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Abstract. This paper proposes a practical approach to deal with instance-
dependent noise in classification. Supervised learning with noisy labels is
one of the major research topics in the deep learning community. While
old works typically assume class conditional and instance-independent
noise, recent works provide theoretical and empirical proof to show that
the noise in real-world cases is instance-dependent. Current state-of-the-
art methods for dealing with instance-dependent noise focus on data-
recalibrating strategies to iteratively correct labels while training the
network. While some methods provide theoretical analysis to prove that
each iteration results in a cleaner dataset and a better-performing net-
work, the limiting assumptions and dependency on knowledge about
noise for hyperparameter tuning often contrast their claims. The pro-
posed method in this paper is a two-stage data-recalibration algorithm
that utilizes validation data to correct noisy labels and refine the model
iteratively. The algorithm works by training the network on the latest
cleansed training Set to obtain better performance on a small, clean
validation set while using the best performing model to cleanse the
training set for the next iteration. The intuition behind the method
is that a network with decent performance on the clean validation set
can be utilized as an oracle network to generate less noisy labels for
the training set. While there is no theoretical guarantee attached, the
method’s effectiveness is demonstrated with extensive experiments on
synthetic and real-world benchmark datasets. The empirical evaluation
suggests that the proposed method has a better performance compared
to the current state-of-the-art works. The implementation is available at
https://github.com/Sbakhshigermi/EDR.
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1 Introduction

Inexperienced workers, insufficient information about samples, confusing pat-
terns, tiresome nature of the work, and other factors make the manual labeling
of samples in a large dataset prone to errors and noisy labels [10, 29]. Unfor-
tunately, deep learning algorithms have the potential to memorize these noisy
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Fig. 1. Multiple samples of the same category in different datasets: (A) Number two in
MNIST [15], (B) Deer in CIFAR-10 [14], (C) Caesar salad in Food-101N [16], and (D)
Underwear in Clothing1M [34]. The images on the top row are more straightforward
to label than the images on the bottom row.

labels, which leads to poor generalization and lower performance on clean test
datasets [37]. Due to the importance of the topic in different sectors, such as
safety-critical applications [2] and medical imaging [23], researchers have been
developing methods to mitigate such label noise [10, 3, 27].

Most recent works assume the labels to be affected by a class-conditional noise
(CCN) where the noise is instance-independent [20]. This type of noise can be
estimated [13] or mitigated by adding extra loss terms in the model [4]. However,
Chen utilized visual examples and mathematical analysis to prove that the label
noise in a real-world dataset (Clothing1M [34]) is actually instance-dependent.
To better understand why this is the case, take a look at Figure 1. As seen in this
figure, two samples of the same category have different complexity of labeling,
which suggests that the label noise is instance-dependent.

With the previous assumption of CCN proven wrong, a new mathematical
foundation for mitigation methods had to be developed. Therefore, researchers
started defining variations of instance-dependent noise (IDN) patterns to rep-
resent synthetic noise and propose mitigation approaches based on them. One
of the effective strategies used in the state-of-the-art methods is the iterative
data-recalibration [18]. These methods use the predictions of a network trained
over noisy samples to select and correct samples iteratively.

While recent works on IDN provided theoretical analysis to prove the conver-
gence of their models to an oracle Bayes classifier [5, 38], the limiting assumptions
in their theories cannot be met in practical implementation, as shown by their
empirical findings. Due to these limitations, this paper will focus on empirical
experiments on synthetic and real-world datasets to showcase the effectiveness
of the proposed method.

This paper proposes an enhanced data-recalibration algorithm that corrects
labels affected by instance-dependent noise by utilizing validation set. On each
iteration, the proposed method trains a model with the cleansed data from the
last iteration to achieve higher performance on a small, clean validation set.
Then, the best-performing model is chosen to correct labels in the training set
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based on the model’s confidence for the next iteration. The intuition is that
better performance on the clean validation set means a better prediction of
training labels than the previous iteration.

The main difference between the proposed method and previous works is
utilizing a clean validation set to influence the training stage to help the network
approach an oracle model that can predict ground truth labels. Small, clean
validation sets can be easily obtained with computer-assisted tools [1]. While
previous works often use the validation set as a selector of the final model for
accuracy reports, none utilize it any further to the best of the authors’ knowledge.
The main contributions of this paper are:

– Proposing a practical data-recalibration algorithm that utilizes easy-to-gather
clean validation set to enhance the performance over the existing state-of-
the-art methods.

– Providing empirical evaluation with extensive experiments on both synthetic
and real-world datasets to show the effectiveness of the proposed method.

The rest of the paper is structured as follows. Section 2 covers the related
works. Next, Section 3 explains the proposed method in detail. After that, Sec-
tion 4 deals with the experiments and the empirical evaluation to show the
effectiveness of the proposed method. Finally, Section 5 concludes the work.

2 Related Works

Menon provided one of the major theoretical frameworks for IDN in binary
problems. This framework provided the basis to construct a loss function with
specific criteria to mitigate IDN. While the work was necessary at the time, the
method is not extensible to deep neural networks [21]. Chen provided mathemat-
ical proof that the label noise in a large real-world dataset called Clothing1M [34]
follows the IDN pattern. They proposed a method of generating IDN patterns
by averaging the predictions of an oracle classifier over the training session to
find complex samples and flip their labels. The mitigation method provided also
relies on averaging the predictions of a network, with the intuition that the net-
work can find a soft representation of labels that are closer to ground truth over
time. While this work provided essential information about IDN, the mitigation
method is cost-heavy with low performance compared to other works [7].

Zhang defined a new family of noise called poly-margin diminishing (PMD).
This new noise family follows the same intuition that data points near the deci-
sion boundary are more challenging to classify, thus more prone to noise. Based
on the previously stated reasons for label noise, this definition seems realistic.
To mitigate this family of noise, they proposed an iterative correction method
that corrects the labels based on the network confidence over the training set in
each iteration. While the work provided theories to prove the effectiveness, their
hyperparameter settings and assumption violation in implementing the method
contradict their idea [38].
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Several state-of-the-art methods managed to reach high performance on real-
world benchmarks. Tan combined a supervised and an unsupervised network and
co-teach them with the help of an encoder to maximize the agreement between
the networks in latent space [28]. Wu utilized the spatial topology of data in
the latent space of the network iteratively to collect clean labels and refine the
network further [32]. Zhu focused on the second-order approach to estimate
covariance terms for IDN with peer loss function [19] and defined a new loss
function to change the problem to CCN [40]. Xia eliminated the need for anchor
points in estimating the noise transition matrix [33]. Han described a two-stage
algorithm where the trained network is used to select multiple class prototypes
to represent the characteristics of the data better and correct the noisy labels
[11]. Lee focused on reducing human supervision by introducing a method that
required a small clean training set to extract the information about label noise
[16]. Li divides the training data into labeled clean and unlabeled noisy sam-
ples to utilize semi-supervised learning techniques by training two networks and
correcting more labels over each iteration [17]. Other methods such as PEN-
CIL [36], ILFC [5], CORES2 [8], Meta-Weight-Net [24], estimation of transition
matrix [35], and JoCoR [31] are also noteworthy.

3 Proposed Method

In this section, we present the details of our proposed method. The proposed
method alternates between training the network to find the best performance
on the clean validation set and correcting the noisy labels based on confidence
scores from the top-performing network. Before the proposed algorithm starts
the process, we prepare a deep neural network by training it for a few epochs with
a high learning rate, which allows the network to reach a reasonable confidence
level without overfitting to noise [37].

3.1 Preliminaries

Let X be the feature space, L be the label space, (x, y), (x, ỹ) ∈ X × L be a
clean and a noisy sample respectively, D = {(xi, yi)}ni=1 be a dataset, f t(x) =
(C1, . . . , Ck) be a classifier at the t-th iteration of the algorithm, where Ci is the
confidence score of the network for the i-th class (output of softmax layer in this
paper), and k is the total number of classes. Finally, let St be the performance
of the classifier over clean validation set at t-th iteration of the algorithm.

3.2 Iterative Label Correction Method

The overall algorithm is summarized in Algorithm 1. In practice, we use an av-
erage of confidence scores from several top-performing networks. Since there is
no guarantee of improving the network on every iteration, there might be a ran-
dom instance where the trained network arbitrarily achieves a high performance
score. Averaging multiple confidence scores mitigates the effect of these random



Enhanced Data-Recalibration 5

Algorithm 1: Enhanced Data-Recalibration
Require: Initial training set D̃0

train =
{(

xi, ỹ
0
i

)}n

i=1
, Initial classifier f0,

threshold value θ, Number of epochs T , Validation set Dvalid = {(xi, yi)}mi=1

1: for t ∈ 1, . . . , T do
2: Train f t−1 on D̃t−1

train to get f t and get the performance score St

3: Compare St to previous scores {Si}t−1
i=1 to find best performing classifier fB

4: for (x, ỹ) ∈ D̃t−1
train do

5: Get the confidence scores (C1, . . . , Ck) of fB on x
6: Find the best confidence score CM and the noisy confidence score CN

7: Calculate Gap = |log(CM )− log(CN )|
8: if Gap ≥ θ then
9: Set new label ỹt = M

10: else
11: Keep old label ỹt = ỹt−1

12: end if
13: end for
14: if ∀i ∈ [1, . . . , n], ỹt

n = ỹt−1
n then

15: Decrease θ by a small amount
16: end if
17: end for
return Best trained network fB

encounters as they do not introduce a bias towards any class. Moreover, the
top-performing networks are selected from a range of recently trained networks
to ensure that the network is not stuck in a loop. In the following subsections,
we will describe what happens in the t-th iteration of the algorithm:

3.3 Stage One

In this stage, the algorithm starts training the network for one epoch with the
labels acquired from the previous iteration. In other terms, the network from
the previous iteration f t−1 is trained on the training set with labels generated
in the previous iteration D̃t−1

train =
{(

xi, ỹ
t−1
i

)}n

i=1
to obtain the new network f t.

Then, the performance of the network is evaluated to obtain the top-performing
network for the next stage. It is done by evaluating the new network f t on the
clean validation set Dvalid = {(xi, yi)}mi=1 to get its performance score St. Then,
this performance score St is compared to all previous scores {Si}t−1

i=1 to find the
best-performing network

{
fB | ∀i ≤ t : SB ≥ Si

}
.

3.4 Stage Two

In this stage, the algorithm starts collecting the confidence scores of the cho-
sen network on the training set. It is done by predicting the confidence scores
(C1, . . . , Ck) of the best-performing network fB for each sample in training set
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from the previous iteration (x, ỹ) ∈ D̃t−1
train. Then, the confidence scores are eval-

uated to decide the labels for the next iteration. For each sample in the dataset
(x, ỹ) ∈ D̃t−1

train, the highest confidence score {CM | ∀i ≤ k : CM ≥ Ci} and
the confidence score for the noisy label CN=ỹ are considered. If the difference of
logarithms between them is greater than a threshold |log(CM )− log(CN )| ≥ θ,
then the sample is selected for correction. The intuition behind the process is
that a noticeable gap between the prediction of the best-performing network
and the current label suggests the label is noisy. After that, the labels for the
next iteration are generated. It is done by swapping the label of the selected
samples to the prediction of the best-performing network ỹtsel = M while keep-
ing the labels of other samples the same as before ỹtrest = ỹt−1. Finally, the
threshold value is evaluated and reduced if the algorithm cannot select samples
anymore. By initializing a high threshold value and lowering it in small steps, the
best-performing network gains more trust from the algorithm gradually, which
prevents confirmation bias to some degree.

4 Experiments & Evaluation

4.1 Synthetic Datasets

For proof of concept, the public datasets CIFAR-10 and CIFAR-100 [14] are cho-
sen for synthetic experiments. Both datasets contain 50,000 training and 10,000
testing samples over ten categories. In the case of CIFAR-100, each category is
further divided into ten subclasses. As argued by the previous works [7, 5, 38], a
realistic noise does not uniformly affect all data space points. The most common
solution among previous works to generate reliable IDN is to find challenging
samples and then flip their label from the most confident category to the second
most confident category. A challenging sample is typically located at the edges of
the decision boundary and results in a low network confidence score. Such sam-
ples can be found by training an oracle network and selecting the low confidence
samples [5] or averaging the network’s confidence over the training period and
selecting the confusing samples [7]. To generate reliable and comparable IDN,
we follow the definition for the PMD noise family [38].

Let ℵC1,C2(x) = P [ỹ = C2 | y = C1, x] be the probability of corrupting the
label of a sample from the most confident class C1 to the second-most confident
class C2, and f∗(x) be an oracle classifier trained on clean samples. The three
types of IDN used in our experiments are defined as in Equation 1.

ℵI
C1,C2

(x) =
1

2
− 1

2

[
f∗
C1

(x)− f∗
C2

(x)
]2

ℵII
C1,C2

(x) = 1−
[
f∗
C1

(x)− f∗
C2

(x)
]3

ℵIII
C1,C2

(x) = 1− 1

3

[
f∗
C1

(x)− f∗
C2

(x)
]3

− 1

3

[
f∗
C1

(x)− f∗
C2

(x)
]2 − 1

3

[
f∗
C1

(x)− f∗
C2

(x)
]

(1)
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For the sake of completion, we also include the most common CCN noise types
in our experiments: uniform and asymmetrical [22]. Let ℶC1,C2

= P [ỹ = C2 | y = C1]
be the probability of corrupting the label of a sample from class C1 to class C2,
R be the noise rate and k be the total number of classes. The two types of CCN
used in our experiments are defined as in Equation 2.

ℶUniform
C1,C2

=

{
R

k−1 C1 ̸= C2

1−R C1 = C2

ℶAsymmetrical
C1,C2

=

{
R C1 ̸= C2

1−R C1 = C2

(2)

The ResNet-34 [12] is used for synthetic experiments. All models are trained
from scratch for 180 epochs with a batch size of 128 images. Stochastic gradi-
ent descent is used as the optimizer with a momentum value equal to 9×10-1

and a weight decay rate of 5×10-4. The learning rate is initialized as 1×10-2

and gets divided by 2 after 40 and 80 epochs. Standard data augmentations
are applied: random horizontal flip, 32×32 random crop after padding 4 pixels,
and standard normalizing with mean = (0.4914, 0.4822, 0.4465), std = (0.2023,
0.1994, 0.2010). In each experiment, 10% of the clean training data is reserved
as the validation set. Each experiment is repeated 5 times to report the mean
and standard deviation for final accuracy. The initial value for θ in Algorithm 1
is set to 7×10-1 with a decrement step of 1×10-1. The algorithm averages 5
top-performing networks from the last 30 epochs on each iteration.

Table 1. Final accuracy on the CIFAR datasets for different IDN patterns and rates.

Dataset Noise Info SL[30] LRT[39] PLC[38] Ours

CIFAR-10

ℵI
35% 79.76 ± 0.7 80.98 ± 0.8 82.80 ± 0.3 83.60 ± 0.3

ℵI
70% 36.29 ± 0.7 41.52 ± 4.5 42.74 ± 2.1 46.47 ± 1.1

ℵII
35% 77.92 ± 0.9 80.74 ± 0.3 81.54 ± 0.5 83.41 ± 0.3

ℵII
70% 41.11 ± 1.9 44.67 ± 3.9 46.04 ± 2.2 46.24 ± 0.9

ℵIII
35% 78.81 ± 0.3 81.08 ± 0.4 81.50 ± 0.5 83.16 ± 0.3

ℵIII
70% 38.49 ± 1.5 44.47 ± 1.2 45.05 ± 1.1 46.33 ± 1.1

CIFAR-100

ℵI
35% 55.20 ± 0.3 56.74 ± 0.3 60.01 ± 0.4 63.85 ± 0.3

ℵI
70% 40.02 ± 0.9 45.29 ± 0.4 45.92 ± 0.6 46.38 ± 0.3

ℵII
35% 56.10 ± 0.7 57.25 ± 0.7 63.68 ± 0.3 63.91 ± 0.3

ℵII
70% 38.45 ± 0.6 43.71 ± 0.5 45.03 ± 0.5 46.63 ± 0.2

ℵIII
35% 56.04 ± 0.7 56.57 ± 0.3 63.68 ± 0.3 63.92 ± 0.4

ℵIII
70% 39.94 ± 0.8 44.41 ± 0.2 44.45 ± 0.6 46.22 ± 0.2

Table 1 holds the results of testing the proposed method on synthetic data
affected by three different IDN patterns with 35% and 70% noise rates. The
performance of baseline methods is obtained from [38]. As shown in this table,
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our method outperforms the alternatives in all cases. Judging by the numbers,
some alternative approaches have a high standard deviation rate, indicating
possible instability of that method.

Table 2. Final accuracy on the CIFAR datasets for different combinations of Noise.

Dataset Noise Info SL[30] LRT[39] PLC[38] Ours

CIFAR-10

ℵI
35% + ℶUniform

30% 77.79 ± 0.5 75.97 ± 0.3 79.04 ± 0.5 80.94 ± 0.2
ℵI
35% + ℶAsymmetrical

30% 77.14 ± 0.7 76.96 ± 0.5 78.31 ± 0.4 79.93 ± 0.5
ℵII
35% + ℶUniform

30% 75.08 ± 0.5 75.94 ± 0.6 80.08 ± 0.4 81.07 ± 0.2
ℵII
35% + ℶAsymmetrical

30% 75.43 ± 0.4 77.03 ± 0.6 77.63 ± 0.3 79.90 ± 0.5
ℵIII
35% + ℶUniform

30% 76.22 ± 0.1 75.66 ± 0.6 80.06 ± 0.5 80.54 ± 0.3
ℵIII
35% + ℶAsymmetrical

30% 76.09 ± 0.1 77.19 ± 0.7 77.54 ± 0.7 79.54 ± 0.5

CIFAR-100

ℵI
35% + ℶUniform

30% 51.34 ± 0.6 45.66 ± 1.6 60.09 ± 0.2 61.46 ± 0.4
ℵI
35% + ℶAsymmetrical

30% 50.18 ± 1.0 52.04 ± 0.2 56.40 ± 0.3 59.94 ± 0.4
ℵII
35% + ℶUniform

30% 50.58 ± 0.3 43.86 ± 1.3 60.01 ± 0.6 61.16 ± 0.3
ℵII
35% + ℶAsymmetrical

30% 49.46 ± 0.2 52.11 ± 0.5 61.43 ± 0.3 59.34 ± 0.5
ℵIII
35% + ℶUniform

30% 50.18 ± 0.5 42.79 ± 1.8 60.14 ± 1.0 61.82 ± 0.3
ℵIII
35% + ℶAsymmetrical

30% 48.15 ± 0.9 50.31 ± 0.4 54.56 ± 1.1 59.76 ± 0.5

Table 2 holds the results of testing the proposed method on synthetic data
simultaneously affected by IDN and CCN patterns. The final noise rate is typi-
cally lower than the sum of two individual noise rates due to overlaps in selected
samples. As shown in this table, our method still outperforms the alternatives
in almost all cases.

4.2 Real-world Datasets

To evaluate the performance of the proposed method on real-world cases, three
commonly used datasets were chosen for testing:

ANIMAL-10N [26] – This dataset contains 50,000 training and 5,000 test-
ing samples over ten categories. According to the creators of the dataset, the
estimated noise rate is about 8%. Following the authors’ work, we chose VGG-
19 [25] with a batch normalization for this experiment. The model is trained
from scratch for 180 epochs with a batch size of 128 images. Stochastic gradient
descent is used as the optimizer with a weight decay rate of 1×10-3. The learn-
ing rate is initialized as 1×10-1 and gets divided by 5 after 50 and 75 epochs.
Standard data augmentations are applied: random horizontal flip and standard
normalizing with mean = (0.485, 0.456, 0.406), std = (0.229, 0.224, 0.225). 10%
of the training data is manually labeled with the help of [1] and reserved as the
validation set. The initial value for θ in Algorithm 1 is set to 7×10-1 with a
decrement step of 1×10-1. The algorithm averages 10 top-performing networks
from the last 30 epochs on each iteration. Table 3 holds the results of testing
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the proposed method on the ANIMAL-10N dataset. The performance of base-
line methods is obtained from their respective papers. As seen in this table, the
proposed method outperforms the alternatives.

Table 3. Final accuracy on the Animal-10N and Food-101N datasets.

Dataset Method Accuracy Dataset Method Accuracy

Animal-10N

SELFIE [26] 79.40

Food-101N

DeepSelf [11] 79.40
Co-Learning [28] 82.95 PLC [38] 83.40
PLC [38] 83.40 Ours 86.34
Ours 84.47 Co-Learning [28] 87.57

Food-101N [16] – This dataset contains 310,000 training samples and utilizes
the 25,000 testing samples provided by the Food-101 dataset [6] over 101 cate-
gories. According to the creators of the dataset, the estimated noise rate is about
10%. Following the authors’ work, we chose ResNet-50 with pre-trained weights
on ImageNet [9] for this experiment. The model is fine-tuned for 30 epochs with a
batch size of 32 images. Stochastic gradient descent is used as the optimizer with
a weight decay rate of 1×10-3. The learning rate is initialized as 5×10-3 and gets
divided by 10 after 10 and 20 epochs. Standard data augmentations are applied:
random horizontal flip, 224×224 random crop, and standard normalizing with
mean = (0.485, 0.456, 0.406), std = (0.229, 0.224, 0.225). 14% of the labels are
verified by the creators of the dataset to be used as the validation set. The ini-
tial value for θ in Algorithm 1 is set to 9×10-1 with a decrement step of 1×10-1.
The algorithm averages 4 top-performing networks from the last 8 epochs on
each iteration. Table 3 holds the results of testing the proposed method on the
Food-101N dataset. The performance of baseline methods is obtained from their
respective papers. This table shows that the proposed method outperforms most
of the alternatives but gets beaten by Co-Learning [28].

Clothing1M [34] [16] – This dataset contains 1,000,000 samples over 14 cate-
gories, out of which 50,000 training, 14,000 validation, and 10,000 testing samples
are verified by the creators of the dataset. Following the previous works [17, 16,
32], the clean training data is discarded. We chose ResNet-50 with pre-trained
weights on ImageNet for this experiment. The model is fine-tuned for 20 epochs
with a batch size of 32 images. Stochastic gradient descent is used as the op-
timizer with a momentum value equal to 9×10-1 and a weight decay rate of
5×10-4. The learning rate is initialized as 1×10-3 and gets divided by 10 after
5 and 10 epochs. Standard data augmentations are applied: random horizon-
tal flip, 224×224 random crop, and standard normalizing with mean = (0.485,
0.456, 0.406), std = (0.229, 0.224, 0.225). The verified validation data is used as
the validation set. The initial value for θ in Algorithm 1 is set to 3×10-1 with
a decrement step of 1×10-1. The algorithm averages 4 top-performing networks
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from the last 8 epochs on each iteration. Table 4 holds the results of testing the
proposed method on the Clothing1M dataset. The performance of baseline meth-
ods is obtained from their respective papers. As seen in this table, the proposed
method outperforms the alternatives.

Table 4. Final accuracy on the Clothing1M dataset.

Method Accuracy
CAL [40] 74.17
Reweight [33] 74.18
DeepSelf [11] 74.45
CleanNet [16] 74.69
DivideMix [17] 74.76
Ours 75.11

5 Conclusion

This paper proposes a practical iterative label correction method that utilizes
clean validation sets to achieve better performance when dealing with instance-
dependent noise. The effectiveness of the proposed method is shown with em-
pirical experiments on both synthetic and real-world benchmark datasets. The
proposed method outperformed the current state-of-the-art methods in these ex-
periments. The findings suggest that the proposed method’s intuition might be
correct, and utilizing a clean validation set in iterative label correction methods
is helpful.
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