solution. The common steps of a feasibility 

study, as described by (McLeod, 2021, p. 4) are: 

1. Explore viable proposals and recognise fatal flaws. 

2. Concept development in laboratory environment. 

3. Feasibility demonstration in practise. 

The research methods described above will produce sub-results from the depth cameras 

and a structured light-based bin picking solution. The first two research questions provide 

sub-results from the strengths and weaknesses of each depth camera technology. The 

third research question provides sub-results from the performance of a structured light-

based bin picking solution. These sub results are finally combined to answer the research 

questions and produce the main results of this thesis, a comparative analysis of 3D- 

depth cameras. An overview of the research plan is presented below in figure 1, and the 

research plan is explained in more detail in chapter 3. 

 

Figure 1. Research plan  
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2. LITERATURE REVIEW 

This chapter introduces the major topics of the Thesis. Chapter 2.1 focuses on 3D- ma-

chine vision and presents the fundamentals of 3D- data structures. Chapter 2.2 presents 

different 3D- depth camera technologies, focusing on how they function and produce 

depth data. Finally, chapter 2.3 presents the industrial bin picking and the concepts of 

object localization and pose estimation. 

2.1 3D- Machine vision system 

Machine vision system is at the core of bin picking, among many other applications. 

Machine vision can be considered as a combination of hardware and software, that en-

ables the operation of devices based on the captured and processed images (Cognex, 

2018, pp. 3–10). Robots need perception from their surroundings in order to navigate 

within a 3D- environment, and machine vision attempts to solve this by providing eyes to 

the machine (Pérez et al., 2016, pp. 2 and 10). 3D- machine vision system furthers this 

concept of being the eyes of the machine, as the addition of third dimension allows even 

more similarity to the human vision (Lin et al., 2020, p. 551). The core of any 3D- machine 

vision system is based on the camera model. The inherent idea is, that the optical device, 

i.e., camera captures light reflected from the scene. The individual image points are then 

reformed to generate a single 3D- image of the scene (Giancola et al., 2018, pp. 5–12). 

The depth information of the resulting image is computed by mathematical models. This 

process requires parameters, describing the mapping between two data points. The pro-

cess of mapping these two points is called calibration (Pérez et al., 2016, pp. 3–5).  

The raw data produced by 3D- machine vision systems come in various forms, with dif-

ferent properties and structure. The amount of data preserved varies between the for-

mats, and point clouds are a commonly used format (Dumic et al., 2020, pp. 595–596). 

Point clouds are one of the preferred formats, because they preserve the original geo-

metric information of the images (Guo et al., 2020, p. 1). Point clouds are hard to process 

because the images may be incomplete due to occlusion, or the connectivity between 

the data points can be disrupted because of noise (Ahmed et al., 2018, p. 4). The im-

portant aspects, such as the geometrical shapes also needs to be filtered, structured, or 

segmented to provide more accurate results (Pérez et al., 2016, pp. 10–11). The different 

3D- data structures are presented in figure 2.  
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Figure 2. 3D- data structures (Based on Ahmed et al., 2018, p. 3, Figure 1) 

Machine vision has enabled the use of robots in various branches of the industry, and 

3D- imaging has expanded the possibilities even further. This has enabled machines to 

complete industrial tasks, which has allowed machine vision to be integrated into several 

industrial processes. Besides just robotic guidance, machine vision is also used in quality 

control and inspection tasks, where the vision equipped machines are used to detect and 

identify quality related issues (Javaid et al., 2022, pp. 1–5). 

There are several benefits with 3D- machine vision compared to the traditional two-di-

mensional (2D) cameras. The main problems 2D- cameras have compared to the 3D- 

depth cameras are contrast, lighting, and lack of depth information. Lack of contrast is a 

significant challenge to traditional 2D- cameras, as the features it depends on are very 

difficult to detect from either shiny, dark or bright surfaces (Qualitas, 2011). Lighting of 

the scene is also a frequent problem of 2D- cameras, as implemented incorrectly it can 

cause shadows or reflections (Kleppe et al., 2017, p. 1). Lack of depth on the other hand 

becomes an issue, because it is impossible for the vision system to estimate the depth 

of a scene from a single 2D- image (He et al., 2018, pp. 1–2). As a by-product of better 

accuracy, 3D- machine vision also enables the collaborative operation between robots 

and humans. This includes tasks in material handling, assembly processes and industrial 

tasks (Borboni et al., 2023, pp. 18–19) 
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2.2 3D- imaging technologies 

The term 3D- imaging refers to different imaging technologies that can capture 3D- data, 

including the depth of the scene (Geng, 2011, p. 130). Different depth- sensing 3D- tech-

nologies have many different use cases in various fields of technology. These technolo-

gies include stereo vision, structured Light, Time-of-Flight and laser triangulation (Fu et 

al., 2019, p. 1). 

2.2.1 Stereo vision 

Stereo vision system consists of two or more cameras, imaging the same scene from 

different points of view. Stereo vision is inspired by human vision, where the depth infor-

mation is reconstructed from the disparities occurring between the captured images 

(Giancola et al., 2018, pp. 12–14). To compute the depth of individual data points, feature 

points are extracted from the scene and corresponding pixels are located between the 

images. These feature points can only be extracted from parts that are visible to all the 

cameras of the system (Zanuttigh et al., 2016, pp. 9–14).  Disparity map is then com-

puted by calculating the disparities between the images (Jafari Malekabadi et al., 2019, 

p. 630).  The disparity map is finally converted to depth information by triangulation meth-

ods and the spatial relationship between the cameras (Lü et al., 2013, pp. 1–2).  

Stereo vision systems can be an active or a passive system, depending if the system 

relies on external illumination of the scene or not. Passive stereo vision uses two or more 

cameras, but the system does not provide any additional illumination into the scene. In 

general, more than two cameras provide better results due to more pixel correlations. 

Passive stereo vision requires that the distance between the cameras and the object is 

known, which restricts the vision system as it needs to remain static (O’Riordan et al., 

2018, pp. 178–179). The primary difference between passive and active stereo vision 

systems is a projector, which is present in active stereo vision systems (Jang et al., 2022, 

pp. 1–4). The purpose of the projector is to project light into the scene and provide addi-

tional texture, which provides more pixel correlations and leads to better accuracy. Active 

stereo vision also enables dynamic scene imaging, because the cameras are able to 

detect motion from distortions in the light patterns (O’Riordan et al., 2018, p. 179). An 

overview of passive and active stereo vision systems is presented in figure 3. 
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Figure 3. Stereo vision system (Based on DAQRI, 2018, Figure 1) 

Stereo vision system cameras are able to capture 3D- images in real time, providing the 

cameras are calibrated correctly (Schraml et al., 2010, p. 3). Another benefit of stereo 

vision systems is the capability of performing well in broad range of different ambient 

light conditions (Nagel, 2021, p. 5). One challenge stereo vision systems face is caused 

by the surface texture of the target objects. Smooth, reflective surfaces are known to be 

problematic and they can cause incorrectly computed depth data (O’Riordan et al., 2018, 

p. 181). Stereo images from a scene without identifiable features are also problematic 

for passive stereo systems, because of the correspondence problem (Zanuttigh et al., 

2016, pp. 17–18). Since the stereo images from such a scene are uniform, corresponding 

pixels cannot be found and depth information cannot be obtained. This problem can be 

solved with an active stereo system. The projected patterns of light produce the texture 

needed for finding the corresponding pixels from both images. The downsides of active 

stereo systems are the increased cost and longer processing times, compared to passive 

stereo systems (Dal Mutto et al., 2013, pp. 9–11). 

2.2.2 Structured light 

Structured light system consists of a single camera and a projector, that projects struc-

tured light patterns to the scene (Giancola et al., 2018, pp. 18–20). The patterns pro-

jected to the scene are coded and designed in a way, that each of the pixels of the scene 
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can be individually identified. The projections essentially give each of the pixels an indi-

vidual codeword, depending on the light values received by the pixel. Based on these 

codewords, correspondences can be established between the projected patterns and 

image points. The location of individual data points and the depth of the scene can then 

be computed with triangulation methods (Salvi et al., 2003, pp. 1–2). The depth compu-

tation of a structured light system is based on the light reflected from the scene, back 

towards the cameras (Giancola et al., 2018, pp. 18–20). From projective geometry point 

of view, the light projector can be considered as a standard pin-hole camera (Zanuttigh 

et al., 2016, pp. 22–27). Because of this, the triangulation principle of a structured light 

system is functionally equivalent to a stereo vision system (Zanuttigh et al., 2016, pp. 

22–27). An overview of a structured light vision system is presented below in figure 4.  

 

Figure 4. Structured light vision system (Based on DAQRI, 2018, Figure 1) 

Structured light cameras are very accurate, even capable of sub-millimetre accuracy 

(Giancola et al., 2018, pp. 18–20). This accuracy however comes with a long processing 

time and requires a stationary scene. Imaging of dynamic scenes can be enabled if a 

specific type of projected patterns are used. The downside of dynamic scene imaging is 

lower resolution, and it makes the vision system very sensitive to surrounding light (Za-

nuttigh et al., 2016, pp. 22–27). A common problem shared between the stereo vision 

systems and structured light systems are reflective surfaces (Dal Mutto et al., 2013, pp. 

36–40). Besides reflective surfaces, another common problem of the structured light sys-

tems is the ambient light of the surrounding environment. The Projected light patterns 

have to be brighter than the ambient light, or the quality of the resulting point cloud can 
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drastically decrease (Gupta et al., 2013, p. 1). Structured light systems can also face 

problems with the scene geometry, if the camera cannot detect all of the projected light 

patterns because of occlusions (Dal Mutto et al., 2013, pp. 36–40). The performance of 

structured light systems is largely affected by the design of the projected light patterns. 

Projection patterns of different structured light methods are presented below in figure 5, 

with their advantages and drawbacks discussed in existing literature by (Geng, 2011, pp. 

133–146). 

 

Figure 5. Structured light projection patterns (Geng, 2011, p. 133, Figure 3) 

2.2.3 Time-of-Flight 

A Time-of-Flight (ToF) camera is a 3D- depth camera, consisting of a transmitter and 

receiver. The transmitter illuminates the scene, by transmitting a modulated light- signal 

that is reflected back to the receiver from the objects in the scene. The transmitted laser 

beams are typically in near-infrared (NIR) range and emitted in very high frequencies of 

10…100 MHz (Giancola et al., 2018, pp. 20–25). The receiver is a matrix of pixels used 

to collect the light that is reflected, where each pixel individually computes the delay 

between the transmission and reflection of the light rays (Zanuttigh et al., 2016, pp. 27–
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32). The depth measurement of ToF- technology is based on the electro-magnetic radi-

ation speed (speed of light). This technology measures the time for the light to leave the 

transmitter and being reflected back to the receiver (Dal Mutto et al., 2013, pp. 28–31). 

The transmitter of a ToF- camera is typically an array of laser emitters, that can illuminate 

the whole scene with just a single signal to produce a depth image of the scene (Za-

nuttigh et al., 2016, pp. 27–32). The two different approaches for ToF- camera depth 

computation are pulse modulated ToF (Direct method) and Continuous- wave ToF (Indi-

rect method) (Syrjänen, 2021, pp. 10–14). Pulsed light operation is the commonly used 

method because the high-power laser pulsed in high frequency is more resilient to ex-

ternal noise from ambient light. This high power light also enables longer range meas-

urements, and removes the need for a high sensitivity receivers (Zanuttigh et al., 2016, 

pp. 27–32). The structure and operating principle of an ToF- camera is presented below 

in figure 6. 

 

Figure 6. ToF- depth camera system (Based on DAQRI, 2018, Figure 1) 

ToF- cameras are an efficient way to capture 3D- scenes and they are capable of real 

time measurements (Grzegorzek et al., 2013, pp. 3–12). Even though ToF- method 

sounds simple in nature, the major challenge of ToF- technology is simply the speed of 

light. Since the speed of light is known, it can be calculated that to achieve a 1 𝑚𝑚 ac-

curacy, the camera mechanisms must operate with reaction times faster than 6.67 𝑝𝑠. 

Even an accuracy of 1 𝑐𝑚 requires reaction times of 70 𝑝𝑠 (Zanuttigh et al., 2016, pp. 

27–32). Another major error source for ToF- camera is the multi-path error, which is a 

phenomenon where the transmitted ray of light is reflected to the receiver from multiple 

different sources. This effect can lead to incorrectly estimated depth of the scene, and is 

hard to model because it is scene dependent (Dal Mutto et al., 2013, pp. 28–31).  
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2.2.4 Laser triangulation 

Laser triangulation system consists of a laser emitter and a receiver. The laser emits a 

laser beam, which is projected onto the surface of the target object. This scattered light 

of the reflection is then captured by the camera. The depth is computed by triangulation 

methods and image processing algorithms (Huang and Kovacevic, 2012, pp. 1–4). The 

computation behind laser triangulation is based on locating and computing the vertical 

shift of the surface, from the displacement of the detected laser line captured by the 

camera. As presented in figure 7 below, a change in the surface height will lead to a 

lateral displacement of the image points (Mohammadikaji, 2020, pp. 8–11). Since the 

height profile acquisition requires object or laser movement, this method is also referred 

as a scanning technology (Nilsson and Murhed, 2015, p. 4). 

 

Figure 7. Laser triangulation system (Based on Mohammadikaji, 2020, p. 10, Fig-
ure 1.3) 

The laser light is iteratively projected across the whole surface of the imaged objects, 

and individual data points are generated for each frame of the scene called scan images. 

While the laser projection is moved, subsequently scan images are generated. When the 

whole surface of the object has been scanned, a range image is created by combining 

all the scan images together. This resulting range image is a 3D- image, where the pixel 

values represent the surface coordinates of the object (Muhammad Amir and Thörnberg, 

2017, pp. 2–4). Laser triangulation can be performed with two different methods. Fixed 

angle emission with variable distance, and fixed triangulation base with variable scan-

ning angle (Lopez et al., 2008, pp. 400–410). Laser triangulation is a high precision 

method of 3D- imaging, but it is limited in range by the transducer. Laser triangulation 

also requires a specific surface with specific roughness and opacity to achieve the high 

resolution. Laser triangulation is sensitive to reflections, but one of its major advantages 

is the low cost of the system (Soave et al., 2020, p. 2). 
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2.3 Bin picking 

Bin picking is a methodology used in vision guided robotics- systems, where a robot is 

used to pick objects from a bin to another part of the manufacturing process. In the recent 

years, the 3D- machine vision system have made it possible to implement robust bin 

picking applications, on the level of the smart factory concept (Torres et al., 2022, p. 2). 

The general bin picking solution is composed of a 3D- machine vision system, bin picking 

software, robot manipulator, and a gripper. The machine vision system is used to capture 

the scene, where the bin picking software localizes the objects and computes the trajec-

tories. The robot manipulator then completes these trajectories, and grasps the object 

with the gripper (Rebbouh, 2022, p. 4).  A traditional bin picking task is presented below 

in figure 8. 

 

Figure 8. Traditional bin picking application (Photoneo, 2018, p. 1) 

Efficient bin picking has many challenges. What makes bin picking so difficult, is to 

achieve the accuracy and flexibility that is required in the industrial environment (Sansoni 

et al., 2014, pp. 1–2). While robots are capable of high repeatability (Universal Robots, 

2016), the difficulty comes with the recognition and pose estimation of randomly oriented 

objects (Sansoni et al., 2014, pp. 1–2). Besides just technical challenges, another chal-

lenge of automated bin picking is to meet all of the cycle times and optimization require-

ments, set by the industrial environment (Rebbouh, 2022, p. 3). Solving these challenges 
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requires a combination of machine vision, software, computing power and a gripping 

solution to perform (Anandan, 2016).  

The general tasks of bin picking application are data acquisition, object localization, and 

path planning. Among all of these tasks, the accurate localization of the objects is con-

sidered to be the most challenging (Wnuk et al., 2017, pp. 1–2). This is challenging, 

because the success rate of a bin- picking solution is not only dependent on the resolu-

tion of the vision sensor, but also on the underlying algorithms to perform the localization 

(Torres et al., 2022, pp. 2–3). If objects have features that enable entanglement, locali-

zation becomes even more challenging because grasping an entangled object results in 

a failed grasp (Moosmann et al., 2020, pp. 1–2). The localization problem is approached 

by several steps of data handling, to increase the accuracy of the object localization. The 

raw point clouds, produced by the depth cameras are first filtered to reduce undesirable 

data. The pre-processed point clouds are then segmented to extract individual objects 

from the scene. To obtain the initial pose of the object, these potential objects are pro-

cessed by matching tools such as descriptors or algorithms. Finally, the object pose is 

processed by the use of algorithms to achieve an accurate location (Li et al., 2019, pp. 

149–150). The main tasks of a bin picking application are presented below in figure 9. 

 

Figure 9. Bin picking application tasks (Based on Ojer et al., 2022, p. 4, Figure 1) 

Recent advances in bin picking technology have come up with a model-based bin picking 

solutions, in attempt to provide easily configurable bin picking solutions. These commer-

cial solutions come with preconfigured frameworks for the bin picking application, ena-

bling bin picking without extensive experience with programming. 
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2.3.1 Model-based bin picking solution 

Model-based bin picking solutions are a combination of hardware and software (Photo-

neo, 2018, p. 9). They search the scene for an explicit model, by comparing the data 

between the captured image and the reference model (Chen et al., 2018, pp. 1–2). Pose 

estimation of a model-based solution is based on 3D- point descriptors of the reference 

model, and the acquired points of the point cloud. The correspondences formed between 

features and depth edges result in initial pose estimation, which is refined for an accurate 

location of the object by using algorithms. The benefits of model-based solutions are the 

broad availability of 3D CAD- models, and they do not require the time-consuming train-

ing phases of machine learning-based solutions (Liu et al., 2012, pp. 1–6). 

A general composition of a model-based bin picking solution is presented in figure 10. 

The main tasks of the computing unit is to deal with the data acquired by the 3D- depth 

camera and calculate trajectories for the robot manipulator as an output (Ojer et al., 

2022, pp. 3–4). The conventional workflow of a model-based bin picking solution is to 

first generate a 3D- point cloud from the scene, and perform pose estimation for the 

object (Photoneo, 2018, p. 10). The gripping pose is then computed based on the local-

ized object, which is aligned with the 3D- CAD model of the robot gripper (SICK, 2022a, 

pp. 12–16). Finally, a collision-free trajectory is generated for the robot to grasp the object 

(Photoneo, 2018, p. 11). This workflow is described in more detail by commercial solu-

tions such as Photoneo (Photoneo, 2018, pp. 10–11) and SICK (SICK, 2022a, pp. 12–

16).  

 

Figure 10. Model-based bin picking solution (Based on Photoneo, 2018, p. 9) 

  



16 
 

2.3.2 Pose estimation problem 

The key prerequisites for successful bin picking application are accurate localization of 

the object, alignment of the world coordinate systems and pose estimation. These are 

crucial elements for the robot manipulator, to ensure collision free operation (Torres et 

al., 2022, pp. 7–8). To align the coordinate systems of the robot and the camera, both 

are calibrated relative to the same world coordinate system. To align the robot Tool Cen-

ter Point (TCP) with the object, three important poses of the bin picking system need to 

be aligned. These poses are the object pose, gripper pose and gripping pose (Buchholz, 

2016, pp. 10–16). Overview of these poses and coordinate systems is presented below 

in figure 11. 

 

Figure 11. Coordinate reference systems (Torres et al., 2022, p. 8, Figure 7) 

Alignment of the world coordinate systems leads to the most important problem of bin 

picking: Pose estimation. Bin picking has several methods for pose estimation, which are 

based on either point clouds, depth maps, or normal maps (Buchholz, 2016, pp. 10–16). 

To align the gripper with the object and grasp it, the gripping pose 𝑇𝑃
𝐺 needs to be com-

puted. This pose describes the pose of the object in relation to the gripper coordinate 

system. In order to compute it, three components of the transformation chain presented 

in formula 1 need to be solved. The gripper pose 𝑇𝐺
𝐵 describes the pose of the gripper in 

relation to the robot base. The object pose 𝑇𝑃
𝐶 describes the orientation of the object in 
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relation to the camera reference frame. A calibration matrix 𝑇𝐶
𝐵 represents the camera 

orientation in relation to the robots reference frame (Torres et al., 2022, pp. 7–8). 

𝑇𝑃
𝐺 =  (𝑇𝐺

𝐵)−1 ∙  𝑇𝐶
𝐵  ∙  𝑇𝑃

𝐶 
(1) 

Pose estimation can be solved by various algorithms designed for this problem, such as 

the Random Sampling Algorithm (RANSAM). These algorithms estimate the transfor-

mation between the sets of data and provide the pose of the object as an output (Buch-

holz, 2016, pp. 10–16) 
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3. RESEARCH PLAN 

The main focus of this chapter is to present a detailed research plan to achieve the ob-

jectives of this thesis and answer the research questions. To answer the first two re-

search questions, the depth camera performance is evaluated to see how they perform 

against each other. To answer the third research question, the bin picking solution is 

evaluated in different bin picking tasks and a feasibility study. 

Chapter 3.1 presents the illustrative case studies and experimental research common 

between all the depth cameras. Chapter 3.2 presents the feasibility study and pilot scale 

demonstrations of the bin picking solution, and finally, chapter 3.3 presents the illustrative 

case study to evaluate the accuracy of the bin picking solution. 

3.1 3D- depth camera performance evaluation 

Well-refined framework and evaluation criteria are needed to objectively compare the 

performance of different 3D- depth cameras (Stoyanov et al., 2012, p. 2). The common, 

comparable property between all the depth cameras of this thesis is that they produce 

3D- point clouds. Common data format among all the hardware was the Polygon file 

format (PLY), which was chosen as the basis for evaluation to have comparable results. 

To achieve high quality point clouds, the camera Software Development Kit (SDK) pa-

rameters needs to be carefully tuned. To ensure the reliability of the results, guidelines 

from the manufacturers and manuals are followed and different variables are experi-

mented with before the final data collection.  

First comparison is an illustrative case study, with the goal to research the camera 

technologies to see how they perform with reflective surfaces. Reflectivity was chosen 

as a research topic because highly reflective surfaces and specular reflections are one 

of the major sources of error in depth estimation (Feng et al., 2023, pp. 1–2; Li et al., 

2022, pp. 1–4; Tan et al., 2021, pp. 1–2). The problem this research attempts to answer, 

is “how well is a specific depth camera technology capable of performing with reflective 

surfaces”. 

This research is conducted on simple geometrical shapes, such as polygons, squares, 

and cylinders. The first set of data is acquired from reflective metal blanks. These results 

are compared against the second set of data from identical 3D- printed objects from Poly 

Lactic Acid (PLA) plastic. This research is conducted on objects of different sizes to see 

if there is a limit when an object can reliably be recognized. The data for this research is 
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collected directly from the depth cameras, located directly on top of the bin and the ob-

jects. The relevant data of this comparison are the raw point cloud data generated by the 

depth cameras, where the focus is on the edge and planar fidelity of the objects. The 

results from this research are analysed by comparing the results of the two sets of data 

with point cloud analysis tools. The key properties of comparison are sharpness of the 

edges, convex and planar surfaces, and the density of the point clouds. These properties 

were chosen as the points of comparison, because having identical objects with different 

surface types, the results can be directly linked to the question of this research. 

Second comparison is an illustrative case study, with the goal to research the camera 

technologies to see how accurately they can detect complex geometrical shapes. The 

detection of complex surfaces was chosen as a research topic because accurate detec-

tion of feature points is a crucial part of pose estimation and bin picking as a whole. If 

the depth camera cannot accurately capture the properties of the object, then the locali-

zation algorithms also fail to perform. The problem this research attempts to answer, is 

“how well is a specific depth camera technology capable of performing with different ob-

ject properties?”. 

This research is conducted on objects with angled-, uneven surfaces and objects with 

height differences and special properties. Objects of varying sizes, materials and reflec-

tivity are compared to see if there is a property or a combination of properties that limits 

the use of any of the depth camera technologies. The data for this research is collected 

directly from the depth cameras, located directly on top of the bin and the objects. The 

relevant data of this comparison are the raw point cloud data generated by the depth 

cameras, where the focus is on the complex features of the objects. The results from this 

experiment are analysed with point cloud analysis tools. The important aspect of this 

comparison is the identification of a property or a combination of properties, that are 

problematic for the depth cameras to detect. The key features of analysis are combina-

tion of different surface types. The results of this research are quantifiable, visible results 

as point clouds. Therefore, the resulting point clouds can be directly linked to the ques-

tion this research attempts to answer. 

Third comparison is experimental research, with the goal to see how ambient light, or 

the lack of it affect the resolution of the depth- measurement. This test is completed with 

different bin configurations, with varying bin backgrounds. Ambient light and bin config-

uration were chosen as one of the criteria, as both variables can change during the op-

eration of the bin picking solution. If the machine vision system is not capable of dealing 

with these variances, it can cause issues with the performance of the application. Based 

on the literature review, the following hypothesis are being researched: 
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 High intensity ambient light will have a negative effect on the point cloud quality 

of the structured light system. 

 ToF and stereo vision technologies are resilient to external, ambient light and 

ambient light does not have an effect to the quality of the point clouds. 

 All of the depth camera technologies are capable of accurately imaging non-re-

flective, uniform surfaces. 

 Highly reflective surfaces degrade the quality of the point clouds with all depth 

camera technologies 

The results from this research provide answers to the hypothesis presented above 

through two causal relationships. First, the results from varying ambient light conditions 

provide answers to the first two hypothesis through the causal relationship between the 

quality of the point clouds and ambient light. Secondly, the results from different bin con-

figurations provide answers to the final two hypothesis through the causal relationship 

between the quality of the point clouds and the type of bin surface. The confounding 

variables of this research are the positions of the cameras, positions of the bins and 

ambient light. In order to have only one independent variable, both the positions of the 

bins and cameras are kept constant between the comparison. The control group in this 

study is the point cloud of an empty bin in ambient light. The treatment groups are the 

cases with varying amounts of ambient light and different bin configurations. 

The comparison is completed with varying degrees of ambient light and different bin 

configurations, to see how prone the technology is for disturbance. The relevant data of 

this comparison are the raw point cloud data generated by the depth cameras, where 

the irrelevant data outside of the bins is cut off. The results from this experiment are 

analysed from the point clouds generated by the cameras. The effects of the environ-

mental variables are evaluated based on the completeness of the point clouds between 

different conditions. The key properties of comparison are incomplete parts of the point 

cloud, caused by reflections, interreflections or ghost artifacts in the point cloud.   

3.2 Proof-of-concept- demonstration in industrial environment 

Functionality of the Photoneo Bin Picking solution is piloted in industrial environment by 

two different applications. These pilots are conducted in the premises of the companies 

involved, where both the robotic cell and depth camera are transported for the duration 

of the demonstrations. The goal of these demonstrations is to present how the bin picking 

solution can be utilized in different tasks and how does it perform. These presentations 
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also aim to present the flexibility of an OOTB- bin picking solution and contribute to an-

swer the final research question. 

The first pilot-scale demonstration presents a case where matte connector components 

are picked from a bin and placed for the next step of the process. This demonstration 

aims to present the capabilities of a bin picking solution, when the objects are small with 

many identifiable features. The current implementation of this task is done by hand and 

the goal of this pilot scale demonstration is to automate this task. 

The second pilot-scale demonstration is a machine tending case, where the system is 

used to localize and palletize shiny metallic blanks. This demonstration also aims to pre-

sent a more realistic scenario for the application, which is presented with objects that are 

covered in band saw cutting oil and metal flakes. The goal of this application is to present 

how the manual palletization of metal blanks could be automated with a bin picking so-

lution. 

Both applications are first approached from the object and gripper design point of view, 

to ensure that the objects can be properly grasped. The result from this step need to 

conclude that a gripper is available and able to grasp the objects. The objects also need 

to be recognisable by the machine vision system, which needs to be verified with the 

vision system. The next step of the study is to verify that the system is capable of accu-

racy and reliability, through laboratory testing and system parameter tuning. After suc-

cessful laboratory testing, the system is ready for a feasibility demonstration in the prem-

ises of an industrial environment. In this case, the industrial environments are free of 

ambient variables such as dust or moisture, and the results from this pilot are expected 

to be similar to laboratory testing. The questions this feasibility study attempts to answer 

are the capabilities, implementation time and economic viability of the solution. Other 

valid questions would include sustainability and efficiency, but these variables would re-

quire further planning outside the resources of this study. 

3.3 Model-based bin picking solution accuracy evaluation 

The performance of the depth camera is evaluated by first localizing an object, grasping 

it with the robot manipulator and then placing the object in front of a 2D- camera. The 

2D- camera is used to capture an image from each object, which is then analysed with 

an industrial vision application. The goal of the image analysis is to compute the deviation 

between the reference location and current location of the object. The main goal of this 

research is to evaluate the relative picking accuracy and precision of the bin picking 
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solution. The secondary goals are to see how errors accumulated from calibration, local-

ization, and gripping the parts affect the performance of the solution. This evaluation is 

completed with Photoneo Phoxi scanner S- and M- models, to see if there are differences 

between two models of the same scanner. Both of the depth cameras will be placed on 

their respective, optimal heights during this test. Due to the low operation height of the 

S- model (442 𝑚𝑚), the bin will be removed to provide enough room for the robot to 

operate underneath the depth cameras.  

This evaluation is an illustrative case study, with the goal to research the accuracy and 

precision of the bin picking solution. These properties were chosen as evaluation criteria 

because they are quantifiable metrics of the performance of the solution. The problem 

this research attempts to answer, is “how accurate and precise a commercial bin picking 

solution is with different types of objects?”. This research topic was chosen because 

accuracy in an industrial application, such as machine tending is remarkably high. If the 

vision application of a bin picking solution is accurate enough, a secondary system to 

compensate for the errors might not be needed. 

This research is conducted on several different types of objects. Objects with different 

properties are compared to see if there are properties that increase or decrease the 

performance of the bin picking solution. The data for this research is collected from the 

industrial vision application, which provides the displacement of the object as an output. 

The data collected, and the relevant data of this study during this evaluation is the rota-

tional, X-, and Y- axis displacement of the objects. The results from this experiment are 

analysed with graph analysis tools to visualize the displacement in millimetres and de-

grees. The important aspect of this comparison are outliers, or patterns in the inaccura-

cies. The key features of analysis are the identification of a problematic properties and 

potential error sources of the research. To achieve reliable results, proper calibration of 

the 2D- camera, scene lighting and image analysis tools setup is essential. Because the 

industrial vision application directly outputs the results in engineering units, the results 

can be directly linked to the question this research studies. 
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4. RESEARCH HARDWARE AND SOLUTION DE-

SIGN 

This chapter focuses on presenting the research objects, hardware, and solution design. 

Chapter 4.1 focuses on presenting the objects used in the research work, and chapter 

4.2 presents the research equipment. Chapter 4.3 presents the solution design, and the 

robot program. Finally, chapter 4.4 presents the camera calibration procedures. 

4.1 Research objects 

The objects included in this thesis have been provided by companies involved in different 

branches of industry. These objects have different shapes, sizes and surfaces that pro-

vide a broad range of properties for the research work. All the objects have been as-

signed an object ID, which will be referred from now on for the remainder of this thesis. 

Figure 12 below presents the first category of objects made of metal. These objects 

compose from metal blanks and semi-finished products, used in the metal industry. The 

size of the metal blanks vary between 20 𝑥 20 𝑚𝑚 and  70 𝑥 60 𝑚𝑚, while the size of the 

semi-finished products range between 50 𝑥 35 𝑚𝑚 and 130 𝑥 115 𝑚𝑚. The common 

properties between object IDs 1…7 are that they are ferromagnetic and have shiny sur-

faces of varying degrees. The surfaces also have irregularities between the objects in 

terms of rust and cutting marks.  

 

Figure 12. Ferromagnetic objects 
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The second category of objects is presented in figure 13 below. These objects are con-

nector components, used in cable manufacturing and electrical assemblies. The size of 

these objects vary between 30 𝑥 15 𝑚𝑚 and 80 𝑥 70 𝑚𝑚. Object IDs 8…12 are non-

magnetic, matte and are composed of both plastic and aluminium. The common proper-

ties between object IDs 8…12 are the combination of convex and planar surfaces. These 

planar surfaces also have varying heights, which provide a comparison point for the re-

search, in terms of how accurately they are detected. These objects provide the more 

complex features to the research, with a combination of different properties. 

 

Figure 13. Connector components 

The third category of objects is subassembly components, presented in figure 14 below. 

The smallest feature to detect in this group is the diameter of the spring, which is < 2 𝑚𝑚 

in diameter.  Object IDs 13…16 are composed of wool, aluminium, and plastic. These 

objects provide more complex features to the research, in the form of the porous surfaces 

and complex object geometry. These objects also provide small features to be detected, 

from the thin structure of the spring and small holes of the aluminium bracket. 

 

Figure 14. Subassembly components 
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4.2 Research equipment 

The hardware for this thesis consists of a Universal Robots UR5- robot manipulator, 

Photoneo Bin Picking Studio, and depth cameras from Basler, Photoneo and SICK. The 

camera used in bin picking solution accuracy evaluation is an area scan camera from 

Basler. Universal Robots UR5 is presented below in figure 15. It suits the parameters of 

the research work well, because as a collaborative robot, it has inbuilt torque sensors to 

react for possible collisions. It also has a maximum payload of 5 kg, which is more than 

enough for all of the objects being researched (Universal Robots, 2016). 

 

Figure 15. Universal Robots UR5 robot manipulator (Universal Robots, 2016) 

Photoneo Bin Picking Studio (BPS) is a Combination of hardware and software, designed 

to configure and run a bin picking process. The Application Programming Interface (API) 

processes the data from the depth camera, and the localization engine processes the 

point cloud for objects matching the reference model. The software then determines the 

location of the object in 3D- space as its output. After the object has been localized, the 

system computes a trajectory for the robot manipulator to grasp the object (Photoneo, 

2018, pp. 9–11). Photoneo BPS is presented below in figure 16.  

 

Figure 16. Photoneo Bin Picking Studio (Photoneo, 2020, p. 8, Figure 4) 
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Photoneo PhoXi Scanner is a depth camera based on structured light technology. It is a 

laser class 3R device, which is considered safe when handled carefully. Photoneo Phoxi 

Scanner used in the research work is presented below in figure 17. The depth camera 

produces point clouds with 3.2 megapixel resolution and can operate on heights between 

458 𝑚𝑚 𝑡𝑜 1118 𝑚𝑚 (Photoneo, 2021, p. 2). Compared to the other cameras used in the 

research, Photoneo has the highest resolution, but is the only camera unable to produce 

real time data.  

 

Figure 17. Photoneo PhoXi scanner  

Basler Blaze-101 is a depth camera based on ToF- technology, presented in figure 18 

on the left. It is a Class 1 laser product, which means it is safe under all reasonably 

foreseeable conditions of normal use. It produces point clouds with 0.32 megapixel res-

olution, capable of real time (30𝑓𝑝𝑠) operation. This depth camera has an operational 

range of 0.3 𝑚 … 10 𝑚  (Basler, 2022a). SICK Visionary-S is a depth camera based on 

Stereo Vision technology, presented in figure 18 on the right. This depth camera is an 

active stereo device and classified as a Class 1 laser product. The output of the camera 

is in 0.32 megapixel resolution, also capable of real time (30 𝑓𝑝𝑠) operation. The opera-

tional range is also similar to Basler Blaze-101, limited to 0.5 𝑚 … 6.5 𝑚. What separates 

this model from other cameras of this research, is the capability of colour imaging. With 

an RGB- camera, SICK Visionary-S is able to apply colour to the depth images it gener-

ates (SICK, 2022b). 

 

Figure 18. Basler Blaze 101 ToF- camera (left) and SICK Visionary-S Stereo 
vision camera (right) 
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The 2D- camera used in the research work is presented in figure 19 below. Basler 

acA1300-60gm is an area scan camera, used in the accuracy evaluation of Photoneo 

bin picking solution. It is capable of producing images at 60 𝑓𝑝𝑠 with a resolution of 1.3 

megapixels (Basler, 2018). 

 

Figure 19. Basler acA1300-60gm area scan camera 

Figure 20 represents the work cell and research environment. The depth cameras are 

attached to a sturdy frame, with a clear view to the whole volume of the bin. The dimen-

sions of the bin are 400 𝑥 300 𝑥 120 𝑚𝑚 (width, length, depth). The perpendicular frame, 

bin and a small pallet are located in a way to allow easy placement of the 2D- camera, 

and external illumination between different tests. This configuration also allows large 

range of motion for the robot. 

 

Figure 20. Research environment 
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4.3 Solution design 

The robot program was developed on top of a bin picking framework provided by Photo-

neo. This framework for the robot controller includes a very basic bin picking application 

and communication between the vision system. A flowchart of the functions of this frame-

work and the authors additions are presented below in figure 21. The yellow steps of the 

flowchart present modifications by the author, and blue steps represent the framework 

provided by Photoneo. To run the scripts provided by Photoneo, the robot software was 

updated to version 3.15.4. 

 

Figure 21. Robot program framework 
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To ensure safe operation of the bin picking solution, the movement of the robot manipu-

lator was limited. This was done to prevent collisions with the research hardware. These 

restrictions are presented in figure 22 on the left with red volumes, restricted from the 

robot to access in path planning. The joint values of the robot were also limited to opti-

mize the movement and avoid singularities. The joint values were set by visually inspect-

ing the range of movement the robot requires to reach the entire volume of the bin. These 

joint value limitations are presented below in figure 22 on the right.  

 

Figure 22. Bin Picking Studio path planning restrictions 

4.4 Depth camera calibration  

Camera calibration was not required for the Basler (Basler, 2022b) and Sick (SICK, 

2022b) depth cameras, as the camera sensors were factory calibrated and they are not 

used in trajectory planning. The Photoneo scanner had to be calibrated however, to 

transform the default coordinate space of the scanner to the coordinate space of the 

robot controller. The calibration of the camera sensor is completed with a calibration tool 

provided with the vision system, which was attached to the tool flange of the robot ma-

nipulator. The goal of the calibration is to provide nine calibration points, by imaging the 

calibration tool in different poses around the bin volume. To achieve high calibration ac-

curacy, these nine points should cover the whole volume of the bin. Wide range of robot 

manipulator joint values is needed to achieve high calibration accuracy. The calibration 

tool and calibration process are presented in figure 23. 
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Figure 23. Photoneo depth camera calibration 
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5. RESEARCH WORK 

This chapter presents the research work completed during the thesis. Chapter 5.1 pre-

sents and analyses the results of the research work common between all the technolo-

gies, and chapter 5.2 presents the results of pilot scale demonstrations. Finally, chapter 

5.3 presents the results of Photoneo BPS accuracy evaluation. 

5.1 Comparison between 3D- depth cameras 

The comparison was completed with 750 𝑚𝑚 distance between the surface of the bin 

and the camera sensors. This distance was selected with the constraints of the testing 

environment in mind. Too short distance would limit the movement of the robot due to 

potential collisions with the vision system, and too high distances were prevented by the 

operational limits of the structured light scanner (458 𝑚𝑚 … 1118 𝑚𝑚) (Photoneo, 2021, 

p. 2). All cameras under comparison were turned on for half an hour before taking the 

depth images. This was done to provide enough camera warm-up time, to guarantee 

stable operation temperature. This was only required by the Basler Blaze-101 (Basler, 

2022a), but the same procedure was followed with all cameras.  

The camera parameters were adjusted according to application manual recommenda-

tions. The parameter tuning was done by observing the point clouds generated by the 

depth cameras, until the undesired noise of the point clouds were minimized. The key 

features to adjust were the interreflection filter with the structured light scanner and High 

Dynamic Range (HDR) with the ToF- camera. Both of these options were highly effective 

in removal of incorrectly computed points in the point cloud. The stereo vision camera 

had an automatic tuning option that was utilized in the optimal parameter selection. 

5.1.1 Reflective surfaces  

The reflective surface recognition of the cameras was evaluated with simple geometrical 

shapes, consisting of rectangular, cylindrical and polygon shapes. The objects for this 

comparison are listed in figure 12 with object ID’s 1…4. In order to compare how shiny 

surfaces affects plane and edge detection, these objects were reproduced by 3D- print-

ing them for a matte- comparison. The bin configuration for this evaluation included a 

backplate at the bottom of the bin. This enables the research to focus more on the objects 

themselves, as there is less noise coming from the reflective background of the bin. The 

results of this evaluation are presented as PLY point clouds, edited by CloudCompare- 
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program. Modifications to the point clouds include common height mapping and point 

size.  

The first set of depth images were taken from large objects that match the minimum 

object size recommendations of the stereo vision and ToF- cameras 

(100 𝑚𝑚 𝑥 100 𝑚𝑚 𝑥 100 𝑚𝑚). The goal of this comparison was to see how accurately 

the different depth cameras can record the edge fidelity of the objects, with different 

camera resolutions. The higher resolution of the structured light (3.2 Mpx) compared to 

the ToF and stereo vision (0.32 Mpx) is clearly seen in the edge fidelity, which is pre-

sented in figure 24. The vastly greater resolution of the structured light scanner high-

lights, why the results of this evaluation cannot be based on the edge fidelity of the ob-

jects alone. Even with large objects, the difference between 0.3 MP and 3.2 MP resolu-

tion is easily visible. This result was expected, which is why the analysis of the results is 

based on the recognition of geometrical shapes such as planes, corners, and angles. 

The depth images also clearly present the interpolation feature of the ToF- camera for 

missing data. This can be seen from data generated on the sides of the objects, com-

pared to the black areas, present in both stereo vision and structured light. These areas 

are occluded from the camera view, leading to missing data with both the structured light 

and stereo vision cameras. 

 

Figure 24. Simple geometrical shapes imaged with different depth cameras  
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The next sets of images were taken from the shiny metallic blanks, together with matte 

3D- printed objects. Figure 25 represents object ID 1 in three different sizes 

(20𝑥20 𝑚𝑚, 40𝑥30 𝑚𝑚, 60𝑥40 𝑚𝑚). The main goal with this object was to observe how 

well the cameras can recognise the planar surface and sharp corners of the object.  

The results of the stereo vision camera are similar between the matte and reflective ob-

jects. There is however minor loss off data, visible at the edges of the objects. The results 

of the ToF- camera are the same, with ToF having slightly better edge fidelity out of the 

two. In this case, the interpolation for missing data is able to smoothen the corners by fill 

in some of the missing data. Common result between stereo vision and ToF is the ina-

bility to recognise the shape of the smallest object. This result however is mainly because 

the object is far below the recommended minimum size of objects for these cameras. 

The high resolution of the structured light camera is able to accurately capture the planes 

and edges of all of the object variations. This applies also for the smallest object, even 

when it falls under the recommended minimum object size of 40𝑥40 𝑚𝑚. By inspecting 

the point clouds between the matte and shiny objects, the results are equal without data 

loss between the two sets of data. 

 

Figure 25. Rectangular shapes imaged with different depth cameras  
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The next comparison was completed with object ID 2, also in three different sizes 

(𝐷22, 𝐷37, 𝐷53). The main goal with this object was to observe how well the cameras 

can recognise 45° convex angles of the polygons, and if it is mistaken for a round object. 

The results of this are presented in figure 26.  

The results of the polygon shape share similarities with object ID 1. Both the stereo vision 

and ToF- cameras have a minor loss of data with the reflective objects, compared to the 

matte counterparts. This is most visible at the corners of the objects, which deforms the 

shapes to look more like cylinders. With polygon shapes, the stereo vision performs bet-

ter than ToF in terms of point cloud quality. The poor surface quality of ToF could be 

explained by the uneven cutting markings of the object, which cause measurement noise 

and cause the surface to seem like non-planar. This is most notable with the largest 

polygon shape, where the noise is visualized by the height map colour coding the surface 

with varying shades of green. The second factor for the lower edge fidelity could also be 

noise originating from lost and mixed pixels. This phenomenon originates from the pro-

jected light hitting the edges of the object, resulting in a mixed measurements (Kim et 

al., 2013, p. 681). The results of the structured light scanner are in line with the results 

of object ID 1. The planes of the objects and corners have sharp details, and there are 

no visible differences between the two sets of data. 

 

Figure 26. Polygon shapes imaged with different depth cameras 
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Finally, the comparison was completed with cylindrical shapes. This comparison was 

repeated in three different configurations, in order to evaluate both round shapes from 

the top and convex surfaces from the side. The main goal with this object was to observe 

how well the cameras can detect circular edges and convex surfaces. Figure 27 repre-

sents objects ID 3 and 4 in two different sizes (𝐷25, 𝐷70).  

The results of both stereo vision and ToF show that the edge fidelity of round edges is 

higher, compared to object IDs 1 and 2. By comparing the matte and shiny counterparts, 

there is also less lost data on the reflective objects. The interpolation feature of ToF has 

great results with round objects, where the edges look visibly better than stereo vision. 

The results of the structured light scanner are in line with the results of object IDs 1 and 

2. The plane of the object and circular edges are clearly recognisable. With high objects, 

the different projection angles of the projected patterns can also be recognised from the 

large areas of occluded bin background represented by black colour. 

 

Figure 27. Cylinder shapes imaged with different depth cameras 

The angular surface detection was evaluated in two different configurations, where the 

objects were rotated 90° between the comparisons. The reason behind the two different 

configurations was to observe how this affects the results of the structured light scanner. 

Figure 28 presents the results of a case, where the cylinders are parallel towards to the 

projected structured light patterns. The results show a common challenge between all 
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the technologies, a combination of convex, shiny surfaces. With stereo vision, this is 

visible as incorrect depth computation of the reflective cylinders This phenomenon was 

viewing angle dependent, caused by poorly correlated corresponding regions. Results 

of the ToF- camera present the same challenges. The shiny cylinders are captured 

poorly, and even the matte, convex surface is problematic. The results of ToF- camera 

also warps the depth of the scene, as a results from Multi Path Interference (MPI). ToF- 

cameras work under the assumption that each light ray is reflected only once. When 

parts of the emitted light reflect multiple times, this leads to incorrectly estimated depth. 

The MPI- effect and methods to counter it are presented in more detail by (Agresti and 

Zanuttigh, 2019, pp. 355–371). The result of the structured light scanner are better, with-

out errors in the depth values of the point cloud. The convex, shiny surface however 

causes loss of data because most of the projected light is reflected away from the camera 

(Song et al., 2013, p. 1). This effect is clearly visible by comparing the matte and reflec-

tive objects. 

 

Figure 28. Cylinder shapes imaged with different depth cameras. Cylinders 
orientated parallel to the structured light patterns 
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Figure 29 presents the results of a case, where the cylinders are perpendicular to the 

projected patterns of the structured light scanner. The results are comparable to the re-

sults of the previous test with different cylinder orientation. The only visible difference 

between the two sets of data are the point clouds of the shiny cylinders, produced by the 

stereo vision camera. This is a result of different viewing angle, caused by the orientation 

of the cylinders. This has resulted in better results with object ID 3, but at the same time 

decreased performance with object ID 4. With both the ToF- and structured light tech-

nologies, the orientation of the cylinders does not have significant changes between the 

results. 

 

Figure 29. Cylinder shapes imaged with different depth cameras. Cylinders 
orientated perpendicular to the structured light patterns 
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5.1.2 Complex geometrical shapes 

This part of the research focuses on complex geometric features. The bin configuration 

and point cloud modifications described in chapter 5.1.1 are applied. The first set of ob-

jects are object ID’s 5…7. These objects are semi-finished products, where the focus is 

on rounded edges, planar surfaces, and the holes in the objects.  

Figure 30 presents the results from the semi-finished products. The structured light scan-

ner is capable of recognising all of the objects in high detail, with clear edge fidelity and 

surface details. Even the convex surfaces of object ID 5 are captured in high detail, which 

proved to be challenging with highly reflective objects. Stereo vision has comparable 

results, where the shapes of the objects are clearly visible. The lower resolution is de-

tectable from the edge fidelity, but the small hole of object ID 7 and convex surfaces of 

object ID 5 are still clearly visible. ToF- has similar results as the simple geometrical 

features from chapter 5.1.1. Object IDs 6 and 7 with planar surfaces, round edges and 

holes are captured well, comparable to the results of the stereo vision. The problematic 

properties are the convex surfaces of object ID 5. These surfaces reflect the light away 

from the camera, resulting in incorrect depth estimation and some of the data being lost.   

 

Figure 30. Point clouds from semi-finished products 
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Figure 31 presents the results from the connector components, where the main focus of 

comparison is the combination of convex and planar surfaces. The structured light scan-

ner is again capable of recognising all of the objects in high detail. The benefit of high 

resolution enables the camera to capture even the small height differences of the small-

est of components. With a close inspection of the point clouds, even the imprints and 

small features of the objects are recognisable. With stereo vision, the results are notice-

ably worse. The height differences of the objects are not recognised properly, and the 

objects seem to have flat surfaces. This phenomenon is caused by the combination of 

several edges, causing edge erosion. Because the edges of the target are viewpoint 

dependent, this causes the edges to be smoothed, resulting in loss of data (Kadambi et 

al., 2014, p. 10). By comparing the ToF- camera against the stereo vision camera, the 

results are noticeably better. The height differences are visibly noticeable, and even 

some of the details of the objects can be observed, regardless of the low resolution. 

 

Figure 31. Point clouds from connector components 

The next set of comparison was made with subassembly components. These objects 

have a wide range of different sizes, materials, and surface textures. A common discov-

ery between all of the technologies were the importance of proper camera parameters. 

This was noticed with the object ID 14, where the porous surface initially had very poor 

quality in the point clouds. The camera filters mistaken the porous surface as unwanted 

reflections, which led to a lot of lost depth data. Figure 32 presents the results from the 

subassembly components. The structured light scanner was able to accurately detect 

the small holes and height of object ID 13, and the porous surface of object ID 14. The 

complex surface of object ID 15 was also accurately captured in high detail. The only 
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problems the structured light scanner faced came from object ID 16. The combination of 

shiny paint coating, convex surface and very small size caused the scanner to be unable 

to accurately detect the object. Some parts of the object were still visible, but not enough 

for an accurate localization. With stereo vision, the details of object ID 13 are lost due to 

the low resolution, but the porous surface of object ID 14 is successfully captured. The 

complex surface of object ID 15 is also captured successfully, similar to structured light. 

The object ID 16 was practically invisible to stereo vision, where only a few data points 

were successfully captured. By comparing the results of stereo vision and ToF, there are 

some differences. The small holes of object ID 13 are detectable with ToF, while they 

were practically invisible with stereo vision. The most notable difference however was 

with the porous surface of the object ID 14. The porous surface is problematic and is 

captured as a concave surface, instead of planar. This phenomenon can be seen by the 

colour variations of the height map with different shades of green. The results of objects 

ID 15 and 16 are comparable to stereo vision. The complex surface of object ID 15 is 

captured in slightly less detail and details of object ID 16 are not visible due to the low 

resolution.  

 

Figure 32. Point clouds from subassembly components  

Final test with complex objects was to image all of the subassembly components at once. 

This test aims to evaluate how wide range of different textures can the cameras detect 

at once. This is done by comparing how well the technologies can simultaneously detect 

objects of different materials and surface textures. The results of this comparison are 
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presented in figure 33. The results show that the structured light scanner performs same 

as before, maintaining all of the surface details of all of the objects. The structured light 

scanner was also the only depth camera, where camera parameters did not need to be 

changed between individual and multiple objects. The results from the ToF- camera 

show how some of the data acquired from individual objects has now been lost, as a 

result from the exposure time settings of the camera. It was noted that single exposure 

time setting is not enough to simultaneously capture the whole scene, as matte and re-

flective materials require different camera settings for accurate detection. In order to 

achieve a good result from the plastic tube, a higher exposure time ( > 600 𝜇𝑠 ) was 

required. This however lowered the quality of the rest of the scene, which required lower 

exposure times ( < 300 𝜇𝑠 ). The stereo vision camera faced similar problems as the 

ToF- camera, but to a lesser extent where only the reflective aluminium part suffered 

data loss. 

 

Figure 33. Point clouds from imaging multiple objects at once 
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5.1.3 Tolerance to ambient light 

The ambient light tolerance of the cameras was evaluated with different bin configura-

tions and varying amounts of ambient light. The comparison was done with an empty bin 

with no backplate, rough wooden backplate, painted wooden backplate, and a reflective 

metal sheet. The two wooden backplates were chosen to have non-reflective surface 

types. The empty bin was chosen to represent the more standard, reflective bin. Another 

goal of selecting these surface textures was to see if any of them cause the correspond-

ence problem for the stereo vision camera. The reflective metal sheet was included to 

see how well the cameras perform with highly reflective materials, and if strong ambient 

light combined with reflective surfaces is problematic. These different bin configurations 

are presented in figure 34. The empty bin is presented in the top left corner, rough wood 

in the top right corner, painted wood in the bottom left corner and reflective metal sheet 

in the bottom right corner. 

 

Figure 34. Different bin configurations 

To produce comparable results, a complete set of images was captured from one bin 

configuration at a time without moving the bin or the camera. The only variable was the 

ambient light, which was controlled by the lighting of the room and a LED- illuminator 

next to the vision system. The LED- illuminator was placed 𝑎𝑡 250 𝑚𝑚 distance from the 

edge of the bin at a height of 550 𝑚𝑚. This location was chosen to have it as close to 
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the bin as possible, without obstructing the Field of View (FOV) of the cameras. The 

angle of the light was alternated between 45° … 90° to adjust the amount of light reflected 

to the surface of the bins. The LED illuminator has brightness of 1206 𝑙𝑚 (Sangel, 2018, 

p. 4) and operates on a different wavelength than the depth cameras.  

The results in ambient light conditions are presented in figure 35. The results are pre-

sented as point clouds, in native format of each camera. With both wooden backplates, 

all of the depth cameras were able to image the whole content of the bin, without ghost 

artifacts or missing data from reflections. By having the cameras perpendicularly above 

the bins, the stereo vision camera performs the poorest with reflective surfaces. The 

reflections from the bin and the metal sheet causes correspondence problem, as the 

reflections are dependent on the angle of the cameras. This assigns invalid disparity 

values to the algorithm, and it is seen by the holes in the point clouds. These results are 

in line with similar research conducted by (Nair et al., 2015, p. 1). This problem could be 

partially resolved by tilting the camera, but with shiny surfaces this phenomenon is hard 

to entirely remove.  

 

Figure 35. Bin configuration test results in ambient light conditions 

The ToF- camera performs well with the empty bin but shares similar results with the 

shiny metal sheet as stereo vision. This result is also based on the angle of the camera, 

similar to results from stereo vision. When the camera and target surface are parallel to 
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each other, all of the projected light is reflected back to the sensor, causing over expo-

sure. This phenomenon is also researched by Laukkanen with various ToF- cameras 

(Laukkanen, 2015, pp. 39–42), having similar results.  Structured light has comparable 

results with the ToF. It performs well with the empty bin, but the specular reflections from 

the reflective metal sheet causes overexposure at the camera. This makes it not possible 

to distinguish the structured light patterns in the scene, which leads to missing data in 

the point cloud. This issue could potentially be solved by interpolating for the missing 

points, as researched by (Milani and Calvagno, 2016, pp. 31–33). 

The experiment was repeated with varying ambient light conditions, and all of cameras 

shared the same results. The amount of ambient light ranging from a completely dark 

room, all the way to strong ambient light next to the bin has very little affect to the quality 

of the 3D- point cloud. This is illustrated below in figure 36 with the results from stereo 

vision camera. The changes in the ambient light are presented on the top row of the 

image. This however does not affect the quality of the point clouds, as presented on the 

corresponding images on the bottom row. 

 

Figure 36. Ambient light test results with SICK Visionary-S 

Finally, the results were inspected with CloudCompare- software to further analyse the 

resulting point clouds. The results were collected to a graph, presented in figure 37. This 

graph presents the densities of the point clouds with different bin configurations and am-

bient light conditions. The results show that while there were no visible changes in the 

point clouds, ambient light still had minor effects to density of the point clouds. The clus-

tered bars are used to present the point cloud densities compared against the reference 
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point cloud. The painted wood configuration was chosen as the reference point because 

it had the densest point cloud with all of the technologies. The effects of varying ambient 

light conditions are presented with the error bars at the end of the bar graphs. A common 

result with the technologies was that ambient light had little effect to the point cloud qual-

ity. The results were also similar between the different bin configurations, so the effects 

of ambient light are also not related to the surface of the bins. The results also show how 

the different technologies performed with different bin configurations. ToF- camera had 

the best overall results, with structured light having comparable results. It should be 

noted that the performance of the ToF- camera was also improved by the integrated 

interpolation feature, which enabled the camera software to interpolate for missing data. 

Stereo vision performed similarly with non-reflective materials but had the most problems 

with both reflective bin configurations due to correspondence problem.  

 

Figure 37. Ambient light effects on the point cloud density 

5.2 Pilot scale demonstration in industrial environment 

The first step of the pilot scale demonstrations was to evaluate the compatibility of the 

grippers and objects. The grippers chosen for the demonstrations were vacuum- and 

magnetic grippers, which limited the choice of objects to ferromagnetic objects and light 

objects with smooth surfaces. As the object IDs 1…4 all have large enough surface area, 

they were chosen for the magnetic gripper.  Respectively object ID’s 9…11 have smooth 
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surfaces, hence they were chosen for the vacuum gripper. The subassembly compo-

nents were excluded from the demonstrations because the surface types and materials 

do not support either of the grippers available. 

After the objects were chosen, the localization of the objects was tested with the vision 

system tools. The objects were placed in a bin underneath the depth camera, and the 

vision system parameters were adjusted until high overlap between the 3D- model and 

the object was reached. The goal of this stage was to verify that the vision system is 

capable of aligning the reference models with the point cloud of the scene. Localization 

of all of the objects were successful, confirming the feasibility of the bin picking task. The 

process of object localization is presented below in figure 38, where the reference CAD- 

models aligned to the point cloud are presented in yellow and blue models. 

 

Figure 38. CAD- model matching to the point cloud of the scene 

After confirming the objects can be localized, the bin picking task was then completed in 

laboratory conditions. This was done to verify the results of the localization tests. At this 

stage, the vision system localization parameters were also finetuned and the robot pro-

gram finalized. This part of the process included localizing the objects and simply moving 

the objects from one bin to another. This verified that the objects can be successfully 

localized, and the robot is capable of placing the objects in set orientation. After success-

ful laboratory testing, the last task was to design the pilot scale demonstrations in indus-

trial environment. The environments and processes were familiarized through company 

visits and the resulting demonstrations were designed according to observations made 

at the site. 

The first application was inside an indoor assembly area, where the collaborative robot 

and machine vision system were used in a component labelling process. The current 
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manual completion of this task involves placing the components on a conveyor belt, 

where they are marked as they travel beneath a spray marker. Both the placing of the 

unmarked parts and collection of the marked parts is done by hand. The pilot demon-

strated two different solutions for this task. In both solutions, the objects are first localized 

with the vision system and gripped by the robot using a vacuum gripper. In the first solu-

tion, the robot utilizes a conveyor belt to move the objects underneath the spray marker. 

After localizing the objects from the bin, the parts are placed down on the conveyor belt 

in a set orientation where they travel beneath the spray marker to an unsorted bin. The 

workflow of the first solution is presented below in figure 39. This method solves the 

automatic picking and placing of the parts, but the parts still needs to be sorted by hand 

after they have been marked.  

 

Figure 39. Workflow of the first bin picking solution 

In the second solution, the task of marking the components is fully automated. This is 

done by placing the objects beneath the spray marker directly by the robot. This method 

requires relocation of the spray marker in a way that the robot can reach beneath it, 

which was simulated by adjusting the trajectory of the robot. The workflow of the second 

solution is very similar to the first. After gripping the object from a bin, the robot moves 

the parts directly under the spray marker for the duration of the labelling. After the part 

has been marked, the robot proceeds to sort the object. The benefit of this approach is 
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that a conveyor belt is not needed, and the marked components do not need to be sorted 

by hand. A comparison between the two solutions is presented in figure 40. 

 

Figure 40. Workflow comparison of two different approaches 

To conclude the first pilot demonstrations, the goals were achieved with functional 

demonstrations of the two solutions presented above. These solutions were presented 

with three different connector components and two different grippers, to demonstrate the 

flexibility of the bin picking solution. The vision system was able to successfully localize 

all of the objects, with no issues even with the objects under the recommended minimum 

size. During the part placement to the conveyor belt, minor error with the orientation of 

the parts was noticeable. This happened because of friction, as the conveyor belt was 

constantly running at a set speed. This could be remedied by having the robot control 

the conveyor belt, after the parts have been placed down. 

The second application was inside an outdoor warehouse, where the collaborative robot 

and machine vision system were used in a machine tending task. The goal of this pilot 

was to demonstrate, how bin picking could be utilized in the palletization of metal blanks. 

The current, manual completion of this task is to palletize a set of metal blanks by hand 
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and place them within a reach of an industrial robot. The pilot demonstrated an automatic 

palletization with several different metal blanks (Object IDs 1…4). The objects are first 

localized with the vision system and grasped by the robot using a magnetic gripper. After 

localizing the objects from the bin, the parts are placed down on a pallet next to the robot. 

The workflow of the solution is presented below in figure 41.  

 

Figure 41. Workflow of the second pilot demonstration 

The demonstrations with object IDs 1...3 were successful without any failed localizations 

or collisions. When the bin was filled with object ID 4, there was a collision between the 

robot gripper and the objects. This happened due to the robot attempting to pick an object 

from an angle, where the depth camera failed to detect an object. This issue could be 

avoided by having more strict collision avoidance settings in the vision system, which 

allowed 3% volumetric collision at the time of the pilot. This result highlighted the im-

portance of a good quality point cloud, as collisions are possible without accurate 

knowledge of the surroundings. The robustness of the vision system to measurement 

noise was also demonstrated during the pilot. This was demonstrated with non- labora-

tory conditions, when there are band saw cutting oil, dirt and metal flakes present in 

scene. This demonstration also provided valuable information about the performance of 

the vision system in a more industrial environment, where environmental conditions vary. 

The objects for this demonstration were covered with cutting oil and metal flakes, as 
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presented on the left in figure 42. This did not affect the localization of the objects, as 

seen by the localization results on the right in figure 42. This scene shows how the local-

ization algorithms were able to align the yellow reference CAD- model on top of all five 

metal blanks in the bin. The reflections caused by the oil, or the piles of metal flakes did 

not have an effect to the results unless the whole surface of the object was covered.  

 

Figure 42. Localization with oily and dirty objects 

However, a problem was identified while using the magnetic gripper. The magnetic metal 

flakes started to accumulate in the base of the gripper over time, because the residual 

magnetism held them in place. This layer of metal flakes eventually prevented the gripper 

from grasping the objects. This is presented below in figure 43, where the surfaces be-

tween the magnet and the object do not have a contact because of metal flakes. In an 

application where metal flakes are present, a system to keep the gripper clean is re-

quired. In the case of magnetic grippers, this could be accomplished as an example with 

pneumatic air between the grasps. 

 

Figure 43. Metal flakes and magnetic gripper 

To conclude the second pilot demonstration, the goals were achieved with functional 

demonstrations of the applications presented above. The pilot was able to present how 

even very shiny objects can successfully be localized and how metallic flakes are not a 

problem for the vision system. The flexibility of the bin picking solution was also success-

fully presented with different objects. 
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5.3 Photoneo Bin Picking Studio accuracy 

The true accuracy of a bin picking- system is a combination of multiple factors, consisting 

of error sources from the robot manipulator, gripper, and vision system error sources. To 

measure the repeatability accuracy of a Photoneo BPS, a system presented in figure 44 

was configured. The goal of this system is to localize and grasp objects with the Photo-

neo bin picking solution. The accuracy and precision of the grasp is then recorded with 

a 2D- camera and an industrial vision application, by measuring the displacement of the 

object against a reference position. The 2D- camera was accompanied by a ring light, 

as proper illumination is essential for accurate image analysis. The purpose of the ring 

light was to produce high intensity light, which is reflected back to the camera. To achieve 

the best contrast between the object the background, the parts of the robot manipulator 

visible to the camera were also covered with black tape. This approach provided the 

contrast needed to remove the background from the images and enabled the vision ap-

plication to form binary images of the objects.  

 

Figure 44. System configuration for bin picking solution accuracy evaluation 

The Photoneo vision system was configured with a goal of minimizing localization related 

errors. By removing small point cloud clusters below 500 voxels and activating the inter-

reflection filter most of the noise in the point clouds was removed. Objects with the high-
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est overlap with the reference model were preferred to be picked up first to avoid incor-

rectly localized objects. This approach also increased the overlap of remaining objects, 

as removal of one source of reflections usually increased the quality of the remaining 

point cloud. Finally, the control of the magnetic gripper was activated when the distance 

between the surfaces of the magnet and the target object was very small. This was done 

to lessen the effect of the object being drawn towards the magnet resulting in positional 

errors. The industrial vision application (NI Vision builder for Automated inspection) was 

also designed in a way to minimize localization related errors. The images taken by the 

camera were first edited with image analysis tools and converted to binary images. 

These binary images are presented in figure 45. The binary images were inspected by 

locating a distinguishable feature, which were the round edges of object ID 2, large hole 

of object ID 7, and the Binary Large Object (BLOB) of the object IDs 10 and 11. The 

displacement of the objects were then computed by computing the distance between the 

reference point and the location of the found feature. With object IDs 2 and 7, the dis-

tance was computed from the centre of the circles and with object IDs 10 and 11, the 

distance was computed from the centre of mass. The localization principle of these tools 

is also visualized below in figure 45. 

 

Figure 45. Binary images of the objects 

To ensure high accuracy of the vision system, both the Photoneo structured light scanner 

and Basler area scan camera were calibrated before recording the data. The objects 

(IDs 2, 7, 10 and 11) were selected because the shapes can be accurately recognised 

by the vision application, and they are easy to grasp with the grippers available. These 

properties help to limit the errors caused from an unsuitable gripper because of too com-

plex object geometry. The error sources for the performance testing were evaluated and 

approximated in order to have a baseline for results analysis. The identified error sources 

for the evaluation are listed in table 1. These error sources were acquired from manu-

facturer manuals and approximated through testing whenever applicable. This evalua-

tion results in an expected accuracy of approximately ± 0.485 𝑚𝑚, with the Photoneo S- 

model and ± 0.590 𝑚𝑚 with the Photoneo M- model. This estimation does not include 
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the non-measurable error sources, originating from the localization algorithms and grip-

per. 

Table 1. Accuracy evaluation error sources 
 

Error source Description Values 

Calibration Standard deviation of the meas-

urement 

±0.280 mm (S- model) 

±0.385 mm (M- model) 

Vision  

application 

Deviation measured from imaging 

the same object multiple times 

±0.05 mm 

 

Robot  

manipulator 

Repeatability of the robot manipu-

lator 

±0.1 mm 

 

Robot  

gripper 

Deviation of the TCP. Measured 

by rotating the gripper 360° 

±0.1 mm 

 

Object drawn to-

wards gripper 

Object grasped moves due to the 

vacuum or the magnet 

Not measurable 

 

Localization  

algorithms 

Misaligned model matching due to 

localization parameters. 

Not measurable 

 

The errors from localization algorithms are expected to be minor, based on the visual 

inspection of the point clouds and the alignment of the reference CAD- models. The 

effects of the vacuum- and magnetic grippers were visibly noticeable, where grasping 

the objects caused the object to dislocate. This phenomenon was noticeable with both 

grippers, with all the objects being tested. The displacement was most noticeable with 

object ID 11, which was not parallel with the bottom of the bin. The effects of the errors 

originating from the grippers are illustrated in figure 46 below. 

 

Figure 46. Effects of the robot gripper to the grasp accuracy 

After repeating the bin picking task multiple times, the results clearly show how the 

vacuum gripper displaces the object as it is being grasped. When the object is eventually 

grasped in all orientations, the end results show a systematic error. The results of grasp-

ing object ID 11 with a vacuum gripper in both random orientations and a set orientation 
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are presented in figure 47.  The graphs present the displacement of the objects both in 

X- and Y- axis over the whole sample size, where each measurement is represented as 

one data point. The results of a case where the objects were in random orientations is 

represented by blue markers and the results of a case where the objects all had same 

orientation are represented with red. The same effect applied with the magnetic gripper, 

where grasping an object slightly moved the object when it was grasped. The magnitude 

of these errors can only be approximated, as there is not a direct method of measuring 

them. The results of this error source evaluation present the importance of proper gripper 

design and just how much it affects the end result. In this case, it can be argued that the 

main error source of this application originates from the grippers. 

 

Figure 47. Results of random and fixed orientation grasps 

After the error sources of the evaluation were identified, the testing between different 

objects and two camera models was completed. The results are presented as the dis-

placement of the objects in both in X- and Y- axis over the whole sample size. The ref-

erence point [0,0] represents the average location of all localizations of the data set. The 

displacement of a single data point is presented in millimetres, compared to this refer-

ence point. The results from object ID 2 are presented in figure 48, where the object was 

grasped by using a magnetic gripper. The results clearly show a systematic error in the 
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results, where the magnetic gripper has affected the grasping of the object. With a sym-

metrical shape, such as a cylinder, the object is eventually detected in rotations between  

0 … 360°. This makes the systematic error in one direction appear as errors in all direc-

tions. The results between the two models are similar, with the S- model having slightly 

better results. The Mean Absolute Error (MAE) of the S- model was 0.76 𝑚𝑚, with M- 

model having 0.90 𝑚𝑚. The maximum deviation between the samples was also smaller 

with the S- model, having a 1.96 𝑚𝑚 compared to the 2.23 𝑚𝑚 of the M- model. With a 

cylindrical, symmetric object the orientation of the grasp was not measured. 

 

Figure 48. Displacement of a cylindrical metal blank 
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The results from object ID 7 are presented in figure 49, where the object was grasped 

by using a magnetic gripper. The results also show the systematic error of the magnetic 

gripper. The results between the two models are mixed, where the M- model had better 

MAE of 0.50 𝑚𝑚 over the 0.66 𝑚𝑚 of the S- model. This can be explained by the effects 

of the magnetic gripper and grasping the object from different orientations. The results 

show that the S- model had a broader set of samples, while the M- model had more 

grasps from smaller set of orientations. This hypothesis is also supported by the rota-

tional accuracy of the grasps and the maximum deviation between the data set. The S- 

model had a better rotational accuracy out of the two having an average accuracy of 

0.35° compared to the 0.47° of the M- model. The maximum deviation between the sam-

ples was also smaller with the S- model with a result of 1.54 𝑚𝑚 compared to the 

1. 76 𝑚𝑚 of the M- model. 

 

Figure 49. Displacement of semi-finished product  

  

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

D
is

p
la

ce
m

en
t 

in
 Y

-
ax

is
 (

m
m

) 

Displacement in X- axis (mm) 

Object ID 7 displacement

M- series

S- series



57 
 

The results from object ID 11 are presented in figure 50, where the object was grasped 

by using a vacuum gripper. The results of vacuum gripper shares similar results as the 

magnetic gripper, where the grasping of the object dislocates the object from the initial 

grasping pose. This is again clearly visible in the results, where the localizations have a 

systematic error in all directions. The differences between the S- and M- models are 

more apparent however, with the S- model having visibly better results. These results 

can be explained by the S- model being able to better align the models due to the higher 

resolution of the camera. The MAE of the S- model was 0.55 𝑚𝑚 compared to the 

0.76 𝑚𝑚 of the M- model. The maximum deviation between the data set is also clearly 

better with the S- model. The S- model had a maximum deviation of 1.42 𝑚𝑚, compared 

to the 2,18 𝑚𝑚 of the M- model. With a non-symmetrical object, the orientation of the 

localized object was also measured. The orientational accuracy of the two units was 

almost identical, with an average rotational displacement of 0.21° for the S- model and 

0.22° for the M- model.  

 

Figure 50. Displacement of large connector component 

  

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

D
is

p
la

ce
m

en
t 

in
 Y

-
ax

is
 (

m
m

) 

Displacement in X- axis (mm) 

Object ID 11 displacement

M- series

S- series



58 
 

The results from object ID 10 are presented in figure 51, where the object was grasped 

by using a vacuum gripper. The results of the small connector component shared the 

similar effects of the vacuum gripper. This effect was noticeably smaller however, which 

can be explained by the orientation of the objects. By comparing the two objects, the 

object ID 10 was more parallel to the bottom of the bin than object ID 11. The differences 

between the S- and M- models are very similar, with the S- model having only marginally 

better results. These results can be explained by the object having more feature points 

than object ID 11, which enabled the M- model to accurately localize the object regard-

less of the small size. With more feature points to align the models, the M- model scanner 

performed better than with object ID 11. The MAE of S- model was 0.53 𝑚𝑚 compared 

to the 0.65 𝑚𝑚 of the M- model. The maximum deviation between the data set is also 

better with the S- model. The S- model had a maximum deviation of 1.41 𝑚𝑚, compared 

to the 1,72 𝑚𝑚 of the M- model. With a non-symmetrical object, the orientation of the 

localized object was also measured. The results of the evaluation were an average rota-

tional displacement of 0.21° for both scanner models.  

 

Figure 51. Displacement of small connector component 
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6. RESULTS AND DISCUSSION 

This chapter presents and summarises the research work results of this thesis. Chapter 

6.1 summarises the performance of technologies with reflective materials, and Chapter 

6.2 the results from complex object geometry evaluation. Chapter 6.3 focuses on pre-

senting a summary of the results from ambient light tolerance, and Chapter 6.4 presents 

the results from bin picking solution performance testing.  

6.1 Depth camera performance with reflective materials 

The depth camera performance with reflective materials was tested by comparing results 

between shiny metal objects and 3D- printed matte counterparts. Common results be-

tween all technologies were planar surfaces, which were easily detectable even with 

highly reflective surfaces. Common result between the ToF and stereo vision was the 

loss of edge fidelity with sharp corners that was not present with round objects. The main 

issue with reflective materials was found when it was combined with convex surfaces. 

These reflective surfaces caused problems with all the technologies. The combined re-

sults from comparison with reflective materials are presented below in table 2.  

Table 2. Depth camera performance with reflective materials 
 
Technology Performance comment 

Time-of-Flight ToF performed well with reflective materials of planar surfaces. The ability 

to interpolate for missing data also enabled the camera to perform well with 

different object types. The issues of ToF were most notable with a combi-

nation of convex, reflective surfaces. Compared to other technologies, the 

ToF performed poorly with these types of surfaces. 

Stereo Vision Stereo vision performed similarly to ToF with reflective materials of planar 

surfaces but had less noise on the surface texture. The issues of stereo 

vision were also with convex, reflective surfaces which were based on the 

correspondence problem. This caused some lost depth data, but the effects 

were smaller than ToF. 

Structured Light Structured light performs the best with reflective materials and even objects 

under the recommended minimum object size were captured accurately. 

Planar surfaces cause little to no problems, but convex, shiny surfaces still 

cause some loss of the depth data.  
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Considering the reliability of the results, the problems encountered with stereo vision 

(Yang and Waslander, 2022, pp. 1–2), structured light (Li et al., 2022, pp. 1–3) and ToF- 

technologies (Sasaya et al., 2021, pp. 329–332) were in line with recent studies. It must 

be noted however that the stereo vision and ToF- cameras of this thesis were not in their 

optimal environments with optimal object sizes. A more fitting environment for these tech-

nologies would have been long range measurements, with large object sizes. It should 

also be noted that the sample size of depth cameras provided for the thesis was small. 

This limited the data analysis, with only one depth camera per technology. The answer 

to the first research question is answered in chapter 6.2, as both chapters 6.1 and 6.2 

contribute to this research question. 

6.2 Depth camera performance with different object properties  

The depth camera performance with different object properties was evaluated by imag-

ing different properties and combination of properties. This research had different results 

between the technologies and properties were identified where some technologies ex-

celled at, while others performed poorly. The combined results from object detection 

testing are presented below in table 3.  

Table 3. Depth camera performance with different object properties 
 
Technology Performance comments 

Time-of-Flight ToF performed well with planar surfaces and small surface details. ToF had 

issues with porous surfaces, which appeared as concave instead of planar. 

Both stereo vision and ToF had loss of data with simultaneous detection of 

multiple different textures, but this was more noticeable with ToF. 

Stereo Vision Stereo vision performed well with both planar and convex surfaces. The 

problem of stereo vision was noticed with small surface details of the ob-

jects. This phenomenon was most apparent with connector components, 

where the details of holes and surface levels were lost. 

Structured Light Structured light performed noticeably the best in all cases. Structured light 

was able to accurately detect all of the objects, even those under the rec-

ommended minimum size of the camera specifications. Structured light also 

performed the best when multiple different object types were imaged sim-

ultaneously. 

The potential error sources of this evaluation are common with the error sources dis-

cussed in chapter 6.1, with more focus on the resolution difference of the depth cameras. 

This was more noticeable with the small objects, where features such as small holes or 
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surface details were affected more by the resolution difference. Potential error sources 

of this evaluation also include the camera parameters of the ToF- camera, which were 

manually tuned for the different objects. These parameters were noticeably harder to get 

correct, compared to the predefined profiles of the structured light or the autotune func-

tion of stereo vision. 

The results of chapters 6.1 and 6.2 both contributed to the first research question “What 

are the object properties, or a combination of properties that enable or limit the use of a 

specific 3D- depth camera technology?” The research concluded that structured light 

performed the best with no limitations from a single property. The technology performed 

well with all surface types, which was also demonstrated in pilot scale demonstrations. 

The results with shiny metal cylinders however showed that a combination of convex, 

highly reflective surfaces cause loss of depth information. If there are high accuracy re-

quirements, this can be a limiting factor. The performance of stereo vision shared similar 

limitations, originating from reflective cylindrical shapes and a combination of multiple 

convex surfaces. Recent studies in stereo vision (Yang and Waslander, 2022, p. 2; 

Zhang et al., 2021, pp. 7–9) support these results, which describe the influence of angles 

and reflections to the measurement accuracy.  Common limitation with both stereo vision 

and ToF was noticed when there was a large number of different surface textures imaged 

at once. The cameras were unable to fully image the scene due to exposure time limita-

tion. The performance of ToF was also limited by porous surfaces, which were captured 

as concave instead of planar. Porous surfaces are not highly researched topic with ToF- 

cameras, but the results are similar to ToF- comparison researched by (Laukkanen, 

2015, pp. 39–42), where foam also had depth deviation. 

The wide range of different surface types and object properties make the results of chap-

ters 6.1 and 6.2 applicable with large quantity of products. This enables the results to be 

used as a tool in camera technology selection or feasibility study with similar object types. 

The results of this comparison could also be expanded upon by researching transparent 

and translucent objects, which were excluded from this thesis. 

6.3 Depth camera performance with ambient light  

The depth camera performance with ambient light was evaluated in varying indoor con-

ditions and with different bin configurations. The results from ambient light interference 

were common between all of the tested technologies. It was hypothesized, that ToF and 

stereo vision perform well with external ambient light and that high intensity ambient light 

has a negative effect with the structured light scanner. None of the technologies however 

had visible errors in the resulting point clouds. Summary of the results is presented below 
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in table 4. The results of stereo vision and ToF were in line with the expectations, but 

structured light performed better than initially hypothesized. 

Table 4. Summary of ambient light testing 
 
Technology Performance with ambient light 

Time-of-Flight ToF performed well in all ambient light conditions, and the hypothesis for 

this technology was confirmed. ToF performed the best with no data loss in 

any of the testing scenarios.  

Stereo Vision Stereo vision performed well in all ambient light conditions, and the hypoth-

esis for this technology was confirmed. Stereo vision performed well in all 

cases, with only a minor ±1% data loss between the best and worst cases. 

Structured Light Structured light performed well in all ambient light conditions, and the hy-

pothesis for this technology was disproven. The structured light scanner 

unit was equipped with a high power laser unit, which was able to illuminate 

the scene in both dark room and overpower the external LED illuminator. 

The performance with different bin configurations had varying results between the tested 

technologies and the results are presented below in table 5. It was hypothesized that all 

camera technologies perform well with the non-reflective materials and that the highly 

reflective surfaces are problematic. The results were in line with the expectations and 

the non-reflective materials had similar results between all the technologies. There was 

no loss of data, and the point clouds were complete in the whole volume of the bin. The 

exception to the expected results was with the stereo vision camera which struggled with 

the empty bin. The shiny metal sheet caused problems with all the technologies, where 

the reflections from the metal caused visible errors in the point clouds with all the cam-

eras. 

Table 5. Summary from different bin configurations 
 
Technology Performance with ambient light 

Time-of-Flight The ToF- camera performed the best in this comparison, and the interpola-

tion feature was able to fill in any small holes of the point clouds. 

Stereo Vision Stereo vision performed the poorest with reflective surfaces, being the only 

technology having problems with the empty bin. The reflective bin caused 

the correspondence problem, causing small areas of the bin to be not de-

tected. 

Structured Light Structured light performed comparatively with ToF, with only slightly higher 

loss of data with the reflective surfaces.  
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There were no notable error sources in this comparison as the only variable, ambient 

light did not have a notable effect in any of the testing scenarios. The results of the stereo 

vision camera could potentially be better, if the comparison is remade and tested with 

different camera angles. This however has an effect on the camera FoV, which can make 

parts of the bin not visible. The wide range of different ambient light conditions and bin 

configurations make the results applicable in many industrial environments. The results 

of this research topic and pilot scale demonstrations both contribute to the second re-

search question “How different type of 3D- depth camera technologies perform in an 

industrial bin picking environment?”  The research had a clear outcome, where all of the 

tested technologies based on structured light, ToF and stereo vision perform well in dif-

ferent conditions. The environment itself is not a limiting factor for any of the technolo-

gies, but what is important, is the location and the orientation of the depth camera. 

Reflecting on the results of the 3D- depth camera comparison, evaluation of different 

technologies against each other is a challenging task. Comparable results are hard to 

achieve when the different technologies have different resolutions, working distances 

and even integrated data enhancing tools such as interpolation. The testing environment 

also has an effect to the comparison. Different depth cameras can have different optimal 

viewing angles, which can also vary depending on the application. When reviewing the 

performance of different technologies, the evaluation should be completed in an environ-

ment relevant to the target application. 

6.4 Performance of Photoneo bin picking studio  

Photoneo bin picking solution performance was evaluated with a combination of accu-

racy testing and pilot scale demonstrations. The accuracy was evaluated with different 

objects between two different scanner models. The summary of accuracy testing is pre-

sented in tables 6 and 7. The results from different object types show that as the objects 

have more complex feature points, the accuracy of the model alignment increases. This 

is presented on the results with both Photoneo S- and M- model scanners, where the 

more complex object ID 7 can be localized more accurately than the metal blank (Object 

ID 2). The connector components also share these same results, where the more com-

plex object ID 10 was localized more accurately than object ID 11.  
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Table 6. Accuracy evaluation results (Photoneo Phoxi scanner S) 
Object Rotational error Mean absolute error Maximum deviation 

Object ID 2  - ± 0.76 mm 1.96 mm 

Object ID 7 ± 0.35 ° ± 0.66 mm 1.54 mm 

Object ID 10 ± 0.21 ° ± 0.53 mm 1.41 mm 

Object ID 11 ± 0.21 ° ± 0.55 mm 1.42 mm 

 
Table 7. Accuracy evaluation results (Photoneo Phoxi scanner M) 

Object Rotational error Mean absolute error Maximum deviation 

Object ID 2 - ± 0.90 mm 2.23 mm 

Object ID 7 ± 0.47 ° ± 0.50 mm 1.76 mm 

Object ID 10 ± 0.21 ° ± 0.65 mm 1.72 mm 

Object ID 11 ± 0.22 ° ± 0.76 mm 2.18 mm 

There were several notable error sources in the bin picking solution performance evalu-

ation. The measurable error margins from calibration, robot manipulator and vision ap-

plication sums up to ± 0.485 𝑚𝑚 with the Photoneo S- model and ± 0.590 𝑚𝑚 with the 

Photoneo M- model. The MAE of the results was close to this estimation, but because of 

the errors caused by the gripper, the maximum deviation between all the results was far 

higher. The results of a study such as this are rarely public, so there is very little reference 

material available to compare the results of this research with. The results of this evalu-

ation can be used as a tool to consider if the accuracy of a commercial bin picking system 

is enough on its own. By considering a machine tending task with very high accuracy 

requirements, the accuracy of ±0.5 𝑚𝑚 is not enough, even if the errors from the gripper 

are excluded. Task such as this requires either a mechanical design with better align-

ment of the object, or a compensation for the displacement with an additional camera. 

Tasks with more loose requirements, such as component labelling however could be 

completed without an external vision system.  

The pilot scale demonstrations also produced valuable data regarding the performance 

of a modern bin picking solution. The solution was robust not only to the surface reflec-

tivity but performed with both simple and complex geometric shapes. The solution was 

also able to function with noise originating from oil and metal flakes. While both of the 

demonstrations were successful, they also presented the challenges of highly reflective 

objects. If a surface of an object cannot be fully captured, these blind spots in the point 

cloud can cause collisions between the objects and the gripper. The results of these pilot 

scale demonstrations can be used in the consideration of a full scale deployment of a 

bin picking task. In a full scale deployment of machine tending, this solution could be 

located in a way that the metal blanks can be fed to the bin directly from the band saw. 
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The palletization of the objects could also be done in a way that the industrial robots 

have direct access to the pallets. This approach would fully automate the process and 

human interaction with the metal blanks would no longer be needed. 

The results of accuracy evaluation and pilot scale demonstrations both contribute to the 

third research question “How well does a commercial bin picking solution perform, and 

are the benefits justifiable for the increased initial cost? “. The outcome of the research 

showed that a modern bin picking solution is capable of sub millimetre accuracy, but the 

accuracy is highly dependent on the gripper of the robot. The computation time of the 

solution is also fast, ranging between few seconds depending on the complexity of the 

localization. Considering the time it takes for the robot to complete the computed trajec-

tory, this computation time was not a limiting factor. The benefits of a commercial bin 

picking solution also include fast commissioning and modification of the bin picking task. 

Relocating the system also takes a short time, where only recalibration of the depth cam-

era was required before continuing the use of the system. This means that a single ro-

botic cell could be relocated with very little downtime before it can continue working with 

a different task. Considering how long it takes to design and commission a standalone 

system from the ground up, a commercial OOTB- solution can very quickly compensate 

for the initial cost of the system. The downsides of commercial solutions are that they do 

have their limits, either with the localization algorithms or the maximum number of local-

ized object types. These are something that cannot be changed, and in some specific 

cases these solutions might not be able to match the requirements of the system. 

To expand upon the results of this thesis, future studies could continue with larger cam-

era selection, gripper selection or more environmental variables, such as multi view cam-

era interference. Another, more expensive option would be to explore the performance 

of different bin picking solutions from other manufacturers and evaluate the performance 

of the solutions. The resource intensity & impact graph of these proposals is listed in 

figure 52. 
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Figure 52. Resource intensity & impact graph 
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7. CONCLUSIONS 

This thesis researched the challenges of automated bin picking and performance of a 

modern, commercial bin picking solution. This research aimed to identify the strengths 

and weaknesses of different 3D- depth camera technologies and evaluate the perfor-

mance of each technology. The research objectives were achieved through tangible re-

sults between the technology comparison and pilot-scale demonstrations of a modern 

bin picking solution. The results of this thesis present the different advantages and dis-

advantages of different 3D- depth camera technologies and based on the perspective of 

a bin picking application; some are more significant than others. Summary of the 

strengths and weaknesses of stereo vision, structured light and ToF from the perspective 

of a bin picking system are presented below in table 8. 

Table 8. Summary of depth camera strengths and weaknesses 
Technology Strengths Weaknesses 

Time-of-Flight Capable of real time imaging, which enables 

bin picking with short cycle time requirements. 

Capable of performing bin picking, but most 

suited for longer range measurement with 

large objects. Best performing technology 

with ambient light. 

Comparatively lower resolu-

tion to stereo vision and 

structured light. Convex, re-

flective surfaces are prob-

lematic due to Multi Path Er-

ror. 

Stereo vision Capable of real time imaging, which enables 

bin picking with short cycle time requirements. 

Wide range of different camera resolutions 

and dynamic scene imaging enables different 

bin picking tasks from short to long range. 

RGB- camera enables bin picking based on 

colour of the objects.  

Reflective surfaces, espe-

cially from the bin back-

ground can be problematic 

and cause the correspond-

ence problem. 

Structured light High resolution enables bin picking of even 

small objects and the best suited technology 

for close range measurements. Versatile to 

many different surface textures and the best 

performing technology with reflective sur-

faces.  

Lower range compared to 

Stereo vision and ToF. 

Scanning the scene takes 

some time, which requires a 

stationary scene.  
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The approach for this thesis and the research problems were influenced by the common 

questions of the companies involved with the thesis work. The expected results from this 

research work were both practical and theoretical, mainly focusing on modern depth 

camera technologies. The results matched the expectations, where the performance of 

a modern bin picking solution even exceeded them. The research methods of this study 

fulfilled the goals set for the research work. The results presented the capabilities of 

modern depth cameras and how successful bin picking application depends on much 

more than simply an accurate vision system. 

The results of this thesis provide valuable information from the performance of different 

depth camera technologies, which are not usually publicly available from similar re-

search. The results can be used as a tool to help selecting the best depth camera tech-

nology for a specific task or used as a reference in a feasibility study with similar object 

types.  As a conclusion based on the results of this thesis, structured light was the best 

performing technology for bin picking of small to medium sized objects. Considering the 

requirements of a successful bin picking task, structured light had clear advantages com-

pared to stereo vision and ToF. Structured light had the versatility to perform with many 

surface textures and a broad range of reflective surfaces. Based on the results of the 

pilot-scale studies, the longer computation time also outweighed the perks of real time 

performance. This is because the most important part of bin picking, the pose estimation 

is highly dependent on the resolution of the point cloud. Accurate perception of the scene 

is also important from trajectory planning point of view, especially in occluded environ-

ments.  
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