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Summary
Background Evidence indicates that the adverse health effects of obesity differ between genetically and environ-
mentally influenced obesity. We examined differences in the association between obesity and cardiovascular disease
(CVD) between individuals with a genetically predicted low, medium, or high body mass index (BMI).

Methods We used cohort data from Swedish twins born before 1959 who had BMI measured between the ages of
40–64 years (midlife) or at the age of 65 years or later (late-life), or both, and prospective CVD information from
nationwide register linkage through 2016. A polygenic score for BMI (PGSBMI) was used to define genetically pre-
dicted BMI. Individuals missing BMI or covariate data, or diagnosed with CVD at first BMI measure, were excluded,
leaving an analysis sample of 17,988 individuals. We applied Cox proportional hazard models to examine the asso-
ciation between BMI category and incident CVD, stratified by the PGSBMI. Co-twin control models were applied to
adjust for genetic influences not captured by the PGSBMI.

Findings Between 1984 and 2010, the 17,988 participants were enrolled in sub-studies of the Swedish Twin Registry.
Midlife obesity was associated with a higher risk of CVD across all PGSBMI categories, but the association was
stronger with genetically predicted lower BMI (hazard ratio from 1.55 to 2.08 for those with high and low
PGSBMI, respectively). Within monozygotic twin pairs, the association did not differ by genetically predicted BMI,
indicating genetic confounding not captured by the PGSBMI. Results were similar when obesity was measured in
late-life, but suffered from low power.

Interpretation Obesity was associated with CVD regardless of PGSBMI category, but obesity influenced by genetic
predisposition (genetically predicted high BMI) was less harmful than obesity influenced by environmental factors
(obesity despite genetically predicted low BMI). However, additional genetic factors, not captured by the PGSBMI, still
influence the associations.
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Introduction
Over the last decades, the prevalence of overweight (body
mass index (BMI) 25–29.9) and obesity (BMI ≥ 30) has
increased worldwide to an extent that nearly a third of the
population is classified as overweight or obese.1,2 This in-
crease is alarming as it is well-established that a high BMI
in midlife affects nearly all physiological functions and
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increases the risk of developing multiple disease condi-
tions, including cardiovascular disease (CVD).3 In fact, two
reviews and meta-analyses of Mendelian randomization
studies have found that obesity is causally related to car-
diovascular outcomes.4,5

Obesity and CVD are both complex phenotypes,
influenced by genetic and environmental factors. Twin
ics, Karolinska Institutet, SE-1177 Stockholm, Sweden.
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Research in context

Evidence before this study
We searched PubMed for title and abstract keywords
“((obesity) OR (adiposity) OR (BMI)) AND ((cardiovascular) OR
(cardiac) OR (heart) OR (vascular)) AND ((polygenic) OR
(genetic risk score) OR (genetic score))” through November
2022. The association between obesity and cardiovascular
disease (CVD) is undisputable, and both phenotypes strongly
influenced by genetic factors. However, some recent studies
highlight that genetically predicted obesity may be less
harmful than obesity influenced predominantly by non-
genetic factors, such as environmental and lifestyle factors.

Added value of this study
By considering phenotypic obesity together with a polygenic
score for body mass index (BMI; PGSBMI), we examined
differences in CVD risk between a genetically predicted obesity
versus obesity driven mainly by non-genetic factors. For these
purposes, we used a cohort of almost 18,000 Swedish twins
followed on average 18 years. There were indeed differences,
with the risk increase for those with obesity influenced by
lifestyle or other environmental factors (obesity despite a low
PGSBMI) twice that of those with a genetically predicted

obesity (obesity with a high PGSBMI; hazard rates 2.08 versus
1.55), compared to those with a healthy weight in the same
PGSBMI category. Utilizing the twin design of the data, we
tested the associations within monozygotic twin pairs, who
by default have the same genetically predicted BMI. Here, the
association between obesity and CVD was substantially
attenuated, and there were no differences in the association
between those with genetically predicted low versus high
BMI. This indicates that the association is still influenced by
genetic factors, beyond the PGSBMI.

Implications of all the available evidence
While a healthy lifestyle is always to strive for, findings from
the current study and previous work indicate that obesity
influenced by environmental factors may be more deleterious
than obesity influenced by genetic factors. The topic is still
understudied, but this heterogeneity in obesity has been seen
for several important outcomes, and in data from Sweden as
well as the US. This, together with the attenuated association
within twin pairs, indicates that the negative health effects of
obesity may be mediated by other factors, rather than driven
by the obesity in itself.

Articles

2

studies have estimated the heritability of BMI to
45–85%,6 and the most recent genome-wide association
study (GWAS) identified 941 genetic variants underly-
ing BMI,7 thus providing evidence that obesity and
obesity-related phenotypes are eminently heritable.
While a high BMI is understood to have both environ-
mental and genetic influences,8 these influences have
seldom been studied interactively. By simultaneously
considering phenotypic BMI and its genetic influences,
one can distinguish if a high BMI is influenced by ge-
netic factors versus predominantly by non-genetic fac-
tors, such as environmental lifestyle factors. In fact,
recent evidence indicates that genetically predicted
overweight and obesity may be associated with lower
disease risk than overweight and obesity driven by
environmental factors.9–12 We first demonstrated this in
relation to dementia risk in the Swedish Twin Registry
(STR), where a higher BMI in midlife was associated
with a higher risk of dementia only among those with a
genetically predicted low BMI (i.e. a higher BMI influ-
enced by environmental factors, rather than genetic
predisposition).9 The same has since been shown for
cognitive abilities,10 mortality,11 and cardiovascular out-
comes,12 all in data from the Health and Retirement
Study.

However, differences between genetically versus
environmentally influenced overweight and obesity are
still understudied, and mainly based on the Health and
Retirement Study data.10–12 Moreover, while the negative
health effects of overweight and obesity in midlife are
well-established, the causes and consequences of
overweight or obesity in late-life are more complicated,
with evidence of an inverse association with e.g. mor-
tality.13 Thus, we aim to study how genetically predicted
BMI interacts with phenotypic overweight and obesity to
influence the risk of CVD, and if the associations differ
depending on if overweight and obesity were measured
in midlife or late-life. By using data from the STR, we
will also examine if the associations hold within
monozygotic (identical) twin pairs with the same
genetically predicted BMI, thus accounting for other
shared genetic and other familial factors.
Methods
Study population
The study population originates from the STR, a
population-based register including virtually all twins
born in Sweden.14 We used data from twins born 1958
or earlier, who participated in data collections that
included genotyping (Fig. 1). Included sub-studies were
the Swedish Adoption/Twin Study of Aging (SATSA),15

a study of 859 individuals from same-sex twin pairs
followed-up in up to 10 waves of in-person testing
conducted 1986–2014; Aging in Women and Men: A
Longitudinal Study of Gender Differences in Health
Behaviour and Health among Elderly (GENDER),16 a
study of 496 individuals from opposite-sex twin pairs
followed-up in three waves of in-person testing occur-
ring 1995–2005; and the Screening Across the Lifespan
Twin Study (SALT)14 which was aimed at all twins born
1958 or earlier, where 44,919 individuals participated in
www.thelancet.com Vol 58 April, 2023
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Analysis sample
N= 17,988

BMI measured in midlife: N=15,786
BMI measured in late-life: N=5,488

No register linkage
N= 69

Missing other covariates 
(education or smoking) 

N=34

CVD at first BMI measure
N= 169

No BMI info
N= 1,101

Swedish Twin Registry born 
<1959, with genetic data: 

N= 19,361

SALT
N = 44,919

GENDER
N = 496

(N=433 in SALT)
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N = 859

(N=508 in SALT)

SATSA (n=622), GENDER
(n=377), HARMONY (n=1,017)

PsychChip; N = 2,052
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Fig. 1: Study profile. Flow chart of the study population, originating from sub-studies of aging within the Swedish Twin Registry. *3286
individuals had measures taken in both age categories, and contributed to both sets of analyses.
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an extensive telephone interview. Genotyping data is
available for a subset of SALT twins through participa-
tion in the sub-studies HARMONY17 (screening of
cognitive functioning for SALT participants aged 65 and
above, conducted 1998–2003), TwinGene14 (consisting
of a questionnaire and a health checkup, conducted
2004–2008), and SALT-Y14 (consisting of a questionnaire
and saliva collection, conducted 2009–2010).

In total, genotyping data is available for 19,361 in-
dividuals (Fig. 1). Sample characteristics for SATSA,
GENDER, and SALT participants with and without
genotyping data are shown in Supplementary Table S1.
Those with genotyping data were on average born later
(1942 versus 1939), younger at baseline (57 versus 61
years), older at death (80 versus 79 years), and had a
lower proportion of individuals with low education (33%
www.thelancet.com Vol 58 April, 2023
versus 67%) and smokers (42% versus 58%), compared
to those without genotyping data. The latter difference
in proportions likely reflect the later birth years of those
with genotyping data.

Ethics
All participants provided informed consent and this
study was approved by the Regional Ethical review
Board in Stockholm (2015-1729-31-5) and the Swedish
Ethical Review Authority (2022-06634-01). Additionally,
this study followed the STROBE guidelines for cohort
studies.18

Cardiovascular disease information
The STR is linked to several nationwide registers,14

including the National Patient Registry (NPR) and the
3
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Cause of Death Registry (CDR) from where CVD in-
formation was retrieved in this study. The NPR reached
nationwide coverage in 1987, and includes information
about 99% of all overnight hospitalizations in Sweden.19

Since 2001 the NPR also includes outpatient specialist
care. The CDR includes information about causes of
death for all Swedish residents.20 Data were available
throughout 2016. Primary and secondary diagnoses or
causes of death are reported in ICD codes, and we used
diagnostic codes for angina pectoris, myocardial infarc-
tion, atherosclerosis, claudication, ischemic heart dis-
ease, stroke, and the surgical procedures coronary artery
by-pass graft and percutaneous transluminal coronary
angioplasty, based on prior work in the STR.21 In addi-
tion to a broader CVD classification, we separated di-
agnoses into non-stroke CVD and stroke. Additional
information about the registers along with ICD codes
used to define any CVD, non-stroke CVD, and stroke is
provided in the Supplementary section and Table S2.

BMI measurement
Height and weight were measured in every data collec-
tion within SATSA, GENDER, HARMONY, and Twin-
Gene, and self-reported as part of SALT. In addition,
self-reported height and weight are available from
questionnaires sent out to same-sex twin pairs in the
1960s and 70s.14 Twins born before 1926 were sent
questionnaires in 1961, 1963, 1967, and 1970, which, in
addition to height and weight at the time also included
questions about their weight at ages 25 and 40. Twins
born 1926–1958 were sent a questionnaire in 1973, with
questions about height and weight at the time.

After carefully checking the data for outliers, both
visually and quantitatively, BMI was calculated as kg/
m2, and categorized into healthy weight (BMI 18.5–24.9)
overweight (25–29.9), or obesity (BMI ≥ 30). Individuals
with underweight (BMI < 18.5; due to low numbers) or
BMI above 55 were excluded. For a detailed description
of BMI data availability and cleaning, please see Karls-
son et al. 2020.9 To examine the effect of midlife and
late-life BMI separately, we selected the measure taken
closest to age 50 (out of samples taken at age 40–64) and
75 (out of samples taken at age 65 or above) for each
individual, respectively. Individuals with BMI measured
taken in both age intervals could contribute to both age
categories.

Genetically predicted BMI
For a measure of genetically predicted BMI, we
computed a polygenic score for BMI (PGSBMI) using the
most recent genome-wide association study for BMI,
which identified 941 genetic variants associated with
BMI in data from ∼700,000 individuals.7 The significant
variants together explained 6% of the trait variance,
while a PGS using all genetic variants with p < 0.001
explained 14%.7 STR participants were part of the
GWAS, and to avoid sample overlap new summary
statistics were first computed, excluding the STR
studies.

The STR participants were genotyped on Human
OmniExpress (TwinGene, n = 10,906) or Illumina Psy-
chArray (SATSA, GENDER, and HARMONY, which
were genotyped together, n = 2052; and SALT-Y,
n = 6403), and the data imputed against the Haplotype
Reference Consortium reference panel.22 For the cur-
rent study, we selected HapMap3 SNPs present on all
three genotyping arrays with a minor allele frequency
>1% and imputed with high quality (info score >0.8),
resulting in 952,885 SNPs. To deal with linkage
disequilibrium, effect size shrinkage with SBayesR23

was performed, and polygenic scores were then
computed with Plink 2.0. Prior to analyses, the PGSBMI

was adjusted for genetic ancestry (by regressing out the
first five principal components from the score) and
standardized within genotyping data collection (Twin-
Gene; SATSA, GENDER, and HARMONY; SALT-Y).
Tertiles of the PGSBMI were used to categorize in-
dividuals into having genetically predicted low, me-
dium, or high BMI. Additional details regarding
computation of the PGSBMI are provided in the
Supplementary section and Fig. S1.

Statistical analyses
All analyses were conducted in STATA 17.0.24 Descrip-
tive statistics of the total midlife and late-life sample as
well as stratified by CVD status were selected to present
the total number of individuals and percentage of the
total for categorical variables, or mean and standard
deviation for continuous variables. In each set of ana-
lyses, all individuals with relevant measures were
included (Fig. 1). Midlife and late-life overweight and
obesity were modelled separately in all models described
below, with CVD diagnosis as the outcome. Cox pro-
portional hazard models with attained age as the un-
derlying time scale were selected for the main analyses,
to appropriately account for age and time without
requiring assumptions about the underlying baseline
hazard. All models were conducted both in the total
sample and separately in men and women. Measured
BMI category (overweight or obesity, with healthy BMI
as the reference category) and the PGSBMI were
modelled as exposures for the risk of incident CVD in
Cox proportional hazard models, where individuals
were followed from age at BMI measurement to CVD
diagnosis, death, or end of follow-up, whichever
occurred first. Individuals missing relevant variables
were excluded.

We first modelled the independent effects of either
BMI category or the PGSBMI as predictors of CVD.
Second, we conducted joint effect models, where both
BMI category and the PGSBMI were included, thus
mutually adjusted. Third, we modelled interaction ef-
fects between BMI category and the PGSBMI. Last, to
visualize differences in the effect of overweight and
www.thelancet.com Vol 58 April, 2023
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obesity between individuals with genetically predicted
low, medium, or high BMI, we stratified the effect of
BMI category by tertiles of the PGSBMI (by including an
interaction term between BMI category and tertiles of
the PGSBMI to obtain stratified effect sizes). Sex, edu-
cation (coded as seven years or less versus more than
seven years of education, corresponding to basic versus
more than basic education at the time), and smoking
(never versus ever smoker) were considered as time-
invariant confounders in all models. To allow for
different baseline hazard across studies, a categorical
study variable was included in the strata statement
(stratified Cox model). To account for relatedness
among twins we applied robust standard errors. Exam-
ining correlations and variance inflation factors did not
indicate issues of collinearity between BMI and the
PGSBMI or multicollinearity across variables (see
Supplementary section). The proportional hazards
assumption was examined visually by plotting survival
curves by exposure and covariate levels, and statistically
with the phtest command. The tests indicated non-
proportional hazards in relation to BMI category, sex,
and smoking, but without indications of substantially
time-varying effects warranting closer examinations
(Supplementary Fig. S2). We therefore used boot-
strapping with n = 100 repetitions to obtain valid stan-
dard errors.25 Thus, hazard ratios represent weighted
average across follow-up time.

To test if the association between BMI category and
CVD is explained by genetic factors not captured by the
PGSBMI, we conducted co-twin control analyses. In such
analyses, twin individuals (within a pair) who are
discordant for the outcome are compared in relation to
their exposure status.26 As twins share both DNA (to a
varying extent), in utero environment, and early life
environment, the co-twin control design elegantly con-
trols for such confounding. In a Cox model, this is done
by using each twin pair as a strata in the stratified Cox
model, thus examining the exposure-outcome associa-
tion within each pair. The baseline hazard is thereby
allowed to differ between twin pairs, while the resulting
estimates are optimized to fit all strata, and represent
the within-twin pair estimates, adjusted for factors
shared between twins. We first repeated the models
above in co-twin control models of dizygotic (fraternal)
twin pairs, sharing on average 50% of their co-
segregating genes and thus differing in their PGSBMI.
Second, we conducted co-twin control analyses of the
association between BMI category and CVD risk within
monozygotic twin pairs, sharing identical DNA. As co-
twin control models rely on differences within twin
pairs, models including the PGSBMI cannot be applied
within monozygotic twin pairs (as they, by default, have
identical PGSBMI). However, by stratifying the sample
into monozygotic twin pairs with genetically predicted
low, medium, or high BMI, we could study the within
monozygotic pair association between BMI category and
www.thelancet.com Vol 58 April, 2023
CVD risk, by tertiles of the PGSBMI (i.e. comparable to
the last model described for the main analysis). The co-
twin control models included education, sex, and
smoking as covariates.

Sensitivity analyses
We tested if the associations are affected by survival bias
by conducting competing risk regression with CVD as
the outcome and death as the competing risk, with sex,
smoking, education, and study as covariates. We also
separately modelled non-stroke CVD and stroke in
survival analysis set up in the same manner as the main
models, to test for subtype-specific effects. When
modelling non-stroke CVD, individuals were censored
at the age of a stroke diagnosis.

Post-hoc analyses
We finally tested the associations in the full analysis
sample, regardless of age at measurement, using the
first available measure after age 40. Survival analysis
was set up in the same manner as the main models also
for the post-hoc analysis.

Role of the funding source
The funders had no role in study design, data collection,
data analysis, interpretation, or writing of the manuscript.
Results
Population characteristics
The participants were enrolled in respective sub-studies
between 1984 and 2010, resulting in 19,361 individuals
with genetic data (Fig. 1). After removing individuals
who lacked register linkage (n = 69), had no BMI in-
formation (n = 1101), were diagnosed with CVD already
at first BMI measurement (n = 169), or were missing for
covariate information (n = 34), 17,988 individuals
remained for analyses. Out of those, 15,786 individuals
had BMI measured in midlife and 5488 had BMI
measured in late-life. 3286 had measures taken in both
age categories, and contributed to both sets of analyses.
A flowchart of the study population is provided in Fig. 1
and sample characteristics in Table 1.

The midlife sample was followed during 278,705
(mean 17.7, range 1–62) person-years, during which
3123 individuals were diagnosed with CVD at mean age
70.0 years. A total of 2414 individuals were diagnosed
with non-stroke CVD at mean age 70.1 years, and 1156
with stroke at mean age 72.6 years. The late-life sample
was followed during 50,614 (mean 9.2, range 1–36)
person-years, during which 1681 individuals were
diagnosed with CVD at mean age 80.2 years. A total of
1246 individuals were diagnosed with non-stroke CVD
at mean age 80.6 years, and 831 with stroke at mean age
80.8 years.

The midlife sample included 5144 complete twin
pairs (3124 dizygotic and 2020 monozygotic pairs), out
5
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Midlife Late life

All No CVD CVD All No CVD CVD

Female sex, N (%) 8493 (53.80) 7172 (56.64) 1321 (42.30) 2918 (53.17) 2132 (56.00) 786 (46.76)

Male sex, N (%) 15,786 (46.20) 12,663 (43.36) 3123 (57.70) 5488 (46.83) 3807 (44.00) 1681 (53.24)

Low education, N (%) 3248 (20.58) 2279 (18.00) 969 (31.03) 1763 (32.12) 1113 (29.24) 650 (38.67)

Smokers, N (%) 9604 (60.84) 7691 (60.74) 1913 (61.26) 2758 (50.26) 1886 (49.54) 872 (51.87)

Age at baseline, M (SD) 52.08 (5.49) 52.20 (5.25) 51.60 (6.36) 71.76 (5.14) 71.00 (4.99) 73.48 (5.04)

Age at last follow up, M (SD) 71.18 (8.67) 69.67 (7.79) 77.33 (9.33) 82.18 (6.23) 81.30 (5.99) 84.16 (6.31)

Age at death, M (SD) 79.76 (10.18) 77.48 (10.85) 81.84 (9.05) 84.17 (7.07) 83.29 (7.39) 85.13 (6.58)

BMI at baseline, M (SD) 24.90 (3.33) 24.80 (3.33) 25.31 (3.30) 25.94 (3.74) 25.85 (3.78) 26.15 (3.66)

Descriptive statistics for all individuals, individuals without CVD and individuals with CVD, and BMI measured in midlife or late-life. Statistics are presented as number (%) of
individuals for categorical variables and mean level (SD) for continuous variables. BMI Body Mass Index, M mean, N number, SD standard deviation.

Table 1: Descriptive statistics of the study population.
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of whom 1212 (769 dizygotic and 443 monozygotic
pairs) were discordant for CVD. The late-life sample
included 1670 complete twin pairs (1235 dizygotic and
435 monozygotic pairs), out of whom 565 (436 dizygotic
and 129 monozygotic pairs) were discordant for CVD.

One standard deviation (SD) higher PGSBMI was
associated with 1.12 (95% CI 1.07–1.18) units higher
BMI in the midlife sample and 1.16 (95% CI 1.07–1.26)
units higher BMI in the late-life sample, after adjusting
for sex and age at BMI measure. Additional adjustment
for smoking and education did not affect the estimates.

Midlife BMI category and the PGSBMI in relation to
risk of CVD
Independent and joint effect models of BMI category and the
PGSBMI

In the independent effect models, midlife overweight
and obesity were associated with a 31% and 76% higher
risk of CVD, respectively (Table 2). One SD higher
PGSBMI was associated with a 12% higher risk of CVD.
In the joint effect models, all estimates were slightly
attenuated but remained statistically significant
(Table 2). The association between obesity and CVD was
slightly stronger in women than in men, but the results
were overall comparable across sexes.

Interactive effects between BMI category and the PGSBMI
There was a statistically significant interaction between
obesity and the PGSBMI, with 14% lower risk of CVD for
individuals with obesity and one SD higher PGSBMI,
compared to those with obesity and a mean PGSBMI

(Table 2). When stratifying by tertiles of the PGSBMI,
this was seen as a stronger association between obesity
and CVD risk among individuals with a genetically
predicted low BMI than those with genetically predicted
high BMI (Fig. 2a and Supplementary Table S3),
ranging from 2.08 times higher risk among those with
genetically predicted low BMI to 1.55 times higher risk
among those with genetically predicted high BMI. This
pattern was consistent in sex-stratified analyses (Fig. 2a
and Supplementary Table S3). No interaction was pre-
sent between overweight and the PGSBMI (Table 2),
and no difference in the association between overweight
and CVD seen across PGSBMI categories (Fig. 2a and
Supplementary Table S3).

Co-twin control analyses
The effect estimates of obesity on CVD risk was attenuated
in co-twin control analyses compared to the full sample,
with a stronger attenuation within monozygotic (HR 1.14,
95% CI 0.64–2.02) than dizygotic (HR 1.64, 95% CI
1.11–2.42) twin pairs. The association between overweight
and CVD was similar to that in the total population in
dizygotic twin pairs (HR 1.35, 95% CI 1.10–1.66), but
attenuated in monozygotic twin pairs (HR 1.08, 95% CI
0.80–1.46). Within dizygotic twin pairs, the joint effect and
interaction model results, including the PGSBMI, were
largely comparable to those of the total sample (Table 2).
However, when stratifying monozygotic twin pairs into
PGSBMI groups, the difference in the association between
obesity and CVD risk between those with a genetically
predicted low versus high BMI seen in the total sample
disappeared; and the HR was 1.21 for those with a low
PGSBMI and 1.29 for those with a high PGSBMI (Fig. 3 and
Supplementary Table S4).

Late life BMI category and the PGSBMI in relation to
risk of CVD
Independent and joint effect models of BMI category and the
PGSBMI
In the independent effect models, late life overweight
and obesity were associated with a 22% and 40% higher
risk of CVD, respectively (Table 2). One SD higher
PGSBMI was associated with a 9% higher risk of CVD. In
the joint effect model, all results were slightly attenuated
although still statistically significant (Table 2). The as-
sociations between overweight and CVD as well as of the
PGSBMI and CVD were slightly stronger in men than in
women, while the effect of obesity was comparable be-
tween sexes.
www.thelancet.com Vol 58 April, 2023
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Midlife Total sample Within dizygotic twin pairs

All Men Women

Independent effect model

Overweight 1.31 (1.22–1.42), p < 0.001 1.31 (1.19–1.45), p < 0.001 1.29 (1.15–1.45), p < 0.001 1.35 (1.10–1.66), p = 0.004

Obesity 1.76 (1.50–2.05), p < 0.001 1.65 (1.36–2.00), p < 0.001 1.87 (1.53–2.28), p < 0.001 1.64 (1.11–2.42), p = 0.013

PGSBMI 1.12 (1.08–1.16), p < 0.001 1.12 (1.07–1.17), p < 0.001 1.12 (1.06–1.18), p < 0.001 1.16 (1.02–1.32), p = 0.027

Joint effect model

Overweight 1.27 (1.18–1.38), p < 0.001 1.27 (1.15–1.40), p < 0.001 1.26 (1.12–1.42), p < 0.001 1.31 (1.06–1.62), p = 0.012

Obesity 1.64 (1.40–1.93), p < 0.001 1.53 (1.25–1.87), p < 0.001 1.76 (1.42–2.19), p < 0.001 1.55 (1.04–2.30), p = 0.031

PGSBMI 1.07 (1.03–1.11), p < 0.001 1.07 (1.02–1.13), p = 0.006 1.06 (1.00–1.13), p = 0.046 1.10 (0.97–1.26), p = 0.145

Interaction model

Overweight 1.26 (1.17–1.37), p < 0.001 1.26 (1.14–1.40), p < 0.001 1.25 (1.10–1.41), p < 0.001 1.31 (1.06–1.62), p = 0.012

Obesity 1.83 (1.53–2.18), p < 0.001 1.69 (1.36–2.11), p < 0.001 1.96 (1.56–2.47), p < 0.001 1.69 (1.05–2.74), p = 0.032

PGSBMI 1.08 (1.03–1.13), p = 0.002 1.07 (0.99–1.17), p = 0.093 1.08 (1.00–1.16), p = 0.048 1.15 (0.98–1.35), p = 0.089

Overweight * PGSBMI 1.02 (0.95–1.09), p = 0.640 1.02 (0.90–1.15), p = 0.742 1.01 (0.88–1.15), p = 0.921 0.93 (0.76–1.14), p = 0.490

Obesity * PGSBMI 0.86 (0.74–1.00), p = 0.046 0.87 (0.71–1.06), p = 0.163 0.85 (0.70–1.04), p = 0.111 0.85 (0.58–1.23), p = 0.379

Late life Total sample Within dizygotic twin pairs

All Men Women

Independent effect model

Overweight 1.22 (1.09–1.36), p = 0.001 1.31 (1.13–1.52), p < 0.001 1.10 (0.96–1.26), p = 0.171 1.30 (0.97–1.74), p = 0.081

Obesity 1.40 (1.21–1.62), p < 0.001 1.44 (1.16–1.79), p = 0.001 1.34 (1.11–1.62), p = 0.002 1.42 (0.92–2.21), p = 0.115

PGSBMI 1.09 (1.04–1.14), p < 0.001 1.13 (1.06–1.20), p < 0.001 1.05 (0.98–1.12), p = 0.187 1.11 (0.93–1.33), p = 0.256

Joint effect models

Overweight 1.19 (1.06–1.34), p = 0.003 1.27 (1.10–1.47), p = 0.001 1.09 (0.95–1.26), p = 0.224 1.28 (0.95–1.72), p = 0.107

Obesity 1.33 (1.15–1.55), p < 0.001 1.33 (1.06–1.67), p = 0.014 1.32 (1.08–1.62), p = 0.008 1.37 (0.87–2.16), p = 0.174

PGSBMI 1.06 (1.01–1.11), p = 0.021 1.09 (1.03–1.17), p = 0.006 1.02 (0.95–1.10), p = 0.619 1.07 (0.88–1.29), p = 0.503

Interaction model

Overweight 1.19 (1.06–1.33), p = 0.004 1.26 (1.09–1.46), p = 0.002 1.09 (0.94–1.25), p = 0.261 1.23 (0.91–1.66), p = 0.184

Obesity 1.40 (1.19–1.64), p < 0.001 1.41 (1.07–1.85), p = 0.014 1.37 (1.10–1.70), p = 0.004 1.74 (1.04–2.93), p = 0.036

PGSBMI 1.08 (1.00–1.17), p = 0.046 1.11 (1.00–1.24), p = 0.053 1.04 (0.93–1.17), p = 0.460 1.20 (0.93–1.54), p = 0.161

Overweight * PGSBMI 0.98 (0.88–1.10), p = 0.787 0.99 (0.85–1.15), p = 0.862 0.98 (0.85–1.13), p = 0.812 0.91 (0.66–1.24), p = 0.538

Obesity * PGSBMI 0.89 (0.77–1.04), p = 0.134 0.88 (0.67–1.16), p = 0.354 0.91 (0.77–1.07), p = 0.263 0.56 (0.34–0.92), p = 0.021

Hazard rate ratios (95% confidence intervals) of CVD in relation to midlife or late-life BMI category and the PGSBMI, for the total sample, separately for men and women, and from co-twin control analyses
of dizygotic twin pairs. All models are adjusted for study, sex, smoking and education, and age used as the underlying time scale. Independent effect models contain either BMI category or PGSBMI as
predictors of CVD. Joint effect models contain BMI category and PGSBMI together as predictors of CVD. Interaction models contain main effects of BMI category and the PGSBMI, and an interaction term
between BMI category and the PGSBMI. Statistically significant estimates (at the α < 0.05 level) are presented in bold. BMI body mass index, CVD cardiovascular disease, PGS polygenic score.

Table 2: Risk of CVD in relation to midlife and late-life BMI category and the PGSBMI, in the total sample, by sex, and within dizygotic twin pairs.

Articles
Interactive effects between BMI category and the PGSBMI

Including an interaction term between late-life obesity
and the PGSBMI indicated the same pattern of associa-
tions as when BMI was measured in midlife, but of
lower power and with a statistically non-significant
interaction effect (Table 2). When stratifying by tertiles
of the PGSBMI, the association between late-life obesity
and CVD was also similar to that in midlife, with a
higher risk of CVD among those with a genetically
predicted low BMI, than those with a genetically pre-
dicted high BMI, but with the lowest association among
those with a genetically predicted medium BMI
(Fig. 2b). The associations ranged between 1.80 times
higher risk among those with genetically predicted low
BMI to 1.33 times higher risk among those with
genetically predicted high BMI (Fig. 2b). The same
www.thelancet.com Vol 58 April, 2023
pattern was seen in sex stratified analyses. There were
no differences in the associations between overweight
and CVD across PGSBMI groups. Effect estimates and
95% CIs are available in the Supplementary Table S3.

Co-twin control analyses
Compared to the total population, the association be-
tween late-life BMI category was stronger within dizy-
gotic (HR 1.30, 95% CI 0.97–1.74 for overweight, HR
1.42, 95% 0.92–2.21 for obesity) and monozygotic (HR
1.54, 95% CI 0.79–3.03 for overweight, HR 2.18, 95%
0.68–7.02 for obesity) twin pairs. Similarly, the associ-
ations in joint effect and interaction models were
generally stronger in co-twin control analyses within
dizygotic twin pairs (Table 2). However, it should be
noted that the sample size was limited. Stratifying
7
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Fig. 2: Interactive effects between BMI category and the PGSBMI. Hazard rate ratios and 95% confidence intervals of cardiovascular disease in
relation to overweight or obesity measured in a) midlife and b) late-life, stratified by genetically predicted low, medium or high BMI. The models
are adjusted for study, sex, smoking and education. BMI body mass index, PGS polygenic score.
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monozygotic twin pairs by genetically predicted low,
medium, or high BMI suffered from power issues with
very wide confidence intervals, and robust in-
terpretations could not be made (Supplementary
Table S4).

Sensitivity and post-hoc analyses
Results from the competing risk regression, evaluating
the risk of incident CVD while considering mortality
as the competing event, were consistent with those from
the main analyses (Supplementary Table S5). The as-
sociation between late-life BMI category and the risk of
stroke was overall weaker than that for non-stroke CVD
(and any CVD), but results were otherwise comparable
between non-stroke CVD and stroke (Supplementary
Table S6 and S7). Results based on the total analytical
sample, regardless of age at BMI measurement, were
consistent with the main findings, and closest to those
of midlife measured BMI (Table S8).
Discussion
In this study of genetic influences on the association
between BMI and CVD, we examined how genetically
predicted BMI interacts with overweight and obesity, in
relation to the risk of CVD. Using longitudinal data
from the STR, we confirm that both midlife and late-life
overweight and obesity as well as the PGSBMI are
www.thelancet.com Vol 58 April, 2023
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Fig. 3: Co-twin control analyses. Hazard rate ratios and 95% con-
fidence intervals of cardiovascular disease in relation to obesity
measured in midlife, stratified by genetically predicted low, medium
or high BMI, for the total sample in dark color and within mono-
zygotic twin pairs in lighter color. The models are adjusted for study,
sex, smoking and education, with age as the underlying time scale.
BMI body mass index, MZ monozygotic, PGS polygenic score.

Articles
associated with a higher risk of CVD in independent
effect models, with only slight attenuations when
mutually adjusted for in joint effect models. Moreover,
there was an interaction between midlife obesity and the
PGSBMI, and when stratifying individuals into genetic
predisposition to low, medium, or high BMI, the asso-
ciation between obesity and CVD was stronger with
lower genetically predicted BMI. As obesity in the
absence of genetically predicted high BMI is then
influenced by other factors; i.e. environmental factors
such as lifestyle, this indicates differences between
environmentally versus genetically influenced obesity,
in relation to risk of CVD. Results were similar for the
interaction between the PGSBMI and late-life obesity.
However, it should be noted that the sample with BMI
measured in late life was of limited size, resulting in
wide confidence intervals limiting interpretability, and
we therefore focus on the midlife sample when inter-
preting the results from subgroup analyses.

To the best of our knowledge, few studies have
explored differences between genetically and environ-
mentally influenced obesity. We first found this differ-
ence in relation to dementia where higher BMI in
midlife was associated with higher risk of dementia only
for those with genetically predicted low BMI,9 and later
saw the same pattern in relation to cognitive abilities in
the Health and Retirement Study.10 Additionally, Vin-
neau et al.11 demonstrated the same differences between
genetically versus environmentally influenced obesity in
relation to mortality in the Health and Retirement
Study, showing that older adults with obesity despite a
www.thelancet.com Vol 58 April, 2023
low PGSBMI had the greatest risk of mortality compared
to other groups. Recently, Davidson et al.12 found the
same difference in relation to CVD-related outcomes,
also using the Health and Retirement Study, showing
that individuals with obesity despite a low PGSBMI have
significantly worse health outcomes, including heart
problems, compared to their counterparts with genetic
obesity. Thus, this difference in associations between
genetically versus environmentally influenced obesity
has been seen for several different outcomes, and not
only in the STR sample (where virtually all twins are
born in Sweden to at least one parent also born in
Sweden,27 limiting generalizability) but also in the more
diverse US based Health and Retirement Study, indi-
cating external validity.

Taken together, results from the current and pre-
vious studies support the theory that genetically influ-
enced obesity is not associated with negative health
outcomes to the same extent as environmentally
influenced obesity. Importantly, this indicates that the
negative health effects of obesity may be influenced by
other factors, rather than by the obesity in itself, as we
would otherwise expect similar effects of obesity,
regardless of if it is predicted by genetic predisposition
or environmental factors. Based on work from animal
models, body weight homeostasis is thought to be
biologically controlled through neuroendocrine and
metabolic pathways. As reviewed by Müller and col-
leagues,28 three theories of biological control of body
weight have been developed: 1) the set point model,
where body weight is tightly regulated around an
inherent set point through feedback loops; 2) the
settling point model where a new steady state of body
weight can be reached through adaptation to new en-
vironments; and 3) the dual-intervention point model
which combines the other two by suggesting a range
within which body weight can change in response to
biological (including genetic and epigenetic) and
environmental influences. In the third model, biolog-
ical influences are controlled through feedback loops,
while environmental influences are not, and may
override the biological control. In relation to the cur-
rent study, it is plausible that individuals with a
genetically predicted high BMI are better adapted to
obesity due to a higher inherent set point or body
weight range. In addition, as genetically predicted
obesity is inherently biologically influenced it may
better maintain body weight homeostasis through
feedback loops, compared to environmentally influ-
enced obesity which, according to the dual-intervention
point model, is not regulated through feedback loops
and may even override biological body weight control.28

While warranting further investigation, we could not
study differences in environmental influences such as
lifestyle, medication, social factors, physical environ-
ment or socioeconomic status in the current study, as
exposure data were collected at various time points and
9
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through various methods, substantially limiting
harmonization of such measures.

Further strengthening the hypothesis that obesity in
itself does not directly influence CVD risk, the associa-
tions were attenuated within twin pairs, with a further
attenuation within monozygotic twin pairs. If effect es-
timates remain stable within twin pairs (especially
within monozygotic twin pairs, sharing identical DNA)
it indicates, but is not proof of, a causal association. In
contrast, if the effect estimate is close to zero within
twin pairs, it is strong evidence against a causal associ-
ation, as it indicates that the association is driven by
genetic or other familial confounding.26 Our analyses
demonstrated an attenuated, but not null association
within twin pairs, indicating that at least part of the
association is explained by genetic or other familial
confounding. This is in line with previous work based
on the STR, where the association between BMI and
CVD mortality was substantially attenuated in co-twin
control models compared to the total sample.29 Inter-
estingly, the difference in the association between
genetically versus environmentally predicted obesity and
CVD was not seen in monozygotic twin pairs. As most
traits, including lifestyle behavioral traits, have strong
genetic influences,30 the lack of a difference between the
high and low PGSBMI group among monozygotic twin
pairs indicates that the association between obesity and
CVD is influenced by additional genetic factors that are
not captured by the PGSBMI, alternatively by environ-
mental factors shared between the monozygotic twin
pairs. This demonstrates the importance and benefits of
co-twin control analyses, to fully adjust for genetic or
familial influences which cannot be captured by a PGS.

The value of the STR data lies not only in the pos-
sibility of conducting co-twin control analyses, but also
in its richness and long follow-up. In the current study,
we utilized this by including genotyped sub-studies
within the STR, all with CVD information from regis-
ter linkage and BMI from a variety of data collections.
While it has been argued that twins are dissimilar from
the general population and therefore not representative,
previous findings have shown that twins are not
significantly different from singletons.31 The multiple
data collections within the STR limited the number of
individuals with missing information, and with the
addition of nationwide register information strengthens
the representativeness of the study participants. How-
ever, some limitations of the data deserves mentioning.
First, some BMI measures relies on self-reported mea-
sures of height and weight. While self-reported mea-
sures can be imprecise, we have shown that the
measures are acceptable in the STR data.32,33 Retro-
spectively self-reported weight comes with substantial
individual variability, but in SATSA 82% reported their
weight 20 years ago within 10% from their prior
measured weight.32 Self-reported current height and
weight led to very small but increasing differences in
height (0.038 cm/year) and BMI (0.016 units/year), but
not weight, over time, compared to measured height
and weight.33 Moreover, the data have been carefully
cleaned, comparing longitudinal information about
self-reported and measured height and weight.9

Nevertheless, there may be some misclassification of
BMI category, which, assuming it is non-differential in
relation to the outcome, would likely bias the associa-
tions towards the null. Disease diagnoses, including
CVD categories, from Swedish registers have generally
high validity with positive predictive values, around
85–95%.19 However, register data are not without limi-
tations. We included the NPR and CDR, thus capturing
outpatient specialist care, hospitalizations, and regis-
tered causes of death. Primary care is however not
included, and milder diagnosis may therefore be
missed. Nevertheless, the richness of the data allowed
access to BMI information covering a large part of the
twins’ lifespan together with objective measures of CVD
from register diagnoses for all participants. We could
thereby study long-term effects of midlife BMI, the
longest follow-up being 62 years, in relation to CVD
risk.

The association between midlife obesity and CVD
was stronger among women than men, but the associ-
ations between overweight or obesity and CVD were
present across sex. This is in line with reviews on the
topic, which have found that the association between
obesity-related traits and CVD is mostly identical be-
tween men and women [e.g.34–36]. Sensitivity analyses
comparing stroke versus non-stroke CVD also showed
comparable results, indicating that the same underlying
mechanisms, driving the association between over-
weight or obesity and CVD risk, affect both stroke and
non-stroke CVD. Competing risk regression, with death
as the competing event, showed the same pattern as the
main analyses, indicating that the results are not
explained by survival bias. These sensitivity analyses
strengthen the findings by drawing from the complete
follow-up through register linkage. However, studies of
older individuals always suffer from bias due to attrition
rates and differential selection and survival.37 Despite
having complete register follow-up, and despite consis-
tent results in competing risk regression, the results
may still suffer from such bias. Another potential limi-
tation of the current study is the historical effects of the
included cohorts, as e.g. lifestyles and treatment options
have changed during the large time span of when the
twins were born. This may also explain any differences
between the midlife and late-life sample, as environ-
mentally influenced obesity may have a different inter-
pretation in earlier versus later born cohorts.
Additionally, pharmacological treatments targeting
obesity were not available when BMI was measured in
the current study, and as such treatment may affect the
association between obesity and CVD this may limit the
representativeness of the findings in current times.
www.thelancet.com Vol 58 April, 2023
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While we cannot rule out cohort differences affecting
the main results, the robustness of the findings within
dizygotic twin pairs indicate that cohort differences do
not substantially affect our findings, as twins are, by
default, always matched on birth year.

In conclusion, while it is important to note that
overweight and obesity were associated with a higher
risk of CVD across all PGSBMI categories, obesity
influenced by environmental factors may be more
deleterious than obesity influenced by genetic factors.
Interestingly, these differences were not seen when
comparing monozygotic twin pairs, indicating that there
are genetic or shared environmental factors, not
captured by the PGS, influencing the associations.
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