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Abstract—A symbolic feature that integrates the space, air
and ground network components for service in challenging and
remote areas is being envisaged with continuity and high mobility
of the 6G mobile system. Simultaneously providing sensing and
connectivity over the radio signal becomes essential to support
the management of low-space air crafts in the mobile system
with limited spectrum resources. In this paper, we investigate the
optimal joint radar and communications beamforming scheme
with the presence of the clutter to support the low-space airborne
vehicles, e.g. unmanned aerial vehicles or drones that are essential
components of Non-Terrestrial Networks. The proposed scheme
achieves the optimal signal-to-clutter-plus-noise ratio of the
sensing function while maintaining the performance of the pre-
defined communications. The novel application of approximations
and rank-reduction algorithms in this work maximizes the joint
radar and communications performance, for a system model
similar to the one that is solved with a local optimum solution
in a previous work. The numeric simulation results show that
our approach maintains low complexity while guaranteeing the
global optimum beamforming solution.

I. INTRODUCTION

To provide high-speed and reliable service for users in
challenging and remote regions in the foreseeable sixth-
generation (6G) system, researchers have shifted the vision
to the space-air-ground integrated network (SAGIN). Via the
interoperating of spatial, aerial and terrestrial network seg-
ments, SAGIN is expected to be more flexible on balancing
the coverage, latency, bandwidth, and resilient to infrastructure
dysfunction caused by the natural disasters and malicious
attack. Compared with terrestrial networks and space networks
(e.g. satellites networks in geostationary, medium and low
earth orbits), and the aerial network, which treats low-altitude
aircraft (incl. drones, unmanned aerial vehicles, balloons) as
network components [1] or service objects [2] is a comparable
new research genre. To support the deployment of aerial
networks and ensure the onboard safety of low-altitude crafts,
mobility management and unmanned aircraft system traffic
management (UTM) become the essential network functions
for the SAGIN to handle the floating or flying network
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components or service objects. Usually, obtaining the position
and motion information used in mobility management relies
on the external infrastructure (e.g. global navigation satellite
system) or auxiliary onboard inertial measurement unit (IMU,
e.g. accelerometer and gyroscope). To improve the autonomy
level of the aerial network, it is expected to sense the mobility
information and keep the connectivity simultaneously with the
internal resources, which means performing joint radar and
communications (JRC) in the aerial networks.

JRC system is an emerging research topic among spectrum
sharing problems [3] [4]. Common properties of signals used
in both systems allow using a type of signal suited for
one task in another, and common circuitry in both systems
reduces the cost of remodeling them. However, it is a necessity
to implement suitable beamforming methods to allow for
the optimization of the primary task and fulfillment of the
performance requirements of the secondary task. Performance
of the beamforming algorithm is of even greater importance
when operation in millimeter wave (mmWave) is considered
since path loss to be dealt with is even greater than in the
case of operating in the microwave. Many beamforming tech-
niques have been proposed to satisfy radar and communication
performance requirements in multiple-input multiple-output
(MIMO) JRC systems, including those operating in mmWave.

Reformulating the beamforming problem as a sparse re-
construction problem as it was done in [5] is a viable ap-
proach in the context of mmWave operation and large antenna
arrays. Likewise, the work in [6] considers systems of a
similar type and emphasizes the effectiveness of utilizing
beam steering solutions instead of more complex precoding
methods, narrowing the possible methods for achieving the
optimal beamforming algorithm. A recent work approaches
JRC beamforming from an optimization problem perspective
and utilizes Cramér-Rao Bound (CRB) in problem definition
to achieve closed-form optimal solution for a single user, and
asserts that globally optimal solutions can be achieved for
multiple use cases by employing the proposed approach [7].
Another aspect of the JRC beamforming problem is addressed
in [8], where the convex optimization approach is applied to
determine the optimal antenna selection strategy. However,
multi-path possibilities which can emerge due to clutter in
radar operation and reflectors in radio communication were



not considered in the system model that [8] is based on. They
are considered in the system model of [9], even though the
formulated problem is non-convex in that work. Thus, global
optimality cannot be claimed with the solution proposed there.
In this paper, we consider a model with a single communi-
cation user and single clutter source and suggest a method
to achieve the global optimal solution for maximizing radar
signal-to-clutter plus noise ratio (SCNR) while keeping the
communication requirements satisfied. The results demonstrate
that JRC performance can be reliably maximized by our
algorithm with low computational complexity.

Notation: We use boldface lowercase letters for column
vectors, boldface uppercase letters for matrices, and normal
font for scalars. Superscript (.)H represents Hermitian trans-
pose, and Tr(.) stands for the trace of a matrix. The N ×N -
dimensional complex Euclidean space is expressed as CN×N .
Absolute value and Euclidean norm are denoted by |.| and
∥.∥2, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We describe the signal and system models in this section
before defining the optimization problem statement.

A. System setup

The single-user mmWave JRC system illustrated in Fig. 1
depicts a data transmission from the transmitter side to the
receiver side, which occurs through a radar target, a clutter
source, and a channel modeled by vector h ∈ CN×1. Additive
white Gaussian noise (AWGN) at the radar receive array and
communication user receiver is modeled by n ∈ CN×1 and
ν ∈ C, respectively. The returning signal from the target and
clutter is received and combined at the transmitter side again,
where half of the antennas are allocated for this task. The
beamforming process consists of weighting and phase shifting
the transmit signal and returned signal from the target, such
that SCNR from the return signal is maximized while keeping
the signal-to-noise ratio (SNR) of the communication signal
above a parametric threshold.

B. Optimization problem

The radar return signal received back by the antenna array is
modeled by multiplying the transmit waveform x by transmit
weight vector u ∈ CN×1, transmit and receive steering vectors
at(θ) ∈ CN×1 and ar(θ) ∈ CN×1 directed at radar target θt
and clutter θc, scaled by reflection factors of target σt and
clutter σc, which can be expressed as

r = σtar(θt)a
H
t (θt)ux+ σcar(θc)a

H
t (θc)ux+ n. (1)

The signal received by the communication user is given by

yc = hHux+ ν. (2)

Multiplying (1) by Hermitian of receive weight vector
wH ∈ C1×N from left yields the receive combined radar
return signal. Doing the substitution A(θ) = ar(θ)a

H
t (θ), it

could be written as
yr = wHr = wHA(θt)ux+wHA(θc)ux+wHn. (3)

Fig. 1. Visualization of JRC operation and simplified block diagram of the
transmitter side.

Average SCNR expression is acquired by the ratio of target
return signal power to the clutter return signal power plus noise
power as

γr =
σ2
t |wHA(θt)u|2

σ2
cw

H(A(θc)uuHAH(θc) + I
N

′
0

σ2
c
)w

, (4)

and average communication SNR is expressed similarly as

γc =
|hHu|2

N
′
0

, (5)

where noise has a variance of N
′

0 and thus could be shown as
an identity matrix scaled by N

′

0. The ratio between squares
of target and clutter reflection factors will be denoted as
σ2
t /σ

2
c = σ, and noise variance divided by squared clutter

reflection factor as N
′

0/σ
2
c = N0 from now on. Maximizing

γr by setting w and u vectors while keeping total transmit
power ||u||22 under an upper bound and keeping γc above a
lower bound constitutes an optimization problem stated as

maximize
w,u

γr = σ
|wHA(θt)u|2

wH(A(θc)uuHAH(θc) + IN0)w
, (6)

subject to C1 : ||u||22 ≤ Pt,

C2 : wHw = ||w||22 = 1,

C3 : γc =
|hHu|2

N
′
0

≥ Γc.

The objective of the problem described in (6) is to maximize
the average SCNR for the radar functionality of the JRC



system. Constraint C1 guarantees that the total transmitted
power is no more than the maximum allowed transmit power,
and constraint C2 ensures that the gain for the radar target
direction is set to unity. In contrast, the total array output
power is kept unchanged, and constraint C3 makes sure that
the average SNR for the communication operation satisfies the
performance requirements. This problem is non-convex, due
to its objective function and C3 constraint being non-convex,
and hence difficult to solve in its current state. It is possible
to describe a convex problem that is a close approximation
of (6) though, which is done in the following section.

III. PROPOSED SOLUTION

A series of mathematical equivalencies and approximations
are applied in this section to solve the problem defined
in the previous section. In this regard, we begin by using
minimum variance distortionless response (MVDR) weights
[10] to express w in terms of u and A(θ) as follows

wMVDR =
M−1(u)A(θt)u

uHAH(θt)M−1(u)A(θt)u
, (7)

where M(u) ∈ CN×N is spatial covariance matrix given by

M(u) = A(θc)uu
HAH(θc) + IN0. (8)

Substituting w with wMVDR in γr yields the new problem
statement:

maximize
u

γr = σuHAH(θt)M
−1(u)A(θt)u, (9)

subject to C1 : ||u||22 ≤ Pt,

C2 : γc =
|hHu|2

N0
≥ Γc.

By introducing an auxiliary variable y ≥ 0, the above problem
can be equivalently written as

minimize
u

− y, (10)

subject to C1 : σuHAH(θt)M
−1(u)A(θt)u ≥ y,

C2 : ||u||22 ≤ Pt,

C3 : γc =
|hHu|2

N0
≥ Γc.

As a further step in solving the problem described in (10), we
reformulate it by stating and proving the following lemma.
Lemma 1: An optimization problem within the form of (10)
can be equivalently written as

minimize
u

− y, (11)

subject to C1 : X ⪰ 0,

C2 : ||u||22 ≤ Pt,

C3 : γc =
|hHu|2

N
′
0

≥ Γc.

Proof: See Appendix A.
After rewriting (10) in the form of (11), the only remaining

factor that keeps this problem from being convex is the
quadratic expression of uuH which can be written as the

matrix U ∈ CN×N . It is also required to change the other
expressions with uuH in the problem statement to equivalent
statements with U for the sake of convexity. This results in
the problem statement

minimize
U

− y, (12)

subject to C1 : X =

[
A(U) B(U)
BH(U) C(U)

]
⪰ 0,

C2 : tr(U) ≤ Pt,

C3 : γc =
Tr(UH)

N
′
0

≥ Γc.

U should be defined as a Hermitian matrix in the solver tool
since it is acquired by the multiplication of u by its Hermitian.
A suitable approach here is to solve the stated problem without
imposing any constraints on the rank of U , and then process
the resulting U through a rank-reduction algorithm to get a
rank one matrix that can be decomposed as U = uuH where
u will be the weight vector to be used in beamforming as
shown in Fig. 1.

Solving the optimization problem defined by (12) results
in the minimum possible value of y, and values of U , X ,
γc that provide the satisfaction of conditions for acquiring
that result. Let the values acquired from the problem solution
be represented with an asterisk such as U∗. The elements of
matrix X with solved values can be shown as:

Tr(AH(θt)A(θt)U
∗) =

N0

σ
(a∗ + y∗), (13)

Tr(AH(θt)A(θc)U
∗) = tr(AH(θc)A(θt)U

∗) = b∗, (14)

Tr(AH(θc)A(θc)U
∗) =

σ

N0
(c∗ −N0). (15)

There are two more equations relating U∗ to other values
acquired by optimization problem solution:

Tr(U∗) = P ∗, (16)

Tr(U∗H) = γ∗
cN

′

0. (17)

Now the task of performing the rank one decomposition
U∗ = uuH is equivalent to finding a vector u that satisfies
the equations (13) to (17) when U∗ is substituted by uuH

in those. Among these equations, (14) could be eliminated
by approximating AH(θt)A(θc) as 0. This is due to the
fact that steering vectors directed to different angles approach
orthogonality with each other as the number of antennas
approaches infinity, as stated in Corollary 2 in [6]. Since this
approximation describes an equation where U∗ is multiplied
by zero, which will be satisfied as b∗ = 0 no matter the value
of U∗, there are only 4 non-trivial equations that define u.

The problem of finding a vector u such that,

Tr(AH(θt)A(θt)uu
H) = Tr(AH(θt)A(θt)U

∗) (18)

=
N0

σ
(a∗ + y∗),

Tr(AH(θc)A(θc)uu
H) = Tr(AH(θt)A(θc)U

∗) (19)

=
σ

N0
c∗ −N0,

Tr(uuH) = Tr(U∗) = P ∗, (20)

Tr(uuHH) = Tr(U∗H) = γ∗
cN

′

0, (21)



is solvable by utilizing the Theorem 2.3 in [11] which is based
on theorems that were previously established in [12] and [13].
Solving the system of linear matrix equations defined by (18)
to (21) yields a reasonably close approximation of the optimal
transmit beamforming vector u.

IV. SIMULATION RESULTS

Simulations aimed to observe the tradeoff between per-
formances of radar and communication operations were per-
formed on cases with varying numbers of antenna array
elements and lower thresholds for communication operation
SNR. The noise and transmit power parameters had the most
critical effect on the system performance due to their ratios to
each other being directly related to SCNR. In the simulations
whose results are presented in this subsection, the ratio of
transmit power to the noise power was set as 100. Constant
values of clutter and target reflection factors were set as
σc = σt = 1 during the simulations. The direction of the
target was set towards 30◦, while the clutter direction was
set as 60◦. Distance between antenna elements was assumed
to be d = λ/2 when modeling steering vectors at(θ) and
ar(θ), where λ is the transmit signal wavelength. The convex
optimization problem for each one of the cases was solved
with a new randomized channel vector for each iteration before
performing the rank reduction to acquire the u vector for
each case. Simulations were repeated 20 times with different
randomly generated channel vectors every time, and the values
of radar SCNR and communication SNR were averaged over
all 20 results. PICOS [14] was used to specify and solve the
convex optimization problems in the simulation.

Another set of simulations was performed to inspect how
the approximation made for (14) affected the results. Even
though it is theoretically known that steering vectors directed
at different angles are orthogonal to each other as the num-
ber of antenna elements approaches infinity, there will be a
smaller number of antenna elements in real applications. This
results in uu∗ producing a different result than U∗ would
produce when substituted for it in (14). This implies that u is
slightly different than the optimal vector, and the difference is
expected to get smaller as the number of antennas increases.
An extra pair of conditions, Tr(AH(θt)A(θc)U

∗) = 0, and
Tr(AH(θc)A(θt)U

∗) = 0 were added to the optimization
problem to enforce b∗ actually being equal to 0 for this set of
simulations. Expected trends of inversely related radar SCNR
and communication SNR, in addition to better radar SCNR
with a larger number of antennas, can be observed from Fig. 2.
Additionally, it can be observed from Fig. 3 that difference
in performance between cases where b∗ is approximated to
be 0, and cases, where b∗ is constrained to be 0, is smaller
for cases with a higher number of antenna elements. This
is due to the fact that b∗ is already quite close to 0 for a
large number of antennas, and extra conditions do not put any
serious restriction on the problem that would cause a non-
negligible change in the optimal result.
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Fig. 2. Change in average radar SCNR as different values of average
communication SNR are ensured by modifying problem constraints. N is
the number of antennas.
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Fig. 3. Average radar SCNR versus average communication SNR plots with
a different number of antenna elements, for cases where b∗ is approximated
to be zero and for cases where b∗ is zero.

V. CONCLUSION

This paper proposes a novel algorithm for achieving the
optimal radar SCNR while satisfying the power constraints
and desired minimum communication SNR for JRC, which can
be potentially used for sensing and communicating purposes
for the low-altitude airborne from the ground stations in
SAGIN systems. The assumed system setting involves a single
non-negligible clutter source and no direct path between the
transmitter and communication user. Our method consists of
defining an optimization problem, using several mathematical
relations to transform it into a convex optimization problem,
and finally performing a rank-reduction procedure on the
matrix and equations acquired from the problem to get the
final vector of optimal beamforming weights. We proceed to
show that the expected tradeoff between radar SCNR and
communication SNR values can be observed on the beam-
forming vectors obtained from this algorithm, in addition to
clarifying that the non-ideality of steering vectors directed at
two different directions not being orthogonal does only have
a negligible effect on the results, thus having no considerable
negative effect on the performance of our algorithm. Our
future works include i). developing the schemes to optimize
the trajectory and energy consumption of aerial crafts; ii).
optimal distribution, robust topology maintenance and routing



schemes for the low-altitude crafts for the SAGIN; iii). drone
involved/enhanced content distribution and traffic offloading.

APPENDIX A
PROOF OF LEMMA 1

We begin by converting the inverse matrix expression
M−1(u) to a linear expression by utilizing Sherman-Morrison
formula [15]

(N + abT )−1 = N−1 − N−1abTN−1

1 + bTN−1a
, (22)

where N ∈ CN×N is an invertible square matrix and b,a ∈
CN×1 are column vectors, and 1 + bTN−1a ̸= 0. N is an
identity matrix scaled by N0 in the case of this problem, and
a = b = A(θc)u. Substituting those in (22) yields

M−1(u) = (IN0 +A(θc)uu
HAH(θc))

−1 (23)

= I
1

N0
−

1
N0

IA(θc)uu
HAH(θc)

1
N0

I

1 + uHAH(θc)
1
N0

IA(θc)

=
1

N0
(I − A(θc)uu

HAH(θc)

N0 + tr(A(θc)uuHAH(θc))
).

Hence, the left-hand side of C1 in (10) can be written as:

γr =
σ

N0
uHAH(θt)(I − . . . (24)

. . .
A(θc)uu

HAH(θc)

N0 + tr(A(θc)uuHAH(θc))
)A(θt)u.

Now that the expression for SCNR is finalized, one more
manipulation is required to be done on the relevant optimiza-
tion constraint. The γr ≥ y constraint can be rewritten as
γr − y ≥ 0 in order to treat γr − y as a 1 × 1 positive
semi-definite matrix and utilize Schur complement to further
transform the problem. Let us define a matrix X ∈ C2×2,

X =

[
A(uuH) B(uuH)
BH(uuH) C(uuH)

]
, (25)

A(uuH) = uHAH(θt)A(θt)u− y, (26)

=
σ

N0
Tr(A(θt)uu

HAH(θt))− y,

B(uuH) = uHAH(θt)A(θc)u, (27)

= Tr(A(θc)uu
HAH(θt)),

B(uuH)H = uHAH(θc)A(θt)u, (28)

= Tr(A(θt)uu
HAH(θc)),

C(uuH) =
N0

σ
(N0 +Tr(A(θc)uu

HAH(θc))). (29)

We can then state that, as long as C is positive definite, then
X is positive semi-definite if and only if C and its Schur
complement X/C are both positive semi-definite [16]:

X ⪰ 0 ⇔ C ⪰ 0,X/C = A−BC−1BH ⪰ 0. (30)

C(uuH) is positive definite since it is an expression of
the addition of two non-zero real numbers. Positive semi-

definiteness of one of X/C or X imply the positive semi-
definiteness of the other, and X/C is equal to:

X/C = A−BC−1BH , (31)

=
σ

N0
uHAH(θt)(I − . . . (32)

. . .
A(θc)uu

HAH(θc)

N0 + tr(A(θc)uuHAH(θc))
)A(θt)u− y,

= γr − y. (33)

Since γr − y is equal to X/C and it being larger than or
equal to 0 implies the positive semi-definiteness of X and
vice versa, the optimization problem constraint involving γr
and y can be rewritten as a constraint enforcing the positive
semi-definiteness of X ,

minimize
u

− y, (34)

subject to C1 : X ⪰ 0,

C2 : ||u||22 ≤ Pt,

C3 : γc =
|hHu|2

N
′
0

≥ Γc.
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