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ABSTRACT 
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While monitoring Parkinson’s disease progression or observing the everchanging severity 

stage of the disease, the patients are keeping symptom diaries and making regular visits to the 
neurologist clinic for evaluation. The diaries are based on patients own memories which tend to 
be unreliable in addition to the burdensome clinical appointments. Therefore, the research is fo-
cused on automatizing the burden with the help of machine learning classifiers. These classifiers 
are trained to either recognize the current severity stage of a patient or make a prediction about 
future outcomes, such as the progression rate of the disease or a freezing of gait event. The data 
on which the classifiers are trained with is gathered via wearable sensors that attain several gait 
parametrics from different walking tasks or daily activities conducted.     

This thesis presents several studies conducted during the years of 2020–2023 which aim to 
develop a machine learning algorithm to classify the correct state of the patient according to the 
disease stage, or predict medical outcomes before their occurring. Their performance metrics are 
evaluated, especially regarding their accuracy, sensitivity and specificity results. Additionally, this 
thesis introduces background of gait analysis and machine learning methods. The changes in gait 
that Parkinson’s disease inflicts are discussed alongside the clinical criteria used in evaluating 
the changes and patient’s condition.  

This thesis is a literature review, which aims to find the best possible machine learning algo-
rithms for symptom analysis of Parkinson’s disease. It concludes that comprehensive conclusions 
are difficult to draw, since the algorithm performance can be analysed with several different met-
rics. Even though most of the algorithms gained adequate results, the research still includes sev-
eral limitations to solve before the algorithm can be validated for clinical use as a symptom mon-
itoring system. 

 
Keywords: Parkinson’s disease, machine learning, motor symptoms, gait analysis, wearable 

sensors, automatization, symptom evaluation, performance metrics 
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Parkinsonin taudin etenemisen seuranta perustuu potilaiden omiin oirepäiväkirjamerkintöihin. 

Lisäksi taudin jatkuvasti muuttuvaa vakavuusastetta seurataan säännöllisesti neurologin klini-
kalla. Päiväkirjat perustuvat potilaan omiin muistikuviin, jotka ovat yleensä epäluotettavia ja klini-
kalla käynti raskasta. Siksi tutkimus keskittyy taakan automatisointiin koneoppimismenetelmien 
avulla. Nämä algoritmit koulutetaan joko tunnistamaan taudin nykyinen vakavuusaste tai ennus-
tamaan tulevia tuloksia, kuten taudin etenemisnopeutta tai kävelykyvyn jäätymistä. Tietoja, joilla 
koneoppimisalgoritmeja koulutetaan, kerätään puettavien sensoreiden avulla. Nämä keräävät da-
taa useista eri kävelyparametreista, jotka saadaan talteen erilaisia kävelytestejä hyödyntäen.  

Tässä työssä esitellään useita vuosina 2020–2023 tehtyjä tutkimuksia, joiden tarkoituksena 
on kehittää koneoppimisalgoritmeja, jotka luokittelevat potilaan oikeaan vakavuusastekategori-
aan tai ennustavat lääketieteellisiä tuloksia ennen niiden ilmenemistä. Algoritmien suorituskyky-
mittareita arvioidaan erityisesti tarkkuuden, herkkyyden ja spesifisyyden suhteen. Lisäksi työssä 
taustoitetaan kävelyanalyysin periaatteita, puettavia sensoreita sekä yleisimpiä koneoppimisme-
netelmiä, joita tutkimukset ovat käyttäneet. Parkinsonin taudin myötä kävelyyn kohdistuvia muu-
toksia käsitellään ja potilaan tilan arvioinnissa käytettyjä kliinisiä kriteerejä esitellään.  

Tämä työ on kirjallisuuskatsaus, jonka tavoitteena on löytää parhaat mahdolliset koneoppi-
misalgoritmit Parkinsonin taudin oireiden analysointiin. Tuloksista voidaan päätellä, että kattavaa 
johtopäätöstä on vaikea tehdä, koska algoritmien suorituskykyä voidaan analysoida useilla eri 
mittareilla. Vaikka suurin osa algoritmeista saivatkin onnistuneita tuloksia, tutkimukset sisälsivät 
silti useita rajoituksia, jotka ovat ratkaistava ennen kuin algoritmi voidaan validoida kliiniseen käyt-
töön oireiden seurantajärjestelmänä. 

 
Avainsanat: Parkinsonin tauti, koneoppiminen, motoriset oireet, kävelyanalyysi, puettavat 

sensorit, automatisaatio, oireiden arviointi, suorituskykymittarit 
 
Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck –ohjelmalla. 
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1. INTRODUCTION 

Parkinson’s disease (PD) is a progressive neurodegenerative disease wherein the 

amount of dopamine secreting neurons in the midbrain’s substantia nigra starts to de-

crease. The cause of the cell death of dopaminergic neurons is unknown. Since dopa-

mine is responsible for coordinating normal movements, the loss of dopamine in the 

system leads to the main movement signs of Parkinson’s, which include gait and balance 

problems, bradykinesia, rigidity and tremor. Bradykinesia refers to slowness of move-

ment. (Ronken and Scharrenburg, 2002; Triarhou, 2013) 

PD is the second most common neurogenerative disease after Alzheimer’s disease. It 

can be considered as a multifactorial disease since the main cause of development re-

mains unclear. Additionally, the symptoms are heterogeneous and include non-motor 

symptoms such as sleep disorders and psychiatric disturbances, as well. The main risk 

factor for PD is age, but both genetics and environmental factors can play a part in de-

veloping the disease. (Stoker et al., 2018) 

As the disease progresses, the symptoms become more severe. The treatment predom-

inantly relies on drugs that aim either to restore the dopamine levels or to act on post-

synaptic dopamine receptors (Stoker et al., 2018). Levodopa is currently the most effec-

tive treatment for PD, to which nearly all the patients have a good response to. However, 

prolonged use of levodopa leads to motor fluctuations, ultimately effecting the quality of 

life (Simuni and Pahwa, 2009). Due to the progression of the symptoms, PD will slowly 

lead towards motor disability. There is yet no cure found for Parkinson’s disease. 

Nowadays, the usual way of symptom monitoring and evaluation of the changes are 

conducted via patient diaries and visits to the neurological clinics for visual observations. 

These procedures are relying on patient’s own memory and notes that usually are unre-

liable. (AlMahadin et al., 2020) Additionally, the clinical evaluation utilizes their own 

standards to classify the current severity stage, which have a chance of misclassification 

and low efficiency since several of the criteria are descriptive symptoms. These can fail 

to provide a quantified diagnostic basis. (Balaji et al., 2020) With machine learning, the 

possibility of automatic monitoring at home could be enabled, without the need for clinical 

visits. Patients would be wearing sensors which gather data according on gait and motor 

fluctuations. An automatic system could gather the data and help the clinician via data-

based decision making, rather than visual observations. 
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Machine learning algorithms proposed in the research are aiming to automatize the bur-

den of both the patient and the clinician. These algorithms are trained to either classify 

or predict certain outcomes. For example, they can classify a patient according to the 

gait data collected to the proper severity scale of the disease. Additionally, the classifi-

cation can be done based on the motor state: whether a patient is in ON state or OFF 

state medication-wise. As for prediction, the progression rate of the disease could be 

assessed, or detecting an episode of freezing a few seconds before it occurs.  

This thesis focuses on gait assessment and monitoring of daily changes of patients al-

ready diagnosed with Parkinson’s disease. In addition to introducing some gait meas-

urement devices, different machine learning algorithm performances are evaluated for 

the symptom analysis. The intention of this literature review is to give insight, where does 

the technology of evaluating daily symptom variations and machine learning algorithm 

accuracy stand today when focusing on gait assessment of patients living with Parkin-

son’s disease. Several studies published during the years of 2020–2023 are reviewed to 

find the best performing machine learning methods for symptom evaluation. 

The second section introduces different types of sensors used to attain gait parameters 

for autonomized symptom evaluation. Additionally, the changes in gait of Parkinson’s 

patients and different methods used to analyse those changes are described both from 

the research and clinical point of view. Section three briefly introduces the most common 

machine learning methods used in the section fours analysis of research studies. Section 

four presents all the studies found related to the symptom evaluation of Parkinson’s dis-

ease according to four different subsubsections: stage detection, severity assessment, 

motor symptom fluctuations and symptom monitoring. Lastly, section five concludes the 

authors thoughts concerning the results and future evolvement. 
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2. GAIT MEASUREMENTS 

Gait, the manner of walking, is interpret as a learned complex motor skill that facilitates 

movement. While gait can be conducted automatically without constant effort, it requires 

integration of motor control, balance, cognition and musculoskeletal function in order to 

function properly. The ability to walk is considered as a basic part of the quality of life, to 

which many disorders as well as aging has influence. (Jankovic and Tolosa, 2015, p. 

622) 

Walking is comprised of repetitious sequence of limb motions to move the body forward 

while retaining stance stability. Each sequence involves a series of interactions between 

two lower limbs and the whole-body weight. As the body moves forward, one limb pro-

vides support while the other limb advances to a new support site followed by reversing 

the roles. Both feet are in contact with the ground when transferring the body weight from 

one limb to the other. The simplest way of describing gait cycle is according to the vari-

ations of the foot-ground-contact. (Perry and Burnfield, 2010, p. 3) 

Each of the repetitive gait cycles can be divided into two periods: stance and swing. 

Stance is the term used to describe the entire period while the foot is on the ground. 

Stance begins with initial contact in which a person initiates ground contact with their 

heel. Swing applies to the period where the foot is in the air. Swing begins as the foot is 

raised from the ground (toe contact off). (Perry and Burnfield, 2010, p. 4) 

The gait cycle starts by lifting another limb forward while the rear limb is extended. The 

foot rolls on the ground while holding most of the body weight as a part of the stance 

phase. As the body mass moves forward, the toes lift from the ground, initiating the swing 

phase. During the swing phase, the leg moves forward after the hip is flexed while the 

rear knee is initially flexed and later extended for the leg to reach the ground. The foot is 

dorsiflexed in order to avoid the toes contacting the ground. The gait cycle ends when 

the heel touches the ground again. (Jankovic and Tolosa, 2015, p. 622) 
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  The gait cycle. Modified from (Jankovic and Tolosa, 2015, p. 623). 

The proportion of each cycle is determined by speed of walking in addition to the physical 

state and equilibrium. Accelerated walking correlates with shortening of all the phases, 

but mainly in the double-limb support time. Physical weakness and aging are amongst 

those that increase double-limb support time. (Jankovic and Tolosa, 2015, p. 622) 

2.1 Accelerometers and gyroscopes 

To measure physical activity such as gait, motion sensors are used. Accelerometers are 

lightweight, portable and small non-invasive devices that measure the movement of the 

body in the matter of acceleration, which means change in the speed in respect of time. 

They provide insight to the intensity and volume of locomotion. Accelerometers can be 

either uniaxial, biaxial or triaxial according to the number of planes. (Varum and André, 

2011, p. 3) 

According to Kong and Bassett Jr. (2015), most of the accelerometers used in physical 

activity measurements are piezoelectric sensors which detect acceleration in one to 

three orthogonal planes: vertical, mediolateral and anteroposterior. When the piezoelec-

tric sensor undergoes acceleration, a voltage signal is generated that is proportional to 

applied acceleration (Kong and Bassett Jr., 2015). Accelerometers can detect only the 

acceleration of the body part where they are placed. Uniaxial accelerometers are sus-

ceptible to acceleration in a single plane, usually vertical. Therefore, to truly measure 

one’s acceleration in different directions, multiple sensors in orthogonal planes are cru-

cial. For the optimal measurement of gait in all planes of movement, triaxial accelerom-

eters are usually used. (Varum and André, 2011, p. 179) 
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Gyroscopes are sensors that are able to detect angular velocity. They can measure the 

turn rates caused by changes in position with respect to inertial space (Collin et al., 

2019). Micro-Electro-Mechanical System (MEMS) gyroscopes are motion sensors that 

measure the angular motion of the target. They measure the rate of the rotation around 

the particular axis: 1-axis, 2-axis and 3-axis. (Passaro et al., 2017) 

MEMS usually use a vibrating mechanical element to sense and detect the angular ve-

locity. When a MEMS gyroscope is experiencing rotation, a force called Coriolis force 

will act and cause it to move in a direction perpendicular to its vibrating direction. This 

movement is proportional to the rotation speed converting it to electrical signals thus 

transferring energy. A microcontroller can read the signals and determine the angular 

velocity of the subject. (Zhuang and Zhou, 2020, p. 2) 

2.2 Inertial measurement units 

Accelerometers and gyroscopes are inertial sensors, often combined to form an inertial 

measurement unit (IMU). IMUs are small wearable devices that are widely used in gait 

assessment. They are capable of conducting an evaluation on large amount of steps and 

allow an objective evaluation of gait and movement disorders outside of the clinical en-

vironment (Washabaugh et al., 2017). Since IMU based sensors can measure data from 

where they are placed, for a gait assessment, usual positioning of devices is in the lower 

limb area as well as in the lower back.   

IMUs are mainly used in devices to measure orientation, velocity and gravitational force. 

The earlier types of IMUs consist of accelerometer and gyroscopes with three degrees 

of freedom (DOF) to measure data from three axes. DOF dictates the number of inde-

pendent parameters in a system. Newer types of IMUs have an additional magnetome-

ter, usually triaxial as well, which measures the bearing magnetic direction. Magnetom-

eters can be calibrated to the gyroscope data thus improving the reading of the gyro-

scope. (Ahmad et al., 2013) 

2.3 Change in the gait patterns of people with Parkinson’s dis-

ease 

Gait disorders appear in almost all cases of PD, often advancing towards loss of mobility 

and increased mortality (Ebersbach et al., 2013). Motor symptoms such as tremor, brad-

ykinesia (slowness of movement) and stiffness are most common symptoms of Parkin-

son’s disease that influence the gait patterns of patients. Problems with gait becomes a 
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burden as the disease progresses, which affects independence and quality of life (Mirel-

man et al., 2019). In advanced stages of PD, gait disorders become more complex, in-

cluding motor blocks (freezing of gait) and festination (Ebersbach et al., 2013). 

Often the first motor symptoms, reduced amplitude of arm swing and smoothness of 

movement are specific for patients with Parkinson’s. In early to middle stages of PD, the 

gait of patients becomes bradykinetic and step length decreases compared to age-

matched healthy controls. In addition, irregular timing of steps and loss of rhythm be-

come more prominent as the disease progresses from early stage. Range of motion in 

knees, ankles and hips begin to reduce during walking, particularly in the late-stance 

phase of the gait cycle. As ambulation becomes less automatic, many gait variations 

become noticeable and overemphasized, for example when patients are asked to con-

duct other activities such as searching for keys of their pockets while walking. (Ebers-

bach et al., 2013; Mirelman et al., 2019) 

As the disease progresses to advanced stage, the changes in gait worsen: motor blocks, 

festination, and problems with gait initiation begins to appear. Additionally, reduced pos-

tural and balance control leads to high risk of falling. Muscle force declines, minimizing 

motor capacity and leading to the need for assistance devices. (Ebersbach et al., 2013; 

Mirelman et al., 2019) 

Freezing of gait (FOG) is an episodic gait disturbance which can be defined as sudden 

episodes of inability to initiate or maintain movement or make a turn (Jankovic and To-

losa, 2015) and part of the late-stage symptom range of Parkinson’s. FOG episodes tend 

to be brief, followed by resuming of normal gait. Experiencing festination while walking 

can be described as the tendency to move forward rapidly but ever smaller steps, con-

nected with the centre of gravity falling forward over the stepping feet. Festination may 

lead up to an episode of freezing while stepping becomes increasingly shorter and faster 

ending up to a complete blockage. Festination may occur as its own, but mostly in pa-

tients experiencing FOG episodes. (Ebersbach et al., 2013) 

2.4 Measurement methods to extract gait parameters 

The clinical point of view in assessing PD patients’ disease severity or progression is 

derived from observations based on clinical criteria, such as Unified Parkinson’s Disease 

Rating Scale or Hoehn and Yahr scale, which are more detailed in the Section 4. In a 

clinical assessment, a patient is accompanied by a specialist when conducting several 

motor tasks and/or answering questions. Each of the tasks are scored based on the 
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patient’s ability to perform them. Conclusions can be drawn for the disease severity, pro-

gression, treatment efficiency, response and side effects. The follow-up observations are 

done by the patients themselves, in a form of a symptom diary or own memories. These 

may include marks related to the number of FOG episodes, or other major fluctuations 

of the motor state as well as documentation of the use of medication. (AlMahadin et al., 

2020) 

As for research, the patients usually have wearable sensors containing an IMU attached 

to different locations on the body, usually legs, to obtain gait data. In addition to IMU’s, 

other sensor may be used, such as vertical ground reaction force sensors which can 

detect the force applied to the ground, for the collection of gait data. This data is then 

being processed and analysed with for example, machine learning methods, to see, 

whether an algorithm can predict the same results as a specialist – without a need of a 

specialist him/herself attending. 

Several different tactics can be used to gather relevant gait data for research. The simple 

one is conducting a walking test, in which a patient walks a predetermined distance or 

time. The walking task can contain also turning or multitasking. A usual test made when 

evaluating a FOG event is called Timed-Up-and-Go (TUG) test. The TUG test is con-

ducted by taking time for how long it takes from a patient to rise from a chair, walk 3 

meters, turn and sit again (Browne and Nair, 2019). TUG test can also be used to predict 

the risk of falls. For monitoring purposes, the patients could be conducting daily living 

activities at home, while the gait data is being collected via inertial sensors.  
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3. MACHINE LEARNING METHODS 

Machine learning (ML) is programming computers to optimize a performance criterion 

using testing data or past experience. The ML model may be descriptive to gain 

knowledge from the inputted data or predictive to make predictions concerning the future 

outcome, or both. Machine learning utilizes the theory of statistics in building mathemat-

ical models, since the object is to make inference from a sample. (Alpaydin, 2014, p. 3) 

ML techniques can be divided into three categories: unsupervised learning, supervised 

learning and reinforcement learning, of which unsupervised and supervised techniques 

are introduced. 

In supervised learning, the algorithm uses a training set and known output responses to 

develop a model that creates reliable predictions for the new input data. It includes train-

ing a model with these labelled input and output values. The correct values of the output 

are provided by a supervisor. (Alpaydin, 2014, p. 11; Himani et al., 2021, p. 43) On the 

contrary, unsupervised learning does not rely on labelled data nor does it have a super-

visor providing correct output values. They are trained with raw and unlabelled data. 

Their aim is to find irregularities in the input. (Alpaydin, 2014, p. 11) Unsupervised learn-

ing can be used for clustering tasks while supervised can be used for classification and 

regression. Different ML methods, such as deep learning, can be both supervised and 

unsupervised, depending on the use case.  

The following subsection 3.1 presents the most used ML classifiers according to the 

Section 4, which mostly belong to the supervised learning category, namely to classifi-

cation. The classification method separates the datasets into various classes or catego-

ries by adding a label. It assigns each of the data points to a specific group based on a 

certain criterion. Classification is done in order to perform predictive analysis on the da-

taset. (Himani et al., 2021, p. 44) 

3.1 Machine learning classifiers 

Decision trees (DT) are a multistage decision processes, in which different subsets of 

features are used at separate levels of the tree. The model moves through the tree from 

the roots to the leaf according to a ‘yes’ or ‘no’ structure. The root node is considered as 

a node that has no incoming lines, thus being at the top of the tree. Internal nodes are 

ones with one incoming line, and two or multiple outgoing lines. The leaf nodes have one 

incoming line and no outgoing lines. Each of the non-terminal nodes represent one of 
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the features and the lines coming from that node represent a value or possibly a set of 

values, which that feature could take. A class label is associated with each of the leaf 

nodes. (Himani et al., 2021, p. 44; Webb and Copsey, 2011, p. 323) 

Random forest (RF) models are comprised of multiple de-correlated trees collected 

which are then averaged to reduce variance. Each of the trees are constructed using a 

bootstrap sample: if the database contains n patterns, n samples are taken, with replace-

ment, to generate a bootstrap set of size n. As a result, approximately two-thirds of the 

patterns are used for training the classifiers and the remaining one-third retained for test-

ing. The procedure is repeated to all the trees using different bootstrap sample of the 

data. A majority vote of the trees that did not contain the pattern in the bootstrap sample 

used for their construction (the one-third of trees), is obtained and the classification of 

the pattern is achieved by using the majority vote. The RF method is a combination of 

bagging and decision tree classifiers. (Hastie et al., 2009, p. 587; Webb and Copsey, 

2011, pp. 389–390) 

Support vector machine (SVM) method is used for constructing an optimal separating 

hyperplane between two separated classes, or to a high-dimensional feature space. Mar-

gin describes the sum of distances from the separating hyperplane to the closest sample 

of each of the classes. The maximal margin, in other words the largest distance, deter-

mines the hyperplane. The larger the margin is, the better generalization error of the 

classifier defined by the hyperplane. However, in many real-world problems there is no 

linear boundary separating the classes which would make the search of an optimal hy-

perplane meaningless. To these problems, non-linear SVM methods are used. This 

method transforms the input features nonlinearly to a space in which the linear methods 

can be applied. (Hastie et al., 2009, pp. 417–420; Webb and Copsey, 2011, pp. 249–

250, 291) 

Deep learning (DL) is a subset of machine learning but differs from ML based on in the 

depth of its analysis and the kind of automation it provides. DL tries to mimic the human 

brain functionality. It processes data by its computing units, called neurons, which are 

arranged into ordered sections, called layers. The foundational technique DL utilizes is 

the neural network, described next. (Mueller and Massaron, 2019, chap. 1) 

Neuronal networks (NN), also known as the Artificial neuronal networks (ANNs), are 

comprised of several neurons (also called units) with each neuron linking to the inputs 

and outputs of other neurons. A neural network can work with complex data since it 

allows multiple inputs to flow through multiple layers of processing to produce countless 
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outputs. Neurons take weighted values as an input, sum them, and provide the summa-

tion as a result. Alike actual neurons of the brain, each of the paths activate only when 

they have a chance of answering to the question posed with inputs: after receiving 

weighted values, they sum them and use an activation function to evaluate the results, 

which transforms the result in a nonlinear way. For example, the activation function can 

release a zero value if the input does not achieve a certain threshold. (Mueller and Mas-

saron, 2019, chap. 7)  

The NN architectures have different layers, each one having its own weights. Addition-

ally, each layer has different number of neurons. The number of neurons between two 

layers dictates the number of connections. Weights correlate to the strength of the con-

nection between neurons in the network. (Mueller and Massaron, 2019, chap. 7) 

Convolutional neuronal networks (CNNs) are alike ANNs, they are composed of neu-

rons that self-optimize through learning. However, they take images as an input. Each 

neuron receives an input and performs an operation. The entire network will express a 

single perceptive score function: the weight. Besides image inputs, another difference 

between the CNN and ANN architectures is that the layers comprised of neurons are 

organized into three dimensions: height, width and depth. (O’Shea and Nash, 2015) 

The CNN architecture consists of three layers: convolutional layer, pooling layer and fully 

connected layers. The input layer holds the image’s pixel values. Convolutions work by 

operating on small image parts, also called moving image windows, across all image 

channels simultaneously. The window starts from the upper left corner of the image, 

moving from left to right and from top to bottom. The route across the whole image is 

called a filter, or a kernel, and implied a complete transformation of the image. Convolu-

tion filters can detect an edge or enhance certain characteristics of an image, such as 

colour. The convolutional layer thus transforms the original image using filtering. The 

pooling layers receive outputs from convolutional layers and simplify them, thus down-

sizing the data flowing through the neuronal network by reducing parameters and com-

putational complexity. The fully connected layer performs the classification based on 

previous layers and their filters with addition to the features extracted from them. Neu-

rons within this layer have connections to all of the outputs of the previous layers (Mueller 

and Massaron, 2019, chap. 10; O’Shea and Nash, 2015) 

Different types of CNN models have been used in the Section 4 analysis. These contain 

for example GoogleNet, ResNet and AlexNet. They differ from each other in the basis of 

filter amount, the number of layers in both convolutional and pooling layers or types of 

pooling layers used to name a few. 
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3.2 Cross-validation 

Overfitting is a term used to describe a ML algorithm that is too complex, hence it may 

model noise in the training set (Webb and Copsey, 2011, p. 6). This is because the 

classifier does not only learn the underlying function but also the noise (Alpaydin, 2014, 

p. 39). It will lead to good performance with the training data, but poor performance with 

unseen data, also known as the validation or testing data. Cross-validation can reduce 

the possibility of overfitting.  

One cross-validation method is K-fold, where the dataset X is divided randomly into K 

parts of the equal size. To generate each pair (training and testing), one of the K parts is 

kept out as the testing set and the remaining K – 1 parts are combined to form the training 

set. Usually, the K is either 10 or 30, of which 10-fold cross-validation is also known as 

tenfold. An extreme version of K-fold is called leave-one-out or LOOCV. In LOOCV, the 

given dataset of N instances, only one instance is left out as the testing set and the 

training set uses N – 1 instances. This will result in N separate pairs by leaving out dif-

ferent instances at each iteration. (Alpaydin, 2014, p. 559) 

3.3 Classifier performance metrics 

Performance of a classifier can be assessed in many ways. For a practical application, 

different machine learning classifiers may be implemented to choose the best one. Many 

performance metrics can be calculated from a confusion matrix. (Webb and Copsey, 

2011, p. 404) Table 1 presents a 2 x 2 confusion matrix for two classes, positive and 

negative. 

 2 x 2 confusion matrix. 

 

 

True positives (TP) refer to the number of subjects of the positive class which are cor-

rectly predicted by the classifier to be in the positive class. False positives (FP) present 

the number of subjects of the negative class which are incorrectly predicted into the pos-

itive class. (Webb and Copsey, 2011, p. 405) 
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In this thesis, the main performance metrics under interest are accuracy, sensitivity, 

specificity and area under the receiver operating characteristic (ROC) curve, known as 

the AUC value. The performance metrics are presented in the Table 2. 

 

 Performance metrics, where P = TP + FN, N = FP + TN 
 

 
Accuracy (Acc) 

𝑻𝑷 + 𝑻𝑵

𝑷 +𝑵
 

 
Sensitivity (Sens) 

𝑻𝑷

𝑷
 

 
Specificity (Spec) 

𝑻𝑵

𝑵
 

 

The ROC curve is a visual presentation of a classifier’s performance. It is a plot of the 

true positive rate on the y-axis against the false positive rate on the x-axis. Area under 

the ROC curve, AUC, can gain values between 0–1. The closer the number is to one, 

the better the classifier’s performance is in distinguishing between negative and positive 

classes. (Webb and Copsey, 2011, pp. 415–418) 
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4. SYMPTOM EVALUATION 

The traditional measures for assessing the current state of a Parkinson’s disease patient 

symptom-wise are conducted in a clinic by a specialized neurologist. The measures con-

tain multiple motors tasks for evaluating the functional condition of a patient. With the 

help of machine learning classifiers and wearable sensors obtaining gait data from the 

subjects, the long process of observing changes in the gait parameters could one day 

be automatized.  

Qualitative rating scales are used to assess the functional condition of Parkinson’s dis-

ease patients. Most referred ones are the Unified Parkinson’s Disease Rating Scale (UP-

DRS) and Hoehn and Yahr scale (HY). The UPDRS acts as a rating tool in measuring 

the course of the disease in patients. In 2001, the Movement Disorder Society (MDS) 

sponsored a critique towards the UPDRS, identifying number of ambiguities, weak-

nesses and areas which needed to reflect current scientific developments. Based on the 

critique, a new version called MDS-UPDRS was created. The full MDS-UPDRS contains 

several items/tasks, divided across part I to part IV. The MDS-UPDRS rates 65 items in 

comparison to 55 on the original UPDRS. The original UPDRS scale has 48 items with 

5 possible response options (0 = normal, 1 = slight, 2 = mild, 3 = moderate, and 4 = 

severe) and 7 with yes/no responses to describe a patient’s state. The third part (MDS-

UPDRS III) assesses motor tasks, such as gait, postural stability, arising from chair and 

freezing of gait. (Goetz et al., 2008) 

The Hoehn and Yahr scale defines broad categories of motor function. The scale con-

tains 1-5 stages. Progression in these stages has been found to correlate with declining 

of motor ability and quality of life as well as neuroimaging studies of dopaminergic loss. 

A patient scoring 1 in the HY scale has shown only unilateral involvement, usually with 

mild or no functional disability. On stage 5, the patient is in bedrest or wheelchair unless 

aided. Comparing the two mentioned scales for PD symptom severity assessment, the 

MDS-UPDRS scores for all 4 parts increase with every HY stage. However, the HY does 

not provide information concerning non-motor symptoms of PD like the MDS-UPDRS 

score does in part I. (Bhidayasiri and Tarsy, 2012; Skorvanek et al., 2017) 

The following subsections review different machine learning classifier abilities to detect 

correctly the UPDRS or HY rating of a patient. Additionally, the differences in a patients’ 

motor state and its fluctuations as well as detection of freezing of gait is assessed. Lastly, 

the performance of ML classifiers are evaluated for the purpose of long-time monitoring 
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of the progression in PD state and patients’ gait. The tables referred in Sections 4.1 – 

4.4 excluding the subsection 4.3.1 are included in the appendix. 

4.1 Stage detection 

As a progressive neurogenerative disease, Parkinson’s has multiple stages correspond-

ing to the HY scale of 1–5. The research papers found for this section had mostly PD 

patients in mild to moderate stages of 1–3, to conduct the study about an automatic stage 

detection. Since in stage 5 the symptoms are so severe, that the patient is in bedrest or 

needs a wheelchair, no walking tasks can be performed. Thus, this stage is not repre-

sented in the research. For stage detection analysis, three research papers were found 

with the most common machine learning method being random forest. The important 

characteristics of each of the studies has been collected into the Table 6. 

All studies conducted a walking test or TUG test with varying sensors or data acquisition 

systems to assess gait parameters. Mirelman et al. (2021) used body-fixed sensors con-

taining tri-axial accelerometers and gyroscopes placed on the subject’s lower back and 

ankles while Ferreira et al. (2022) used cameras to calculate various spatial-temporal 

gait parameters. Varrecchia et al. (2021) had an optoelectronic motion analysis system 

with the patients having 22 markers covered with aluminium powder over prominent bony 

landmarks to detect movement. These studies conducted a walking test. The method 

Seedat and Aharonson (2020) used is an instrumented walker with build-in accelerome-

ter, force sensors and encoders, which calculate distance to capture kinematic data of 

the subject’s gait. While collecting gait data, the walker simultaneously supports walking. 

To capture the data, this study conducted a TUG test on patients. 

Regarding stage detection, it is important to have diagnosed PD patients across different 

HY stages to attend in the study for the algorithm to be reliable. As stated before, mostly 

patients in HY scale 1–3 were attending with an exception of stage 4 in the study of 

Seedat and Aharonson (2020) with total of 67 PD attending and Varrecchia et al (2021), 

76 PD patients. Ferreira et al. (2022) had a similar amount of PD patients, 63 in total. 

The largest group of 332 patients were on the study conducted by Mirelman et al. (2021). 

In addition to the PD patients, healthy controls (HC) attended as well in all the studies. 

While Mirelman et al. (2021); Seedat and Aharonson (2020) focused solely on PD stage 

detection, Ferreira et al. (2022) and Varrecchia et al. (2021) conducted a two-step study, 

first step being the discrimination of healthy controls from PD patients, before moving 

into the stage detection.  
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After the data has been collected, the chain of study continues with data processing, 

feature selection, classification and lastly evaluation. As for feature selection, Ferreira et 

al. (2022) used 44 features in the first step which was classifying PD from HC. The fea-

ture amount selected to the second step, is assumed to be 12 according to the first step’s 

classifiers results. From these, the two most relevant features found in rating the severity 

were: stride width variability and step double support time. Total of 134 gait features was 

used in Mirelman et al.’s (2021) study alongside subject demographics. For pairwise HY 

stage assessment, for example HYI vs. HYII, 18 features were selected. Seedat and 

Aharonson (2020) selected 211 features for the classification. Varrecchia et al. (2021) 

obtained 18 different kinematic parameters. Most of the classification models in these 

three studies include a RF classifier. As stated by Seedat and Aharonson (2020), random 

forest suits well in studies with small datasets with addition to allowing feature importance 

to be quantified in respect to their discrimination power.  

The evaluation of the classification accuracy is based on its correct patient categorizing 

according to the HY score. The classification accuracy of the random forest classifier in 

the study conducted by Seedat and Aharonson (2020) varied in between of 90–96 % 

depending on the feature set to be classified. Ferreira et al. (2022) determined the AUC 

value to two different classifiers: random forest and naïve Bayes. Of these two, random 

forest scored higher AUC value of 0.786 than naïve Bayes 0.771. The classification 

model of Mirelman et al. (2021) differs from the others. They used random under-sam-

pling boosting (RUSboost) classification model which uses decision trees and quadric 

discriminant analysis resulting in two classifiers per classification task. Random forest 

permutation importance was used in feature selection. With the selected features, the 

RUSboost classifier’s AUC ranged between 76–90 % with mean sensitivity and specific-

ity values ranging between 72–83 % and 69–80 % respectively. The artificial neuronal 

networks used by Varrecchia et al. (2021) gained a mean performance rate of 66.16–

77.2 % for correct stage classification. Additionally, mean sensitivity and specificity val-

ues range from 66 % to 77 % and from 85 % to 91 %, respectively. 

The only studies that addressed the limitations were Mirelman et al. (2021) and Varrec-

chia et al. (2021). In Mirelman et al.’s study, the PD participants gait recordings were 

measured during their ON-medication state, with no data from the OFF-state. Especially 

in the more advanced stages of PD, the marked motor response fluctuation may differ 

during OFF-state in medication. Future work is required to better establish the findings 

in a longitudinal study. As for Varrecchia et al. (2021), limitations include lack of compar-

ison between the results with gold standard clinical measures for gait assessment. Ad-

ditionally, there is room for improvement in the model performance. 
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4.2 Severity assessment 

Alike in stage detection, severity assessment can be done via referring Parkinson’s dis-

ease state to the HY scale. In addition, the following section contains references to the 

UPDRS rating. Even though the scaling approach is similar to the stage assessment, 

this section covers studies that focus on severity assessment with different method to 

gather the gait data.  

All the following studies had their gait data from an open source, called Physionet. The 

data contained signals gathered from vertical ground reaction force (VGRF) sensors 

placed in the soles of each foot. The VGRF sensors measure force in newtons, that is 

applied to the ground. In total, 16 sensors, eight in each foot measured gait parameters 

when subjects conducted a walking test. Two different datasets are reported in these 

studies, both from Physionet. The first contains 279 gait recordings from 93 Parkinson’s 

disease patients and from 73 healthy controls. The second has 306 gait recordings from 

93 PD patients and 72 healthy controls. Additionally, the database contains labels to 

which HY scale and/or UPDRS rating the patient belongs to. All the important character-

istics of each of the studies have been gathered to the Table 7. 

Although the gait data used is merely the same in the studies, different features and 

classification methods have been selected. The most common machine learning classi-

fiers were DT and SVM. Others include DL algorithms such as AlexNet, k-nearest 

neigbour, ANNs such as convolutional neuronal networks. The amount of gait features 

selected to the classification varied from nine to 34.  

For the most common ML methods, Balaji et al. (2020) reported accuracies for four dif-

ferent classifiers based on statistical and kinematic features selected. Decision tree clas-

sifier gained the best results, both cumulative statistical and kinematic features 99.4 % 

accuracies followed by support vector machine 97.6 % for statistical and 99.4 % for kin-

ematic feature accuracies. These two classifiers also had the same AUC value of 0.99. 

Other classifiers used were Bayesian classifier (BC) and ensemble classifier (EC), 

whose classification results are in Table 7.  

Khera and Kumar (2022) used a hybrid model that first used DT classifiers that predict 

gait, followed up with ensemble regressors (ER). They are a combination of several de-

cision trees and used to determine the severity of PD. The parameters are then tuned 

using grid search and cross-validated with tenfold and LOOCV methods. The LOOCV 

classifier gained 99.39 % accuracy while tenfold got as high as 99.9 % in accuracy. 

Cantürk (2021) used SVM and KNN classifiers. Additionally, so called lasso and relief 

were used to reduce the number of features. Lasso stands for least absolute shrinkage 
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and selection operator, which assigns feature coefficients and modifies them while relief 

ranks features according to their importance (Cantürk, 2021). The study used binary 

classification to discriminate PD patients and multiclass to predict the disease severity 

based on gender. The best average accuracies gained were all with lasso. For mul-

ticlass, SVM lasso gained the accuracy of 98 % while for binary classification KNN lasso 

had the best accuracy of 99 % for all subjects combined. Cantürk (2021) also tested the 

classifiers gender-wise using the same classifiers and obtained as great results than with 

the whole dataset: 100 % female, 99 % male with SVM. The last study to interpret DT 

and SVM classifiers was Wang et al. (2022). In addition, they also used KNN, naïve 

Bayes and ensemble learning based adaboost (ELA) classifiers. The best accuracy of 

96.69 % was gained with SVM classifier.  

The following studies interpret deep learning and neuronal networks for the severity clas-

sification. Aşuroğlu and Oğul (2022) used a hybrid deep learning model that consists of 

convolutional neuronal networks and locally weighted random forest (LWRF) architec-

tures. The hybrid classifier gained the accuracy of 99.5 % with 34 time and frequency 

domain features. Veeraragavan et al. (2020) used ANN classifier with 34 gait features 

including spatiotemporal and kinematic features. The accuracy of the classifier was 87.1 

%.  

Lastly, Setiawan et al. (2021) used four different deep learning algorithms: AlexNet, Res-

Net-50, ResNet-101 and GoogLeNet with 40 selected features. They separated the sub-

jects into two sections: two-class containing HC and all PD patients and multiclass cor-

responding the different HY levels from zero (HC) to 3. Additionally, they divided the 

Physionet data according to three different datasets contributed by four different studies 

made. The results were also presented merely according to the sub datasets in multiple 

different tables, which made the overall interpretation of the results challenging. How-

ever, the best average accuracy reported in results was 96.52% using ResNet-50. Addi-

tionally, the best scores from the Setiawan et al. (2021) study’s table containing accu-

racy, sensitivity, specificity and AUC results concerning the Physionet database as a 

whole, are presented in the Table 7.  

Since all the studies used merely the same database, the limitations mentioned align. 

The amount of PD subjects in the database is relatively small with addition to the uneven 

distribution regarding to the UPDRS/HY scale. For example, the HY scale 4 and 5 are 

not represented at all and between 1-3, there is an uneven number of patients in the 

database. However, this could have been a conscious choice to preserve the safety of 

patients in a poor health condition. One solution could be to increase the sample size of 

PD patients with an even distribution according to the severity rate. Other solution is to 
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use the Synthetic Minority Oversampling Technique (SMOTE) to increase the sample 

size. Additional limitations mentioned are lack of other symptom types, such as non-

motor symptoms, which could be considered to improve the prediction rate.  

4.3 Motor symptom fluctuations and freezing of gait 

Parkinson’s disease patients are often prescribed with levodopa to ease the motor symp-

toms. With medication, patients experience cycles in the severity of their motor symp-

toms, labelled as ON state for the time the drug is active and OFF state when the effect 

wears off and the symptoms worsen (Ramesh and Bilal, 2022). Dyskinetic state (DYS) 

refers to the period when involuntary movements are noticeable. Dyskinesias occur as 

a complication of the levodopa treatment. Since these motor fluctuations are affecting 

the patients quality of life, ideally, the PD patients would remain constantly in the ON 

state, resembling better motor function without experiencing the OFF or dyskinetic states 

(Pfister et al., 2020).   

Freezing of gait is one of the most troublesome gait effecting symptoms of PD. It occurs 

involuntary as an episodic absence of forward progression of the feet. FOG episodes as 

well as motor state fluctuations are currently monitored by patients’ themselves in a form 

of diaries and questionnaires. To evoke a FOG episode during gait measurements, the 

patients must be conducting tasks which include turning or stopping from command.  

4.3.1 Motor state detection 

Different motor states described earlier include ON, OFF and DYS states. When the 

patients are visiting a neurologist in a clinic, they often are either in ON or OFF state, or 

transitioning between the states. The neurologist can determine the state using the UP-

DRS exam. Progression-wise, usually the HY scale is assessed. Without a proper, con-

tinuous monitoring of the motor states, the dynamic between them is impossible to cap-

ture. (Ramesh and Bilal, 2022) 

For the motor state assessment, two studies have been found. Pfisher et al. (2020) con-

ducted a study containing 30 PD patients doing daily activity tasks, collecting 11,567 

minutes of accelerometer data. The six accelerometers used were attached to the sub-

ject’s both wrists and feet as well as on the back and chest. Ramesh and Bilal (2022) 

had conducted two different studies, containing 58 PD patients in total with IMU’s at-

tached around the limbs and torso while conducting a walking test. In the first study the 

subjects were recorded twice, for both ON and OFF states. The second study recorded 

the subjects up to five times over six-hour period, which is the approximate duration of a 

full ON/OFF cycle. Some of the patients did not experience the full cycle. Both Phisher 
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et al. (2020) and Ramesh and Bilal (2022) recorded video from the patients for several 

specialist to review and determine the appropriate motor state. Details and performance 

metrics of all the studies are presented in the Table 3. 

 The study characteristics for motor state estimation. 
 

REFER-
ENCE 

THE METHOD TO 
COLLECT GAIT 
DATA 

THE NUMBER 
OF PARTICI-
PANTS 

CLASSIFI-
CATION 
METHOD 

ACCU-
RACY (%) 

SENSI-
TIVITY 
(%) 

SPECIFIC-
ITY (%) 

(PFISTER 
ET AL., 
2020) 

11 567 minutes of 
IMU data from pa-
tients doing daily-
life activities, a 
smartwatch in wrist 
of more affected 
side. 

30 PD CNN (seven 
layers) 

76.8 (OFF), 
66.7 (ON), 
77 (DYS) 
Three-class 
accuracy 
65.4 

64 (OFF), 
67 (ON), 
64 (DYS) 

89 (OFF),  
67 (ON),  
89 (DYS) 

(RAMESH 
AND BI-
LAL, 2022) 

IMU placed on the 
lower back, walking 
test. 

Study 1: 35 PD 2 
visits: ON and 
OFF.  
Study 2: 23 PD 
up to five times 
over 6h period of 
a full ON/OFF 
cycle. 

GAN (three 
layers), 
CNN (two 
layers) 

100 (best 
CNN study 
1),  
78 (best 
CNN study 
2),  
100 (best 
GAN study 
1),  
100 (best 
GAN study 
2) 

- - 

 

For the classifier methods, both studies used neuronal networks. Phisher et al. (2020) 

used CNNs while Ramesh and Bilal (2022) used generative adversarial networks (GANs) 

in addition to CNNs. The GAN architecture consists of two neural networks: a generator 

and a discriminator. The discriminator network is alike a traditional CNNs: trained to out-

put whether a sample is fake or real to minimize loss function. The generator is trained 

to fool the discriminator by creating fake samples. Additionally, the generator maximizes 

the discriminator’s loss. (Ramesh and Bilal, 2022) 

The CNN model Pfisher et al. (2020) used gained highest accuracy score of 77 % for 

detecting DYS state, followed by OFF 76.8 % and ON 66.7 % state accuracies. The 

overall, three-class accuracy of 65.4 % was obtained. The data contained total of 26.8 

% OFF state, 41.4 & ON state and 31.8 % dyskinetic state. Each CNN was trained with 

15 randomly selected PD patients. Ramesh and Bilal (2022) did not measure the dyski-

netic state. Their CNN accuracy gained 100 % for study 1 state detection and 78 % for 

study 2. The proposed GAN architecture outperformed the CNNs, gaining 100 % accu-

racies in both studies. Their models were tested with 10 study 1 development set sub-

jects and nine study 2 subjects. The training of the classifiers was conducted on 25 sub-

jects from study 1.  
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Limitations in both studies have been noticed. One includes the environment, in which 

the studies have been conducted. The constrained clinical environment and data collec-

tion protocol does not resemble free living activities of the patient in daily life. Thus, the 

current models may not generalize as well to gait measurements collected outside of the 

clinic. Secondly, due to the small cohort of patients, the models may not be representa-

tive of larger variety of Parkinson’s disease patients and their different severity scales. 

4.3.2 Freezing of gait prediction 

For an automatic FOG episode detection, three studies were found. Borzi et al. (2021) 

had 11 PD patients wearing two IMUs attached on shins performing a TUG test. The 

patients were both ON and OFF state medication wise. Kleanthous et al. (2020) had 10 

PD patients participating, from which eight ended up experiencing FOG episodes during 

the measurement. The two who did not experience FOG were excluded. The accelerom-

eter data was gained from an ankle, thigh and trunk of a patient performing walking test 

which include turning and stopping. Two of the participants were ON state. Borzi et al 

(2023) had their data from three different datasets: REMPARK, 6MWT and ADL. The 

REMPARK dataset includes 21 PD patients both ON and OFF states doing different 

walking tasks in home environment. An IMU measuring acceleration data was attached 

to the left side of the waist of a patient. 6MWT dataset includes 38 PD patients with ON 

state and 21 HC. The participants conducted a walking test that required turning wearing 

triaxial accelerometer and gyroscope on the lower back. The ADL datasets had 59 PD 

patients who were all ON state. The participants were asked to perform walking tasks, 

which included turning and sitting down and up. The number of FOG episodes recorded 

in each of the studies can be found on Table 8. All the studies included video raters of 

experts to confirm the FOG episodes. 

In each of the studies different machine learning classifiers were used. Borzi et al. (2021) 

utilized decision trees for feature selection and support vector machines for FOG classi-

fication with 10 time domain features and six frequency domain features extracted. Ad-

ditionally, leave-one-subject-out method was used for validation. In pre-FOG detection, 

they utilized k-nearest neighbour, linear discriminant analysis and logistic regression with 

10-fold cross-validation. Kleanthous et al. (2020) utilized random forest, extreme gradi-

ent boosting, gradient boosting, support vector machines using radial basis functions 

and neural network classifiers with 30 final selected features. They focused on the pre-

diction of FOG and considered three following time periods: 2, 3 and 4 s, prior to the 

onset of FOG. Borzi et al. (2023) had convolutional neuronal network architecture as a 

classifier for FOG detection.  
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For Borzi et al. (2021) the accuracy for FOG detection varied between 92–96.3 %, de-

pending on the validation method and whether the patent was in ON or OFF state. Gen-

erally, higher results were obtained with 10-fold cross-validation for patients in OFF state. 

After training the algorithm with PD patients in ON state and testing on PD patients on 

OFF state, and vice versa, the accuracy range dropped slightly, scoring 89 % for ON 

state and 92.6 % for OFF state. As for pre-FOG recognition, the accuracy range was 

between 44.9–94.7 %. The best results were provided by SVM and linear discriminant 

analysis (LDA) classifiers. When combining the two classifiers, the accuracy gained 91.7 

% and 92.9 % for ON and OFF states respectively. The best accuracy scores for pre-

FOG with LDA and SVM classifiers separately are presented in the Table 8 with 2s win-

dow length. 

Kleanthous et al. (2020) used multiple different classifiers with detection accuracy rang-

ing between 77–97 % for transitioning. The highest accuracy results for transitioning, 

FOG and walk events combined are presented in the Table 8. The predictor values 

(pred.) in parentheses in Table 8 describe number of top features used in addition to the 

period (s) before a FOG event. Additionally, the sensitivity and specificity values of sum-

mative performance results can be obtained from the Table 8. The best performance 

was obtained with support vector machines with radial basis kernels (RBF-SVM), achiev-

ing sensitivity values of 72.34 %, 91.49 %, 75.00 %, and specificity values of 87.36 %, 

88.51 % and 93.62 % regarding FOG, transition and normal activity classes, respectively. 

Lastly, the CNN model of Borzi et al. (2023) was able to correctly identify 91.2 % of the 

FOG episodes with an average of 68.7 % of FOG detected in each episode. The highest 

AUC score of 0.955 was obtained for the training set, followed by 0.947 and 0.946 for 

validation and test sets respectively. The training set included 12 of the PD patients while 

validation and test sets included four and five PD patients respectively. These all sets 

are from the REMPARK datasets, since it had the greatest number of recorded FOG 

episodes. The results obtained by testing the algorithm on the 6MWT dataset are pre-

sented in Table 8. 

What comes to limitations, the size of Kleanthous et al. (2020) and Borzi et al. (2021) 

datasets are rather small. Additionally, Kleanhous et al. (2020) conducted their study in 

a controlled environment which may not resemble daily living activities. As for Borzi et 

al. (2023), there were no FOG episodes recorded in the ADL dataset. Additionally, the 

main dataset, REMPARK, included most of the FOG episodes but the activity label was 

not available. 
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4.4 Symptom monitoring 

As of today, the assessment of gait fluctuations and FOG episodes of PD patients are 

still based on questionnaires or scales, such as the UPDRS. Additionally, long-time mon-

itoring is based on the patients’ own diaries which may not be a reliable source. In clinical 

visits, scores of scales are calculated, but they are based on at the time which is not 

sufficient to accurately monitor the symptoms (Li et al., 2022). Therefore, the research 

for new methods for long-time monitoring of the PD patients’ motor state and disease 

progression as well as analysing the illness is needed. This subsection introduces five 

studies which three of them assess gait monitoring, one demonstrates potential for esti-

mating PD severity scores from home and final study to develop a predictive model for 

an individual’s PD progression rate. Details and performance metrics of all the studies 

are presented in the Table 9. 

For gait monitoring systems, Li et al. (2022) had 14 PD and 8 HC attending to the gait 

measurements, which included walking tasks and TUG test. Participants were wearing 

an IMU located on the lateral side of the ankles and force-sensitive insoles. Five PD 

patients and five healthy controls were attending Ilesan et al. (2022) study, wearing pres-

sure sensors in the insoles and two EMG channels clustered into a foot biomechanics 

assessment module to track the lower-limb muscular activation pattern. Additionally, an 

accelerometer was placed to the subject’s wrist. Steady-state walking tasks were ac-

quired for gait data collection. Popescu et al. (2022) proposed a wearable device in a 

form of a bracelet, which has EMG sensor and accelerometer in it. The bracelet can be 

connected to a cloud. Unknown number of PD patients recruited conducted several walk-

ing tasks and usual activities for four days. Additionally, they conducted a TUG test and 

dual-task test for the PD patients. On the last day, the PD participants were on OFF 

state. Their study proposes an eHealth monitoring system with a deep learning model 

that can predict the patient’s response to levodopa. 

Hssayeni et al. (2021) developed an algorithm for estimating the UPDRS III scale. They 

had 24 PD patients attending, wearing two sensors that measure acceleration and gyro-

scope data on the most affected wrist and ankle. The measurement started while the 

subjects were in their OFF state. Fifteen of the subjects conducted daily living activities 

in four rounds spanned for four hours. After the first round, the subjects resumed their 

daily medication intake. The other nine patients cycled through multiple stations in home-

like environment, also doing daily living activities while first being OFF state and later in 

ON state. For the nine subjects, two hours of continuous recording was gathered. 
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Raval et al. (2020) had gathered gait data from 160 PD patients.  Six movement sensors 

containing triaxial accelerometer, magnetometer and gyroscope were located in the sub-

jects on each ankle and wrist, the lower back and the upper chest. They conducted an 

extended TUG test (iTUG) and iSway, which gave measures such as jerk and sway area. 

The participants’ individual UPDRS III rate and its change was followed for 24 months. 

Several different machine learning classifiers were used. Li et al. (2022) compared ran-

dom forest, logistic regression and gradient boosting for the classification performance 

with six temporal domain and eight spectral domain features extracted. Ilesan et al. 

(2022) utilized convolutional neuronal networks with several architectures: MobileNet, 

EfficientNetB0 and Xception. Another study to utilize neural networks was Hssayeni et 

al. (2021) with a dual‑channel long short‑term memory (LSTM) for hand‑crafted features, 

1D Convolutional Neural Network (CNN‑LSTM) for raw signals, and 2D CNN‑LSTM for 

time–frequency data. In addition, Raval et al. (2020) used XGBoost and feed forward 

neural networks models. Lastly, Popescu et al. (2022) implemented the AlexNet deep 

learning model for severity estimation of the motor state.  

All three of Li et al. (2022) machine learning classifiers gained great results, which are 

summarized in Table 9. The best accuracy result of 97.31 % was obtained with gradient 

boosting classifier. Ilesan et al. (2022) gained the best results with MobileNet model with 

95 % accuracy, 90 % sensitivity and 96 % specificity. Hssayeni et al. (2021) reported the 

results with correlation and MAE values when using an ensemble of the three deep learn-

ing models. A high correlation of ρ = 0.79 (p < 0.001) and low MAE = 5.95 was obtained. 

Singularly tested, the best correlation value ρ = 0.70 was obtained with 1D CNN-LSTM 

for raw signals and the best MAE 6.85 for dual-channel LSTM for hand-crafted features. 

The NN model of Raval et al. (2020) outperformed the XGBoost models in every case. 

The best model performance was thus obtained with the NN model, using clinical 

measures to predict the 2-year percent change in the UPDRS III score. The NN model 

explained 37% of the variance in the target, with a PPV of 71% in identifying fast pro-

gressors. Three of the postural and gait stability feature sets explained 10% or more of 

the variance in the 2-year MDS-UPDRS part III score. The performance metrics for se-

verity estimation of motor state in Popescu et al. (2022) study with AlexNet obtained 84 

% accuracy for bradykinesia estimation and 90 % for tremor. The proposed architecture 

gained a high accuracy of 96.5 % in gait variability when analysing three cohorts: adults, 

elderly and PD patients through wearable insoles. Additionally, accuracy of 91 % was 

obtained for analysing the gait symptoms in different PD patient severity stages. 
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Limitation-wise, most of the studies other than Raval et al.(2020), had a small dataset of 

subjects participating in the study. This may affect the reliability of the different classifi-

cation models. When it comes to Ilesan et al. (2022), in their study the participant’s com-

plained about the worn-in discomfort addition to the discomfort of the wires interfering 

with their mobility. Their study was also conducted in a small room which likely inhibited 

the walking as well. Popescu et al. (2022) did not specify the number of each subjects in 

their cohorts: elderly, adults and PD patients. The only study to conduct a long-term 

measurement of the subject’s state of disease for over two years was Raval et al. (2020). 
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5. CONCLUSIONS 

Parkinson’s disease is a non-curable, progressive disease with complicated symptoms. 

The disease state detection and progression observations merely lie on clinical visits and 

patients own written notes on complications and medical intake. This thesis brought up 

several studies, which aimed to develop machine learning algorithms to automatically 

detect the state of the disease, monitoring the symptoms and predicting outcomes such 

as the freezing of gait -episode. Several different algorithms were used by the selected 

research papers but all of them did not report the results with the same performance 

metrics, which makes it difficult to draw a comprehensive conclusion concerning their 

suitability in symptom evaluation. 

However, five machine learning classifiers that got the highest performance metrics in 

terms of accuracy, sensitivity and specificity are presented in the Table 4. Additionally, 

these five were used in more than one study. The area under the curve values were 

lacking in many reports, thus it is better to leave the metric out of the final conclusions. 

In terms of accuracy, most of the reported algorithms gained above 90 % results. Only a 

couple of the classifiers scored 60–70 %, which could be explained by the lack of most 

relevant features fed to the classifier, for example. Two classifiers gained a 100 % accu-

racy: the best generative adversarial networks and convolutional neuronal networks al-

gorithms utilized in motor state detection, both from the same study.  

 Performance metrics of the five best ML methods. 
 

METHOD USED IN ACCURACY  
(%) 

SENSITIVITY 
(%) 

SPECIFICITY 
(%) 

SVM Severity assessment 
FOG prediction 

91.3 – 99.4 68.4 – 99.6 97.8 – 99.8 

KNN Severity assessment 
FOG prediction 

94 – 98.5 87.95 95.98 

DT Severity assessment 
FOG prediction 

93.98 – 99.4 87.95 – 99.6 95.98 – 99.8 

CNN Motor state detection 
FOG prediction 

Symptom monitoring 

65.5 – 100 64 – 88.5 67 – 89 

RF Stage detection 
FOG prediction 

Symptom monitoring 

89.4 – 96 - - 

 

It should be noted that all the studies did not report every performance metrics listed. 

This is seen in KNN’s case, where two studies reported the accuracy results but only 

one of them presented the sensitivity and specificity results. Additionally, random forest 
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was a popular method, but none of the studies reported the sensitivity and specificity 

values. As for CNN’s, one study got only 65.5–77 % results in terms of accuracy, which 

drops the success range lower. 

Since convolutional neuronal networks gained merely great results, also the different 

architectures of traditional CNN’s that gained above 90 % accuracy are presented in the 

Table 5. In addition, the high scoring GAN method is listed. These methods were used 

only once, but they could be studied more in terms of symptom analysis because of their 

high-performance scores. In ResNet’s case there were no specification on which of the 

two (ResNet-50 or ResNet-101) the best average scores were achieved. 

 Performance metrics of modified CNN architectures that scored high accuracy. 
 

METHOD USED IN ACCURACY 
(%) 

SENSITIVITY 
(%) 

SPECIFICITY 
(%) 

CNN + LWRF Severity assessment 99.5 98.7 99.1 
RESNET Severity assessment 94.58 

(multi-class) 
96.63 

(two-class) 

92.08 
94.46 

95.60 
97.69  

MOBILENET Symptom monitoring 95 90 96 
GAN Motor state detection 

(ON/OFF) 
100 - - 

 

To conclude what was stated before, many of the classifiers can succeed in their perfor-

mance, achieving over 90 % accuracy, some even close to 100 %. However, a single 

study achieving 100 % accuracy with their classifier does not guarantee ongoing success 

in further studies, nor does it validate the classifiers position amongst the best. Therefore, 

different machine learning classifiers and their performance in analysing the symptoms 

of Parkinson’s disease needs to be studied more.  

Regarding future studies, if the aim is to develop an automatic symptom monitoring sys-

tem, the research should be moved from clinical data collection protocol to the home 

environment where movement is freer, thus being more erratic and diverse. An algorithm 

developed with data taken in clinical environment may not generalize well outside of the 

clinic, thus leading to poor performance. Additionally, the amount of data and variety of 

subjects taking part in the study must be larger to avoid bias or misinterpretation. Most 

of the studies foresee a promising path towards the ML method usage in monitoring 

systems. For this to be possible, the measurements should be long-term and continuous 

to gather data both from ON and OFF state as well as transition for a system to be reliably 

assessing the symptoms, which change over the course of the medical cycle and pro-

gression of the disease.  
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APPENDIX A: TABLES FROM THE SECTIONS 4.1- 4.4  

 The study characteristics for stage detection. 
REFER-
ENCE 

THE METHOD 
TO COLLECT 
GAIT DATA 

NUMBER OF 
PARTICIPANTS 

NUMBER OF 
FEATURES 

CLASSIFICATION 
METHOD 

AUC ACCURACY (%) SENSITIVITY (%) SPECIFICITY (%) 

(SEEDAT 
AND AHA-
RONSON, 
2020) 

Instrumented 
walker with ac-
celerometer, 
sensors and en-
coders. TUG 
test. 

67 PD patients, 
19 age-matched 
healthy controls 
(HC) 

211 RF - 90–96  - - 

(MIRELMAN 
ET AL., 
2021) 

Body-fixed sen-
sors inc. tri-axial 
accelerometer 
and gyroscope. 
Walking test. 

332 PD, 100 age-
matched HC  

134 and de-
mographics, 18 
pairwise 

RUSboost 0.76–0.90 - 72–83 69–80 

(FERREIRA 
ET AL., 
2022) 

Vicon Motion 
Systems® cam-
eras. Walking 
test. 

63 PD, 63 
matched HC 

44 (first step), 12 
(second step) 

RF, NB 0.786 
(RF) 
0.771 
(NB) 

- - - 
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(VARREC-
CHIA ET AL., 
2021)  

Optoelectronic 
motion system 
with 6 infrared 
cameras. 22 
markers with al-
uminium pow-
der. Walking 
test. 

76 PD, 67 HC 18 kinematic six ANNs - 66.16–77.2  66–77  85–91  

 

 

 

 

 

 

 

 

 

 



3 
 

 The study characteristics for severity assessment. 
 

REFER-
ENCE 

THE METHOD 
TO COLLECT 
GAIT DATA 

NUMBER OF 
PARTICI-
PANTS 

NUMBER 
OF FEA-
TURES 

CLASSIFI-
CATION 
METHOD 

AUC ACCURACY 
(%) 

SENSITIVITY 
(%) 

SPECIFICITY 
(%) 

OTHER METRICS 

(BALAJI ET 
AL., 2020) 

VGRF data, 16 
sensors. Walking 
test. Source: 
Physionet 

93 PD, 73 HC 9 (temporal + 
spatial) 

DT, SVM, 
EC, BC 

0.99, 
0.99, 
0.97, 0.88 
(DT, 
SVM, EC, 
BC) for 
mild 
events 

Statistical: 
99.4 (DT), 
97.6 (SVM), 
95.1 (EC), 
69.7 (BC) 
Kinematic: 
99.4, 99.4, 
95.2, 69.9  
respectfully.  

Statistical: 
99.6 (DT), 
95.2 (SVM), 
91.5 (EC), 
46.0 (BC). Kin-
ematic: 99.6, 
99.6, 91.6, 
42.4  
respectfully. 

Statistical: 
99.8 (DT), 
99.2 (SVM), 
98.2 (EC), 
89.2 (BC). Kin-
ematic: 99.8, 
99.8, 98.2, 
89.1  
respectfully. 

F-score (%) 99.25 (DT), 
97.3 (SVM), 94.6 (EC), 
70.7 (BC), (cumulative, 
statictical).  
F-score (%) 99.25, 
99.25, 93.1, 72.1 (cumu-
lative, kinematic) 

(AŞUROĞLU 
AND OĞUL, 
2022) 

VGRF data, 16 
sen-sors. Walking 
test. Source: 
Physionet 

93 PD, 73 HC 16 + 7 (fre-
quency + 
time domain) 

Hybrid deep 
learning 
model: CNN 
+ LWRF 

- 99.5 98.7 9.1 Correlation Coefficient 
(CC): 0.897,  
Mean Absolute Error 
(MAE): 3.009 and  
Root Mean Square Error 
(RMSE): 4.556 

(KHERA 
AND KU-
MAR, 2022) 

VGRF data, 16 
sen-sors. Walking 
test. Source: 
Physionet 

93 PD, 72 HC 16 gait fea-
tures 

DT (first 
stage), ER 
(severity) 

- - - - For LOOCV: RMSE = 
0.989, 
MAE = 0.3921, and R2 = 
97%.  
For tenfold: mean 
RMSE of 0.977 ± 0.06, 
MAE = 0.3476 ± 0.024, 
and R2 = 98.7%. 



4 
 

(CANTÜRK, 
2021) 

VGRF data, 16 
sen-sors. Walking 
test. Source: 
Physionet 

93 PD, 73 HC 4096 non, 29 
lasso, 959 
relief for both 
SVM, KNN 

AlexNet for 
feature ex-
traction. SVM 
and KNN 

- 99 (binary; 
KNN lasso), 
98 (mul-
ticlass; SVM 
lasso) 

99 (KNN 
lasso), 94 
(SVM lasso) 

98 (both KNN 
and SVM las-
so) 

F-score: 0.99, 0.95 re-
spectively 

(VEERARA-
GAVAN ET 
AL., 2020) 

VGRF data, 16 
sen-sors. Walking 
test. Source: 
Physionet 

93 PD, 73 HC 34 spatio-
temporal + 
kinematic 

ANN - 87.1 - - - 

(WANG ET 
AL., 2022) 

VGRF data, 16 
sen-sors. Walking 
test. Source: 
Physionet 

93 PD, 73 HC 24 SVM, KNN, 
NB, DT, ELA 

- 96.69 (SVM), 
93.98 (KNN), 
93.67 (NB), 
93.98 (DT), 
95.48 (ELA) 

93.37 (SVM), 
87.95 (KNN), 
87.35 (NB), 
87.95 (DT), 
90.96 (ELA) 

97.79, 95.98, 
95.78, 95.98, 
96.99 
respectively 

F1 score (%): 0.934, 
0.880, 0.874, 0.880, 
0.910 
respectively 

(SETIAWAN 
ET AL., 
2021) 

VGRF data, 16 
sen-sors. Walking 
test. Source: 
Physionet 

93 PD, 73 HC 40 AlexNet, 
ResNet-50, 
ResNet-101, 
and Goog-
LeNet 

0.9949 
(ResNet-
101, two-
class: 
whole da-
taset), 
0.9612 
(Alexnet, 
class 3: 
whole da-
taset) 

96.63 (Res-
Net-101, two-
class: whole 
dataset),  
97.74 (Goog-
LeNet, class 3, 
whole dataset) 

95.28 (Res-
Net-101, two-
class, whole 
dataset),  
94.95 
(AlexNet, class 
3: whole da-
taset) 

97.69 (Res-
Net-101, two-
class: whole 
dataset),  
98.61 
(AlexNet, class 
3: whole da-
taset) 

- 
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 The study characteristics for FOG prediction. 
 

REFER-
ENCE 

THE METHOD TO COL-
LECT GAIT DATA 

THE NUMBER 
OF PARTICI-
PANTS 

THE NUMBER OF 
FOG EPISODES 

CLASSIFICA-
TION METHOD 

ACCURACY (%) SENSITIVITY (%) SPECIFICITY (%) AUC 

(BORZÌ 
ET AL., 
2021) 

Two IMUs, patients per-
formed a TUG test. 

 
 
 
 

 

11 PD 41 (ON state), 54 
(OFF state) 

 
 

 

1. Pre-FOG: 
KNN, LDA, LR.  
2. FOG-dect.: 
DT, SVM 

1. 91.3/92.1 
(SVM: ON/OFF), 
91.7/94.7 (LDA: 
ON/OFF) 
2. 95.5 ON, 96.3 
OFF (10-fold cv) 

1. 68.4 (SVM), 
66.2 (LDA) 
2. 95.9 ON, 97.1 
OFF (10-fold-cv) 

1. - 
2. 95.4 (ON), 93.5 
(OFF), (10-fold 
cv) 

 
 

- 

(KLEANT-
HOUS ET 
AL., 
2020) 

Three acceleration data 
collecting sensors. The 
subject conducted walk-
ing, turning and doing typ-
ical daily activities. 

10 PD (only 8 had 
FOG episodes) 

237 RF, Extreme 
Gradient Boost-
ing (XGB), Gradi-
ent Boosting Ma-
chine (GMB), 
RBF-SVM, Multi-
layer Percep-
trons (MLP) 

RF: 89.36 (30 
pred., 4s) 
XGB: 79.1 (5 
pred., 3s) 
GMB: 79.55 (30 
and 15 pred., 
4s) 
RBF-SVM: 
79.85 (5 pred. 
2s) 
MLP: 78.79 
(both 30 and 5 
pred., 4s). 

87. 23 (FOG, 15 
pred., 4s with 
GBM), 91.49 
(transition, 5 pred. 
3s, with RBF-
SVM), 75.0 (walk, 
5 pred., 3s with 
RBF-SVM). 

87.36 (FOG, 5 
pred., 3s, with 
RBF-SVM), 91.76 
(transition, 15 
pred., 4s with 
GBM), 96.81 
(walk, 15 pred., 
4s with GBM). 

- 
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(BORZÌ 
ET AL., 
2023) 

Three different sources 
for gait data, collected via 
IMUs. Tasks contain walk-
ing, turning and sitting 
down/up. 

REMPARK: 21 
PD,  
6MWT:  38 PD 
and 21 HC,  
ADL: 59 PD. 

REMPARK: 1058, 
6MWT: 52,  
ALD: 0. 

CNNs (6 layers) 92.9 (6MWT). 88.4 (train),  
87.9 (validation), 
87.7 (test). 

88.5 (train),  
88 (validation), 
88.3 (test). 

0.955 
(train), 
0.947 
(valida-
tion), 
0.946 
(test). 
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 The study characteristics for symptom monitoring. 
 

REFER-
ENCE 

THE METHOD TO COLLECT 
GAIT DATA 

THE NUMBER OF 
PARTICIPANTS 

CLASSIFICA-
TION METHOD 

ACCURACY 
(%) 

SENSITIVITY 
(%) 

SPECIFICITY 
(%) 

OTHER 

(LI ET AL., 
2022) 

TUG and walking test with sub-
ject’s wearing an IMU located on 
the lateral side of the ankles and 
force-sensitive insoles. 

14 PD, 8 HC RF, Logistic Re-
gression (LR), 
Gradient Boosting 
(GB) 

95.40 (RF), 
89.25 (LR), 
97.31 (GB) 

- - F1-score: 
0.9526 (RF), 0.8959 (LR), 
0.9755 (GB) 
AUC:  
0.9631 (RF), 0.9212 (LR), 
0.9733 (GB) 

(ILEȘAN 
ET AL., 
2022) 

Subjects conducted a walking 
task, wearing six pressure sen-
sors in the insoles, two EMG 
channels and an accelerometer 
placed on wrist. 

5 PD, 5 HC CNN models: Mo-
bilNet, Efficient-
NetB0, Xception 

95 (Mo-
bileNet),  
85 (Efficient-
NetB0, Xep-
tion) 

90 (MobileNet, 
Xeption), 85 
(Efficient-
NetB0) 

96 (MobileNet), 
80 (Efficient-
NetB0), 73 
(Xeption) 

- 

(POPESCU 
ET AL., 
2022) 

Subjects conducted TUG test, 
walking test and dual tasking 
while walking. They wore 16 pres-
sure sensors in the insoles which 
contain a 6-axis IMU. 

three cohorts which 
counts 29 subjects 

AlexNet DL 84 (bradyki-
nesia), 90 
(tremor), 
96.5 (gait 
variability),  
91 (gait 
symptoms in 
different se-
verity stages) 

- - - 

(HSSAYENI 
ET AL., 
2021) 

Two wearable sensors: 3-axial 
accelerometer and gyroscope 
mounted on the most affected 
wrist and ankle. Fifteen of the 
subjects conducted daily living ac-
tivities in four rounds spanned for 
four hours. The other nine pa-
tients cycled through multiple sta-
tions in home-like environment, 
also doing daily living activities. 

24 PD LSTM, 1D CNN-
LSTM, 2D CNN-
LSTM 

- - - Correlation: ρ = 0.79 (p < 
0.0001)  
MAE:  5.95 (combined). ρ = 
0.70 (1D CNN-LSTM),  
MAE: 6.85 LSTM, singu-
larly. 
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(RAVAL ET 
AL., 2020) 

Six movement sensors containing 
3-axis accelerometer, gyroscope 
and magnetometer mounted on 
each ankle and wrist, the lower 
back, and the upper chest. The 
instrumented Timed-up-and-go 
(iTUG) and the instrumented 
Sway (iSway) test were con-
ducted. 

160 PD NN, XGBoost - - - The model explained 37% 
of the variance in the tar-
get, with a PPV of 71% in 
identifying fast progressors. 
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