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ABSTRACT

Jere Miettunen: Identifying suitable profile joints in CAD using machine learning
Master of Science Thesis
Tampere University
Master’s Programme in Mechanical Engineering
April 2023

Profile joints serve a critical role in connecting structural profiles, such as beams and columns.
The process of selecting appropriate profile joints can be both complex and time-consuming for
structural engineers. This thesis explores how machine learning techniques can be used to aid in
the selection of profile joints.

Six different machine learning classifiers were implemented and compared. To train the clas-
sifiers, an experimental dataset was extracted from 80 professionally designed building models,
with 14 informative features identified through multiple feature evaluation methods. Data collection
proved to be a significant challenge, highlighting the importance of good data collection practices.
This dataset had enough samples for only 20 different profile joints. As a result, the classifiers
support only this limited number of joints, while the complete solution is required to classify up to
100 joints. Several evaluation methods were used to compare the implemented classifiers. The
best classification accuracy of 98.5% was achieved with XGBoost classifier. Keras Tuner was
used to build a neural network classifier that achieved a classification accuracy of 97.6%. This
neural network was used in a proof-of-concept tool to assist the user in the target software.

As the amount of data was limited, a large effort was made to examine and understand the data
available. Dimensionality reduction methods such as uniform manifold approximation and projec-
tion were used to visualize the data. In addition, the interpretability of the model was enhanced
with a method to analyze how each feature contributes to the individual predictions.

This research contributes to the growing field of artificial intelligence-assisted building design
by providing a foundation for future work on AI-based profile joint selection and offering a de-
tailed analysis of various machine learning models in this context. The most pressing future work
involves collecting more data and repeating the experiments with a larger dataset, as well as ex-
ploring alternative algorithms and feature engineering techniques to improve model performance
and generalizability.

Keywords: machine learning, neural network, profile joint, computer-aided design, building infor-
mation modeling, structural engineering, deep learning, classification

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.
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TIIVISTELMÄ

Jere Miettunen: Koneoppimisen soveltaminen CAD-ohjelmistossa sopivien profiililiitosten tunnis-
tamiseen
Diplomityö
Tampereen yliopisto
Konetekniikan DI-ohjelma
Huhtikuu 2023

Profiililiitokset ovat tärkeä osa rakennesuunnittelua. Ne yhdistävät profiileja, kuten palkkeja se-
kä pilareita. Sopivien profiililiitosten valitseminen voi olla monimutkaista ja aikaa vievää. Tässä
diplomityössä tutkitaan erilaisten koneoppimistekniikoiden mahdollisuuksia helpottaa suunnitteli-
jan työtä profiililiitosten valinnan osalta.

Työssä toteutettiin kuusi erilaista koneoppimiseen perustuvaa luokittelijaa. Niiden kouluttamis-
ta varten kerättiin 80 ammattimaisesti suunnitellusta rakennusmallista opetusdataa, josta tunnis-
tettiin 14 informatiivista piirrettä useiden piirrevalintamenetelmien avulla. Datan kerääminen osoit-
tautui merkittäväksi haasteeksi, mikä korostaa hyvien tiedonkeruukäytäntöjen tärkeyttä. Kerätyssä
data-aineistossa oli riittävästi näytteitä 20 eri profiililiitoksen osalta. Tämän vuoksi toteutetut luo-
kittelijat tukevat vain tätä rajallista määrää liitoksia, kun taas täyttä tukea varten luokittelijan tulisi
pystyä tunnistamaan jopa 100 liitosta. Luokittelijoita vertailtiin käyttäen useita arviointimenetel-
miä. Parhaan luokittelutarkkuuden 98,5 % saavutti XGBoost -luokittelija. Keras Tuner -ohjelmaa
käytettiin rakentamaan neuroverkkoluokittelija, jolla saavutettiin 97,6 %:n luokittelutarkkuus. Tä-
tä neuroverkkoa käytettiin kohdeohjelmistossa osana alustavaa työkalua, joka avustaa käyttäjää
profiililiitosten valinnassa.

Käytettävissä olevan datan tutkimiseen ja ymmärtämiseen panostettiin erityisen paljon, koska
data-aineiston määrä oli rajallinen. Datan visualisointiin käytettiin dimensionaalisuuden vähentä-
miskeinoja, kuten yhtenäisen moniston approksimointia ja projektointia. Lisäksi mallin tulkittavuut-
ta parannettiin menetelmällä, jolla analysoidaan piirteiden arvojen vaikutusta yksittäisiin ennustei-
siin.

Tämä työ edesauttaa kasvavaa tekoälyavusteista rakennussuunnittelua luomalla perustan te-
koälypohjaisen profiililiitosten valinnan jatkokehitykselle ja tarjoamalla yksityiskohtaisen analyy-
sin erilaisten koneoppimismallien hyödyntämisestä tässä asiayhteydessä. Tärkein jatkokehityksen
kohde on kokeiden toistaminen suuremmalla data-aineistolla. Lisäksi tulisi tutkia vaihtoehtoisia al-
goritmeja sekä piirteiden käsittelytekniikoita mallin suorituskyvyn ja yleistettävyyden parantami-
seksi.

Avainsanat: koneoppiminen, neuroverkko, profiililiitos, tietokoneavusteinen suunnittelu, rakennuk-
sen tietomallintaminen, rakennesuunnittelu, syväoppiminen, luokittelu

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.



iii

PREFACE

Undertaking this thesis has been a significant learning experience, and I would like to

acknowledge the individuals who have contributed to this accomplishment.

I want to thank my thesis supervisor, Prof. Eric Coatanéa, for his efficient guidance and

profound expertise, which were instrumental in shaping my research. I also appreciate

my colleagues, Joonas Hyvärinen and Marko Mätäsniemi, whose insights, support, and

discussions have helped me to refine my work.

My gratitude extends also to Inka, my friends, and my family, who all provided continuous

support and advice along the way.

Finally, I’d like to thank Timo Tulisalmi from Vertex Systems for providing me with the

opportunity to pursue this interesting topic and encouraging me to dive deep into it.

Tampere, 28th April 2023

Jere Miettunen



iv

CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Profile joints in building design . . . . . . . . . . . . . . . . . . 4

2.2 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Traditional machine learning classifiers . . . . . . . . . . . . 6

2.2.2 Neural network classifiers. . . . . . . . . . . . . . . . . . 12

3. Data collection and preprocessing . . . . . . . . . . . . . . . . . . . 20

3.1 Dataset collection . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Dataset structure . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Feature descriptions . . . . . . . . . . . . . . . . . . . . 22

3.2.2 Feature evaluation and selection . . . . . . . . . . . . . . . 25

3.3 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Dimensionality reduction . . . . . . . . . . . . . . . . . . 30

3.3.2 Dataset splitting and balancing . . . . . . . . . . . . . . . 33

4. Classifier implementations . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Machine learning models . . . . . . . . . . . . . . . . . . . . 38

4.1.1 Traditional classifiers. . . . . . . . . . . . . . . . . . . . 38

4.1.2 Neural network . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Software integration. . . . . . . . . . . . . . . . . . . . . . . 44

5. Results and comparisons . . . . . . . . . . . . . . . . . . . . . . 46

5.1 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Performances of the classifiers . . . . . . . . . . . . . . . . . . 47

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



v

LIST OF FIGURES

1.1 Profile joint classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Profile joint selection in Vertex BD . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Decision tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Decision forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Linear support vector classifier . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Linear SVC compared to a non-linear SVC . . . . . . . . . . . . . . . . . 11

2.6 Multilayer perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 ReLU activation function . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.8 Leaky ReLU activation function where α = 0.05 . . . . . . . . . . . . . . 14

2.9 Sigmoid activation function . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.10 Tanh activation function . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.11 Softmax activation function . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Distribution of the classes in the dataset . . . . . . . . . . . . . . . . . . . 21

3.2 Repetitive structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Slope feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 AngleXY feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 SectProportion feature: H/(W +H) . . . . . . . . . . . . . . . . . . . . 25

3.6 Feature correlation matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.7 Mutual information chart . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.8 SHAP summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.9 Random Forest feature importances . . . . . . . . . . . . . . . . . . . . . 29

3.10 UMAP results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.11 UMAP connectivity plot . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.12 t-SNE results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.13 Distribution of the classes in the training subset . . . . . . . . . . . . . . . 34

3.14 Distribution of the classes in the training subset after oversampling . . . . 35

4.1 Graph of the implemented neural network . . . . . . . . . . . . . . . . . . 40

4.2 Neural network loss plot . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Ensemble metamodel graph . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Neural network with a convolutional branch . . . . . . . . . . . . . . . . . 43

4.5 Experimental UI for selecting a profile joint . . . . . . . . . . . . . . . . . 44

5.1 Top-k accuracies of the classifiers . . . . . . . . . . . . . . . . . . . . . . 48



vi

5.2 Neural network model confusion matrix . . . . . . . . . . . . . . . . . . . 49

5.3 Neural network model classification report . . . . . . . . . . . . . . . . . 50

5.4 Neural network ROC curve OvR (One-vs-Rest) . . . . . . . . . . . . . . . 50

5.5 Neural network precision-recall curve OvR (One vs Rest) . . . . . . . . . 51

5.6 Average ROC curves for all implemented classifiers . . . . . . . . . . . . 52

5.7 Average precision-recall curves for all implemented classifiers . . . . . . . 52

5.8 Force plots for a successful prediction . . . . . . . . . . . . . . . . . . . . 53

5.9 Force plots for a failed prediction . . . . . . . . . . . . . . . . . . . . . . 54



vii

LIST OF TABLES

3.1 Summary of the features in the dataset . . . . . . . . . . . . . . . . . . . 23

3.2 Average oversampling results using k-fold cross validation with k = 5 . . . 36

5.1 Equations for the evaluation metrics used [13] . . . . . . . . . . . . . . . 47

5.2 Overview of the classifier results . . . . . . . . . . . . . . . . . . . . . . . 48



viii

LIST OF SYMBOLS AND ABBREVIATIONS

AI Artificial Intelligence

ANN Artificial Neural Network

AUC-PR Area under the Precision-Recall Curve

AUC-ROC Area under the ROC Curve

BIM Building Information Modeling

CAD Computer-Aided Design

CNN Convolutional Neural Network

CSV Comma-Separated Value

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DL Deep Learning

DNN Deep Neural Network

FEA Finite Element Analysis

FEM Finite Element Method

GAN Generative Adversarial Network

KDE Kernel Density Estimate

LSTM Long Short-Term Memory

ML Machine Learning

MLP Multilayer Perceptron

NAS Neural Architecture Search

RBF Radial Basis Function

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

SGD Stochastic Gradient Descent

SHAP SHapley Additive exPlanations

SMOTE Synthetic Minority Oversampling Technique

SVC Support Vector Classifier



ix

SVD Singular Value Decomposition

SVM Support Vector Machine

t-SNE t-Distributed Stochastic Neighbor Embedding

UMAP Uniform Manifold Approximation and Projection



1

1. INTRODUCTION

In the past few decades, building design has transitioned from hand-drawn plans and

physical models to the digital world. The use of Computer-Aided Design (CAD) software

has revolutionized the way architects and engineers approach building design. With CAD

software, they can create detailed 3D models of buildings, test different design ideas, and

simulate how a building will look and function before it’s even built. This has not only made

the design process faster and more efficient, but it has also allowed for greater accuracy

and precision in the design. To increase the efficiency of the design process further,

routine design tasks are automated. Automation in computer software can be achieved in

various ways and the use of Artificial Intelligence (AI)-based methods is gaining traction

in many fields, including Building Information Modeling (BIM) [1].

This thesis focuses on the implementation and use of AI-based methods to simplify profile

joint selection in the BIM software Vertex BD. Profile joints are used to connect multiple

structural profiles such as beams and columns. These connections then suppress some

or all degrees of freedom between the profiles, transferring forces between them. Figure

1.1 presents an example of a profile joint that connects a steel beam and a steel column

and displays the role of the proposed profile joint classifier. While many of the general

profile joints are already generated automatically in Vertex BD, this automation is based

on explicitly programming them to follow certain rules. This method has difficulties when

there are multiple seemingly equally valid choices. Even if it were possible to program

perfect rules for joints, it would likely require a lot of work and result in a significant amount

of code which needs maintenance. This is where AI-based methods have potential to be

useful. We can use existing data related to profile joints to teach a Machine Learning (ML)

model to figure out the decision-making factors for selecting the correct profile joint. In this

thesis, six different ML approaches are experimented with, and the results are compared.
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Predictive
model

joint a, joint b, joint c, ...
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joint
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Figure 1.1. Profile joint classifier

The research questions that guide this work are:

1. What are the key factors to consider when selecting a profile joint for connecting

structural profiles such as beams and columns in building design?

2. How can machine learning techniques be leveraged to simplify the selection of

profile joints, and what are the benefits of doing so?

3. Which machine learning models are best suited for profile joint selection in building

design, and how do they compare in terms of accuracy?

The goal of this work is to provide an AI-based solution to profile joint selection, which

can reduce the manual effort required, and increase the accuracy and precision of the

design process. Moreover, this work has the potential to facilitate the automation of other

design tasks, leading to more efficient and reliable building designs.

Chapter 2 of this thesis presents the relevant theory related to building design and ML,

outlining the fundamental principles of structural engineering related to profile joints. It

also provides an overview of the different ML techniques and algorithms that are ex-

perimented with in the implementation. Chapter 3 describes how the training data was
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collected, and how the features were selected and processed. It also visualizes the data

by utilizing state-of-the-art dimensionality reduction techniques. Chapter 4 describes the

implementations of the different classifiers and provides information on how they were

trained. Furthermore, it discusses the software integration and design choices made dur-

ing the implementation phase. Chapter 5 presents the evaluation metrics and experimen-

tal results for the different ML models. It includes a method to assist in the interpretability

of the ML models. Finally, Chapter 6 summarizes the main findings of the thesis and

provides recommendations for future research and development in this area.

As part of the writing process for this thesis, the language model ChatGPT, provided by

OpenAI, was utilized to enhance the clarity, coherence, and overall quality of the text.

ChatGPT is a state-of-the-art language model that uses deep learning algorithms to gen-

erate human-like responses to text-based prompts. In addition, ChatGPT was also used

to assist with some of the programming tasks associated with this research. The soft-

ware’s ability to generate code snippets and provide context-specific suggestions helped

to streamline the development process and ensure that the resulting code was accurate

and efficient. [2]
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2. BACKGROUND

2.1 Profile joints in building design

The design of a structural system can generally be divided into the design of structural

members and the design of joints. The structural members are physically distinguishable

parts of a structure, such as beams and columns. These parts are intended to carry the

loads of the structure. The role of joints is to connect two or more structural members

and transfer loads between them. They can be designed to be more flexible or rigid

depending on the structural requirements and loads applied. Flexible joints, such as those

utilizing bearings or expansion joints, are used to absorb movements that are caused by,

for example, thermal expansion and vibrations. Rigid joints, such as those that utilize

welding, are typically used to transfer large loads with minimal movement between the

connected parts. [3, 4]

When selecting joints, several factors should be taken into account. The joint needs to

be of appropriate type, having the correct degrees of freedom, to be able to transfer the

loads effectively. Most importantly the joints should be strong and durable enough. They

need to be able to withstand the forces they will be subjected to over time. They should

also be cost-effective and easy to construct. Finally, the joint needs to comply with local

building codes [4, 5]. Evaluating and optimizing the mechanical properties of joints can

be difficult [6]. Finite Element Analysis (FEA) software can be used to approximate these

properties. It is based on Finite Element Method (FEM) which is used to numerically solve

differential equations. [7]

Vertex BD is a Building Information Modeling (BIM) software designed for architects, en-

gineers and construction professionals. It has 3D Computer-Aided Design (CAD) capabil-

ities, and it allows users to create and manage building projects from conceptual design

to construction documentation. In this thesis, the structural design and more precisely,

the profile joint selection is the main focus related to the software. Figure 2.1 presents an

example of selecting a profile joint through the Connection Details browser in Vertex BD.

[8, 9]



5

Figure 2.1. Profile joint selection in Vertex BD

The software aims to automate as many repetitive tasks as possible including the se-

lection of profile joints, which can be generated automatically along with the structural

elements. The building structures can often be very complex, which makes explicitly

programmed automatic selection difficult or sometimes even impossible. Also, it’s not un-

usual that the automatically generated structural elements need further modifications and

tinkering. Since the users are specialists, they are able to select appropriate profile joints

from the software’s joint library when it’s necessary. There are two main issues when pro-

file joints are chosen manually. First, there is a risk of accidentally selecting the incorrect

joint. Although the software has measures to detect such errors, it is preferable to avoid

them altogether. Second, choosing profile joints manually can be time-consuming, par-

ticularly when selecting from a large library. Currently, users can assign frequently used

joints as favorites, but it can still be challenging to find the optimal joint for a specific use

case. [9]

To simplify the profile joint selection, AI-based solutions are experimented with. The next

subchapters explain the theory behind ML and the different approaches more thoroughly

and Chapter 4 describes the specific implementation and the steps required to form the

final system.

2.2 Machine learning

Machine Learning (ML) is a type of Artificial Intelligence (AI) that allows systems to au-

tomatically learn and improve from experience without being explicitly programmed [10].

ML algorithms learn patterns from data, which can be either labeled or unlabeled, and

then use those patterns to make predictions or take actions on new data. There are dif-

ferent types of ML algorithms, such as supervised, unsupervised, and semi-supervised
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learning.

Supervised learning is a type of ML where a model is trained on labeled data. During

training, the model learns to connect a certain type of input to a corresponding output.

The goal for the model is to make accurate predictions on new, but similar, unseen data.

[11, 12]

In unsupervised learning the training data is not labeled beforehand. Instead, the algo-

rithm’s goal is to find patterns or structure in the data. This is useful when the objective

is to explore and understand the underlying structure of the data, rather than making

predictions or taking actions based on it. Another common use for unsupervised learn-

ing is generative modeling, where the model attempts to create new data based on the

unlabeled training data. [12].

Semi-supervised learning is a combination of supervised and unsupervised learning. This

means that only some portion of the training data is labeled, while the rest is unlabeled.

The model then uses both labeled and unlabeled data to learn patterns and make pre-

dictions. Semi-supervised learning is useful when obtaining labeled data is expensive or

time-consuming [13, p. 31]

Deep Learning (DL) is a subfield of ML that is based on using neural networks with many

layers to perform tasks that can be difficult or even impossible for traditional ML algorithms

to handle. DL has been successfully applied in various fields such as autonomous driving,

medical imaging, natural language processing, and pattern recognition. In the construc-

tion industry, DL is used in, for example, crack detection, equipment tracking, construction

work management, server assessment, and 3d point cloud enhancement [14]. The pop-

ularity of DL is due to the increased amount of computer-accessible data, availability of

benchmark datasets, and the increase in computing power. Advancements in algorithms

have enabled the training of deep neural networks with almost arbitrary depth. With the

potential to automate pattern recognition and feature detection, DL is poised to make

even greater strides in the future. [12, 13]

2.2.1 Traditional machine learning classifiers

In the broader field of ML, traditional classifiers have proven to be simple, interpretable,

and effective in handling high-dimensional data too [15]. This subchapter will review

some common traditional ML methods for classification, such as random forest classifiers,

Support Vector Machines (SVMs), and Naive Bayes classifiers.

Ensemble learning is a ML technique where multiple models are trained and combined to

make a final prediction. This group of multiple individual models is called an ensemble.

While DL methods, such as Deep Neural Networks (DNNs), have been revolutionary

in their ability to learn from complex data, they may not always be the best option for
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every problem. Ensemble methods, on the other hand, can perform well on cases that

are not as suited for DL. One reason for this is that ensemble methods can be more

effective with smaller datasets. Ensemble learning is a broad topic that can be utilized

in simple traditional ML methods like decision forests, but they can similarly be utilized to

combine more complex models, such as DNNs too. The idea is that by combining the

predictions of multiple models, the overall performance of the ensemble can be better

than any single model alone. This can be done in several ways, such as by averaging

the predictions of the models, or by training a separate model to make the final prediction

based on the outputs of the other models. Ensemble methods are often used to improve

the performance of a model, particularly in cases where the individual models have high

bias or high variance. Ensembling may lead to increased complexity when comparing to

the individual models. This can cause, for instance, longer training times and decreased

interpretability. [16–18]

An example of ensemble learning is Random Forest. It is a supervised ensemble method

for decision trees. A decision tree is a model that makes predictions based on a series

of decisions made by the model based on the input data. A decision tree consists of

condition nodes and leaf nodes, which represent predictions. The input is processed

through the condition nodes until a leaf node is reached. In Figure 2.2 the rectangles

represent the condition nodes and the ellipses the leaf nodes.

a > 0

c > 0 JIZ

X Y

b > 0 a > -10

Figure 2.2. Decision tree

Combining multiple decision trees results in a decision forest, and an example of one

is presented in Figure 2.3. Random forest is a popular type of decision forest. In a

random forest, multiple decision trees are trained on different subsets of the data and

with different subsets of the features. The final prediction is then based on the combined

predictions of the individual decision trees. The key idea behind random forests is that

by training multiple decision trees on different subsets of the data, the model will be less

prone to overfitting, and the final predictions will be more robust. Additionally, since each
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tree in the forest is trained on a different subset of the data, the trees will have different

levels of bias and variance, which helps to balance out the overall performance of the

ensemble. Overall, Random Forest is a very powerful algorithm that can be used for both

classification and regression tasks. [19–21]

Input

Majority Voting

Prediction

Decision tree 1 Decision tree 2 Decision tree N

...

Figure 2.3. Decision forest

In the decision forest presented as an example, predictions are made by combining the

results from multiple decision trees. One common method for combining the predictions

is the majority voting approach, where the prediction that occurs most frequently across

the trees is selected as the final prediction. However, there are other methods available

for aggregating predictions, such as the weighted average and median. These methods

may be preferred in certain scenarios, such as when certain trees or predictions are

deemed more reliable or informative than others. In regression tasks, the approach to

aggregating predictions may differ. Rather than selecting the most frequent prediction or

using a median, a common method is to take the mean of the predicted values. [13]

Support Vector Machines (SVMs) are a type of supervised ML models that can be used

for both classification and regression tasks. Those SVMs that are used for classification

are often called Support Vector Classifiers (SVCs). The basic idea behind SVCs is to

find a hyperplane between the different classes in the data. If each entry in each class

can be separated with these hyperplanes, the data is linearly separable. This also means
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that there are an infinite number of possible hyperplanes that can be fitted to the training

set. In linear SVCs, the training is done by finding the hyperplane that is the furthest

distance away from the closest training instances. This can be also thought of as creating

the widest possible decision boundary between the classes, where the hyperplane is ex-

tended with two support vectors. If all the data is to be kept outside the decision boundary,

it is called hard margin classification. Hard margin classification does not work if the data

is not linearly separable, e.g. there is even a single entry that is inside the other classes

cluster, which could easily happen from a labeling or measuring error, for instance. Even

if the data would be linearly separable, hard margin classification is sensitive to outliers

reducing the final classification accuracy. [17, p. 155]

Compared to the hard margin classification, a more flexible approach would be to use soft

margin classification. It differs from hard margin classification by allowing some margin

violations, where some points might end up inside or even on the wrong side of the

decision boundary. The result depends on the slack variables, which control the allowed

violations when calculating the solution. This can be tuned by using the C parameter,

where a low value of C leads to a wider decision boundary but more misclassified points.

A high value of C results in a smaller decision boundary but fewer misclassified points.

With its flexibility, soft margin classification also might need more tuning than hard margin

classification. [11, 17]

Figure 2.4 presents the decision boundaries formed by a SVC when applied to a synthetic

dataset with three classes. The SVC is trained using a linear kernel and a regularization

parameter C = 1, attempting to balance margin maximization and classification accuracy.

While the linear SVC may not always be the best choice for complex, non-linearly sepa-

rable data, it can provide a reasonable solution in situations with well-separated classes

in a low-dimensional feature space.
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Figure 2.4. Linear support vector classifier

When working with a dataset that is far from linearly separable, linear SVCs likely won’t

provide good results even when using soft margin classification. If adding new input

features is possible, it might sometimes result in a linearly separable dataset. The other

approach would be to use non-linear SVCs for these datasets. This means that instead

of a straight line or a hyperplane, a non-linear decision boundary is used instead. This

can be achieved by first transforming the data into a higher-dimensional space, called the

feature space, and then applying the linear boundary. Non-linear SVCs are more flexible

and capable than linear SVCs, but at the same time more complex. [22, p. 14] [17, p.

159]

In Figure 2.5, the decision boundaries of a linear SVC and a non-linear SVC using the

Radial Basis Function (RBF) kernel are compared on a synthetic dataset with non-linear

class boundaries [23]. The linear SVC struggles to separate the classes effectively due

to the inherent non-linearity of the dataset, resulting in an unsatisfactory classification

performance.
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Figure 2.5. Linear SVC compared to a non-linear SVC

On the other hand, the non-linear SVC with the RBF kernel is capable of handling the

non-linear nature of the dataset and successfully separates the classes, as shown in the

second plot of Figure 2.5. The RBF kernel maps the input data into a higher-dimensional

feature space, enabling the SVC to find a non-linear decision boundary that accurately

separates the classes. This example highlights the importance of choosing an appropriate

kernel function for the specific characteristics of the dataset when working with SVMs,

as non-linear kernels can significantly improve classification performance on non-linearly

separable data.

The Naive Bayesian classifier is a popular supervised ML algorithm used to predict the

class of a new observation based on the Bayes theorem of conditional probability. The

algorithm assumes that the predictor variables are independent and follow a normal distri-

bution. It works efficiently if its assumption is observed and is more useful in determining

the most likely class rather than the actual probabilities for various classes. The clas-

sifier requires little explicit training and can perform well with high-dimensional or large

datasets. Before training, the conditional probability distribution should be determined,

and the individual probability distributions of features should be estimated from the train-

ing dataset. There are different types of naive bayes classifiers, including Multinomial

Naive Bayesian, Bernoulli Naive Bayesian, and Gaussian Naive Bayesian. The algorithm

has been successfully applied in spam classification, among other applications. [13, p.

63]

In conclusion, this subchapter has provided an overview of traditional machine learning

methods for classification, including random forest classifiers, SVCs, and naive bayes

classifiers. While deep learning has revolutionized the field of machine learning, tradi-

tional classifiers continue to hold value due to their simplicity, interpretability, and effec-

tiveness in handling high-dimensional data. Ensemble methods, such as Random Forest,

are particularly useful for smaller datasets and can be more effective in some cases than
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deep learning methods. The choice of classifier depends on the specific problem at hand

and the characteristics of the dataset. As demonstrated in the provided examples, se-

lecting the appropriate classifier, kernel function, or ensemble method can significantly

impact classification performance. Therefore, understanding the strengths and limitations

of each traditional classifier is essential for tackling various classification problems in ma-

chine learning.

2.2.2 Neural network classifiers

Deep Learning (DL) methods, such as neural networks, should be considered when sim-

pler models don’t achieve adequate results. Some tasks where Deep Neural Networks

(DNNs) usually excel are pattern matching in images, natural language processing and

audio related tasks. These tasks are usually high dimensional which means that the

dataset has numerous features. [16, p. 307]

Artificial Neural Network (ANN) is a type of machine learning model that is originally

inspired by the structure and function of the human brain. Some researchers suggest

dropping this biological analogy to emphasize that the ANNs aren’t limited to biologically

plausible systems [17, p. 277]. ANN consists of a number of connected nodes or artificial

neurons, each of which performs a simple mathematical operation on its inputs.

A supervised ANN is trained by introducing example data associated with the correct out-

puts. During the training phase called forward pass, a batch of examples is processed

through the network to yield a predicted output. The difference between the predicted

output and the true output is called the loss value, which is high for an untrained network.

During the iterative process called backpropagation, the gradient of the weights and bi-

ases is calculated with respect to the loss value. These gradients are then used to update

the weights and biases using an optimization algorithm such as Stochastic Gradient De-

scent (SGD), Adam, or other variants of the gradient descent [24]. Modern ML software

libraries, such as the popular TensorFlow created by Google, have the backpropagation

algorithm built-in and the user can choose a suitable optimizer and possible hyperparam-

eters. One of these hyperparameters is the learning rate which tells the gradient descent

algorithm how strongly should the weights and biases be adjusted on each iteration. A

low learning rate will make the training process take longer, but a too high learning rate

might have trouble reaching convergence. [13]

There are plenty of different architectures for ANNs, including fully connected ANN, which

is the most basic and commonly used type. Fully connected ANNs are called Multilayer

Perceptrons (MLPs). An example of a simple MLP is shown in Figure 2.6. In addition to

the MLPs, other types of neural network architectures include Convolutional Neural Net-

works (CNNs) for image recognition, Recurrent Neural Networks (RNNs) for sequential

data, Long Short-Term Memory (LSTM) networks for addressing vanishing gradients in
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RNNs, autoencoders for unsupervised learning and data compression, and Generative

Adversarial Networks (GANs) for generative modeling. These architectures are designed

to address specific types of problems and have been developed for various applications.

[13, p. 123-159]

Output layerInput layer Hidden layer

Neuron

Neuron
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Figure 2.6. Multilayer perceptron

The MLP consists of dense layers, which means that each neuron on that layer is con-

nected to every neuron on the next layer. Each arrow represents the connection between

the neurons, where the output of a neuron on an earlier layer is a direct input to the neu-

rons in the next layer. The inputs are weighted, and the outputs from each neuron are

combined to make a final prediction. Also, for each neuron, a bias term is added. The

weights and the bias terms are the parameters that are modified during the training. The

more hidden layers there are, the higher the network’s capacity will be as there will be

more trainable parameters. With a larger and more complex network, the computational

cost will increase. Overfitting might also occur more easily with a larger network, but this

can be mitigated with proper regularization techniques. [13, p. 66-73]

In each artificial neuron, the output is calculated by some non-linear function of the sum of

its inputs. These non-linear functions are usually called activation functions. Without the

non-linearity introduced by the activation functions, the model couldn’t accurately estimate

the non-linear nature of many problems. Also, a network without non-linear activation

functions could be reduced and represented as a single neuron. Some commonly used

activation functions are Rectified Linear Unit (ReLU), sigmoid, tanh and softmax. The
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equation of ReLU activation function is defined as:

f(z) = max(0, z), (2.1)

where the z is the input value. Figure 2.7 presents the plot of the ReLU activation function.
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Figure 2.7. ReLU activation function

ReLU activation function is very simple as it only compares if the input value is greater

than zero and if it is, the output is equal to the input and otherwise the output is zero.

The main advantage of ReLU activation function is its speed. With a high learning rate

ReLU might cause the weights to update in a way that the neuron will never update during

the training again. This means that the ReLU neuron will die and therefore stop learning.

This issue can be averted with a suitable learning rate or by using a leaky ReLU activation

function. The equation for leaky ReLU is defined as:

f(z) = max(αz, z), (2.2)

where z is the input value and α is a small constant. An example of leaky ReLU is

visualized in Figure 2.8.
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Figure 2.8. Leaky ReLU activation function where α = 0.05
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This means that when the input is negative, the activation is a small positive slope instead

of zero. [13, p. 74-75]

The equation of the sigmoid activation function, denoted by σ(z), is defined as:

σ(z) =
1

1 + e−z
, (2.3)

where the z is the input value and e is the base of the natural logarithm. The sigmoid

function is plotted in Figure 2.9.
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Figure 2.9. Sigmoid activation function

The sigmoid activation is a mathematical function that takes any input value z and squashes

it to a value between 0 and 1. Large negative input values approach 0 and large positive

values approach 1. The sigmoid has some drawbacks, such as the vanishing gradient

problem, where the gradient becomes very small as the input to the sigmoid becomes

either very large or very small. In the backpropagation algorithm, a near zero gradient

will be multiplied with the latter gradients, and therefore they will vanish too. Because of

this, when the gradient becomes very small, the training of the neural network can slow

down. This problem is comparable to the dying ReLU neurons. The sigmoid used to be a

popular choice, but due to its drawbacks it is less common nowadays. It is still commonly

used for binary classification problems in the output layer. [13, p. 73-74]

The hyperbolic tangent, or tanh for short, is another commonly used activation function in

neural networks. The equation of the tanh function is defined as:

tanh(z) =
ez − e−z

ez + e−z
, (2.4)

where z is the input value and e is the base of the natural logarithm. The tanh function is

similar to the sigmoid function, but it outputs values between -1 and 1, with a range that

is twice as wide as the sigmoid. The plot of the tanh function is shown in Figure 2.10.
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Figure 2.10. Tanh activation function

Compared to the sigmoid function, the tanh function has the advantage of being zero-

centered, which can make the optimization of the weights in a neural network easier.

However, the vanishing gradient problem still exists with the tanh function, as the gradient

becomes very small as the input values get very large or very small. [13, p. 74]

For multi-class classification output layer, softmax activation function is commonly used.

The softmax function takes a vector of inputs and outputs a probability distribution over

multiple classes, ensuring that the sum of the probabilities equals 1. The equation of the

softmax function is as follows:

softmax(zi) =
ezi∑︁K
j=1 e

zj
, (2.5)

where zi represents the input values, e is the base of the natural logarithm, and K is the

number of classes. [25, p. 15] Figure 2.11 presents an example of how softmax output

looks like.
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Figure 2.11. Softmax activation function
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The softmax activation function assumes a mutually exclusive relationship between classes,

forcing the probabilities to sum to 1. This behaviour is not usually useful outside the output

layer. [13, p. 119]

The activation functions introduced here are some of the most common ones, but other

activation functions that perform well exist too. For example, the mish activation function

proposed by Misra has been shown to outperform ReLU in some experiments [26]. How-

ever, due to the simplicity and general performance that ReLU achieves, the scope on

activation functions has been limited to the ones presented here.

Regularization is a critical method in machine learning that can help prevent overfitting

and improve model generalization. Dropout is a powerful regularization technique that can

be applied to a wide range of models [16]. It is a cost-effective way to prevent complex co-

adaptations of neurons, which can result in overfitting and poor generalization on unseen

data [27].

Dropout works by temporarily removing a neuron and all its connections from the network

during training with a certain probability. By randomly removing neurons, dropout forces

the remaining neurons to take on more or less responsibility for the inputs, making the

training process noisy and leading to better generalization on held-out data. [27] More-

over, dropout can promote sparse representations of hidden units. This can be useful for

autoencoder models, which are a type of neural networks where the input and output are

the same. [13]

Although a dropout probability of 0.5 is often effective, the effect of dropout doesn’t de-

pend strongly on the dropout probability [27]. Dropout is often combined with other reg-

ularization techniques, such as L2 regularization, in practice [16, 25]. It is not recom-

mended to use dropout on the first layer of a network, as it can remove important parts

of the input dataset [13]. Moreover, dropout is not applied to the output layer, and it is

important to note that dropout regularization is not used during testing or prediction [16].

L2 regularization is a regularization technique that works by adding a penalty equivalent

to the square of the magnitude of weights in the logistic regression cost function. The

hyperparameter α determines how much the model is penalized and affects the weights

and complexity of the logistic regression. L2 regularization reduces complexity but does

not aid in feature selection and shrinks all weights, but does not make them exactly zero.

In contrast, L1 regularization works by adding a penalty equivalent to the sum of the ab-

solute values of weights. L1 regularization uses absolute weight values for normalization

and results in some weight estimates being exactly zero. Therefore, L1 regularization

performs feature selection and results in sparse models. Both L1 and L2 regularization

are used to reduce overfitting, but L1 regularization also has a feature selection behavior.

[13, p. 111]
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Data augmentation is a powerful regularization technique in ML that can enhance the per-

formance of models. Collecting real data can sometimes be difficult and time-consuming,

and data augmentation provides a cheaper alternative. The amount of data is increased

by creating new variations of the existing data artificially. For example, image data can be

slightly rotated, shifted, and resized, creating new instances that are still representative

of the original image. By doing so, it’s possible to reduce overfitting and improve general-

ization, as it encourages the model to learn more meaningful and invariant features. [13,

17]

Early stopping is another popular method to avoid overfitting used especially in neural

networks. This technique involves measuring the performance of the model after each

iteration during the iterative training process. The performance criteria could be accuracy

or cost on the validation dataset. With early stopping, one of these criteria, such as

cost, is monitored until a certain iteration where the cost starts to increase. This is the

point where the model loses the local or global minima, causing the cost to increase, and

the model’s ability to generalize may weaken, resulting in overfitting of the training data.

Therefore, this iteration is considered the best point to stop training the model. [13, p.

109]

Convolutional Neural Network (CNN) is a type of ANN that has been specifically designed

for image recognition and computer vision tasks. The idea behind CNNs is to use a

hierarchical structure that resembles the way the human visual system processes images.

The network is trained to detect increasingly complex features in the data by using a series

of convolutional layers. [17, p. 431]

Convolutional layers apply filters, also known as kernels, to the input image. Each fil-

ter slides over the image and performs a dot product between its weights and the pixel

values within the region that it covers. The output is a feature map that indicates the

presence or absence of that particular feature at each location in the input image. By

stacking multiple convolutional layers on top of each other, the network can learn to de-

tect increasingly complex features, such as edges, corners, and textures, as well as more

abstract concepts like faces and objects. [13, p. 128]

Pooling layers are another important component of CNNs. These layers downsample the

feature maps produced by the convolutional layers, reducing the spatial dimensionality

of the data. This makes the network more efficient and reduces the risk of overfitting.

The most common form of pooling is max pooling, which takes the maximum value within

each pooling region. [17, p. 442-444]

CNNs have several advantages over other types of neural networks. They are particu-

larly effective at learning hierarchical representations of the input data, where lower-level

features are gradually combined to form higher-level abstractions. This makes them well-

suited for tasks like object recognition, where objects can be decomposed into a set of



19

visual features that can be detected at multiple scales and locations within the image.

[13, p. 128] CNNs have achieved state-of-the-art performance on a wide range of image

recognition tasks, including object recognition, image segmentation, and facial recogni-

tion. They have also been successfully applied to other domains like natural language

processing and voice recognition [17, p. 431].
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3. DATA COLLECTION AND PREPROCESSING

3.1 Dataset collection

The success of any ML model depends heavily on the quality and quantity of data used

to train it. In this chapter, the focus is on the data collection process for a ML model that

classifies profile joints using data related to the member profiles in building structures.

The data consists of various features including geometric properties of the profiles and

their spatial relation. Subchapter 3.2 goes into more detail on the specific types of features

that were collected from the building models.

The search for suitable existing datasets to be used in the training was unsuccessful,

which means that the entire dataset used in this research was collected during the thesis

process. Due to time constraints, the final dataset does not cover all profile joints that

are available in the software. Instead, the training is done with a subset of profile joints

that should still give an acceptable approximation of how the model might perform with a

larger set. The dataset was extracted from 80 professionally designed building models,

which resulted in a dataset with a size of 1.65 GB when stored in Comma-Separated

Value (CSV) format.

The first experiments were done with a very small dataset as the data collection began

simultaneously during the implementation phase. This method allowed ML models to be

trained on all currently available data, and as more models became available, the dataset

was easily expanded without the need to re-extract data from the previous models. If

new features were introduced to the dataset, the extraction process would still need to be

repeated. For the comparisons of the different ML classifier implementations, the same

dataset was used each time. Figure 3.1 displays the limited subset that was used for the

comparisons. The different profile joint types are represented with a number between 0

and 19.
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Figure 3.1. Distribution of the classes in the dataset

The data collection process revealed an imbalance in the usage frequency of profile joints.

The effects of the imbalance were investigated and data balancing methods such as

Synthetic Minority Oversampling Technique (SMOTE) was experimented with [28]. These

methods and their results are discussed in Subchapter 3.3.2. Due to the nature of the

building structures, a portion of the data extracted from the building models was either

very similar or even identical. This is primarily due to the repetition of profile structures

within a building, as shown in Figure 3.2. In addition to the repetition in a single structure,

many design patterns are repeated from one building to another too.

Figure 3.2. Repetitive structures
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Repetition within the dataset poses a risk for data leakage, where some of the duplicates

end up in both training and test sets, which can lead to overly optimistic performance

metrics and inaccurate evaluations. The repetition proved to be an interesting topic to

investigate and is discussed more in Subchapter 3.3.2.

Collecting training data from professionally designed projects was not the only option

available. New data could be created manually, but this method would require lots of work

and some knowledge and skills to be able to design the structural model and choose

the correct profile joints. To reduce the workload, some automation could be done, but

it was still considered out of the scope of this thesis. Instead, the previously mentioned

method, SMOTE, was explored to augment the data by automatically generating new

data samples based on the existing data. However, it should be noted that SMOTE can’t

create new data for those profile joints that don’t already have some existing samples.

3.2 Dataset structure

The extraction process generates multiple separate Comma-Separated Value (CSV) files.

The CSV format was chosen due to its versatility, as it can be easily read and written using

various programming languages, and is also compatible with any basic text editors. The

full dataset is split into three files that contain an equal number of rows, where each row

represents a single sample. Two of these files are reserved for the input features, and

the third contains the corresponding labels. The first file includes rows with two 16x16

pixel binary images of the cross-sections, which are flattened and concatenated. The

binary images were not utilized in the current implementation, and the reasons for this

are presented in Subchapter 4.1.2. The second file contains the rest of the input features

in a structured format where each column represents a single feature.

The labels in the third file include the profile joint names as well as the names of the

libraries to which each joint belongs. Label encoding was then applied to transform each

unique label into a unique integer, as previously displayed in Figure 3.1. This step is

essential because most ML algorithms require numerical representations [17]. The label

encoding process also involves saving the relations between the original labels and the

encoded numerical representations, facilitating the decoding of predictions back to the

original labels. Finally, the extraction process records information related to the building

models, such as the number of unique types of profile joints and the total number of

samples extracted.

3.2.1 Feature descriptions

In this subchapter, a description of the features used in the final dataset is provided.

The features were initially chosen based on what data was easily available, and were
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subsequently evaluated using methods such as mutual information scoring, random forest

scoring, and SHAP scores to assess their relevance and importance within the problem

domain. These methods and their results are discussed in Subchapter 3.2.2. Features

that were found to have low relevance or importance were left out of the analysis. Table

3.1 summarizes the descriptions of all the features used in the final models.

Table 3.1. Summary of the features in the dataset

Feature Description

SlopeA Slope between the first profile and the horizontal plane

SlopeB Slope between the second profile and the horizontal plane

MeetRatio Ratio of the overlapping area between the profiles

AngleXY Angle between the two profiles in the horizontal plane

SectProportionA First profile’s cross-section height divided by the sum of its

height and width

SectProportionB Second profile’s cross-section height divided by the sum of

its height and width

ProfLengthProportion Length of first profile divided by the sum of its length and

the second profile’s length

ProfEndDistProportion Proportion of minimum Euclidean distance between the

profiles to the sum of the minimum and maximum

SectAreaA Area of the first cross-section

SectAreaB Area of the second cross-section

ProfWeightA Weight of the first profile

ProfWeightB Weight of the second profile

ProfLengthA Length of the first profile

ProfLengthB Length of the second profile

Each sample’s input data is derived from two profiles, and several features are extracted

separately from each profile. To differentiate between them, features from the first profile

are labeled with the suffix A, while those from the second profile are labeled with the

suffix B. Figure 3.3 illustrates how the features SlopeA and SlopeB are calculated. The

selected angle is the smallest of the possible options, limiting the values to a range of 0

to 90 degrees.

Knowing the possible range, the values can be easily scaled to a range of 0 to 1 by dividing

them by 90 degrees. This scaling is necessary for some of the classifier algorithms used

in this thesis, as they expect input within this range [17, p. 72]. A low value indicates a
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horizontal profile, while a high value signifies a vertical profile.

Figure 3.3. Slope feature

Figure 3.4 demonstrates the calculation of the AngleXY feature using an example. Similar

to the Slope feature, it can be scaled from a range of 0 to 90 degrees to the optimal 0 to

1 range using a straightforward division.

Figure 3.4. AngleXY feature

Figure 3.5 shows the calculation of the SectProportion feature. Unlike the previous

two features, it is dimensionless and does not require scaling. Taller cross-sections have

higher values, while wider cross-sections have lower values.



25

W

H

Figure 3.5. SectProportion feature: H/(W +H)

The size of the dataset increased during the project, but for most experiments and the

final results, only a subset of the available data was used. This decision was made for two

reasons. First, the entire dataset is so large that processing it can be time-consuming, and

training the classifiers on the full dataset can be prohibitively slow. Second, modifying the

dataset continuously during the course of the project could invalidate the results obtained

from previous experiments.

As the dataset grew in size, so did the number of unique features. While exploring the

data, new ideas for features arose. However, once the subset of data was locked in, any

new features were deferred to future iterations of this project. Consequently, they have

not been included in this thesis.

3.2.2 Feature evaluation and selection

Evaluation and selection of features can be accomplished in multiple ways, and in some

cases, it may not be necessary at all, as some classifiers have built-in feature selection

methods in their training process. To better understand how classifiers work, it is impor-

tant to evaluate features in some way. In this subchapter, the correlation matrix is first

utilized to visualize the linear relationships of the features. Then three different meth-

ods, mutual information, mean absolute SHAP scores, and feature importances by the

RandomForestClassifier are also used to evaluate the features. [29, 30]

Figure 3.6 displays the correlation matrix of the features in the dataset. It was created

using the pandas.DataFrame.corr() method which computes pairwise correlation of

the features. From it the strength and direction of the linear relationships between each

pair of variables can be seen. If there were any features with a perfect positive or negative

correlation, the features would be redundant, and a single feature would essentially con-
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tain all the information already. In this case there are no features that perfectly correlate,

but for example the two SectArea features have a correlation of 0.85. This means that

when the other profile’s cross-section area increases, the other profile’s size usually in-

creases as well. It can be tested if these features are actually redundant by removing the

other one and training the model and comparing the results. In this case without the other

SectArea feature, the classifier accuracy dropped by approximately 0.3%, which meant

both features were kept in the dataset. The ProfWeight, ProfLength, and SectArea
features have the highest correlations in the dataset. It’s possible that they reveal other

features that aren’t present in the dataset as a distinct feature like the density of the pro-

file, for instance. In this case feature engineering in the form of creating this separate

feature wasn’t found to have a noticeable effect on the classifier accuracy and was left

out. This could indicate that either the density feature is not informative for the classifi-

cation, or that the model may already be capturing the relevant information through the

other features. [17, p. 62]
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Figure 3.6. Feature correlation matrix

The next method is mutual information which is a statistical measure that can be used to

analyze the relationships between variables in a dataset. Unlike correlation coefficients,

which measure only linear relationships, mutual information is a non-parametric measure

that can capture both linear and non-linear relationships. The mutual information score

represents the amount of information that a feature provides about the target variable in
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the dataset, which in this case is the type of the profile joint. A higher score indicates that

the feature is more informative about the target variable, while a lower score indicates

that the feature is less informative. [31]

To calculate mutual information, scikit-learn’s mutual_info_classif function from the

feature selection module was used. Scikit-learn is an open-source Python library that pro-

vides a wide range of ML algorithms and tools for data analysis and modeling. It includes

algorithms for classification, regression, clustering, and dimensionality reduction, as well

as preprocessing tools, model selection, and evaluation. [30]. The mutual information

scores for each feature are displayed in Figure 3.7. A higher score indicates that the fea-

ture is more informative about the target variable. In this project, a few original features

had a low mutual information scores and when they were removed from the dataset the

classifier performance was unaffected. [30]
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Figure 3.7. Mutual information chart

The next method for evaluating feature importance is the mean absolute SHAP score,

which measures the average impact of a feature on the magnitude of the model’s output.

SHAP (SHapley Additive exPlanations) is a game-theoretic approach to explain the output

of any ML model. The SHAP value of a feature represents the contribution of that feature

to the difference between the actual prediction and the baseline prediction. The baseline

prediction represents what the model would predict if it didn’t have any information about

a specific instance’s feature values. [29]

To calculate the SHAP values for each feature, the SHAP library in Python was used.

The results are shown in Figure 3.8. By analyzing these scores, it’s possible to determine

which features have the greatest impact on the model’s output magnitude. [29]
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Compared to mutual information and correlation coefficients, the mean absolute SHAP

score can provide a more nuanced understanding of the relationships between features

and the target variable. It also displays the results separately for each class indicating

how some classes might be much more affected by some features than others. For

example the ProfEndDistProportion for class 8 appears to have very high value, which

indicates that the feature has an important role determining whether a sample belongs to

class 8. Most samples that belong to class 8 have very low ProfEndDistProportion
values, while all the other classes have a wider distribution for this feature. In some

cases, features with low mutual information scores or weak correlations may still have a

significant impact on the model’s output magnitude. In this project, the SHAP results were

a bit different from the mutual information results, but the lowest ranking features, which

are not present in these figures, were still the same.
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Figure 3.8. SHAP summary

Finally, the feature evaluation can also be achieved using the RandomForestClassifier
algorithm in scikit-learn, which provides a measure of the importance of each feature for

the classifier’s decision-making process. The feature importance score represents the

reduction in the impurity of the decision tree when a feature is used for a split. [21, 30]

To calculate feature importances using the RandomForestClassifier, a model was
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trained using the training data and the feature importance scores were then extracted from

the model. The results are shown in Figure 3.9. By analyzing these scores, it’s possible

to determine which features have the greatest impact on the classifier’s decision-making

process. [30]

Compared to mutual information and mean absolute SHAP score, feature importances

from RandomForestClassifier provide a more direct measure of how each feature

affects the classifier’s predictions. It’s important to note that feature importances can be

sensitive to the specific algorithm and parameters used, and may not always provide a

complete picture of the relationships between features and the target variable. Therefore,

it’s important to use multiple methods for evaluating feature importance and to interpret

the results in the context of the specific problem being addressed. In this case, these

results are very similar to the SHAP results.
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Figure 3.9. Random Forest feature importances

The results of the feature evaluation suggest that certain features are more informative

than others for predicting the type of profile joint. Although these results alone can’t al-

ways tell which features are useful and which are not, they can provide information that

can then be verified by additional testing. By selecting the most informative features, it’s

possible to improve the performance of the classifiers and obtain more accurate predic-

tions. [30]

3.3 Data preprocessing

The full dataset consists of both numerical and categorical features. Because the cate-

gorical features were deemed less useful according to the feature evaluation, they were
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excluded from the training. The subset utilized in the thesis contains both dimensionless

numerical features, which are already distributed between 0 and 1, and other numerical

features, such as profile lengths and weights, that have a range that is not known in ad-

vance. To improve the distribution of the second group of features and mitigate the impact

of outliers, a two-step transformation was applied. First, they were logarithmically trans-

formed, and then scaled to a range of 0 to 1. The scaling is based on the extremes of the

training set, which means that new samples might not fall within the same range. None

of the classifiers used in this thesis require strict ranges for the input values which means

this should, at worst, lower the classification accuracy for those samples [30, 32, 33].

3.3.1 Dimensionality reduction

The preprocessed dataset samples were projected onto a 2D space using the Uniform

Manifold Approximation and Projection (UMAP) method after reducing the original 14 di-

mensions. UMAP is a state-of-the-art non-linear dimensionality reduction technique that

aims to preserve both global and local structure in the data. The UMAP Python library by

McInnes et al. was used for this purpose. [34] Figure 3.10 shows the resulting visualiza-

tion of the data after applying UMAP. Although there are clear clusters of samples, some

overlap can also be observed, indicating that some samples from different classes may

be similar. To address the stochastic nature of the UMAP method, different random seeds

were used and compared. By visual inspection, the results were found to be consistent.

The UMAP parameters used were n_neighbors=50, min_dist=1, and the algorithm

was run for 1000 epochs. Finally, the results were visualized using Density-Based Spatial

Clustering of Applications with Noise (DBSCAN) to cluster the samples for each class and

Kernel Density Estimate (KDE) plots were used to represent the clusters [30].
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Figure 3.10. UMAP results

In the UMAP figure some classes clearly are spread out much more when others are

packed very tightly. Most classes form multiple separate clusters, and while this could

mean many things, one theory is that many of the profile joints can be used in multiple

ways. Also, as two versions of each profile joint sample exist in the dataset to account

for selecting the profiles in either order, this is a likely reason for forming at least the two

separate clusters that can be seen for nearly every class. It raises the question, whether

it would’ve been better to link the order to some other parameters, such as profile length

to avoid the need to add each joint twice to the dataset.

Figure 3.11 displays the connectivity plot of the UMAP result, which was created using the

plot.connectivity() method from the UMAP library. The parameter edge_bundling
was set to "hammer" to create a less busy view of the graph. Each line represents an

edge or a nearest neighbor in the weighted graph that UMAP creates when reducing the

dimensionality of the data. It can help in distinguishing the relations between the clusters

more easily. Missing connections between two clusters indicate that they are likely well-

separated in the original high-dimensional space. It was created on the same UMAP run

as Figure 3.10 to allow direct comparisons. [34]
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Figure 3.11. UMAP connectivity plot

For comparison purposes, t-Distributed Stochastic Neighbor Embedding (t-SNE) was

used to create a similar visualization of the data. The algorithm from scikit-learn’s mani-

fold module based on the research by Maaten and Hinton was used for this purpose [30,

35]. The resulting t-SNE plot is presented in Figure 3.12. As the t-SNE is a stochastic

algorithm as well, the results obtained using different random seeds were also compared.

By visual inspection they too converged to similar end results. Clustering and KDE plots

were applied to t-SNE for visualization similarly as in Figure 3.10.

Figure 3.12. t-SNE results
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Compared to UMAP, t-SNE can sometimes be better at preserving the local structure

of the data, while UMAP is generally considered to be better at preserving the global

structure [36]. The t-SNE plot definitely has differences compared to the UMAP plot, but

similarities can be observed too. For example, class 16 has two distinct main clusters of

similar shapes in both plots.

3.3.2 Dataset splitting and balancing

The dataset had two significant aspects to examine. First, the dataset contained dupli-

cated samples and it poses a risk of data leakage. Second, the number of samples in

each class was not evenly distributed, which can impact the classification performance

negatively. In this subchapter both these aspects are discussed. The evaluation of these

methods is conducted by training a neural network with the same hyperparameters each

time. It has four dense layers with dropout layers in between. The details of the neural

network are explained in Subchapter 4.1.2.

The dataset contained natural repetition, necessitating an exploration of various methods

to prevent duplicate data from impacting the validation sets. One considered method

was the removal of all duplicate samples from the dataset. This approach might alter the

distribution of different classes, potentially leading to a negative impact on the classifier’s

performance. Due to limited data availability, confirming this effect was challenging. Tests

on a dataset without duplicates yielded promising results, but only seven classes retained

more than 100 samples. As a result, further analysis using this method was discontinued.

Another method involved allowing duplicate data in the training and validation sets, pro-

vided that it originated from separate building projects. Unfortunately, this approach also

encountered difficulties due to limited data availability. With 80 building projects accessi-

ble, splitting them into training, validation, and test projects while ensuring enough sam-

ples for each class was unattainable. Experiments using a limited test set revealed per-

formance similar to the other methods, but some classes had very few or no samples.

A third method was using k-fold cross-validation. This approach partitioned the data

into k-folds and trained and validated the classifier k times, using a different fold as the

validation set each time. This method facilitated a more comprehensive evaluation of

classifier performance while reducing the possible effect of duplicate samples. However,

it required more computational resources and time. Following testing, it was determined

that using 5 folds (k = 5) offered a suitable balance between resources and performance.

[13, p. 99].

Finally, a method aimed to split the data in a manner that would prevent duplicates from

appearing in both sets was experimented with. Two variations of this method were tested:

one in which data present in both sets was eliminated from the validation sets, and an-
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other where the same data was moved to the training set to preserve more of the data.

The first variation yielded on average 2% lower accuracy compared to not deleting any

data. The second variation did not have a meaningful difference on the accuracy over the

first variation.

Ultimately, all these methods proved that the repeated samples can have an influence

on the evaluation metrics. Since the difference was only around 2%, the comparisons

between the classifiers were done without utilizing the methods here. In the future dataset

iterations, the duplicate samples are less likely since the number of different features is

increased.

The class imbalance was the other significant aspect to examine. The full dataset has a

little over million samples, of which almost 70% belongs to a single class. However, the

subset of data that was actually utilized is not as extreme. To slightly balance the dataset

and improve the training speed of the classifiers, classes with more than 7500 samples

were undersampled and minority classes with less than 250 samples were dropped. The

training data split has 32706 samples and the distribution of classes is displayed in Figure

3.13.
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Figure 3.13. Distribution of the classes in the training subset

As the class imbalance might have a negative impact on the classifier performance, some

methods to mitigate this were experimented with. First method was to give the classes

with fewer samples a higher weight during the training. For a Keras model this was done

with the class_weight parameter. This improved the classifier performance slightly with
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0.2% higher accuracy on average. [32]

Second method was to use oversampling using the Imbalanced-learn (Imblearn) Python

library to generate new samples using the existing data as a template. Imbalanced-learn

is an open source library that relies on scikit-learn, and it provides tools to deal with

imbalanced datasets. [37]. Two strategies to oversample the data were experimented

with.

First strategy was to generate samples until a uniform distribution is reached, which in-

creases the number of samples in the training split from 32706 to 105780. The number

of synthetic samples is 73074, which is almost 70% of the total number of samples. For

the previously smallest class the proportion of synthetic samples is over 94% of the total

number of samples for that class. Using this strategy approximately doubled the time

required to train the model.

The second strategy was to only partially oversample the minority classes resulting in

42028 samples in total. The number of synthetic samples using this strategy is 9322,

which is a little over 22% of the total number of samples. Figure 3.14 displays the resulting

class distribution. When using the k-fold cross validation method, the number of samples

in each class can slightly differ between folds, but the distribution is generally similar. The

second strategy increased the training time by 20% on average.
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Figure 3.14. Distribution of the classes in the training subset after oversampling

Both strategies were applied for three different oversampling methods from Imblearn. The
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methods were SMOTE, KMeansSMOTE, and RandomOverSampler. SMOTE is Imbalanced-

learn’s implementation of the Synthetic Minority Oversampling Technique (SMOTE) pro-

posed by Chawla et al. [28]. KMeansSMOTE is a variant of SMOTE that applies k-means

clustering before oversampling the data. RandomOverSampler simply oversamples the

minority classes by picking samples at random with replacement, creating duplicate sam-

ples instead of new artificial ones. Default hyperparameters were used for these algo-

rithms. [37, 38] Table 3.2 presents the accuracies and the f1-scores achieved with each

method. F1-score is a metric used to evaluate the performance of classification models,

particularly in situations where class imbalance is present. A more detailed definition

is presented in Subchapter 5.1. For the f1-scores, both the weighted and the macro-

averaged results are presented. The weighted result takes the class sizes into account

favoring the larger classes. The macro-averaged result isn’t affected by the class sizes,

which makes all the classes have an equal effect. Also, the standard deviation for each

result in the folds is displayed. [30]

Table 3.2. Average oversampling results using k-fold cross validation with k = 5

Method Accuracy Weighted / macro-

averaged f1-score

No oversampling 97.20% (± 0.19%) 97.18% (± 0.19%)

97.16% (± 0.35%)

No oversampling (class_weight) 97.44% (± 0.19%) 97.43% (± 0.19%)

97.61% (± 0.14%)

SMOTE 97.47% (± 0.16%) 97.47% (± 0.16%)

98.00% (± 0.19%)

SMOTE (limited strategy) 97.47% (± 0.20%) 97.46% (± 0.20%)

97.70% (± 0.17%)

KMeansSMOTE 97.67% (± 0.12%) 97.66% (± 0.12%)

98.19% (± 0.20%)

KMeansSMOTE (limited strategy) 97.37% (± 0.11%) 97.36% (± 0.11%)

97.66% (± 0.16%)

RandomOverSampler 97.44% (± 0.18%) 97.43% (± 0.18%)

97.99% (± 0.21%)

RandomOverSampler (limited strategy) 97.41% (± 0.21%) 97.41% (± 0.21%)

97.73% (± 0.19%)

There was some deviation in the results and running all tests again could potentially have

a significant effect. For example, on a few test runs the highest accuracy was achieved by

SMOTE instead of KMeansSMOTE. The macro-averaged f1-scores appear to have increased
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more than the weighted f1-scores, which suggests that the different methods improved

the model’s ability to classify the minority classes, but the overall performance was less

affected. The conclusion is that since the overall improvements were not very substantial,

class imbalance does not affect the results too much for the purposes of the profile joint

classifier. Consequently, oversampling was not used in the training of the final models.
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4. CLASSIFIER IMPLEMENTATIONS

4.1 Machine learning models

The original plan for this thesis was to implement a neural network to classify the pro-

file joints. TensorFlow software library was used for the implementation due to previous

experience and pre-existing support in Vertex software [32]. For comparison purposes,

a Support Vector Classifier (SVC), naive bayes classifier, and a few decision tree-based

classifiers were implemented. In the following subchapters, these implementations are

presented and discussed.

4.1.1 Traditional classifiers

In this subchapter, the implementations are presented for six different classifiers, including

RandomForestClassifier, ExtraTreesClassifier, VotingClassifier (of the pre-

vious two), SVC, GaussianNB, and XGBoost. Notably, all the classifiers except XGBoost
are based on the scikit-learn library. XGBoost uses the XGBoost Python library proposed

by Chen and Guestrin. [30, 33]

RandomForestClassifier was trained using the default hyperparameters. The default

parameters include setting the number of decision trees in the forest to 100, the maximum

tree depth to unlimited, and using the Gini impurity as the measure of split quality. Fur-

thermore, the default parameters set the minimum number of samples required to split an

internal node to two and the minimum number of samples required to be at a leaf node to

one. Using these default parameters, the algorithm builds a collection of decision trees,

each one based on a random subset of the input features, and then combines their out-

puts to generate a prediction. ExtraTreesClassifier was also trained with its default

hyperparameters. It is very similar to the RandomForestClassifier, but it has more

randomness in the way input feature splits are computed. Scikit-learn claims this usually

reduces the variance more, but might introduce a greater increase in bias. Both these

classifiers combine the outputs of the single trees by averaging their probabilities. [30]

VotingClassifier was used to create a combination of the RandomForestClassifier
and ExtraTreesClassifier. VotingClassifier can be used to create an ensemble

of virtually any ML classifier. Originally, it was used to create an ensemble model out of all
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the scikit-learn classifiers presented in this subchapter. That version had lower accuracy

than the best models individually and took much longer to train. Combining only the two

random forest variants by averaging their predictions slightly outperforms the individual

models in accuracy. [30]

XGBoost is a decision tree-based ensemble method that uses a different approach for

combining models compared to random forest, called gradient boosting. It works by

adding decision tree classifiers iteratively to the ensemble until the number of models

equal the n_estimators parameter. Alternatively, n_estimators can be set automati-

cally by instead specifying early_stopping_rounds. For each iteration, the predictions

of the current ensemble model are used to calculate a loss function and use the results

to find good parameters for the next model to be added to the ensemble. The XGBoost
model was trained with the early_stopping_rounds set to 25 and otherwise the default

parameters. [33]

Support Vector Classifier (SVC) implementation was done by using the SVC algorithm

from the scikit-learn’s svm module. It was trained using the default hyperparameters,

notably C = 1, and the Radial Basis Function (RBF) kernel type. Also the probability
parameter was enabled to get the probability estimates for the predictions. [30]

Final classifier was utilizing the probabilistic Naive Bayes algorithm. This was imple-

mented using the scikit-learns GaussianNB algorithm from the naive_bayes module.

From the same module, also the MultinomialNB, and the ComplementNB were tested

using their default parameters. They are more typically used for text classification tasks

where the input features are the frequencies of certain words. Those two had lower clas-

sification accuracies than GaussianNB and were not included in further comparisons. For

the GaussianNB, the default parameters were also used, which include not specifying the

priors parameter. Having it unspecified makes the classifier adjust the prior probabilities

for each class according to the data. [30]

4.1.2 Neural network

The implemented TensorFlow model is a Multilayer Perceptron (MLP), which is a fully

connected neural network similar to the example presented in Chapter 2 Figure 2.6 [25,

p. 5]. The final model was created using the Keras Tuner library, and that process is

explained later in this subchapter. [39] The input layer of the model consists of 14 neurons,

one for each feature in the dataset. The model then uses four hidden dense layers with

different neuron sizes (1024, 1024, 256 and 256) to extract and learn relevant features

from the input data. Dropout layers between the dense layers are used to avoid overfitting

the model to the training data. The dropout probabilities in the model are all 0.3. Figure

4.1 displays the full model architecture with the locations where dropout was applied. The

number of trainable parameters in this model is 1 398 292.
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InputLayer
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Figure 4.1. Graph of the implemented neural network

The output layer of this model consists of 20 neurons, with each neuron representing a

different profile joint in the dataset. In some of the earlier iterations of the model, soft-

max was used as the activation function in the output layer. It was later discovered that

the profile joints are not always mutually exclusive, and sometimes can be used inter-

changeably. To predict multiple possible profile joints, sigmoid was found to be a more

appropriate activation function as it produces individual probabilities for each class. By

using sigmoid, the software integration can suggest the most likely profile joints based

on the input features, even if there is some ambiguity between them. For the same rea-

sons, the loss function binary_crossentropy was then used instead of the previous

categorical_crossentropy.

The model architecture evolved a lot during the development, and the used models were

discovered by iteratively adjusting the structure and retraining the model until sufficient

performance was reached. In addition to modifying the model, the dataset including the

number of features changed too. For better repeatability, another attempt on recreating

the model was made. This time the dataset and all factors other than the model itself were

kept constant. The model architecture was selected using a manual Neural Architecture

Search (NAS), where the number of neurons and the number of layers were adjusted

between training runs and the performance was documented for each run. The perfor-

mance metrics evaluated were the test accuracy and loss. Adam optimizer and binary

cross entropy loss with the default hyperparameters were used for the whole search. The
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search started by training a model with two dense layers. Then the number of neurons

in both layers were increased, and the model was trained again. This was repeated until

the performance stopped improving. For each training iteration, the model was trained

until the validation loss did not decrease further. The validation loss was evaluated after

each epoch with separate validation data. Stopping the training was done automatically

using the early stopping callback, and the best model weights so far were restored. After

reaching the optimal width for the two layers, another dense layer was added and then the

numbers of the neurons in each layer were adjusted again. Although this manual search

for the optimal model architecture resulted in a model with a decent test accuracy of over

96%, the process was very time-consuming.

Since the manual search required so much active work NAS was also performed using

Keras Tuner Bayesian Optimization. Keras Tuner optimizes models automatically within

a certain user defined search space. [39] The number of layers was varied between 1

and 5, while the width of each layer was tested with powers of two values ranging from

32 to 1024. Simultaneously, dropout after each layer was being optimized. The dropout

probability for each layer was optimized independently, with values ranging from 0.0 to

0.5, in increments of 0.1. Having a dropout probability of 0.0 effectively disables dropout

for that layer.

The tuning process was allowed to run for approximately 200 trials. Early stopping was

applied with a patience value of 50 and default arguments otherwise. Figure 4.2 displays

the effect of the early stopping, where the training is stopped soon after the validation loss

stops improving. To reduce the effect of random initialization of the models, each trial was

executed 3 times. In addition to Bayesian Optimization, Random Search and Hyperband

tuner proposed by Li et al. were also tested, but Bayesian Optimization was found to work

the best for this application [40].
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Figure 4.2. Neural network loss plot
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Overall, the NAS process allowed for the optimization of the neural architecture of the

model, resulting in improved performance. The process was computationally intensive

and required a significant amount of time. On the other hand, the results should be

repeatable and require minimal manual work.

The neural network implementation was also utilized in an ensemble of itself and addition-

ally a random forest classifier implemented using TensorFlow Decision Forests module

[32]. They are combined in a metamodel which concatenates the outputs of the individual

models. Figure 4.3 displays the resulting classifier.

InputLayer
input:

output:
[(None, 14)]
[(None, 14)]

Dense relu
input:

output:
(None, 14)

(None, 1024)

RandomForestModel
input:

output:
(None, 14)
(None, 20)

Dense relu
input:

output:
(None, 1024)
(None, 1024)

Dense relu
input:

output:
(None, 1024)
(None, 256)

Dense relu
input:

output:
(None, 256)
(None, 256)

Dense sigmoid
input:

output:
(None, 256)
(None, 20)

Concatenate
input:

output:
[(None, 20), (None, 20)]

(None, 40)

Dense sigmoid
input:

output:
(None, 40)
(None, 20)

Dropout (0.3)

Dropout (0.3)

Dropout (0.3)

Figure 4.3. Ensemble metamodel graph

In the scope of this thesis, further experiments using this ensemble of a neural network

and a random forest classifier were left out. The results were better than either of the

classifiers individually.

During the implementation process a notable change to the model architecture was made.

Originally the neural network implementation had two inputs. One version of this network
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is presented in Figure 4.4. In this version the first input includes the cross-section shape

of both profiles represented with a fixed size binary image. This is then fed through

several convolutional layers. The second input contains all the rest of the features and is

essentially identical to the current network’s only input. The second input is concatenated

with the output of the convolutional layers. The result of the concatenation is fed through

a few dense layers and finally the output layer.

InputLayer
input:

output:
[(None, 32, 16, 1)]
[(None, 32, 16, 1)]

Conv2D relu
input:

output:
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(None, 256)
(None, 256)

Dense sigmoid
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output:
(None, 256)
(None, 20)

Dropout (0.3)

Dropout (0.3)

Dropout (0.3)

Figure 4.4. Neural network with a convolutional branch

During the development phase, more features related to the cross-section geometry were
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added. With these features introduced, disabling the first input did not seem to result in

any degradation in the model performance. Because of this, the first input was removed

from the model and the following experimentation was done without it. It is possible that

with a dataset that includes a more comprehensive collection of different types of cross-

sections, the results would be different. With the data available at the time of writing, a

more thorough testing proved difficult and was discontinued.

4.2 Software integration

A simple experimental user interface for using the implemented TensorFlow model in

Vertex BD was constructed. In this initial version, the user can freely choose any two

profiles and then use a keyboard shortcut. The program will then extract the features

from this pair of profiles and use the implemented model to generate the predictions.

These predictions are then used to open a browser similar to the one presented in Figure

2.1 of Subchapter 2.1, but filtered to show only the 5 joints with the highest probabilities.

Also, the one with the highest probability is preselected. Figure 4.5 displays an example

with selecting two C-profiles.

Figure 4.5. Experimental UI for selecting a profile joint

As the current ML model does not support the complete library of joints due to the limited
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training data, the user interface was not yet developed further. There are plans to extend

the user interface to allow, for instance, mass operations, but the details are out of the

scope of this thesis. Collecting feedback of the predictions is another idea that could

be very useful. The feedback could be used to either directly influence the following

predictions or at least improve the future iterations of the classifier model. The details of

the feedback collection are yet to be decided.
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5. RESULTS AND COMPARISONS

5.1 Evaluation metrics

For the final comparisons, the dataset was divided into three splits using scikit-learn li-

brary’s train_test_split function [30]. The training split included 60% of the samples

and the validation and test splits each had 20% of the samples.

To examine the predictions a classifier makes, the confusion matrix can be used. It pro-

vides a summary of the number of true positives (TP), true negatives (TN), false positives

(FP), and false negatives (FN) for each class in a table format. True positives are the num-

ber of samples that are correctly predicted as belonging to that class, while false positives

are the number of samples that are incorrectly predicted as belonging to that class. True

negatives are the number of samples that are correctly predicted as not belonging to that

class, while false negatives are the number of samples that are incorrectly predicted as

not belonging to that class. [13, p. 100]

Using the information from the confusion matrix, several metrics can be calculated to

evaluate the performance of the model for each class. These metrics include accuracy,

precision, recall and f1-score. [13, p. 101] Table 5.1 presents all the equations for the

evaluation metrics.

Accuracy is an intuitive performance measure, representing the proportion of correctly

predicted observations relative to the total number of observations. For a balanced

dataset, accuracy might be all that’s needed to evaluate the model effectively. [13, p.

101]

Precision is the proportion of accurately predicted positive observations compared to the

total number of predicted positive observations. Precision addresses the question: "Of

all predictions labeled as class X, how many are genuinely class X?" High precision is

associated with a low false positive rate. [13, p. 101]

Recall, or sensitivity, is the proportion of accurately predicted positive samples relative

to the total samples in the actual class. Recall answers the question: "For all class X

samples, how many are predicted as class X?" High recall corresponds to a low false

negative rate. [13, p. 101]
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Some models display a high precision with low recall, or vice versa. The f1-score is a

metric that combines precision and recall into a single value, representing the weighted

average of the two. As a result, the f1-score accounts for both false positives and false

negatives. While not as intuitive as accuracy, the f1-score is generally more valuable,

particularly when dealing with imbalanced class distributions. Accuracy is most suitable

for balanced datasets; for imbalanced datasets, it is advisable to consider both precision

and recall. [13, p. 102]

Table 5.1. Equations for the evaluation metrics used [13]

Metric Equation

Accuracy
TP+TN

TP+FP+TN+FN

Precision
TP

TP+FP

Recall
TP

TP+FN

F1-score 2 · Precision·Recall
Precision+Recall

In addition to the individual metrics for each class, overall metrics can be calculated for

the entire model. These metrics include overall accuracy, and macro-averaged, micro-

averaged, and weighted versions of precision, recall and f1-score. Macro-average is sim-

ply the mean of the individual metrics, which gives equal weight to each class regardless

of the number of samples. Micro-average aggregates the contributions of all classes to

compute a single precision, recall, and f1-score value, focusing on the performance of the

model on individual instances. Weighted average accounts for possible class imbalance

by computing the average of individual metrics in which each class’s score is weighted

according to the sample distribution. These common metrics are helping to understand

how well the model is performing for each class and identify areas for improvement. By

analyzing them, it’s possible to fine-tune the models to improve their performance and

accuracy. [13, 30]

5.2 Performances of the classifiers

This chapter presents the performances of the implemented classifiers. Although the

primary interest in the model lies in the top-k accuracy metrics, comparing the results was

challenging since many of the models achieved near-perfect top-k accuracy, particularly

when k is 3 or larger. Therefore, other metrics such as top-1 accuracy are used as well.
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The accuracies and weighted f1-scores of the implemented classifiers are presented in

Table 5.2.

Table 5.2. Overview of the classifier results

Classifier type Top-1 accuracy Weighted f1-score

XGBoost 0.9853 0.9853

RandomForest+ExtraTrees 0.9836 0.9837

RandomForestClassifier 0.9833 0.9834

ExtraTreesClassifier 0.9815 0.9812

Neural network (MLP) 0.9765 0.9764

SupportVectorClassifier 0.9165 0.9161

GaussianNaiveBayesian 0.7386 0.7034

The neural network did not have the highest top-1 accuracy, but it is easily good enough

for its purpose. Figure 5.1 displays the top-k accuracies for each classifier. Even the very

simple naive bayesian classifier has over 99% top-4 accuracy, which could be considered

usable for the target application.
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Figure 5.1. Top-k accuracies of the classifiers
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The results of the final neural network are presented in more detail with the help of

the confusion matrix, classification report, the Receiver Operating Characteristic (ROC)

curve, and the precision-recall curve. Figure 5.2 displays the confusion matrix, where nor-

malization has been applied over the true classes. It’s useful for finding out which classes

get mixed up the most. The model relatively often fails with classes 14 and 15, where

the class 15 samples are relatively often misclassified as class 14. Those two classes

are never mixed up with other classes. As the confusion matrix doesn’t reveal the top-k

predictions, it was separately examined for these classes. It was observed that for every

single failure for classes 14 and 15, the correct class had the second-highest probability,

which means they both have a top-2 accuracy of 100%. Class 4, on the other hand, has

been incorrectly predicted as classes 1, 7, 8 and 9. When examined, only three predic-

tions where the correct class was neither the first nor the second were found for class

4.
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Figure 5.2. Neural network model confusion matrix

Figure 5.3 displays the classification report for the neural network. It presents the preci-

sion, recall and f1-scores individually for each class. These are then combined to calcu-

late the averages for the same metrics. It also highlights the classes 14 and 15, where

class 14’s precision and class 15’s recall are low compared to the other classes.
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Figure 5.3. Neural network model classification report

Figure 5.4 displays the neural network’s ROC curves comparing each class separately

against the rest of the classes. The higher the Area under the ROC Curve (AUC-ROC) is,

the better the result. The diagonal line displays AUC-ROC with a value of 0.5, which can

be achieved by randomly classifying the samples. In this case, the AUC-ROC is close to

1 for all classes. Only the class 4 curve is slightly separated from the rest of the classes.

[41]
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Figure 5.4. Neural network ROC curve OvR (One-vs-Rest)

While the ROC results are looking good, the precision-recall curves might convey more
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information about the classifier performance in this case. Figure 5.5 shows the precision-

recall curves for each class against the rest of the classes. The Area under the Precision-

Recall Curve (AUC-PR) metric also is better the higher it is. The effects of the failed

predictions for the classes 14 and 15 can be observed in the precision-recall curve too.

Classes 4 and 7 are the other two classes that the classifier has the most trouble with.

[41, p. 105]
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Figure 5.5. Neural network precision-recall curve OvR (One vs Rest)

For the other classifiers, the ROC and precision-recall curves are not displayed on a

class level, but instead the averages are presented. Figure 5.6 displays the average ROC

curves for the implemented classifiers. Only the SVC and naive bayes can be recognized

to slightly fall short of the rest of the classifiers, which are all grouped having nearly perfect

average AUC-ROC scores.
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Figure 5.6. Average ROC curves for all implemented classifiers

Figure 5.7 displays the micro-averaged precision-recall curves for the classifiers. Here

the SVC and naive bayes are even more clearly distinguished as performing worse than

the other classifiers.
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To help interpret the predictions the implemented model makes, individual SHAP plots

can be used. These plots show the contribution of each feature to the final prediction,

providing insight into how the model arrived at its decision. By explaining the model’s

behavior in this way, SHAP plots can increase users’ confidence in the model and serve

as a tool for debugging possible issues. To give an example on the SHAP values, two plots

for two separate predictions by the neural network are displayed. In a multi class classifier,

the SHAP values can be calculated for all the possible classes for each prediction. The

classification task in hand usually has 1 to 5 classes that can be considered correct. The

training data only has one label for each sample, but as it was previously determined,

there is some acceptable overlap among the classes. In the following examples, two

different classes are examined. The features displayed in red color will push the prediction

towards the currently examined class, while the blue features will do the opposite, pushing

the prediction away from it.

Figure 5.8 is used to explain a successful prediction. This is done on a class 9 sample,

and it was correctly predicted. The prediction is very confident giving almost 100% prob-

ability for the correct class. The force plot on the top displays the SHAP values for the

correct class, which in this case also sum up to nearly 100%. The force plot on the bottom

display the SHAP values for class 14, which has a near zero probability. This is reflected

similarly on the SHAP values for almost all the features.
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Figure 5.8. Force plots for a successful prediction

Figure 5.9 gives an example of a failed prediction. This is applied on a class 4 sample,

which was incorrectly predicted as class 1. The prediction gave class 1 a probability of

33.10%. The correct class, 4, only has a probability of 6.24%. Class 4 had the fourth-

highest probability in this prediction. The force plot on the top displays the predicted

class, and the SHAP values for almost all features are contributing towards the incorrect

prediction. The force plot on the bottom displays what the correct class would’ve been,

and the SHAP values, while not exactly opposite of the other one, still mostly are having
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a negative contribution.
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Figure 5.9. Force plots for a failed prediction

It should be noted that the SHAP values are calculated using k-means summarized train-

ing data. This means that the training data is first clustered using the k-means algorithm,

and each cluster’s centroid is used as a representative point for the entire cluster. This

step reduces the calculations needed to compute the SHAP values, as the number of rep-

resentative points is much smaller than the original number of training samples. However,

this approach may introduce some inaccuracies in the resulting SHAP values, as the

representative points may not fully capture the distribution of the original training data.

Therefore, the accuracy of the SHAP values calculated using this method may not be

as high as those calculated using the entire training data. Nevertheless, as the sums of

the SHAP values in the presented examples are almost identical to the actual prediction

probabilities, the results could be considered good enough for this purpose.

5.3 Discussion

The classifiers showed varying levels of performance in terms of top-1 accuracy, weighted

f1-score, and top-k accuracy. XGBoost achieved the highest top-1 accuracy, closely fol-

lowed by the other decision tree-based classifiers. The success of XGBoost was not sur-

prising as it has been a popular choice in the Kaggle competitions, where it has currently

been utilized in multiple winning solutions [13, 33, 42]. The neural network performed

almost as well, while the SVC and naive bayes classifiers demonstrated lower accuracy

compared to the other models.

The dataset featured in the comparisons includes only 20 different profile joints, where

the total number is nearly 100 in Vertex BD. To create a classifier that could reliably work

with all the profile joints, much more training data is required. The difficulties to suddenly

gather enough data underscores the importance of comprehensive data collection for the
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development of effective machine learning models, as it directly impacts their accuracy,

generalizability, and overall usefulness. With the increased amount of data and different

classes, the classifier performances are likely to get worse unless more informative fea-

tures are added, because the current feature space would get more crowded. Since the

performances for the neural network and the decision tree-based classifiers were so high,

especially when looking at the top-k accuracies, the support for more classes shouldn’t

cause too many problems.

Expanding the dataset likely increases the number of different types of cross-sections,

which could consequently increase the useful information the binary images of the cross-

sections provide. Utilizing the convolutional branch displayed in Figure 4.4 could give an

edge to the neural network classifier over the decision forest-based classifiers.

A potential source for overly optimistic evaluation results was identified. The classifiers

were assessed using test data separated from the full dataset, which only included sam-

ples where a profile joint had already been applied, though this was not disclosed to the

classifier. In Vertex BD, applying a profile joint can lead to virtually any type of modification

in the geometry of the connected profiles. In practice, the more common modifications

that might affect the features utilized in the dataset are related to stretching the profile

ends if necessary.

Further testing was conducted using the experimental user interface introduced in 4.2 with

new data. It was observed that certain types of profile joints had a noticeable impact on

the top-1 predictions even when the profiles were stretched by less than 10 mm. However,

the top-5 predictions appeared to be less affected by these changes. It is important to

note that these experiments were carried out with a limited sample size of fewer than 50

samples.

Using the AI-assisted experimental UI as a comparison to the existing manual method

of choosing joints is not straightforward because the manual method depends heavily on

the users. Those with a lot of experience working with profile joints have likely set the

joints they require as favorites, and are able to select them very quickly and consistently.

In this case, the AI-based method is unlikely to improve efficiency significantly. On the

other hand, less experienced users may need more time to find the joints they require

when searching manually. This is where the filtering and preselecting capabilities of the

AI-assisted method can save a lot of time.



56

6. CONCLUSION

The goal of this work was to provide an AI-based solution for helping the users in se-

lecting profile joints in a BIM software, Vertex BD. Due to limited training data, this goal

couldn’t be completely fulfilled. Instead, multiple methods to classify a limited number of

different profile joints were created and compared with each other. A proof-of-concept

method, which utilized a neural network, was also implemented and tested in Vertex BD.

The neural network was created using Keras Tuner. To increase the likelihood that the

proof-of-concept model could be extended to support all profile joints in Vertex BD when

enough data was collected, the model was carefully analyzed. This includes compar-

ing multiple methods to reduce the risk of overly optimistic performance metrics through

data leakage. Also, multiple evaluation methods to analyze the predictions of the trained

models were utilized. These include the confusion matrix, ROC curves, precision-recall

curves, and top-k accuracy evaluation. Finally, a method to inspect how a single prediction

is formed was created using the SHAP values. This displays how each feature contributes

to the prediction and can be used to better understand the model and possibly assist in

debugging.

The most important future work is to collect more data and repeat the experiments with

a larger dataset. While the dataset size increases, more informative features might be

needed and investigating what they are and how they can be collected is another poten-

tial future work. A more comprehensive literature review could be utilized to find ideas

for the features and also consulting experts in the field could prove useful. The current

pool of available features was created based on what could be extracted from the soft-

ware with a limited amount of work. An experimental dataset including these features was

created from 80 different professionally designed building models. Multiple feature evalu-

ation methods were applied to find the most informative features from the data that was

available. Using the information these methods revealed, the number of informative fea-

tures was narrowed down to 14. Currently, for each profile joint in the project two samples

are created, because the selection order of the two profiles is not linked to anything. It

could be investigated how the performance is affected if the order of the two profiles was

determined based on the values of the features, having each sample in the dataset just

once. This halves the size of the dataset, which is great as long as the performance does

not suffer, but without careful testing, it’s difficult to say what happens. Also, the effect of
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stretching the profile ends as discussed in Subchapter 5.3 should be investigated more

thoroughly.

Throughout this research, six different main types of ML classifiers were compared in or-

der to determine the most suitable models for the application. While these classifiers pro-

vided some insights into the potential of using AI-based techniques in this context, there

is still room for further exploration of alternative algorithms. As potential future work, it

could be useful to investigate the performance of other machine learning models, such

as more complex ensemble methods, deep learning architectures, or even custom-built

algorithms tailored specifically to the problem at hand. Moreover, additional feature engi-

neering, data augmentation, and preprocessing techniques could be explored to enhance

the performance and generalizability of the models. This continuous search for improved

approaches will not only contribute to a better understanding of the problem domain but

also pave the way for the development of more advanced and effective AI-assisted tools

in the field of building design.



58

REFERENCES

[1] Zabin, A., González, V. A., Zou, Y. and Amor, R. Applications of Machine Learning

to BIM: A Systematic Literature Review. Adv. Eng. Inform. 51.C (Mar. 2023). ISSN:

1474-0346. DOI: 10.1016/j.aei.2021.101474.

[2] OpenAI. ChatGPT. URL: https : / / openai . com / blog / chatgpt (visited on

03/10/2023).

[3] Puuinfo Oy. Teollisen puurakentamisen opetusmateriaali (2023). URL: https://
urn.fi/urn:nbn:fi:oerfi-202301_00026078_0 (visited on 02/28/2023).

[4] Manual for the Design of Building Structures to Eurocode 1 and Basis of Struc-

tural Design. Institution of Structural Engineers (ISTRUCTE), 2010. ISBN: 978-1-

906335-07-6. URL: https://app.knovel.com/hotlink/toc/id:kpMDBSEBS1/
manual-design-building/manual-design-building.

[5] Porteous, J. Designers’ guide to eurocode 5 : design of timber buildings : EN 1995-

1-1. eng. Designers’ guides to the eurocodes. London: ICE Publishing, 2013. ISBN:

1-62870-390-3.

[6] Guo, T., Li, L., Cai, L. and Zhao, Y. Alternative method for identification of the dy-

namic properties of bolted joints. eng. Journal of mechanical science and technol-

ogy 26.10 (2012), pp. 3017–3027. ISSN: 1738-494X.

[7] Zhu, B. The finite element method : fundamentals and applications in civil, hy-

draulic, mechanical and aeronautical engineering. eng. Hoboken, New Jersey: Wi-

ley, 2018. ISBN: 1-119-10734-2.

[8] Vertex BD - Automated BIM Software for Wood and Steel Framing. 2023. URL:

https://vertexcad.com/bd/ (visited on 04/14/2023).

[9] Vertex BD Documentation. 2023. URL: https://kb.vertex.fi/bd2023en (vis-

ited on 04/14/2023).

[10] Baduge, S. K., Thilakarathna, S., Perera, J. S., Arashpour, M., Sharafi, P., Teodosio,

B., Shringi, A. and Mendis, P. Artificial intelligence and smart vision for building and

construction 4.0: Machine and deep learning methods and applications. Automation

in construction 141 (2022), p. 104440. ISSN: 0926-5805. DOI: 10.1016/j.autcon.
2022.104440.

[11] Hastie, T., Tibshirani, R. and Friedman, J. The Elements of Statistical Learning:

Data Mining, Inference, and Prediction, Second Edition. eng. New York, NY: Springer

New York, 2017. ISBN: 0387848576.

https://doi.org/10.1016/j.aei.2021.101474
https://openai.com/blog/chatgpt
https://urn.fi/urn:nbn:fi:oerfi-202301_00026078_0
https://urn.fi/urn:nbn:fi:oerfi-202301_00026078_0
https://app.knovel.com/hotlink/toc/id:kpMDBSEBS1/manual-design-building/manual-design-building
https://app.knovel.com/hotlink/toc/id:kpMDBSEBS1/manual-design-building/manual-design-building
https://vertexcad.com/bd/
https://kb.vertex.fi/bd2023en
https://doi.org/10.1016/j.autcon.2022.104440
https://doi.org/10.1016/j.autcon.2022.104440


59

[12] Vasilev, I. Python deep learning : exploring deep learning techniques and neural

network architectures with pytorch, keras, and tensorflow. eng. Second edition.

Birmingham: Packt Publishing Ltd., 2019. ISBN: 1-78934-970-2.

[13] Mirtaheri, S. L. Machine learning theory to applications. eng. First edition. Boca

Raton: CRC Press, 2022. ISBN: 9780367634537.

[14] Khallaf, R. and Khallaf, M. Classification and analysis of deep learning applications

in construction: A systematic literature review. eng. Automation in construction 129

(2021), pp. 103760–. ISSN: 0926-5805.

[15] Karypidis, E., Mouslech, S. G., Skoulariki, K. and Gazis, A. Comparison Analysis

of Traditional Machine Learning and Deep Learning Techniques for Data and Im-

age Classification. WSEAS TRANSACTIONS ON MATHEMATICS 21 (Mar. 2022),

pp. 122–130. DOI: 10.37394/23206.2022.21.19.

[16] Patterson, J. Deep learning : a practitioner’s approach. eng. First edition. Beijing,

China: O’Reilly Media, 2017. ISBN: 1-4919-2457-8.

[17] Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow,

3rd Edition. eng. O’Reilly Media, Inc, 2022. ISBN: 9781098125967.

[18] Ganaie, M., Hu, M., Malik, A., Tanveer, M. and Suganthan, P. Ensemble deep learn-

ing: A review. eng. Engineering applications of artificial intelligence 115 (2022),

pp. 105151–. ISSN: 0952-1976.

[19] Ali, J., Khan, R., Ahmad, N. and Maqsood, I. Random Forests and Decision Trees.

eng. International journal of computer science issues 9.5 (2012), pp. 272–272.

ISSN: 1694-0814.

[20] Breiman, L. Random forests. eng. Machine learning 45.1 (2001), pp. 5–32. ISSN:

0885-6125.

[21] Ho, T. K. Random decision forests. eng. Proceedings of 3rd International Confer-

ence on Document Analysis and Recognition. Vol. 1. IEEE, 1995, 278–282 vol.1.

ISBN: 0818671289.

[22] Steinwart, I. Support Vector Machines. eng. 1st ed. 2008. Information Science and

Statistics. New York, NY: Springer New York, 2008. ISBN: 1-281-92704-X.

[23] Ding, X., Liu, J., Yang, F. and Cao, J. Random radial basis function kernel-based

support vector machine. eng. Journal of the Franklin Institute 358.18 (2021), pp. 10121–

10140. ISSN: 0016-0032.

[24] Kingma, D. P. and Ba, J. Adam: A Method for Stochastic Optimization. eng. arXiv.org

(2017). ISSN: 2331-8422.

[25] Atienza, R. Advanced Deep Learning with Keras. eng. Packt Publishing, 2018.

ISBN: 9781788629416.

[26] Misra, D. Mish: A Self Regularized Non-Monotonic Activation Function. eng. arXiv.org

(2020). ISSN: 2331-8422.

https://doi.org/10.37394/23206.2022.21.19


60

[27] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R. Dropout:

A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res.

15.1 (Jan. 2014), pp. 1929–1958. ISSN: 1532-4435.

[28] Chawla, N. V., Bowyer, K. W., Hall, L. O. and Kegelmeyer, W. P. SMOTE: Syn-

thetic minority over-sampling technique. eng. The Journal of artificial intelligence

research 16 (2011), pp. 321–357. ISSN: 1076-9757.

[29] Lundberg, S. M. and Lee, S.-I. A Unified Approach to Interpreting Model Predic-

tions. Advances in Neural Information Processing Systems 30. Ed. by I. Guyon,

U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan and R. Garnett.

Curran Associates, Inc., 2017, pp. 4765–4774. URL: http://papers.nips.cc/
paper/7062-a-unified-approach-to-interpreting-model-predictions.
pdf.

[30] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blon-

del, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-

napeau, D., Brucher, M., Perrot, M. and Duchesnay, E. Scikit-learn: Machine Learn-

ing in Python. Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

[31] Ross, B. C. Mutual information between discrete and continuous data sets. eng.

PloS one 9.2 (2014), e87357–e87357. ISSN: 1932-6203.

[32] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,

Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving,

G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané,

D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner,

B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F.,

Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y. and Zheng, X. Tensor-

Flow: Large-Scale Machine Learning on Heterogeneous Systems. Software avail-

able from tensorflow.org. 2015. URL: https://www.tensorflow.org/.

[33] Chen, T. and Guestrin, C. XGBoost: A Scalable Tree Boosting System. eng. Pro-

ceedings of the 22nd ACM SIGKDD International Conference on knowledge discov-

ery and data mining. KDD ’16. Software available from github.com/dmlc/xgboost.

Ithaca: ACM, 2016, pp. 785–794. ISBN: 1450342329.

[34] McInnes, L., Healy, J. and Melville, J. UMAP: Uniform Manifold Approximation and

Projection for Dimension Reduction. eng. arXiv.org (2020). ISSN: 2331-8422.

[35] Maaten, L. van der and Hinton, G. Visualizing High-Dimensional Data Using t-SNE.

eng. Journal of machine learning research 9.nov (2008), pp. 2579–2605. ISSN:

1532-4435.

[36] Kobak, D. and Berens, P. The art of using t-SNE for single-cell transcriptomics. eng.

Nature communications 10.1 (2019), pp. 5416–14. ISSN: 2041-1723.

[37] Lemaître, G., Nogueira, F. and Aridas, C. K. Imbalanced-learn: A Python Toolbox to

Tackle the Curse of Imbalanced Datasets in Machine Learning. Journal of Machine

http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
https://www.tensorflow.org/


61

Learning Research 18.17 (2017), pp. 1–5. URL: http://jmlr.org/papers/v18/
16-365.html.

[38] Last, F., Douzas, G. and Bacao, F. Oversampling for Imbalanced Learning Based

on K-Means and SMOTE. eng. arXiv.org (2017). ISSN: 2331-8422.

[39] O’Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H., Invernizzi, L. et al. Keras-

Tuner. https://github.com/keras-team/keras-tuner. 2019.

[40] Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A. and Talwalkar, A. Hyperband: A

Novel Bandit-Based Approach to Hyperparameter Optimization. Journal of Machine

Learning Research 18.185 (2018), pp. 1–52. URL: http://jmlr.org/papers/
v18/16-558.html.

[41] Pietikäinen, M. and Silvén, O. Tekoälyn haasteet : koneoppimisesta ja konenäöstä

tunnetekoälyyn. fi. Päivitetty toinen painos. Konenäön ja signaalianalyysin keskus,

2021. ISBN: 978-952-62-3202-7. URL: http://urn.fi/urn:isbn:9789526232027.

[42] Kaggle. Competitions. Online. URL: https://www.kaggle.com/competitions
(visited on 04/25/2023).

http://jmlr.org/papers/v18/16-365.html
http://jmlr.org/papers/v18/16-365.html
https://github.com/keras-team/keras-tuner
http://jmlr.org/papers/v18/16-558.html
http://jmlr.org/papers/v18/16-558.html
http://urn.fi/urn:isbn:9789526232027
https://www.kaggle.com/competitions

	Introduction
	Background
	Profile joints in building design
	Machine learning
	Traditional machine learning classifiers
	Neural network classifiers


	Data collection and preprocessing
	Dataset collection
	Dataset structure
	Feature descriptions
	Feature evaluation and selection

	Data preprocessing
	Dimensionality reduction
	Dataset splitting and balancing


	Classifier implementations
	Machine learning models
	Traditional classifiers
	Neural network

	Software integration

	Results and comparisons
	Evaluation metrics
	Performances of the classifiers
	Discussion

	Conclusion
	References

