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ABSTRACT 
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Bachelor’s thesis 
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Bachelor’s Degree Programme in Science and Engineering 

May 2023 
 

Utilizing machine learning is a promising prospect for various robotic manipulation applications 
and has been of growing interest in the research community recently. This thesis reviews research 
papers relevant to learned manipulation on robot arms with two-finger grippers, published since 
2021. The focus was chosen to limit the mechanical complexity, and to find out how the field of 
research has developed since the latest literature reviews with a broad perspective on the topic. 
Pressing challenges listed in two earlier reviews were used as a basis for evaluating recent de-
velopments. The thesis is organized into chapters discussing subtasks common in robot manip-
ulation, the usage of simulation for robot learning, and human-robot interaction and learning from 
demonstration. 

Robots get information on their surroundings as prior information and observations. Visual and 
depth observations are commonly used, as well as the robot arm’s internal observations, such as 
joint torque and gripper finger tactile sensing. Various external signals can be used to convey 
human intent to the robot learning system. Notably, many of the approaches utilizing multiple 
sensory modalities are inspired by human perception. 

Approaches to task planning beyond immediate action and over multiple subtasks vary exten-
sively. The tasks are also different in each study, so directly comparing the performance of task 
planning methods was deemed unfeasible. Instead, the novelties and challenges of individual 
approaches are discussed in terms of performance as well as adaptability, explainability and gen-
eralizability. The reviewed planning methods demonstrate the benefits of structural and modular 
policies, as well as reinforcement learning, often with experience replay. 

Grasp synthesis has been extensively studied. Grasping is typically based on observations 
with a camera mounted to either a fixed point or at the robot arms end effector. High grasping 
success rates have been achieved with both observation approaches when the task is to grasp a 
singular object. However, cluttered scenes pose a problem for grasping, and methods with push-
grasp actions and scene rearrangement have been developed for the purpose. 

Translation and rotation can be trivial subtasks, but to avoid collisions or for instance spilling 
coffee on a laptop more complicated path planning may be required. Various machine learning 
methods have proven successful in path planning and learning specific trajectory shapes for tasks 
like page-flipping. The challenges of moving while at contact, as well as the stability of learned 
robot arm movement have also been addressed in literature. Releasing grip is similarly trivial but 
preparing for the release by correctly orienting objects or ensuring successful assembly are chal-
lenges where machine learning has proven beneficial. 

Simulation is utilized in most of the reviewed studies. The thesis discusses the benefits of 
simulation, simulation benchmarks, as well as the most encountered simulation environments and 
their development. The challenges of domain transfer from simulation to reality and the methods 
for reducing the reality gap are also addressed. 

Humans can interact with robot arms physically, with teleoperation or by less direct means 
such as EEG-signal. Different forms of human demonstrations are also used in various ways for 
training robots. 

The thesis concludes with a discussion on development regarding the list of challenges re-
phrased from prior reviews. The integration of learning approaches into more complete and gen-
eralizable systems is singled out as a key challenge for future research.  

 
Keywords: machine learning, robotics, manipulation, robot arm, parallel-jaw gripper, two-

finger gripper, literature review 
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TIIVISTELMÄ 

Kuisma Hannuksela: Koneoppiminen kaksisormisen robottikäsivarren manipulointitehtävissä 

Kandidaatintyö 

Tampereen yliopisto 

Teknisten tieteiden kandidaatin tutkinto-ohjelma 

Toukokuu 2023 
 

Koneoppimisen hyödyntäminen on lupaava mahdollisuus robotiikan alalla, ja kiinnostus aihee-
seen on kasvanut tutkimusyhteisössä viime vuosina. Tässä kandidaatintyössä tarkastellaan ko-
neoppimista kaksisormisen robottikäsivarren manipulaatiotehtävissä. Kirjallisuuskatsaus keskit-
tyy vuodesta 2021 alkaen julkaistuihin tutkimuksiin, jotta voidaan selvittää kehitysaskelia viimei-
simpien aihetta yleisesti käsittelevien kirjallisuuskatsausten jälkeen. Kahdessa aiemmassa kat-
sauksessa listataan merkittäviä haasteita, joihin alan tutkimuksen tulisi vastata, ja niistä koostet-
tua listaa käytetään tässä työssä viimeaikaisen kehityksen tarkastelun pohjana. Kandidaatintyö 
on jaettu lukuihin, joissa perehdytään robotiikan manipulaatiotehtävien osatehtäviin, simulaation 
hyödyntämiseen, ihmisen ja robotin vuorovaikutukseen sekä malliesimerkeistä oppimiseen. 

Robotit saavat tietoa ympäristöstään ennakkotietoina ja havaintoina. Yleisimmin havainnoin-
tiin käytetään kameroita, syvyyskuvalla tai ilman, sekä robottikäsivarren sisäisiä mittauksia, kuten 
nivelten vääntömomentteja ja tarttujan kosketusanturimittauksia. Ihmisen aikomuksia voidaan 
viestiä robotille erilaisilla ulkoisilla signaaleilla. Huomionarvoista on, että monet useita erityyppisiä 
antureita hyödyntävät menetelmät ottavat mallia ihmisen havainnointitavoista. 

Useita toimintavaiheita kattavien manipulointitehtävien suunnitteluun pyritään tutkimuksissa 
hyvin vaihtelevilla tavoilla. Myös tehtävätyypit vaihtelevat tutkimusten välillä, joten menetelmien 
suorituskykyä ei voitu suoraan vertailla. Eri tehtävänsuunnittelumenetelmiä tarkastellaankin suo-
rituskyvyn lisäksi mukautuvuuden, selitettävyyden ja yleistettävyyden kannalta. Katsauksessa 
nousi esiin rakenteellisten ja modulaaristen menetelmien sekä vahvistusoppimisen hyötyjä tehtä-
vänsuunnittelussa. 

Kaksisormista tartuntaa on tutkittu kattavasti. Tartunta perustuu useimmiten kameralla saa-
tuun havaintoon tartuttavasta kappaleesta. Kamera voi olla joko paikallaan, usein suoraan työta-
son yläpuolella, tai kiinnitettynä robottikäsivarteen lähelle tarttujaa, ja molemmilla tavoilla on saa-
vutettu korkeita onnistumisasteita yksittäisen kappaleen tartunnassa. Kun työtasolla on lukuisia 
kappaleita epäjärjestyksessä, tehtävä on huomattavasti hankalampi. Tätä haastetta pyritään tut-
kimuksissa ratkomaan työntö- ja tartuntaliikkeen yhdistämisen sekä kappaleiden uudelleenjärjes-
telyn keinoin. 

Siirto- ja kiertoliikkeen suunnitteluun voidaan tarvita koneoppimista, esimerkiksi jos on tarpeen 
välttää törmäyksiä tai kahvikupin siirtoa tietokoneen yli. Useat tarkastellut koneoppimismenetel-
mät toimivat hyvin reittisuunnittelussa, tai pystyvät oppimaan esimerkiksi sivunkääntöön vaadit-
tuja liikeratoja. Kontaktin aikana liikkumista ja liikkeen stabiiliutta tarkastellaan myös kirjallisuu-
dessa. Tartunnan irrotusta pitää joissain tapauksissa valmistella kääntämällä kappale haluttuun 
suuntaan tai varmistamalla kokoonpanon onnistuminen, ja myös näihin haasteisiin koneoppimi-
nen on kyennyt vastaamaan. 

Enemmistö viitatuista tutkimuksista hyödyntää simulaatiota. Työssä tarkastellaan simulaation 
hyötyjä, yleisimpiä simulaatioympäristöjä, sekä simulaation mahdollistamaa menetelmien suori-
tuskykyvertailua. Simulaatiossa opitun siirto todelliseen maailmaan on haastavaa, ja työssä esi-
tellään myös keinoja simulaation ja todellisuuden välisen kuilun pienentämiseen. 

Ihminen voi vaikuttaa robottikäsivarren toimintaan fyysisesti, etäohjauksella, tai epäsuorem-
milla keinoilla, kuten aivosähkökäyrän välityksellä. Erilaisia malliesimerkkejä voidaan käyttää ro-
botin kouluttamiseen lukuisin eri tavoin. 

Yhteenvetona palataan aiempien kirjallisuuskatsausten nostamiin haasteisiin. Koneoppimis-
menetelmien integraatio kokonaisvaltaisemmiksi ja paremmin eri manipulaatiotehtäviin yleistettä-
viksi järjestelmiksi on tärkeä yksittäinen kehityskohde alan tutkimukselle. 

 
Avainsanat: koneoppiminen, robotiikka, manipulointi, robottikäsivarsi, kaksisorminen tarttuja, 

kirjallisuuskatsaus 
 
Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck –ohjelmalla. 
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1. INTRODUCTION 

The utilization of machine learning has led to rapid development in the field of robotics 

in recent years. One area where learning has resulted in notable success is robotic arms 

performing manipulation tasks.  

This thesis focuses on tabletop robot arms with simple two-finger grippers to avoid the 

mechanical complexity of multi-fingered and soft robot hands as well as the larger work-

space and navigation challenges of mobile robots. However, many of the presented find-

ings are at least partially applicable for other types of robots as well. 

Relevant research was searched on the Andor search engine with the query “robot AND 

learn* AND manipulation AND arm NOT mobile NOT bimanual NOT dual-arm”, filtered 

by articles in peer-reviewed journals in 2021-2023. The search results were screened 

based on abstract, and further if unsure, resulting in a total of 49 research papers. Some 

of the referenced papers feature robots with for instance tools or three-fingered grippers 

instead of parallel-jaw grippers. None those articles include grasping tasks, and they 

were considered directly applicable and relevant to the review’s focus.  

In addition, 6 earlier reviews on the topic, as well as some supporting articles, book 

chapters, and webpages mostly are referenced. While the references do not cover all 

relevant research in the area, they should be sufficient to form a general understanding 

of the latest developments in learned manipulation on robots with parallel-jaw grippers. 

The purpose of the thesis is to discuss and categorize these developments, comparing 

the principles behind them on a descriptive level. 

The thesis begins with theoretical background, including earlier reviews on the topic and 

a brief description of common learning methodologies in robotic manipulation. The next 

chapters discuss recent developments in the subtasks involved with manipulation, the 

use of simulation, and human effect to robotic systems via interaction and demonstration. 

To conclude, the findings of previous chapters are summarized and challenges yet to be 

resolved are discussed. 
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2. THEORETICAL BACKGROUND 

Learning for robotic manipulation has been subject to grown interest over recent years. 

Multiple review papers on the topic of robot manipulation have been published before. 

The following section outlines some of the most relevant reviews on the topic. The chap-

ter concludes with a general description of some of the most popular methodologies uti-

lized in learning robot manipulation. 

2.1 Earlier reviews on learned robot manipulation 

Several reviews on the topic of learned robot manipulation have been conducted previ-

ously. This area of research has seen rapid development over just a few years, which 

can be seen through the change of views of review papers on year-to-year basis. 

Mason takes a broad view at manipulation in their review paper, published in 2018. The 

review starts with defining manipulation as “an agent’s control of its environment through 

selective contact”, which is adopted for the purposes of this thesis. He then describes 

human and animal manipulation before moving on to robotic manipulation and compar-

ing the two. Interestingly, machine learning is named as a future direction of robotic ma-

nipulation showing that, despite some successful examples, learned robot manipulation 

was still in its infancy. [1] 

In their 2019 review, Billard and Kragle note the progress in learning methods for manip-

ulation tasks, particularly grasping. They discuss the problem of training data acquisition, 

pointing out image and video data available on the internet, training in simulation, and 

expert demonstration as possible avenues, arriving at the conclusion that there are prob-

lems in robotics that cannot be answered by learning. [2] 

Kroemer et al. conduct a detailed and extensive review of robot learning for manipulation, 

published in 2020. They reference over 400 papers to discuss different aspects of 

learned robot manipulation, including perception, manipulation actions and their transi-

tion model as well as different model types and data collection strategies. They highlight 

the modular nature of manipulation problems, suggesting that hierarchical skill structures 

are useful for more complex problems and transferring learned skills to different tasks. 

For future research they point out that the versatility and robustness of manipulation skills 

should be improved, along with a list of other pressing challenges. [3] 
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Cui and Trinkle expand on the previous reviews by addressing the adaptability of learned 

robot manipulation. They discuss adapting to variations that may be internal or external 

to the robot, previously encountered or novel. Capturing generalized information, active 

learning and learning from demonstration are presented as potential solutions. Moreo-

ver, the review agrees with Kroemer et al. on the benefits of modularity. Similarly, Cui 

and Trinkle conclude their review with a list of open questions and potential avenues for 

future research. [4] 

More recently, Mohammed et al. review deep reinforcement learning methods for ma-

nipulation of objects cluttered environments. The scope of their review is narrower than 

this thesis in both methodology and environment, but it provides valuable and detailed 

insight in that category of robot manipulation problems. The review covers articles be-

tween 2016 and 2022 stating that it has been the most productive period of research in 

the subject. [5] 

Similarly, Elguea-Aguinaco et al. note a significant increase in the number of publications 

on reinforcement learning and robot manipulation over recent years. They focus their 

review on reinforcement learning in contact-rich manipulation, covering studies from 

2017 to 2022. The review analyses the main trends and challenges of reinforcement 

learning in contact-rich tasks, and proposes a framework connecting the main concepts 

in the area. [6] 

Earlier reviews have extensively mapped the development learned robot manipulation 

until 2021. Hence, this review discusses new research over 2021 and 2022, focusing on 

machine learning in manipulation tasks performed on robot arms with parallel-jaw grip-

pers. The prior works that are closest to this domain, although broader in scope [3], [4], 

provide a combined list of challenges as follows: 

• Multi-modal learning, exploiting various sensory modalities beyond vision [3], [4] 

• Informed exploration strategies for active learning [3], [4] 

• Continuing to improve on learned skills as they are being used [3], [4] 

• Reducing sample complexity in policy learning, while not resorting to empirically 

tuned hyper-parameters [3] 

• Better generalization and adaptation by enabling customization by modularity and 

domain adaptation, as well as improving transfer across robot embodiments [4] 

and different tasks [3] 

• Computational improvements such as parallel active learning and real-time per-

formance [4] 
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• Advanced simulators [4] and exploitation of physical knowledge [3] 

• Safety guarantees for learning [3] 

• Integration of learning into more complete systems [3] 

The above list functions as valuable expert insight, as this thesis attempts to examine 

which of these challenges have been addressed, and to what extent, since their publish-

ing. 

2.2 Learning methodologies for manipulation 

Technical details of robot manipulation learning methods are outside the scope of this 

thesis. However, it is necessary to establish a general understanding of the utilized meth-

odologies to be able to compare the various proposed approaches. Hence, this section 

describes the types of learning methods most encountered in the following chapters. 

Most studies reviewed in this thesis utilize (artificial) neural networks, ANN or NN for 

short, in their learning algorithms. A neural network comprises of connected layers of 

functions, inspired by neurons in the brain. The parameters of these functions are 

learned by gradually adjusting to desired output from the given input. Neural networks 

are called deep neural networks (DNN) if they have multiple hidden layers of neurons 

between the input and output layers. [7] Commonly used variations of neural networks 

in robot manipulation are convolutional neural networks (CNN, or ConvNet), with matrix-

form input and cross-neuron convolutional kernels [8, p. 36], and recurrent neural net-

works (RNN), that handle timeseries data in a recurrent manner [9]. 

Reinforcement learning, RL for short, is a popular methodology in robotics applications. 

Technical details differ, but the basic idea is that an RL-policy learns a value function 

based on an external reward function and aims to maximize future rewards while exe-

cuting repetitive trials. [10] While RL-methods are mostly built on neural networks, other 

policy search algorithms, such as the model-based relative entropy policy search 

(MORE), based on information theory, exist and have practical uses [11]. RL systems 

are generally modelled by a Markov Decision Process, MDP for short, or its variants. The 

MDP is a sequential representation of the agent’s states, actions, and goal. [6] Figure 1 

shows a flowchart of the reinforcement learning process. 
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  Reinforcement learning process, adapted from [10] 

Q-learning is an RL methodology that learns an action-value representation, denoted by 

Q, instead of a value function. Consequently, learning a Q-function removes the need 

for action selection and learning models, making Q-learning a model-free approach. [10]  

Another reinforcement learning type is actor-critic (A-C), where the policy network, actor, 

and value network, critic, are trained in parallel. The critic network learns to evaluate the 

current policy by estimating the value function, while the actor learns to improve the pol-

icy based on the critic’s evaluation. [10] 

Similarly, Generative Adversarial Networks (GAN) train a generative model and a dis-

criminative model in parallel. The generative model attempts to generate data that fits 

the training data distribution, while the discriminative model estimates the generative 

model’s performance. [12] 

Some studies use the term meta-learning. Meta-learning refers to learning with the pur-

pose of being able to quickly adapt to novelties either on- or off-policy, in essence, learn-

ing to learn [13, p. VI]. On a technical level, meta-learning approaches vary, but the ref-

erenced studies use common neural network components [14]–[17]. 

Besides various types of neural networks, a support vector machine (SVM) is used in 

one reviewed study, citing its ability to learn with less samples than neural networks [18]. 

Support vector machines are a family of machine learning classification and regression 

methods [19] based on fitting a hyperplane that maximizes margin to data classes [20]. 
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3. SUBTASKS IN LEARNED MANIPULATION  

The range of robot arm manipulation includes various tasks such as pushing objects off 

the table [21], needle threading [22] and garment unfolding [18]. A large portion of tasks 

in literature can be categorized as assembly [23]–[28] or pick-and-place [14], [15], [17], 

[29]–[38] problems. These types of tasks typically include grasping one or more objects 

on the working surface and moving them to a desired location, sometimes in a specific 

angle or from a specific direction. The main difference of these categories is the amount 

and quality of contact between objects. While pick-and-place task often aim to place the 

held object into a bin or on the working surface, assembly tasks such as peg-in-hole 

involve more contact between the held object and its target and millimetre-level accuracy 

[24]–[28]. In case of multiple objects to manipulate, the order in which they are handled 

is often of importance. Figure 2 shows a flowchart of a pick-and-place task, which also 

applies to many assembly tasks. 

 

  Simplified structure of a pick-and-place task. 

To plan a manipulation task, a robot should be aware of its working area. A common 

approach is depth-image observation, force, tactile, and other sensing modalities can be 

applied. The robot can also be given prior information about the objects included and the 

physics involved. Task planning varies between problems. It can include identifying tar-

get objects, obstacles, and target locations, as well as planning and optimizing the se-

quence and paths of actions to be taken. Finally, the execution phase of pick-and-place 

type problems includes the planned sequence of grasping, moving, and releasing the 

target objects. 
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In reality, the process is not always as simple as presented in Figure 2. For more robust 

and successful manipulation, failure recognition and recovery processes, as well as mid-

execution observation and planning might be needed. Moreover, it is not directly appli-

cable to other types of manipulation tasks. Nevertheless, the described structure serves 

as a background for the following discussion on the subtasks included. 

3.1 Prior information and observations 

The form and amount of information given a priori to the robotic manipulation system 

varies greatly between studies. In some cases, the entire system, including a physics 

model, the robot’s initial state and properties as well as each object in the working area, 

can be provided [16], [21], [30], [33], [35], [37]  In contrast, many other methods require 

no prior knowledge of the environment [31], [39]–[50]. While the robot arm’s properties 

are readily available, accurately defining the properties of external objects may be infea-

sible outside simulation. It is also worth noting that the robot’s function may change over 

time due to physical wear and tear or software modifications [4]. 

 Sensory modalities in the reviewed articles. Papers with state data only are excluded. 

Task Ref-
erence 

Vis-
ual 

Depth Force 
/ Torque 

Tac-
tile 

Ex-
ternal 

6-D Scrabble, cap and peg 
assembly 

[23] x x    

8 RLBench tasks [34] x x    
ball throwing game [51] x x   x 
cup translation [52]   x   

deformable object manipu-
lation 

[53] x x    

garment unfolding [18] x x    
grasp synthesis [40] x x    
grasp synthesis [41] x x    

grasp synthesis [50] x x    
grasp synthesis [54] x x    
grasp synthesis, Ravens-

10 benchmark tasks 
[31] x x    

grasping from clutter, pick-
and-place, bottle placement, 
insertion 

[17] x x    

grasping, visual servoing [45] x  x   
grasp-synthesis and anno-

tation 
[46] x     

imitation of various pick 
and place actions 

[38] x x    

in-grasp sliding [47]    x  

irregular object packing [36] x x    
modular assembly [26]    x  
motion control [55]   x   
multi-stage manipulation [32] x x    

needle threading, bolt 
picking 

[22] x    x 

object detection and pose 
estimation 

[56] x     
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Table 1 above shows the sensory modalities used in the reviewed research papers. The 

popularity of visual and depth data is evident. Some task-dependency can also be seen 

in the table. 

3.1.1 Visual and depth observations 

To observe the scene before and during task execution, simulation environments can 

directly convey accurate state information [16], [21], [25], [26], [30], [33], [35], [59], [61], 

but in real world settings collecting sensor data is often essential. A common approach 

is to use an RGB-D sensor to capture pixelwise image and depth data [14], [15], [17], 

[18], [23], [24], [27], [31], [32], [38]–[41], [43], [50], [51], [53], [54]. In some applications 

only the depth image is sufficient [36], [57], and some methods do not need depth maps, 

but use ordinary RGB sensors instead [44]–[46], [48], [58], [59]. Two reviewed studies 

employ stereo-RGB cameras [22], [56]. Some motion capture systems, such as 

OptiTrack Flex 13 used in [60], work with grayscale image  [62]. 

Cameras can be mounted on either a fixed position [14], [15], [17], [18], [22], [23], [30], 

[31], [34], [38]–[40], [44], [46], [48], [50], [51], [53], [57], [58], [60] or on the robot arm’s 

end effector [24], [41], [45], [54], often referred to as eye-in-hand, or both [27], [36]. Fixed 

object removal by pushing 
and grasping 

[39] x x    

object retrieval from clutter [33] x x    
object retrieval, geometry 

reconstruction 
[42]   x   

object sorting [14] x x    

object sorting [15] x x    
object surface wiping [48] x  x x  
obstacle avoidance [57]  x    
obstacle avoidance, pick-

and-place 
[29]     x 

page flipping [11] x   x  
peg-in-hole [25]   x   
peg-in-hole [27] x x    
peg-in-hole [28]   x   

pose estimation, surgical 
tool tracking 

[44] x     

push, grasp, translation, 
obstacles 

[30] x x    

pushing, edge following, 
surface following 

[49]    x  

reach, push, reach-push, 
hammer, sweep, strike 

[58] x     

Soma cube assembly [24] x x    
spade / hammer / scythe 

manipulation 
[59] x     

upright object placement [43] x x x   
wall-avoidance, table-

sweep, shaft-reach, shaft-in-
sertion 

[60] x    x 
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mounting points come with the advantage of a consistent view angle and global coordi-

nates. However, occlusion by the robot arm or other objects in the scene is a difficult 

problem to solve if the camera cannot be moved [30], [48], [53]. Hand- or wrist-mounted 

cameras allow for active vision, i.e. changing view-angle and distance for more complete 

information [24], [41], [54]. 

Camera observation can be used to segment and identify objects in the scene. Segmen-

tation is needed to distinguish objects from the table [24], [28], [41], [56], gripper [43] and 

each other [32], [56]. Visual data is also useful for tracking moving objects, or the robot 

arm. This can be done by following keypoints, either autonomously defined [44], or man-

ually set to specific markers [11], [18], [31], [60]. 

Even though visual data has many uses and advantages, it has one key problem, occlu-

sion. Opaque objects self-occlude the half facing away from the camera, making the 

shape partially unobservable. This issue can be mitigated by active vision [41] or algo-

rithmic methods, such as filtering [24] or generative adversarial networks to hallucinate 

how the occluded area might look like [43]. The robot arm can occlude objects in the 

scene as well [30], [48], [53], and objects can occlude each other in cluttered scenes [5]. 

Another issue with visual observations is specular reflection, particularly on objects with 

a smooth and shiny surface. Jayasinghe et al. propose a deep convolutional GAN archi-

tecture to remove specular reflections, improving object detection and pose estimation. 

The model is trained on synthetic images of unicoloured objects and relies on colour-

based object detection and segmentation, which limits real-world application. Further-

more, the generalizability of the model is not validated with unseen objects. [56] 

3.1.2 Other modalities 

In addition to visual and depth information, learning robot systems can utilize data pro-

vided by the robot itself. Given a robot arm’s physical properties, its orientation and end 

effector position can be derived from joint angles. Moreover, force and torque measure-

ments can be used to identify contact with the environment [28], [42], [43], [48] or a 

human [52], [55]. Grippers with tactile sensors can be useful for learning to estimate 

contact modes between the held object and the gripper [11], [26], [47]–[49]. For training 

purposes, teleoperation with electronic control signals is used in several studies [22], 

[23], [29], [60]. 

Notably, several reviewed studies draw inspiration from humans in their multi-modal ap-

proaches. Kim et al. use eye-tracker data to imitate human gaze focusing foveated vision 

to the task at hand, while learning from teleoperation when to transition from fast to slow 
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approach [22]. Kar et al. combine visual and joint position data with EEG-signal, short 

for electroencephalography, measuring the brain’s electrical activity, to transfer human 

throwing motion to robot domain, together with motor planning and error detection [51]. 

Similarly, Batzianoulis et al. propose detecting the expectation of error from EEG-signal 

in order to customize an obstacle-avoiding path to each person’s preference [29]. Saito 

et al., inspired by human ability to integrate several sensory information, perform a ro-

botic surface wiping task by capturing an initial view of the target object with RGB, but 

relying on kinematic and tactile data at contact [48]. 

Overall, it appears that many researchers have followed the multi-modal learning ave-

nue, as listed in Chapter 2.1, suggested by earlier reviews [3], [4]. The utilization of sen-

sor data beyond vision and depth is still very task-specific, and there is undoubtedly room 

for further research. 

3.2 Task planning 

Task planning is essential on many levels of robotic manipulation, ranging from path 

planning to hierarchies and sequences of subtasks. For the purposes of this thesis, task 

planning is defined as planning a robot arm’s actions beyond immediate control. This 

section focuses on the role of learning in higher level task planning with multiple phases, 

whereas planning subtasks, such as grasp synthesis and motion planning, are discussed 

in the following sections. 

Evaluating task planning methods is complicated, and largely depends on the problem 

at hand. If a task planner is expected to solve a single task or task family on specific 

hardware and in controlled environment, simple execution metrics such as training, plan-

ning, and execution times along with success rate may suffice. However, if the planner 

is expected to generalize or adapt to new tasks and environments, qualities such as 

explainability, modularity, and adaptability should be considered. 

As the reviewed task planning methods are aimed at different tasks, and different eval-

uation metrics are prioritized in their design, direct comparison between them is unfea-

sible. Instead, each approach is described separately, with a purpose of finding common 

features and ideas that are beneficial for a variety of learned task planning methods. 

It is worth noting that in a well-defined and controlled environment, cleverly designed 

task planning algorithms can be fast and successful without machine learning [24]. How-

ever, learning enables planning with less prior information, better generalization, and 

robustness. 
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One fully explainable methodology proposed in the studies reviewed for this thesis is the 

Geometric Task Network (GTN). It is essentially a network of primitive subtasks, from 

which the most optimal sequence to complete an overall task can be searched. The 

subtasks themselves, along with their geometric constraints are learned off-policy from 

exhaustive planners or expert demonstration. The network is limited to the pre-learned 

skills and structure, and therefore cannot generalize beyond them without additional 

training, or adapt to unforeseen disturbances such as physical contact during execution. 

The authors add that adding a level of hierarchy by grouping the learned skills into mod-

ules would be beneficial for learning new GTNs. [23] 

Chou et al. propose a method where the overall task is expressed as a linear temporal 

logic formula. The logical structure is derived from demonstrations in terms of atomic 

propositions and optimized. The learned logic is independent of the environment, and 

therefore transferable. The model algorithmically generates suboptimal counterexam-

ples for learning purposes, but they also improve explainability. While the proposed 

method is able to successfully solve multi-step manipulation tasks, computation times, 

ranging from 5 to 90 minutes, may be too long for some applications. [32] 

Khodeir et al. propose improving the efficiency of policy search by expanding the search 

in prioritized order. The priority of objects and facts is based on a relevance score learned 

from earlier planning experience. The method manages to solve various block arrange-

ment tasks with a higher success rate than its baseline, although for some tasks as low 

as 54 %, within a 90 second time limit. The model operates directly on state data, and 

its real-world application is limited. [37] 

To allow a robot to explore actions while performing a task, multiple approaches based 

on reinforcement learning have been proposed. While reinforcement learning is adapta-

ble by nature, it does not provide an explanation to decisions made. Moreover, the 

search space tends to grow with task complexity and horizon, resulting in computational 

problems and lengthy training [5]. Perhaps the simplest approach to alleviate these is-

sues is altering the rewards to guide exploration towards more efficient learning. Tao et 

al. propose a reward hierarchy that autonomously adapts to task phases, but leave the 

rewards themselves and the task phase boundaries to be heuristically defined [21].  

To limit search space, reducing dimensionality can be considered. Cheong et al. ar-

ranged several objects in discretized grids of 18 to 64 cells, and were able to solve a 

complex rearrangement task within minutes with their proposed deep Q-network [33]. 

However, operating on a strictly defined coarse grid may not be feasible in other appli-

cations. James and Davison deploy a deep Q-learning based attention module to crop 
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RGB and point cloud input to most relevant locations, which guides the search and im-

proves efficiency, and demonstrate their method on a variety of manipulation tasks [34]. 

The Q-attention module is trained on demonstrations from the simulation benchmark 

RLBench, contributed to by the same authors [34], [63]. Other works have utilized 

demonstrations to guide task planning in different ways. Zuo et al. propose a Gaussian-

based graph motion planner able to reduce computation time for repetitive pick-and-

place tasks by adaptive sampling from optimal planner demonstrations  [35]. Two works 

propose domain-adaptive meta-learning schemes, designed to adapt to new object sort-

ing tasks with few demonstrations [14], [15]. The latter maps image space into grid 

space, improving the efficiency of task planning [15]. 

Several methods use hindsight experience to improve sample efficiency. You et al. pro-

pose a deep actor-critic framework that prioritizes experience replays by temporal differ-

ence, for pushing and grasping strategy, achieving impressive results in simulation, but 

with limited real-world applicability [39]. With a similar idea, Beyene and Han apply pri-

oritized experience replay, separated into real and hindsight trajectory buffers, to several 

RLBench manipulation tasks, managing to speed up task-to-task adaptation [16]. 

Gieselmann and Pokorny propose a hierarchical actor-critic approach segmenting the 

task MDP into a graph-searchable hierarchy of learned short-horizon MDPs. Hindsight 

experience replay, HER for short, is used to improve sample efficiency. Their method 

achieves promising results in simulation but trains relatively slowly, with interaction steps 

counted in millions and time in hours. Most failures in their experiments are accounted 

to the agent getting stuck trying to reach subgoals, possibly due to misidentified state 

equivalence in close distance. [64] 

In another approach combining graph-search with RL and hindsight experience, Bing et 

al. propose Graph-Curriculum-Guided Hindsight Goal Generation. Their algorithm con-

structs intermediate tasks from graph representation and samples hindsight goals from 

a replay buffer based on diversity and proximity metrics. As learning progresses, these 

metrics are used to adaptively shift from curious exploration to proximal intermediate 

goal exploitation. The method outperforms some other hindsight-algorithms, but training 

times are around 10 hours for relatively simple tasks. [30] 

Some studies address the complexity of task planning with hand-designed modularity. 

Huang et al. propose a hierarchical manager-worker Q-learning framework for irregular 

object packing, consisting of two convolutional neural networks. The manager network 

learns to plan the packing sequence, while the worker is trained to predict optimal poses 

for each object. While the method outperforms its baseline especially in harder cases, it 
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utilizes 6 principal view heightmaps of each object and a top view heightmap of the pack-

ing box, resulting in relatively high computational cost and extensive prior information 

requirements. [36] 

One useful module for manipulation tasks is an error recovery protocol. Most studies 

understandably focus on maximising success on first attempt, or gradually improving 

performance over repeated executions. Kim et al. propose an error recovery module, 

learning a recovery action network, a recovery classifier, and a recovery step predictor 

from demonstrations, managing to improve the initial success rate of a needle threading 

task significantly [22]. Guo and Bürger propose a multi-step error recovery module in-

cluding skill model assessment, progress re-evaluation, and identifying unrecoverable 

states, where the system has to be reset [23]. 

Overall, recent research shows trends towards reinforcement learning, learning from 

demonstrations, experience replay, modularity, and other structural approaches. In ad-

dition, operating on a gridded or cropped space can significantly improve efficiency 

where applicable.  

3.3 Grasping 

Finding a successful grasp is an essential prerequisite to many manipulation tasks. 

Hence, it is no surprise that learning grasp synthesis is a thoroughly studied subtask of 

robotic manipulation. In [5], over half of the reviewed articles involved grasping, show-

casing that deep reinforcement learning is a key methodology extensively studied for 

grasping purposes. Several studies reviewed in this thesis utilize RL algorithms for 

grasping [30], [34], [39]–[41]. Other neural network based grasping algorithms have been 

recently studied as well [17], [31], [45], [46], [50], [54]. 

Reinforcement learning methods have the advantage of being able to train without the 

need for preannotated data, although they can pretrain feature extraction on labelled 

image data such as ImageNet [40]. Similarly, off-policy learning can benefit from pre-

trained feature extraction [45]. In addition, annotated training, testing, and validation data 

for the grasp synthesis itself is needed. The dataset can either be self-collected [17] or 

publicly available. 

Multiple annotated image datasets for grasping exist for training, testing, validation, and 

comparison purposes. Kumra et al. discuss these datasets in detail [31]. The most pop-

ular grasping image dataset in studies referenced in this thesis, and overall for bench-

marking [31], is the Cornell Grasp Dataset [65], later extended [66], used in [31], [45], 

[46], [50], [54]. Newer and larger datasets OCID grasp [67], GraspNet-1Billion [68], and 
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Jacquard [69] are also available and in use [31], [50]. Table 2 presents grasping success 

accuracies on the Cornell Grasp Dataset (CGD) as reported in the referenced papers, 

all of which assess grasping success with the same metrics. 

 Cornell Grasp Dataset accuracies in the reviewed studies 

Some studies only consider top-down grasps, where the object is viewed and grasped 

from above, and have achieved high success rates and low inference times in some 

circumstances [17], [31], [45], [50]. However, some objects might be difficult to grasp 

from above, so active vision methods have been developed to view and enable grasping 

from multiple angles [24], [41], [54]. Natarajan et al. even published a benchmark for 

active vision [41]. Their research found that heuristic methods are equally or more suc-

cessful than proposed data-driven methods in some active vision grasping scenarios 

[41]. 

Grasping can be performed in scenes with a singular object. Scenes with multiple objects 

either separated or in clutter, making the task more complicated, have been considered 

in research as well. Multi-object grasping methods are often limited to scenes where 

objects are arranged so that they are graspable and without much occlusion [17], [31], 

[50], [54]. You et al. propose push and grasp actions trained on an actor-critic framework 

with prioritized experience replay, achieving promising simulation results, with limitations 

in occlusion, generalization and robustness [39]. Cheong et al. propose a deep Q-learn-

ing approach to rearrange objects away from the path to the target object, but their 

method is limited to a discretized grid-space [33]. For a more extensive review on deep 

RL methods for grasping in cluttered scenes, refer to [5]. 

3.4 Translation, rotation, and release 

In many tasks and environments motion planning can rely on inverse kinematics [24], 

[31], [50], [54]. However, there are many conditions that require more sophisticated 

methods. These conditions include risk of collision, preferred trajectories, deformable 

objects, and contact-rich manipulation. 

Collisions can lead to failed task executions and damage robots, objects or even humans 

in the working area. Hence, planning movement around obstacles has been studied. Tao 

et al. propose an RL approach that addresses collisions by penalizing them in the reward 

Authors Reference CGD accuracy (%) 

Le and Lien [46] 90.5 
Ribeiro et al. [45] 94.8 
Cao et al. [50] 97.8 
Kumra et al. [31] 98.8 
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function [21]. Bing et al. add collision tolerance to their grid-space trajectory graph plan-

ner by virtually increasing the size of obstacles with a safety region [30]. Ando et al. utilize 

a conditional GAN to generate a collision-free latent space to joint space mapping, where 

the trajectory can be planned with any path planner, then checked and adjusted at re-

maining collision points [57]. Batzianoulis et al. consider user’s personal preference in 

by customizing obstacle avoiding paths to the comfort of each user [29]. While some 

approaches only plan the path of the robot’s end effector, it is important to note that 

different links of the robot arm can collide with obstacles as well. Malik et al. propose a 

swarm intelligence based approach to overcome this issue, while the end effector follows 

a predefined path [70]. 

Besides obstacles, one might want to avoid certain regions for other reasons. For exam-

ple, learning to move a coffee cup around a laptop rather than above it has been dis-

cussed in literature [52], [61]. Bobu et al. propose an inverse reinforcement learning ap-

proach, where human users first teach robots features, such as avoiding the space 

above a laptop, from which task-specific continuous rewards are constructed based on 

few new demonstrations [61]. Contrastingly, Losey et al. propose an IRL approach that 

does not require prior demonstrations but approximates reward, from predefined fea-

tures, based on physical human-robot interaction during execution [52]. 

When manipulating deformable objects, trajectory planning may require a certain shape 

instead of a straight line. Triantafyllou et al. propose a method for garment unfolding, 

learning a trajectory from human demonstrations and adjusting it during execution based 

on SVM-classification of remaining wrinkles [18]. Similarly, Zheng et al. propose a rein-

forcement learning method for page flipping, that learns to avoid abrupt changes in tactile 

sensor data due to warping, resulting in roughly semi-circular trajectories [11].   

In addition to the path, movement speed should be considered in some applications. For 

instance, when throwing a ball the end effectors velocity at release defines the ball´s 

trajectory and thus success or failure [51]. For a grass cutting task, the speed at which 

the scythe blade intersects grass must be considered [59]. 

Sometimes movement cannot be pre-planned but should rather be reactive to the envi-

ronment. For example, visual servoing, meaning following an object in the scene and 

moving accordingly, such as moving towards the object for dynamic grasping, may be 

needed in dynamic environments  [45], [54]. 

Contact-rich manipulation, often encountered in assembly tasks is another area where 

kinematic solvers might fail. Yang et al. propose an RL-framework that learns skill priors 

from demonstrations’ position- and impedance-spaces to perform contact-rich peg-in-
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hole tasks [28].  Belousov et al. utilize tactile sensor data in their proposed RL framework 

to tackle difficulties from contact [26]. For a review on reinforcement learning for contact-

rich manipulation, refer to [6]. 

Two recent studies address stability in learned robot manipulation. Figueroa and Billard 

propose a locally active globally stable dynamical systems approach, learning to actively 

return to the preferred trajectory after perturbation, while maintaining the global conver-

gence of dynamical systems [55]. Khader et al. propose a model-free deep RL energy 

shaping policy that guarantees stability, even in contact-rich tasks, with a fully connected 

damping network [25]. 

Although for many pick-and-place tasks the release step is as trivial as dropping the 

object at or slightly above target location, some applications require more careful con-

sideration before release. In assembly tasks, the target often must be approached at a 

specific angle and release can only be executed at target. This can be achieved by pe-

nalizing object movement after release [26], for example. Newbury et al. consider the 

upright placement of flat-based objects such as mugs and bottles, and propose an actor-

critic like CNN for rotation and its assessment followed by utilizing force-sensor data to 

identify surface contact [43]. 
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4. SIMULATION 

Simulation environments are popular in learned robot manipulation research. The major-

ity of studies reviewed in this thesis utilize simulation, and some of them rely solely on 

simulation experiments [16], [34], [39], [64]. Figure 3 shows quantitative analysis of the 

usage of simulation in the reviewed research papers. 

 

 Usage of simulation in the reviewed studies 

 

 Simulators used in the reviewed studies 

Figure 4 above shows that in the reviewed research papers, CoppeliaSim, formerly 

known as V-REP [71], and its Python-toolkit PyRep [72], is the most popular simulation 

environment [16], [21], [27], [33], [34], [38]–[40], [43], [44], followed PyBullet [73] [26], 

Hardware only; 
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Hardware and 
simulation; 32

Simulation only; 4
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REP / PyRep; 10

PyBullet; 6

Gazebo
; 3

MuJoCo
; 3
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Other; 7

Unspecified; 5
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[31], [36], [42], [61], [64]. Gazebo [74] gained 3 mentions [18], [41], [57] and MuJoCo  

[75] was equally popular [25], [30], [58]. The 3D graphics environment Blender was used 

in two studies [18], [56]. Other simulation platforms were used in only one of the reviewed 

studies each. While this is not a comprehensive analysis of simulation environments for 

robotic manipulation, it provides some indication of their popularity. 

The 4 most popular platforms have been actively developed, with frequent new releases 

[76]–[79]. It seems that simulation environments have advanced, as Cui and Trinkle re-

quested [4], but they are still not perfect. Belousov et al. found they could not accurately 

simulate their chosen optical tactile sensor, DIGIT,  in PyBullet and had to resort to train-

ing contact identification on hardware [26]. After their study was published, the Tactile 

Gym simulator extended to version 2.0, simulating the DIGIT sensor among others [49], 

which showcases the importance of simulator development. The choice of simulator can 

be task dependent. Chen et al. chose to simulate deformable object dynamics in Plas-

ticineLab [80] due to its differentiable Material Point Method capabilities [53]. Chou et al. 

decided that grasp simulation was not necessary for their study, so they simulated on 

Unity VR and allowed the simulated gripper to simply attach to objects at close distance 

[32]. 

The reasons behind using simulation for learning robotic manipulation are clear. Training 

is simpler and faster in simulation, as the scene can be automatically reset and random-

ized over parameter distributions. Moreover, robot arms can be costly, but many simula-

tion environments are free. A physical robot arm’s collision might lead to damage to the 

robot, environment, or a human nearby, while simulated collisions are safe. Mohammed 

et al. recommend in their review to utilize simulation to improve comparability between 

different methods [5]. 

Several benchmarks and datasets have been created for this purpose. One of them was 

mentioned in Chapter 3.2. RLBench, used in 2 reviewed studies [16], [34], consists of 

100 manipulation tasks built on CoppeliaSim and PyRep [63]. Another manipulation task 

benchmark, Ravens-10, built on PyBullet [81], was used by Kumra et al. for evaluation 

and comparison to other methods [31]. The PlasticineLab simulator also includes bench-

mark tasks with reference solutions [80]. Natarajan et al. open-sourced their active vision 

and grasping environment, 2021ActiveVision, for benchmarking purposes [41]. Real-

world benchmarks, such as the Siemens Robot learning challenge, used in [60], or the 

grasp benchmarking protocol [82], used in [41], exist as well, but simulation benchmarks 

are more accessible and variable. 
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Object model datasets provide some degree of comparability, although less strictly than 

task-specific benchmarks. The Yale-CMU-Berkeley (YCB) object model set [83] is used 

in several studies [31], [32], [36], [41], one of which also employs object models from the 

OCRTOC [84] dataset [36]. Image datasets for grasping are discussed in Chapter 3.3. 

While simulation has many advantages, it may not always be necessary, as demon-

strated by the 13 reviewed studies with only real-world deployment. Even the studies 

carried out in simulation only should be aimed to finally benefit real-world manipulation. 

The transfer from simulation to real-world (sim2real) is not always simple. Differences in 

the environment and dynamics might decrease success rate [85]. Moreover, hardware 

sensors can be noisy and inaccurate, which can also undermine performance [31], [41], 

[70]. Filtering can reduce the noise and unnecessary background data [43], but noise 

can also be induced in simulation to aid sim2real [30], [44].  

Yang et al. sidestep the reality gap and improve learning efficiency by abstracting the 

input of their deep Q-network to manipulation affordance masks instead of raw image 

data. Their method only learns to predict manipulation success in simulation, and the 

complete system is implemented on a real robot arm. [38]  

Chebotar et al. propose a more sophisticated sim2real method, that adapts simulation 

randomization by alternating between simulation and real-world rollouts, and achieve 

promising results on complex dynamic systems [85]. The study was published in 2019, 

and simulated on NVIDIA Flex [85], and it is unclear if state-of-the-art simulators would 

need such methods for similar results. Lu et al. use a more diverse domain randomization 

setting, randomizing joint angles, virtual camera poses, lighting, distractor objects, back-

ground images, and robot mesh colour, as well as adding white noise, but without adapt-

ing on real-world rollouts [44]. Tactile Gym 2.0 provides sim-to-real transfer for optical 

tactile sensors, by learning translation models for sensor images with a generative ad-

versarial network [49]. 
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5. HUMAN INTERACTION AND LEARNING FROM 
DEMONSTRATION 

Human-robot interaction takes many forms. Collaborative and assistive robots have 

been a talking point for years. If humans are to enter robot’s working area, the robot’s 

action at contact should be carefully designed to ensure safety. The reviewed studies 

mostly consider physical human-robot contact as means of guidance [52] or demonstra-

tion [23], [61], or as perturbance [55]. Robots can react to human contact with full com-

pliance, only compensating for gravity [61], or some level of impedance, acting as a 

spring-damper system [52], [55]. Behaviour after releasing contact may differ depending 

on task and the interpretation of human intent. Figueroa and Billard propose a globally 

stable locally active control scheme that quickly converges to desired path after pertur-

bation, such as human contact [55]. Losey et al. treat human contact as correction, and 

propose a method for learning a trajectory more desirable for the user [52]. 

Gravity compensation is useful for kinesthetic teaching, where the human user demon-

strates the desired trajectory directly on the robot arm [61]. There are other ways for 

learning from demonstration, LfD for short, as well. Similarly to kinesthetic teaching, robot 

arm trajectories can be directly recorded and used for training from teleoperation [22], 

[60]. Video demonstrations or various types are also common [14], [15], [18], [38], [58], 

[59]. In simulation, demonstration traits can be selected with a mouse [23] or recorded 

from keyboard controlled trajectories [27]. 

There are different ways of utilizing demonstrations for learning manipulation. Perhaps 

most direct type is behaviour cloning, where the robot aims to reproduce the demon-

strated actions accurately. Behaviour cloning from video demonstrations is used as the 

initial policy of an RL algorithm proposed by Zorina et al [59]. Similarly, Zheng et al. 

propose fitting initial policy movement parameters to demonstration, and then further 

optimizing the trajectory with RL [11]. Triantafylloy et al. propose a slightly more elabo-

rate method where the shape of the garment unfolding trajectory is extracted from 

demonstrations, scaled to fit each fold, and adjusted according to observations during 

execution [18].  

Imitation learning can take less direct forms as well. Kim et al. propose a deep imitation 

learning policy that imitates human action speed and foveated vision from demonstra-

tions, but not the actual trajectory [22]. Yang et al. divide imitation learning into captioning 

and manipulation modules. The captioning module employs a recurrent neural network 
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to produce textual commands from visual change maps that are extracted from video 

demonstrations. The manipulation model predicts manipulation affordances of seg-

mented objects and executes the manipulation actions according to the captioned com-

mand. [38] 

Oh et al. improve the robustness and flexibility of imitation learning by injecting state-

dependent Bayesian disturbance into expert demonstrations and allowing their system 

to learn multiple policies. While they achieve impressive results on multiple tasks, the 

key problems with imitation learning remain. New tasks and environments, or even small 

changes require new demonstrations, environmental uncertainty is unaddressed, and 

performance is dependent on the quality of demonstrations. [60] 

Demonstrations can be utilized in their full length or segmented in various ways. Kar et 

al. propose converting demonstrations to individual state-action pairs and respective re-

ward values to guide reward learning [51]. For more structured approach, demonstra-

tions can be segmented to primitive skills [23].  

Another method deriving structure from demonstrations is proposed by Chou et al. Given 

the initial configurations of all relevant objects, their algorithm learns a temporal logic 

structure and its atomic proposition parameters from demonstrations, and optimizes ac-

tions accordingly. [32] 

Demonstrations can also be used to form reward functions for reinforcement learning in 

different ways. Pauly et al. extract action vectors from demonstrations, and negative dis-

tance to them is used as a reward function [58]. Bobu et al. use demonstrated features 

as the basis for their reward function [61]. Wang et al. propose an Information Utilization 

Mechanism, where an inexperienced robot initially relies heavily on demonstration data, 

but gradually transitions to utilizing more environmental data [27]. 

An important notion is that the demonstrations for teaching a robot do not have to be 

human produced. Two referenced meta-learning methods were also demonstrated ca-

pable of learning from other robots, enabling policy transfer across robot embodiments. 

These Domain-Adaptive Meta-Learning methods are designed to adapt to unseen envi-

ronments with a single new demonstration. [14], [15] 

Besides various ways of demonstration, humans can communicate with robots via EEG-

signals. Error-related potentials, ErrP for short, have been demonstrated to indicate an-

ticipated collision [29] or failure [51]. Robots can learn accordingly to avoid these situa-

tions. 
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6. CONCLUSIONS 

While significant advances in learned robot manipulation have been recently achieved, 

it is still not as complete as one might wish. Learning methods have shown gradual im-

provements, but they are still largely task-specific, with varying capability to adapt and 

generalize. Simple tasks such as grasping singular objects have been solved with high 

success rates and fast execution, but with growing task and scene complexity failures 

tend to become more common and computation times drastically increase. 

However, looking at the list in Chapter 2.1, each challenge outlined by previous reviews 

has been addressed to some extent. Multi-modal sensing has been incorporated into 

learning in various ways, often inspired by human perception. Real-time performance 

has been achieved at least on subtask-level, such as grasp synthesis. Improvements in 

reinforcement learning methods, such as informed exploration strategies and utilizing 

experience replay, have led to increased success rates and efficiency, and enabled con-

tinuous learning for many tasks. Adaptation and generalization have been addressed 

with meta-learning schemes and structural learning approaches. Stability and safety of 

learning robots has gained some attention. Simulator development has demonstrably 

benefitted manipulation research. 

The approaches reviewed in this thesis vary greatly on principle and technical level, even 

with similar tasks. Hence, defining state-of-the-art methods is difficult, if not impossible, 

without strictly defining the task, for example to an image or simulation benchmark, eval-

uation metrics, and maybe even methodology type. Besides benchmarking, literature 

reviews with a narrower focus on a task family and methodology, such as [5], [6], can 

provide meaningful comparisons and explore technical details more thoroughly. As re-

searchers keep developing the field, more reviews with a well-defined focus would be 

useful for summarizing the developments and pointing directions for the future. For the 

purposes of research, more important than asking what the best method is, is finding 

areas where significant improvements can be made. 

One area that has gained surprisingly little attention is safety and stability. Especially 

when interacting with humans, safety guarantees should be imposed as a best-practice 

in future research. Another future challenge is the integration of learning frameworks into 

more complete and general manipulation systems. Most of the research is understand-

ably task-specific, but modularization of the acquired skills to form extendable skill hier-

archies still appears to be in early stages. The complexity of more complete systems is 
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a key challenge to their development, in which further improving efficiency and increasing 

computational power might help in the future. 
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