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ABSTRACT

The demand for Indoor Positioning Systems (IPSs) developed speci�cally for mo-
bile and wearable devices is continuously growing as a consequence of the expansion
of the global market of Location-based Services (LBS), increasing adoption of mo-
bile LBS applications, and ubiquity of mobile/wearable devices in our daily life.
Nevertheless, the design of mobile/wearable devices-based IPSs requires to ful�ll
additional design requirements, namely low power consumption, reuse of devices’
built-in technologies, and inexpensive and straightforward implementation. Within
the available indoor positioning technologies, embedded in mobile/wearable devices,
IEEE 802.11 Wireless LAN (Wi-Fi) and Bluetooth Low Energy (BLE) in com-
bination with lateration and �ngerprinting have received extensive attention from
research communities to meet the requirements. Although these technologies are
straightforward to implement in positioning approaches based on Received Signal
Strength Indicator (RSSI), the positioning accuracy decreases mainly due to prop-
agation signal �uctuations in Line-of-sight (LOS) and Non-line-of-sight (NLOS),
and the heterogeneity of the devices’ hardware. Therefore, providing a solution to
achieve the target accuracy within the given constraints remains an open issue.

The motivation behind this doctoral thesis is to address the limitations of tradi-
tional IPSs for human positioning based on RSSI, which su�er from low accuracy
due to signal �uctuations and hardware heterogeneity, and deployment cost con-
straints, considering the advantages provided by the ubiquity of mobile devices and
collaborative and machine learning-based techniques. Therefore, the research under-
taken in this doctoral thesis focuses on developing and evaluating mobile device-based
collaborative indoor techniques, using Multilayer Perceptron (MLP) Arti�cial Neu-
ral Networks (ANNs), for human positioning to enhance the position accuracy of
traditional indoor positioning systems based on RSSI (i.e., lateration and �ngerprint-
ing) in real-world conditions.

The methodology followed during the research consists of four phases. In the
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�rst phase, a comprehensive systematic review of Collaborative Indoor Positioning
Systems (CIPSs) was conducted to identify the key design aspects and evaluations
used in/for CIPSs and the main concerns, limitations, and gaps reported in the lit-
erature. In the second phase, extensive experimental data collections using mobile
devices and considering collaborative scenarios were performed. The data collected
was used to create a mobile device-based BLE database for testing ranging collab-
orative indoor positioning approaches, and BLE and Wi-Fi radio maps to estimate
devices’ position in the non-collaborative phase. Moreover, a detailed description of
the methodology used for collecting and processing data and creating the database, as
well as its structure, was provided to guarantee the reproducibility, use, and expan-
sion of the database. In the third phase, the traditional methods to estimate distance
(i.e., based on Logarithmic Distance Path Loss (LDPL) and fuzzy logic) and po-
sition (i.e., RSSI-lateration and �ngerprinting–9-Nearest Neighbors (9-NN)) were
described and evaluated in order to present their limitations and challenges. Also,
two novel approaches to improve distance and positioning accuracy were proposed.
In the last phase, our two proposed variants of collaborative indoor positioning sys-
tem using MLP ANNs were developed to enhance the accuracy of the traditional
indoor positioning approaches (BLE–RSSI lateration-based and �ngerprinting) and
evaluated them under real-world conditions to demonstrate their feasibility and ben-
e�ts, and to present their limitations and future research avenues.

The �ndings obtained in each of the aforementioned research phases correspond
to the main contributions of this doctoral thesis. Speci�cally, the results of evaluat-
ing our CIPSs demonstrated that the �rst proposed variant of mobile device-based
CIPS outperforms the positioning accuracy of the traditional lateration-based IPSs.
Considering the distances among collaborating devices, our CIPS signi�cantly out-
performs the lateration baseline in short distances ( 4m), medium distances (>4m
and  8m), and large distances (> 8m) with a maximum error reduction of 49.15
%, 19.24 %, and 21.48 % for the “median” metric, respectively. Regarding the
second variant, the results demonstrated that for short distances between collaborat-
ing devices, our collaborative approach outperforms the traditional IPSs based on
BLE–�ngerprinting and Wi-Fi–�ngerprinting with a maximum error reduction of
23.41% and 19.49% for the “75th percentile” and “90th percentile” metric, respec-
tively. For medium distances, our proposed approach outperforms the traditional
IPSs based on BLE–�ngerprinting in the �rst 60% and after the 90% of cases in the
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Empirical Cumulative Distribution Function (ECDF) and only partially (20% of
cases in the ECDF) the traditional IPSs based on Wi-Fi–�ngerprinting. For larger
distances, the performance of our proposed approach is worse than the traditional
IPSs based on �ngerprinting.

Overall, the results demonstrate the usefulness and usability of our CIPSs to
improve the positioning accuracy of traditional IPSs, namely IPSs based on BLE–
lateration, BLE–�ngerprinting, and Wi-Fi–�ngerprinting under speci�c conditions.
Mainly, conditions where the collaborative devices have short and medium distances
between them. Moreover, the integration of MLP ANNs model in CIPSs allows us
to use our approach under di�erent scenarios and technologies, showing its level of
generalizability, usefulness, and feasibility.
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RESUMEN

La demanda de Sistemas de Posicionamiento Indoor (IPSs por sus siglas en inglés)
desarrollados especí�camente para dispositivos móviles y wearables está en constante
crecimiento como consecuencia de la expansión del mercado global de Servicios Basa-
dos en Localización (LBS por sus siglas en inglés), el aumento en la adopción de apli-
caciones móviles de LBS y la ubicuidad de los dispositivos móviles/wearables en nues-
tra vida diaria. Sin embargo, el diseño de IPSs basados en dispositivos móviles/wear-
ables requiere cumplir con requisitos adicionales de diseño, como un bajo consumo
de energía, reutilización de tecnologías incorporadas en los dispositivos y una im-
plementación sencilla y económica. Dentro de las tecnologías de posicionamiento
indoor disponibles en dispositivos móviles/wearables, IEEE 802.11 Wireless LAN
(Wi-Fi) y Bluetooth Low Energy (BLE), combinados con lateration y �ngerprint-
ing, han recibido una gran atención por parte de las comunidades de investigación
para satisfacer los requisitos mencionados anteriormente. Sin embargo, aunque estas
tecnologías son sencillas de implementar en los enfoques de posicionamiento basados
en el Indicador de Intensidad de Señal Recibida (RSSI por sus siglas en inglés), la
precisión de posicionamiento disminuye principalmente debido a las �uctuaciones
de la señal de propagación en Línea de vista (LOS por sus siglas en inglés) y Fuera de
línea de vista (NLOS por sus siglas en inglés), y la heterogeneidad del hardware de
los dispositivos. Por lo tanto, proporcionar una solución para lograr la precisión de
posicionamiento deseada dentro de las limitaciones dadas sigue siendo un problema
abierto.

La motivación detrás de esta tesis doctoral es abordar las limitaciones de los IPSs
tradicionales para el posicionamiento humano basado en RSSI, los cuales sufren de
baja precisión debido a las �uctuaciones de señal y la heterogeneidad del hardware,
y de limitaciones de costo de implementación, considerando las ventajas propor-
cionadas por la ubicuidad de los dispositivos móviles y las técnicas colaborativas y
basadas en el aprendizaje automático. Por lo tanto, la investigación llevada a cabo
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en esta tesis doctoral se centra en el desarrollo y evaluación de técnicas colaborativas
basadas en dispositivos móviles y utilizando utilizando Redes Neuronales Arti�ciales
(MLP por sus siglas en inglés) de Perceptrón Multicapa (MLP)MLP (ANNs por sus
siglas en inglés) para el posicionamiento humano, con el �n de mejorar la precisión
de posición de los sistemas tradicionales de posicionamiento indoor basados en RSSI
(es decir, lateration y �ngerprinting) en condiciones del mundo real.

La metodología seguida durante la investigación consta de cuatro fases. En la
primera fase, se realizó una revisión sistemática exhaustiva de los Sistemas de Posi-
cionamiento Indoor Colaborativos (CIPSs por sus siglas en inglés) para identi�car
los aspectos clave de diseño y evaluaciones utilizados en/para CIPSs, así como las
principales preocupaciones, limitaciones y brechas reportadas en la literatura. En la
segunda fase, se realizaron extensas recolecciones de datos experimentales utilizando
dispositivos móviles y considerando escenarios colaborativos. Los datos recopilados
se utilizaron para crear una base de datos basada en BLE para probar enfoques de
posicionamiento indoor colaborativos, y mapas de radio BLE y Wi-Fi para estimar
la posición de los dispositivos en la fase no colaborativa. Además, se proporcionó
una descripción detallada de la metodología utilizada para la recolección y proce-
samiento de datos y la creación de la base de datos, así como su estructura, para
garantizar la reproducibilidad, uso y expansión de la base de datos. En la tercera
fase, se describieron y evaluaron los métodos tradicionales para estimar la distan-
cia (es decir, basados en (es decir, basados en Pérdida de Trayectora de Distancia
Logarítmica (LDPL por sus siglas en inglés) y lógica difusa) y la posición (es decir,
RSSI-lateration y �ngerprinting–9-NN para presentar sus limitaciones y desafíos.
Además, se propusieron dos nuevos enfoques para mejorar la precisión de distancia
y posicionamiento. En la última fase, se desarrollaron nuestras dos variantes prop-
uestas de sistemas de posicionamiento indoor colaborativos utilizando MLP ANNs
para mejorar la precisión de los enfoques tradicionales de posicionamiento indoor
(BLE-RSSI basados en lateration y �ngerprinting) y se evaluaron en condiciones del
mundo real para demostrar su factibilidad y bene�cios, así como para presentar sus
limitaciones y futuras líneas de investigación.

Los hallazgos obtenidos en cada una de las fases de investigación mencionadas cor-
responden a las principales contribuciones de esta tesis doctoral. Especí�camente,
los resultados de la evaluación de nuestros CIPSs demostraron que la primera vari-
ante propuesta de CIPS basado en dispositivos móviles supera la precisión de posi-
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cionamiento de los IPSs basados en lateration tradicionales. Considerando las dis-
tancias entre dispositivos colaborativos, nuestro CIPS supera signi�cativamente el
sistema de referencia basado en lateration en distancias cortas ( 4m), distancias
medias (>4m y  8m), y distancias largas (> 8m), con una reducción máxima del
error del 49,15%, 19,24%, y 21,48% para la métrica de "mediana", respectivamente.
En cuanto a la segunda variante, los resultados demostraron que para distancias cor-
tas entre dispositivos colaborativos, nuestro enfoque colaborativo supera a los IPSs
tradicionales basados en BLE-�ngerprinting y Wi-Fi-�ngerprinting con una reduc-
ción máxima del error del 23,41% y 19,49% para la métrica del "75 percentil" y
"90 percentil ", respectivamente; para distancias medias, nuestro enfoque propuesto
supera a los IPSs tradicionales basados en BLE-�ngerprinting en el primer 60% y
después del 90% de los casos en la Función de Distribución Acumulativa Empírica
(ECDF por sus siglas en inglés) y solo parcialmente (20% de los casos en el ECDF)
los IPSs tradicionales basados en Wi-Fi-�ngerprinting; para distancias más grandes,
el rendimiento de nuestro enfoque propuesto es peor que el de los IPSs tradicionales
basados en �ngerprinting.

En general, los resultados demuestran la utilidad y usabilidad de nuestros CIPSs
para mejorar la precisión de posicionamiento de los IPSs tradicionales, es decir, los
IPSs basados en BLE–lateration, BLE–�ngerprinting y Wi-Fi–�ngerprinting bajo
condiciones especí�cas. Principalmente, en condiciones en las que los dispositivos
colaborativos tienen distancias cortas y medias entre ellos. Además, la integración
del modelo de MLP ANNs en nuestros CIPSs nos permite utilizar nuestro enfoque
con diferentes escenarios y tecnologías, mostrando su nivel de generalización, utilidad
y viabilidad.
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1 INTRODUCTION

1.1 Introduction and motivation

The global market of Location-based Services (LBS) is growing rapidly due to the
ubiquity of mobile and wearable devices in our daily life [1, 2]. This has increased
the demand for Indoor Positioning Systems (IPSs), especially those for mobile and
wearable devices. In addition to the common IPSs design requirements (e.g., high
position estimation accuracy and, if possible, the reuse of infrastructure deployed in
the environments) [3], mobile and wearable device-based positioning systems should
consider low power consumption, reuse of devices’ built-in technologies, inexpensive
and straightforward implementation as main requirements [4]. Meeting all these
requirements remains an open challenge for the scienti�c community. Consequently,
the scienti�c community focuses on improving positioning technologies, techniques,
and methods to provide solutions with the best trade-o� between the aforementioned
requirements, primarily focusing on position estimation accuracy.

Within the available positioning technologies for IPS, IEEE 802.11 Wireless
LAN (Wi-Fi) and Bluetooth Low Energy (BLE) are widely used due to their al-
ready embedded nature in mobile, wearable, and IoT devices [3, 5] and the last one
also due to their low energy pro�le and inespensiveness [6]. Despite the straightfor-
ward implementation of these technologies in positioning systems based on Received
Signal Strength Indicator (RSSI), the heterogeneity of the devices’ hardware and
the �uctuations in the signal propagation caused by the environment a�ect the sig-
nal’s propagation, especially in Non-line-of-sight (NLOS) conditions, leading to a
decrease in positioning accuracy. The most popular approaches to mitigate these
�uctuations are �ngerprinting, lateration, and mathematical modeling of signal prop-
agation. However, these approaches have some drawbacks, such as the di�culty of
modeling signal propagation in various environments and conditions; expensive and
complex maintenance and update of RSSI-signatures databases; insu�cient number
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and poor deployment (placement) of reference beacons in the environment.
As it can be noticed, the most popular approaches in the literature impose re-

strictions and present additional challenges from the point of view of development,
implementation, and use. To address these challenges, the scienti�c community has
been investigating a variant of traditional IPSs based on the collaboration between
devices, which takes advantage of the increasing density of mobile and wearable de-
vices in indoor environments, their ubiquity, and the duality of wireless technologies
(i.e., communication and positioning use).

Collaborative Indoor Positioning Systems (CIPSs) aim to provide better perfor-
mance of positioning systems by exploiting the advantages of traditional positioning
approaches (e.g., based on �ngerprinting or lateration) and mitigating their draw-
backs through the collaboration of neighboring devices using wireless communica-
tions. CIPSs augment the coverage area of traditional IPSs by broadcasting posi-
tioning data between users [7, 8, 9]; decrease the positioning infrastructure cost and
complexity while improving users’ positioning accuracy [10, 11, 12]; decrease posi-
tioning uncertainty due to poor geometric location of anchors [13, 14], and decrease
positioning in harsh and NLOS environments by using the surrounding users as
auxiliary anchor nodes [15, 16, 17].

In detail, in the research �eld of IPSs, based on the role played by diverse ac-
tors/users in the system, we can identify two primary types of IPSs, the non-
collaborative and collaborative [15, 18, 17, 19]. Both terms are related to the
operational phase, where the position is estimated, and not to the data collection
phase. Non-collaborative systems do not take into account the involvement of other
actors/users in their positioning algorithms. Contrarily, collaborative systems de-
termine the position due to the indirect/direct interoperability between nearby ac-
tors/users or several IPSs. It should be noted that sensor/data fusion and collabora-
tive approaches are not the same. While the �rst one focuses on fusing sensors’ data
from a single user to estimate position, the second one aims to estimate position us-
ing independent actors/users, which exchange information and the relative distance
computed between them.

In the literature, there is a vast number of proposed collaborative positioning sys-
tems designed for di�erent users (e.g., sensors, robots, aerial and ground vehicles),
scenarios (i.e., outdoor and indoor), and applications (e.g., autonomous vehicles/-
drones positioning in warehouses and factories). However, the number of proposed
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CIPSs that involve human users is moderate [3]. Each CIPS solution requires taking
into account in its design the requirements, challenges, and resources available for
the speci�c application. For example, the precision, accuracy, and latency required
for positioning autonomous vehicles/drones in whare houses are not the same as
for positioning people in a mall. Furthermore, contrary to the CIPSs for vehicles/-
drones, those for humans are usually restricted to using devices (already) in use by
the user (i.e., wearable/mobile devices), which inherently imposes battery and com-
putational power constraints.

The motivation behind this doctoral thesis is to address the limitations of tradi-
tional IPSs for human positioning based on RSSI, which su�er from low accuracy
due to signal �uctuations and hardware heterogeneity, and deployment cost con-
straints, considering the advantages provided by the ubiquity of mobile devices and
collaborative and machine learning-based techniques. Speci�cally, the ubiquity of
mobile devices has created an unprecedented opportunity to improve the low po-
sitioning accuracy of traditional IPS approaches based on RSSI without increasing
the deployment cost. Also, in recent years, machine learning-based IPS techniques
have shown signi�cant promise in improving accuracy. However, most of these tech-
niques focus on individual device-based approaches, which limits the potential of the
solutions. Moreover, collaborative techniques together with machine learning-based
techniques can signi�cantly improve the accuracy of IPSs focus on human position-
ing and heterogeneous devices. So, in this thesis, we focus our research on the de-
velopment and evaluation of mobile device-based collaborative indoor techniques,
using Multilayer Perceptron (MLP) Arti�cial Neural Networks (ANNs), for hu-
man positioning to enhance the position accuracy of traditional IPSs based on RSSI.
It should be noted that throughout this thesis, we use the convention RSSI instead of
Received Signal Strength (RSS) because we use mobile devices based on the android
library to obtain the measurements and in its speci�cations [20] indicates that the
measurements obtained are in RSSI.

1.2 Research objectives and questions

The principal objective of this thesis is to develop and evaluate mobile device-based
collaborative indoor techniques for human positioning to enhance the position accu-
racy of traditional indoor positioning systems based on RSSI. In detail, the objectives
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are summarized as follows:

First objective: To gain an overview of the state-of-the-art in the �eld, and map
the principal technologies, techniques, and methods used for collaborative in-
door positioning approaches, as well as the main architectures and infrastruc-
tures used.

Second objective: To create an open access BLE database for the research com-
munity, using mobile devices which simultaneously act as transmitters and
receivers, for experimentation and evaluation of non-collaborative and collab-
orative indoor positioning under diverse conditions.

Third objective: To describe and experimentally analyze non-collaborative
methods to estimate distance (i.e., based on Logarithmic Distance Path
Loss (LDPL) model and fuzzy logic) and position (i.e., RSSI-lateration and
�ngerprinting–9-Nearest Neighbors (9-NN)). Additionally, to describe and
analyze the behavior of BLE signals propagation in indoor environments, con-
sidering mobile devices as transmitters and receivers.

Fourth objective: To develop and evaluate mobile device-based collaborative
techniques to enhance the position accuracy of traditional IPSs based on lat-
eration and �ngerprinting–9-NN methods, and study and demonstrate the
usefulness of the collaborative approach under various conditions.

The aforementioned objectives have been stated to address the following research
questions:

RQ1: What are the infrastructures, architectures, technologies, techniques, meth-
ods, and evaluation aspects used in/for CIPSs, and what are the current trends and
the main gaps in CIPS?

RQ2: How can the ranging-based collaborative indoor positioning systems be ex-
perimentally tested and validated considering heterogeneous mobile devices?

RQ3: What are the limitations and challenges of the traditional methods to esti-
mate distance (i.e., based onLDPL model and fuzzy logic) and position (lateration
and �ngerprinting–9-NN) based on BLE/Wi-Fi-RSSI and how can the position-
ing accuracy and robustness of LDPL model and lateration be improved?
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RQ4: How can the positioning accuracy of traditional IPSs based on RSSI mea-
surements (i.e., lateration and �ngerprinting) be enhanced by the collaboration of
surrounding devices/users?

The research questions are addressed in the chapters and publications indicated
in Table 1.1.

Table 1.1 Research question – chapters – publications.

Research question Thesis chapter Publications

Research question 1 Chapter 2 & Chapter 6 [3]
Research question 2 Chapter 3 & Chapter 6 [21]
Research question 3 Chapter 4 & Chapter 6 [21, 4, 6]
Research question 4 Chapter 5 & Chapter 6 [22]

1.3 Research methodology

To achieve the aforementioned objectives, we conducted research between 2019 and
2022, which was divided into four sequential phases.

First phase: A comprehensive systematic review of CIPSs was conducted to
identify the design aspects (i.e., infrastructure, architecture, technology, tech-
nique, and method) and the evaluations used in/for the identi�ed CIPSs. Fur-
thermore, the main concerns, limitations, and gaps in the research �eld were
reported.

Second phase: Data collection campaigns were performed in an o�ce and a
lobby scenario based at University Jaume I (Castellón, Spain) and Tampere
University (Tampere, Finland), respectively, based on mobile devices con-
sidering the devices’ collaboration (simultaneous transmission/reception be-
tween them). The data collected was used to create mobile device-based BLE
databases for testing non-collaborative and collaborative indoor positioning ap-
proaches. Also, BLE and Wi-Fi radio maps were created to estimate devices’
position in the non-collaborative phase based on �ngerprinting and lateration.
Additionally, a detailed description of the methodology used for the collection
and processing of data and creation of the databases, as well as their struc-
tures, were provided to guarantee the reproducibility, use, and expansion of
the databases.
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Third phase: The traditional non-collaborative methods to estimate distance
(i.e., based on LDPL model and fuzzy logic) and position (i.e., RSSI-lateration
and �ngerprinting–9-NN) were described and evaluated to present their lim-
itations and challenges and to use them as a performance benchmark for our
CIPS. The behavior of BLE signals propagation in indoor environments, con-
sidering mobile devices as transmitters and receivers, was described and ana-
lyzed. Also, two novel approaches to improve distance and positioning accu-
racy were proposed and evaluated.

Fourth phase: Our proposed collaborative indoor positioning system using
Multilayer Perceptron (MLP) Arti�cial Neural Networks (ANNs) was devel-
oped to enhance the accuracy of the traditional indoor positioning methods
(RSSI-lateration and �ngerprinting–9-NN) and evaluated it under real-world
conditions to demonstrate its feasibility and bene�ts. Moreover, its limitations
and future research avenues were presented.

The �ndings obtained in each of the aforementioned research phases correspond
one-on-one to the main objectives stated in this doctoral thesis.

1.4 Contributions

In detail, the contributions of this thesis are summarized as follows:

Research contribution:

Overview of state-of-the-art in collaborative indoor positioning systems: The
Author presents to the readers an overall view of the infrastructure, architec-
tures, technologies, techniques, and methods used in/for CIPSs, and how they
are used together to estimate the user/device’s position. Also, the Author pro-
vides a view of trends, open issues, gaps, limitations, and future works of CIPSs
reported in the literature.

Databases and testing scenarios: The Author provides mobile device-based
BLE databases for testing non-collaborative and collaborative indoor position-
ing approaches, considering bidirectional and simultaneous transmission/re-
ception between devices. The databases contain experimental data collected
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in two di�erent real indoor scenarios, an o�ce and a lobby scenario, based at
University Jaume I (Castellón, Spain) and Tampere University (Tampere, Fin-
land), respectively. In each scenario, various mobile device arrangements were
con�gured, and real NLOS conditions (i.e., employees doing o�ce duties,
people intentionally walking and/or sitting in their work areas, and normal
lobby conditions). Also, a calibration mobile devices arrangement in Line-of-
sight (LOS) conditions was designed. A detailed description of the methodol-
ogy used for the data collection process, data post-processing, and the database
structure is provided to ensure its reproducibility and reuse in other scenar-
ios. In addition, the Author provides BLE and Wi-Fi radio maps created to
perform �ngerprinting and lateration approaches in the aforementioned sce-
narios. The radio maps contain the information of the BLE anchors deployed
in the o�ce scenario and the Wi-Fi Access Points (APs) available in the lobby
scenario.

Analysis of non-collaborative RSSI-based methods and BLE signals: The
Author provides an analysis of the behavior of the BLE signals, transmitted
and received by mobile devices, in indoor environments. The limitations and
challenges of the diverse methods based on RSSI to estimate distance (i.e.,
based on LDPL model and fuzzy logic) and position (i.e., RSSI–lateration and
�ngerprinting–9-NN) in NLOS conditions are stated. Moreover, the Author
proposed two novel solutions to improve distance and positioning accuracy.
The �rst is based on a fuzzy logic classi�er that mitigates the e�ect of BLE sig-
nals �uctuations indoors and outperforms approaches based on LDPL. The
second is a novel lateration BLE-RSSI method based on combinatorial anchors
selection to enhance the accuracy and reliability of the position estimated.

Collaborative indoor positioning system: The Author provides a collabora-
tive indoor positioning system using MLP ANNs to improve the accuracy
of the traditional indoor positioning methods, namely RSSI-lateration and
�ngerprinting–9-NN, under adverse conditions (i.e., inadequate anchors dis-
tribution, low anchor density, hardware heterogeneity and �uctuating RSSI).
In addition, the Author demonstrated the feasibility and bene�ts of our pro-
posed approach and enlist its limitations and future research avenues to im-
prove its performance.
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1.5 Thesis outline

The contributions and results presented in this thesis correspond to the outcomes
of the scienti�c works conducted by the Author at the Institute of New Imag-
ing Technologies, University Jaume I (Castellón, Spain) and Electrical Engineering
Unit, Tampere University (Tampere, Finland), between 2019 and 2022, which have
been published in international journals [3, 21], proceeding of international confer-
ences [4, 6, 22] and open access repositories [23].

This thesis is organized into six chapters. The �rst chapter covers the introduction
and research motivations and details the research questions, objectives, methodology,
and contributions of the research. The remaining chapters are organized as follows:

Chapter 2 introduces the concept of CIPSs and presents an overall review of
latterly CIPSs through a systematic review. Considering the system’s architec-
ture, infrastructure, technologies, techniques, methods, and evaluation aspects
implemented on CIPSs. In addition, the current trend and the main gaps in
CIPS research are highlighted.

Chapter 3 describes the mobile device-based BLE databases for non-
collaborative and collaborative indoor positioning approaches testing, as well
as the methodology regarding their data collection and the indoor scenarios
used (o�ce and lobby). Additionally, it describes the BLE and Wi-Fi radio
maps created to perform lateration and �ngerprinting.

Chapter 4 describes and analyzes the traditional non-collaborative methods
to estimate distance (i.e., based on LDPL model and fuzzy logic) and position
(i.e., RSSI-lateration and �ngerprinting–9-NN), as well as the BLE-RSSI prop-
agation in indoor environments. Moreover, it presents two novel solutions to
improve distance and positioning accuracy.

Chapter 5 describes the proposed BLE-Collaborative Indoor Positioning Sys-
tem (CIPS) based on mobile devices and presents and analyzes the results of
evaluating the performance of the system against non-collaborative approaches
(i.e., RSSI-lateration and �ngerprinting–9-NN).

Chapter 6 contains the conclusions, limitations, and recommendations for
further research directions.
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2 COLLABORATIVE INDOOR POSITIONING
SYSTEMS: A SYSTEMATIC REVIEW

The potential of Collaborative Indoor Positioning Systems (CIPSs) to enhance the
performance of traditional (non-collaborative) indoor positioning systems has gen-
erated a constant and growing interest in their research and development. Unlike to
outdoor environments, where navigation and positioning systems rely primarily on
Global Navigation Satellite System (GNSS), [1, 24], a vast diversity of technologies,
techniques, and methods are implemented in collaborative positioning systems for
indoor environments. This chapter introduces the main concepts of Indoor Position-
ing Systems (IPSs) and CIPSs and their di�erences, summarizes the most relevant
classi�cations for IPSs, and presents an overall review of CIPSs through a systematic
review. The review, carried out in the initial phases of our research work, includes
84 articles published between 2006 and 2020. For the sake of completeness of this
PhD dissertation, an update was conducted, which includes 15 additional articles
published between 2020 and 2022. Even though 7 articles from 2020 were already
included in the systematic review, the search queries were conducted in January 2020,
so a recent search revealed 5 more articles in 2020. The classi�cation, analysis, and
discussion of articles focused on the system’s architecture, infrastructure, technolo-
gies, techniques, methods, and evaluation metrics implemented on CIPSs. In addi-
tion, the current trends, challenges, and main gaps in CIPS research are highlighted,
and the evolution of CIPSs over time is studied.

2.1 Indoor positioning systems

An IPS is a working system that combines indoor positioning technologies, tech-
niques, and methods to provide the position of objects or people inside closed envi-
ronments [25]. The IPSs can be as straightforward as the use of 9-Nearest Neigh-
bors (9-NN) algorithms in �ngerprinting approaches to estimate position [26, 27]
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or more sophisticate and complex as sensor fusion data approaches that combine di-
verse technologies (e.g., Inertial Measurement Unit (IMU) and Bluetooth Low En-
ergy (BLE)), methods (Pedestrian Dead Reckoning (PDR) and �ngerprinting) and
data through Kalman Filter (KF) algorithms [28, 29]. Nevertheless, its design is very
context-dependent and is centered on three key elements – technologies, techniques,
and methods.

The technologies used on indoor positioning are the heart of the IPSs and could
be considered as a context measure for the deployment –i.e., the desired position-
ing accuracy. Unlike outdoor positioning, mainly based on satellite constellations
that transmit, in Line-of-sight (LOS), synchronized and time-stamped Radio Fre-
quency (RF) signals to receivers, the technologies of indoor positioning are diverse
due to heterogeneity of scenarios and involve a wide amount of technologies. For
example, technologies relying on sound and light as ultrasound [30] and Visible
Light Communication (VLC) [31], force/acceleration (IMU [32]), RF as 5G [33],
LTE [34], RFID [35], BLE [36], Ultra-wide band (UWB) [37] among others. Con-
cerning the positioning techniques, they specify the type of information (e.g., data
or measurement) used to estimate the position. To mention some examples, Angle
of Arrival (AoA) processes the angle and direction of received signals, Time of Ar-
rival (ToA) uses the signal time-of-�ight from the transmitter to the receiver, and
Received Signal Strength Indicator (RSSI) considers the signal strength measured
by the receiver. The methods correspond to the speci�c algorithm implemented to
process the information available to estimate the position.

A broad variety of methods are proposed in the literature, which can include
singular variants of widely used methods, such 9-NN, or methods brie�y described
which are identi�ed mainly for their technique used, such as �ngerprint-based meth-
ods. Additionally, the methods can be linked to a speci�c technology or technique,
for example, the PDR for inertial measurements, or to general algorithms which
belong to a well-known set of algorithms, such as machine learning for classi�cation.
To summarize, despite the fact that an IPS can be a straightforward system, such as
a system for IEEE 802.11 Wireless LAN (Wi-Fi) signals based on �ngerprinting–
9-NN algorithm [38, 26, 27], several systems are complex, as for example, systems
based on sensor fusion [28, 29].

Considering the place where the positioning algorithms are executed in the IPS,
we can distinguish two types of computational architectures: based on a server (e.g.,
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Where@UM [39]) and the server-free or stand-alone (e.g., AnyPlace [40]). On the
one hand, the server-based architecture processes the information (e.g., raw data)
provided by each device in a server, which estimates the position without using
information from others devices. On the other hand, the server-less architecture
estimates the position locally in the devices, which contain their own information
to self-determine their position. Device position estimation is performed consider-
ing the information provided by the device regardless of whether the architecture is
server-based or stand-alone.

There are typically two types of infrastructure, infrastructure-free/infrastructure-
less and infrastructure-based IPS, according to the literature [41, 42, 43, 44]. From
one side, the infrastructure-less IPSs, such as IPSs based onmagnetic �eld [44], do not
need the deployment of any infrastructure in the vicinity to operate. Contrarily, the
infrastructure-based IPSs requires physical elements placed in the environment (e.g.,
UWB beacons) to operate [41, 43, 44]. Some authors de�ned an intermediate class
called opportunistic IPS [45, 46, 47] to distinguish between IPS where infrastructure
has to be purposefully installed and IPS that exploit the available infrastructure,
known as IPSs based on signals of opportunity. An example of the last one is the
IPSs based on existingWi-Fi Access Points (APs), where it is not necessary to modify
the environment to allow the operation of the positioning system. Opportunistic
approaches are not treated as a di�erent group in this thesis. Additional information
about non-collaborative IPSs (traditional IPSs) can be found in [48], [49] and [50].

2.1.1 Technologies

From the perspective of indoor positioning technologies, there is a wide range of
technological solutions presented by the research community, which aim to increase
the performance of positioning systems in various scenarios and applications. Plenty
of technologies for indoor positioning have been extensively documented, catego-
rized, utilized and assessed in the literature [51, 52, 48, 53, 54, 1]. Nonetheless, there
is no unique classi�cation that encompasses all of them. Within the most popular
published classi�cations of technologies that allow us to illustrate the heterogeneity of
criteria used for classi�cation, we can �nd, for example, the classi�cation of Gu, Lo,
and Niemegeers [54], which divides the technologies into six categories depending
on the type of signal measured, but only covers wireless personal networks; Mautz
[52], under the premise of systems’ performance with a similar type of sensors can be
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readily evaluated and compared, categorize the technologies in thirteen sensor tech-
nologies; likewise, Mendoza-Silva, Torres-Sospedra, and Huerta [48], based on the
kinds of sensors used, identi�es and describes ten groups to encompass the most often
used technologies in IPSs encountered in their meta-review; Basiri, Lohan, Moore,
Winstanley, Peltola, Hill, Amirian, and Silva [1] in their review identi�es twenty
positioning technologies, which features were summarized and speci�es, in addition,
classify the most appropriate technologies available in the market for Location-based
Services (LBS) applications. The classi�cations mentioned above are enlisted in Ta-
ble 2.1.

Table 2.1 Summary of proposed classification for indoor positioning technologies. Source [3].

Gu, Lo, and
Niemegeers [54]
(2009)

Mautz [52] (2012) Basiri, Lohan, Moore,
Winstanley, Peltola, Hill,
Amirian, and Silva [1]
(2017)

Mendoza-Silva,
Torres-Sospedra, and
Huerta [48] (2019)

•Infrared

•Vision-based

•Magnetic

•Audible Sound

•Ultrasound

•Radio
Frequency

•Infrared

•Camera

•Magnetic Localization

•Sound

•INS

•UWB

•WLAN/WiFi

•RFID

•Tactile and Combined
Polar Systems

•High sensitive GNSS /
Assisted GNSS

•Pseudolite

•Infrastructure systems

•Other RF(Cellular
Networks, Zigbee, Radar,
DECT Phones, Digital
TV, FM radio)

•Infrared Market or
re�ective element

•Infrared Light image
feature matching

•Light image feature
matching

•Light image market

•Magnetometer

•Sound

•UWB ToF

•WiFi RSS

•WiFi ToF/AoA

•RFID active

•Bluetooth RSS

•Tactile on user device

•Tactile Environment

•Tactile Odometer

•Pseudolite

•GNSS

•Electromagnetic Systems

•Barometer

•Mobile Network

•Light

•Computer Vision

•Magnetic Field

•Sound

•Dead Reckoning

•UWB

•WiFi

•RFID and NFC

•Tactile Odometer

•BLE

•Other Technologies
(Cellular Network,
ZigBee, 5G)
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2.1.2 Techniques

The techniques implemented on the IPS are mostly determined by the indoor po-
sitioning technology used. In addition, the type of technique implemented in the
system has a signi�cant impact on its performance. That is, even though the tech-
nology and test circumstances are the same, the performance of the IPS might vary
signi�cantly depending on the technique used. As a result, there are several studies
that categorize, summarize, and characterize IPSs techniques [51, 48, 53, 54, 1].
Techniques, like technologies, have been classi�ed from several perspectives. Within
the most popular published classi�cations of techniques that allow us to illustrate the
heterogeneity of criteria used for classi�cation, we can �nd, for example, Liu, Darabi,
Banerjee, and Liu [51] in their classi�cation considers three groups, the �rst group
called triangulation, composed of two subgroups lateration and angulation, which
considers the geometric properties used to determine the target position; scene anal-
ysis group, which uses �ngerprints measurements, and proximity group, which uses
relative location data; Gu, Lo, and Niemegeers [54] divides the techniques into four
groups, one of which corresponds to a new group, vision analysis, which uses images
obtained from one or more points; Zafari, Gkelias, and Leung [53] present directly
eighth techniques instead of creating subgroups, six considering range measurements,
one considering �ngerprint, and one considering channel attributes; Mendoza-Silva,
Torres-Sospedra, and Huerta [48] provide four techniques, one considering the AoA
and the others based on ranging (i.e., ToA, Time Di�erence of Arrival (TDoA) and
Received Signal Strength (RSS)). The classi�cations mentioned above are enlisted in
Table 2.2.

2.1.3 Methods

Indoor positioning methods/algorithms are precise sequential steps to follow to cal-
culate/estimate the location of a target [54]. The methods are fundamentally tied to
the technologies and techniques applied to the IPS. In the literature, there are nu-
merous scienti�c works [55, 44, 56, 57, 50], which describe and detail the methods
both generically and in detail, based on a speci�c technique or/and technology. Re-
garding the latter, the most popular published classi�cations of methods that allow
us to illustrate the heterogeneity of criteria used for classi�cation, we can �nd, for
instance, He and Chan [55] focus on methods applied to Wi-Fi �ngerprinting based
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Table 2.2 Summary of proposed classification for indoor positioning techniques. Source [3].

Liu, Darabi,
Banerjee, and Liu
[51] (2007)

Gu, Lo, and Niemegeers
[54] (2009)

Zafari, Gkelias, and
Leung [53] (2019)

Mendoza-Silva,
Torres-Sospedra, and Huerta
[48] (2019)

•Triangulation

–Lateration

∗ToA

∗TDoA

∗RSS-based

∗RToF

∗PoA
–Angulation -
AoA

•Scene Analysis

•Proximity

•Triangulation

–RSS

–ToA

–AoA

•Fingerprinting

•Proximity Location

•Vision Analysis

•RSSI

•Channel State
Information

•Fingerprinting/Scene
Analysis

•AoA

•ToA

•TDoA

•RToF

•PoA

•AoA

•ToA

•TDoA

•RSS

IPS and classify them into probabilistic or deterministic; Chen, Guo, Shen, and Cao
[44] focus on methods based on Wi-Fi–RSS and categorize them into two groups,
methods based on geometry and �ngerprinting; Guvenc and Chong [56] in their
review focus on methods applied to ToA-based localization and classify them into
two groups, methods for Non-line-of-sight (NLOS) scenarios and LOS scenarios;
Yassin, Nasser, Awad, Al-Dubai, Liu, Yuen, Raulefs, and Aboutanios [57], on the
other hand, provides a broad review of three methods based on proximity, triangu-
lation, and scene analysis techniques.

It should be noted that the classi�cations mentioned above are not based on the
raw data gathering stage (where the data to process is collected); they are based only
on the IPS operational stage. For example, RADAR [38], which is considered the
�rst �ngerprinting method, can still be used in new systems, regardless of how the
data is collected, such as automatically from unlabeled samples [58], after interpolat-
ing a reduced radio map [59], through crowdsourcing [60], or based on an advance
path-loss model [61] that create the data. The classi�cations mentioned above are
enlisted in Table 2.3.
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Table 2.3 Summary of proposed classification for indoor positioning methods. Source [3].

Guvenc and Chong [56]
(2009)

He and Chan [55] (2016) Yassin, Nasser, Awad,
Al-Dubai, Liu, Yuen,
Raulefs, and
Aboutanios [57] (2017)

Chen, Guo, Shen,
and Cao [44] (2017)

In LOS scenarios
•Maximum likelihood
(ML)

–ML

–Two-Step ML

–Approximate ML

•Least Squares (LS)

–Non-Linear LS

–Linear LS through
Taylor’s Series
Expansion

–Contrained Weighted
LS

In NLOS scenarios
•Maximum likelihood (ML)

–ML utilizing NLOS
Statistic

–Identi�cation & Discard
based ML

•Least Squares (LS)

–Weighted LS

–Residual Weighting

•Constrained Localization

–Constrained LS with
Quadratic Programming

–Constrained LS with
Linear Programming

–Geometric Constrained
Localization

–Interior Point
Optimization

•Robust estimator

–M-estimator

–Least Median of Squares

•Deterministic

–Euclidean Distance

–Cosine Similarity

–Tanimoto Similarity

–K Nearest Neighbors

–Support Vector Machine

–Linear discrimination
Analysis

•Probabilistic

–Maximum Likelihood

–Bayesian Network

–Expectation-Maximization

–Kullback-Leibler
Divergence

–Gaussian Process

–Conditional Random Field

•Triangulation-based

•Scene Analysis-based

•Proximity-based

•Geometric-based

•Fingerprint-based

2.2 Collaborative indoor positioning systems

The literature, based on the role played by diverse actors/users in IPSs, divides the
IPSs into two primary types, the non-collaborative and collaborative [15, 18, 17,
19]. Both terms are related to the operational phase, where the position is estimated,
and not to the data collection phase, for example, the construction of a �ngerprint-
based database. On the one hand, systems whose schemes do not take into account
the involvement of other actors/users in their positioning algorithms are called non-
collaborative IPSs [19]. On the other hand, systems that determine the position as a
result of the indirect/direct interoperability between nearby actors/users or several
IPSs are called CIPSs. It is worth highlighting that collaborative approaches are not
related to approaches that rely on data or sensor fusion. While CIPSs provide a
single user’s position based on schemes that uses independent actors/users, which
exchange information and relative distance computed between them [62, 63, 18, 19,
64], sensor fusion in order to provide a single user’s position fuses data from several
sensors from a single user [65, 66, 67, 68].

Collaborative systems heavily exploit technological developments and techniques
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and methods created speci�cally for conventional IPS to compute the position of
collaborative nodes in CIPSs. In addition to exploiting these technologies for posi-
tion estimation, CIPSs use them to enable information sharing between nodes. For
example, RF-based technologies such as cellular networks, BLE, Wi-Fi, etc. have a
great variety of protocols for communication. Among the most commonly used in
BLE andWi-Fi, we can mention iBeacon and 802.11n as examples. CIPSs methods
are quite varied. Nonetheless, within that diversity, we have well-known methods
such as maximum likelihood and Least Square (LS) [69], which are based on the
popular non-bayesian and belief propagation approaches.

The computational architecture, in collaborative approaches, is more elaborate
than the non-collaborative contra-part because the positioning algorithm includes
the information provided by neighboring devices. Typically, in CIPSs, we can dis-
tinguish centralized and decentralized architectures. In the �rst [57, 70, 19], a single
node of the network is used to process the information gathered and sent by the
other members of the network to estimate the position of all of them. In contrast,
in a decentralized architecture [52, 57, 18, 70, 19, 43], the function of collaborative
nodes is to collect and share important data (raw or processed), as well as to process
and compute them to estimate their own position. The �nal device’s position is de-
termined considering the information provided by the own device and its neighbors
regardless of whether the architecture is centralized or decentralized.

As part of the state-of-the-art (SOTA), we present a representative case of CIPS in
Figure 2.1. Within the collaborative scenario, we can observe 5 di�erent devices, each
of which uses di�erent positioning approaches to estimate its position, which adds
heterogeneity to the indoor positioning scenario. The CIPS is a compound of a non-
collaborative and a collaborative part. In the �rst one, each user estimates its position
based on technology, technique, and method. User 1 estimates its position based on
BLE, RSSI, and weighted centroid; User 2 based on the magnetic �eld, magnetic
�eld �ngerprint, and likelihood; User 3 based on UWB, ToA, and multilateration;
and Users 4 and 5 based onWi-Fi, �ngerprinting, and 9-NN. The estimated position
and its level of uncertainty are represented by the blue ellipses under each user. In
the collaborative counterpart, the �ve users use 5G Device to Device (D2D).

In order to exemplify how the users’ collaboration enhances the estimated posi-
tion (improved position represented by red ellipses), we present two CIPSs cases:

• The �rst case focused on improving the position accuracy of User 5, who
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presents signi�cant uncertainty, applying an Extended Kalman Filter (EKF),
which combines ranging data from Users 2 and 3.

• The second case focused on estimating the position of User 4. User 4 is out of
range of Wi-Fi area and cannot estimate its own position. So, User 4’s position
is estimated using an EKF, which combines ranging data from 3 Users (1–3).

CIPSs and non-collaborative IPSs di�er in the way they use technologies. The
former uses technologies to exchange information and estimate position between
users, and the non-collaborative IPSs uses the technologies only for position estima-
tion. In addition, the methods used in CIPS estimate the position not only taking
into account the data/information of individual users but also those of neighboring
users.

Figure 2.1 Example case of a heterogeneous CIPS configuration. Source [3].

2.3 Research methodology of systematic review

Our proposed CIPSs systematic review follows the directions speci�ed by
the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) [71]. The PRISMA guidelines, applied to our review, consist of the
following steps:

• 1st step: Formulation of a group of research questions, which specify and
delimit the scope of the review;

• 2nd step: Formulation of a group of inclusion and exclusion criteria, aligned
with the study’s objectives and limits stipulated by the research questions, to
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help us identify the relevance of each research article under consideration;

• 3rd step: A thorough research articles selection procedure is conducted. First,
appropriate search queries were created and used to retrieve all relevant articles.
In our case, Web of Science and Scopus research engines were used. Then, to
get the �nal collection of relevant articles, the found records are combined,
duplicates are eliminated, and analyzed considering the criteria formulated in
2nd, and

• 4th step: The papers are classi�ed and their main characteristics are extracted,
mapped, and evaluated.

Sections 2.3.1 and 2.3.2 detail the formulated research questions and criteria con-
sidered in the methodology to carry out our systematic review, respectively. Section
2.3.3 describes the selection process, and Section 2.3.4 presents the classi�cation of
studies.

2.3.1 Research questions

The systematic review’s goals include evaluating the research works in CIPSs pro-
viding a summary of them and presenting their �ndings. These goals led to the
formulation of the following research questions, which are aligned with the main
RQ1 stated in Section 1.2:

RQ1@4D: What are the infrastructures, architectures, technologies, techniques,
and methods (also called algorithms) used in/for CIPSs?

RQ2@4D: In which combination are technologies, techniques and methods used
in/for CIPSs?

RQ3@4D: How have CIPSs been evaluated and what are the metrics used?

RQ4@4D: What are the limitations, current trends and gaps, and future research
avenues that have been reported?

The principal purpose of our review is stated in RQ1@4D. Despite the fact that
infrastructures, architectures, technologies, techniques, and methods have been ap-
proached and described from the IPS point of view, in our review, we approach them
from the perspective of collaborative systems. In addition, we highlight the similar-
ities and di�erences between collaborative and non-collaborative systems. RQ2@4D
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is focused on gaining an understanding of how the various technologies, techniques,
and methodologies are used together since they are the pillars of CIPS. The RQ3@4D
aims to provide the assessment metrics that were utilized and the kind of evaluations
that were conducted in CIPS, and their proportion according to the information
collected. The RQ4@4D aims to give the scienti�c community avenues for future
study in CIPS while also providing a comprehensive view of trends, open issues, and
limitations.

The research sections where the research questions are addressed are listed as
follows:

RQ1@4D: Result Sections 2.4.2 & 2.4.4 and Discussion Sections 2.5.1 & 2.5.2.

RQ2@4D: Result Section 2.4.4 and Discussion Section 2.5.2.

RQ3@4D: Result Sections 2.4.5 & 2.4.1 and Discussion Sections 2.5.3.

RQ4@4D: Discussion Section 2.5.4 and Conclusion Section 2.7.

2.3.2 Inclusion and exclusion criteria

The scienti�c works included in this review are evaluated considering the following
inclusion and exclusion criteria.

2.3.2.1 Inclusion criteria

IC1: Any comprehensive, primary scienti�c paper authored in English and
published in a peer-reviewed international conference proceeding or journal.

IC2: Any research article that directly proposes a collaborative indoor posi-
tioning system that considers people as the main users.

2.3.2.2 Exclusion criteria

EC1: Any publications that are not full articles (e.g., extended abstracts,
posters, workshop publications), or are not main scienti�c papers (e.g., sum-
maries, reports, patents), or are not published in a peer review international
conference proceeding or journal (e.g., book chapters).

EC2: Any publications that do not consider as a primary study one or more
CIPS to provide to the users’ indoor position (e.g., outdoor positioning or
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non-collaborative approaches) or focus on non-human use cases (e.g., posi-
tioning systems for Unmanned Aerial Vehicle (UAV) or sub-aquatic vehicles).

EC3: Any publications that do not take into account the concept of collabora-
tion as the action of collaborating with surrounding actors/users to determine
their position(e.g., sensor fusion).

2.3.3 Study selection process

The selection process of relevant studies was carried out according to the guidelines
of PRISMA. In the �rst phase, the identi�cation phase, an exhaustive search of the
articles was carried out using the search engines of the two largest scienti�c databases
(Web of Science and Scopus) to discover possible works aligned with the research
questions. For each search engine, similar search queries were provided, using a set
of keywords combined through boolean operators according to the syntax require-
ments of each research engine. The search queries are shown in Table 2.4. Next, a
screening process was performed, which �rst deleted duplicates and then screened the
remaining articles’ titles, abstracts, and keywords considering the criteria presented
in Section 2.3.2. In the eligibility phase, the articles selected by the screening phase
were thoroughly reviewed considering the inclusion and exclusion criteria to get a
�nal collection of the studies included in the review. The PRISMA �ow diagram of
the study selection process, described above, is presented in Figure 2.2. As result of
selection process, 84 articles [72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 17, 84,
85, 14, 86, 87, 88, 89, 90, 91, 92, 12, 93, 94, 7, 95, 96, 8, 97, 98, 99, 100, 101,
102, 9, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 41,
117, 118, 119, 120, 10, 121, 122, 11, 118, 15, 123, 13, 62, 124, 63, 18, 64, 16,
125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138] were chosen
for comprehensive analysis and inclusion in our review.

2.3.4 Classification of the studies

To classify the studies, we divided the CIPSs into a non-collaborative phase, a col-
laborative phase, and an overall system, which is a usual way to break down the
CIPSs. In the non-collaborative phase, each individual node collects positioning-
related data and (optionally) determines its position. In the collaborative phase, the
nodes exchange positioning-related data and, based on the shared information, the
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Figure 2.2 PRISMA flow diagram.

Table 2.4 Scopus and Web of Science search queries. Source [3].

Database Input Query

Scopus (TITLE-ABS-KEY (((Collabora* OR Coopera*)
AND Indoor) AND (Position* OR Track* OR
Locati* OR Locali* OR Navigat*)) AND LAN-
GUAGE (english))

Web of Science TS=((Collabora* ORCoopera*) AND Indoor AND
(Position* OR Track* OR Locati* OR Locali* OR
Navigat*))

position is computed. The overall system organizes and combines the system’s non-
collaborative and collaborative parts. Aligned with our review’s aims and research
questions, the complete classi�cation scheme is illustrated in Figure 2.3. The follow-
ing subsections describe each of its parts in detail.

2.3.4.1 Non-collaborative and collaborative phase

The description of the technologies, techniques, and methods categories used in our
classi�cation is presented below:

• Technologies. On the one hand, it includes technologies used to calculate the
position in the non-collaborative part and, on the other hand, for collaboration
and information exchange between nodes/users. For any part (collaborative
and non-collaborative) of a CIPS, the same or di�erent technologies can be
used. IMU, laser, and VLC are some examples of technologies used in the
non-collaborative part, while Wi-Fi and BLE are examples of technologies that
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Figure 2.3 Structure of classification of studies.

can be used in both.

• Techniques. This category considers positioning techniques, for exam-
ple, AoA, and Uplink Time-Di�erence-of-Arrival (UTDoA) used in the
non-collaborative part. Also, it includes the techniques that allow to the
nodes/users to collaborate between them, for example, Two-way Ranging
(TWR), positioning data sharing, among others. A technique is de�ned as
the procedure describing how particular technologies and information (e.g.,
raw or processed data) are arranged and used to accomplish positioning.

• Methods. The methods, also known as algorithms, cover the mathemati-
cal methods that compute the nodes/users’ position, and also those that in-
clude the collaboration between nodes/users to accomplish positioning. In
the collaborative part, some examples of methods are multidimensional scal-
ing, bayesian �lter, and EKF and in the non-collaborative part ranging, PDR,
and multilateration. A method is de�ned as a set of logical steps or rules to be
used in computations to estimate a position.

2.3.4.2 Overall system

The characteristics of the system are encompassed by the overall system, which clas-
si�es them into four dimensions, namely architecture, infrastructure, evaluation, and
main �ndings of the system. Each dimension is described as follows:

• System architecture. This dimension corresponds to the kind of architecture
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used to process the data in the CIPSs. Speci�cally, in this review, we consider
two types, distributed and centralized.

• System infrastructure. This dimension refers to the equipment installed in
the surroundings needed to make the CIPS work. For example, devices such
as BLE anchors, Wi-Fi APs, UWB anchors, and other dedicated hardware are
deployed in the positioning scenarios.

• System evaluation. This dimension corresponds to the way that the perfor-
mance (e.g., position accuracy, robustness, position precision, etc.) of the
system is assessed, such as by simulation, experiments, or both.

• Main �ndings identi�ed. A classi�cation of the primary �ndings identi�ed
in the CIPS studies is presented. The �ndings are classi�ed with respect to the
evaluation metrics used on the position precision and accuracy, energy con-
sumption, computational complexity, and robustness of the system; general
concerns, which are not focused on a speci�c technology, technique, method,
architecture, or infrastructure; systems’ limitations and future research direc-
tions.

The overall structure of our classi�cation scheme presents some similarities with
those previously published (see Sections 2.1.1, 2.1.2 and 2.1.3). Nevertheless, we
do not aim to classify technologies, techniques, and methods. Instead of that, we
thoroughly collect the technologies, techniques, and methods discovered throughout
our review to classify the articles based on their use.

2.4 Results of reviewed studies

2.4.1 Distribution of CIPSs over time and their evaluation metrics

The distribution of the 84 articles contained in our review and their evaluation met-
rics are depicted in the stacked bar graph in Figure 2.4(a). Articles containing mul-
tiple evaluation metrics are depicted by vertically split stack bars. For instance, the
bar for 2013 contains 5 articles, of which 3 fully evaluated the position accuracy,
1 evaluated robustness and position accuracy, and 1 computational complexity and
positioning accuracy. Additionally, the pie chart shows the accumulated percentage
of evaluation metrics.
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In general, the number of publications increased from 2006 to 2020, as veri�ed
by the trend line drawn on the graph (light gray). Within the �rst �ve years, 2006 to
2010, we notice a limited quantity of publications. The number of publications has
increased gradually but steadily in the years afterwards, with signi�cant increases in
the years 2011, 2015, and 2019. These speci�c increments considerably raised the
average to about 7 articles within the period.

From the pie chart, we can observe that positioning accuracy (cyan color) is the
most common evaluation metric, applied in the 84 articles, both as an individual
metric (69% accumulated) and parallel with others (31% accumulated). In the sec-
ond place, computational complexity evaluation with 15.5% (individual) + 3.6% (in
parallel with robustness). Then, robustness evaluation with 6% (individual) + 3.6%
(in parallel with computational complexity). Finally, the evaluation metrics energy
with 3.6% and position precision with 2.4%.

46% (39 articles) of all papers included in the review have been published in the
last 4 years. In general, we cannot identify a clear trend in the metrics used to evaluate
the CIPS. However, we can observe a growing interest in computational complexity
evaluation, also in parallel with robustness. But it is premature to consider it a trend
due to the small number of articles with such evaluation.

It should be noted that the number of publications in 2020 must be carefully
interpreted, as the database queries were launched on January 8th 2021, and at that
time, not all 2020 records were fully included in the databases.

2.4.2 Architecture and infrastructure

The distribution over time of the types of architecture and infrastructure used in
the CIPSs, reported in the 84 articles of our systematic review, are illustrated in
Figure 2.4(b) and Figure 2.4(c), respectively.

Regarding the architecture, we identi�ed two principal types, decentralized and
centralized (see bars and segments in purple and blue of Figure 2.4(b), respectively).
The decentralized architecture is the most common, used by 44.05% of articles, fol-
lowed by the centralized one, used by 26.19%. 23 of the evaluated articles (27.38%)
did not describe the architecture used. In red and green in Figure 2.4(b), we can see
the two unique articles that use hybrid and interchangeable architecture approaches,
respectively. Speci�cally, one presents a hybrid approach that combines both archi-
tectures [89], and the other an approach that can interchangeably use either of the
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two architectures [85].
Analyzing the results of Figure 2.4(b) chronologically, we observe that during

2006-2014 the decentralized architecture was the prevailing architecture (used 4
times more than centralized). Then, from 2015 to 2017, there was a rise of pa-
pers using centralized architecture (centralized was used approximately 2 times more
than decentralized). In 2018 and 2019, the decentralized architecture shows a sig-
ni�cant growth in the number of papers, while the centralized architecture drops,
inverting the proportion between centralized and decentralized (centralized was used
approximately 2 times more than decentralized). The interchangeable and hybrid ar-
chitecture approaches were introduced in 2012 and 2013, respectively.

Regarding the infrastructure, we identi�ed two principal types of CIPSs, CIPSs
with infrastructure and infrastructure-less (see bars and segments in green and red
of Figure 2.4(c)). The CIPSs infrastructure-less are the most relevant, with a
63.1% (considering 14 systems based on signals of opportunity of 53), followed
by the infrastructure-based with 28.57%. The 8.33% did not provide information
about the infrastructure used. Considering the results chronologically, we note that
infrastructure-based systems were �rst introduced in 2011 and then presented a slow
growth, however, in recent years, their use has intensi�ed. In all years, the amount
of papers based on CIPSs infrastructure-less is greater than the infrastructure-based,
with the exception of 2016 presenting an equal amount of papers, and 2019, where
the amount of infrastructure-based systems (8 papers) outnumbers the infrastructure-
less (6 papers). It is not clear if this trend will persist in the upcoming years.

2.4.3 Non-collaborative technologies, techniques, and methods

Figure 2.5 illustrates a Sankey diagram, which, from left to right, presents the non-
collaborative technologies, techniques, andmethods. The non-collaborative part uses
them to determine the position, considering the self-collected data of each node/user
instead of the data collected collaboratively. The aforementioned dimensions were
used to classify and categorize the papers of the review, each category is sorted in
descending order. Next to each category’s name of each dimension a percentage is
added (e.g., Wi-Fi (53.5%), which corresponds to the technologies’ dimension of
Figure 2.5). The percentage shows how many papers out of the whole set use a
certain technology, technique, or method. It should be pointed out that the CIPS
presented in a paper may involve many technologies, techniques, and methods, so,
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Figure 2.4 Distribution of CIPSs over time (a) Evaluation metrics. (b) Systems’ architecture. (c)
Systems’ infrastructure. (d) Systems’ evaluation. Source [3].
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the sum of percentages, in each dimension, may exceed 100%. In addition, the com-
bination between technologies and techniques and between techniques and methods
is linked through horizontal lines/bands. The band colors are determined by the
technique, instead of method or technology, since the technique is the dimension
that connects the technologies and methods. It is important to stress that several pa-
pers did not report the precise method employed. So, instead of categorizing them
just as “unknown”, we categorize them considering their technique, to provide extra
information by adding the su�x “-based” (e.g., RSSI-based methods).

An overall statistics of the non-collaborative technology, technique, and method
used and their correlation between them is shown in Figure 2.5. From the �gure, we
notice that twelve diverse technologies are used. On one side, listed in descending or-
der, we have that the most used are Wi-Fi, IMU, and UWB with 53.5%, 30.9%, and
15.4%, respectively. On the other side, the lesser used are Radio-Frequency Iden-
ti�cation (RFID), 5G, IEEE.802.15.4a.CSS, VLC, Long-Term Evolution (LTE),
Bluetooth, with a 2.3% each, and camera, laser+compass, and hybrid sensors with a
1.1% each. Additionally, nine of the total technologies used are considered in only
one or two articles. Under the Wi-Fi technology category, we included the Wireless
Sensor Network (WSN) based on Wi-Fi technologies, Wireless Application Service
Provider (WASP) and Wi-Fi WLAN and direct.

Under the technique dimension, ten diverse techniques are identi�ed. On the one
hand, listed in descending order, the most studied are RSSI, Dead Reckoning (DR),
�ngerprinting, and Time of Arrival/Flight (ToA/ToF) with 36.9%, 30.9%, 23.8%,
and 11.9%, respectively. On the other hand, the lesser are TDoA, TWR, AoA with
4.7%, 3.5%, and 2.3% respectively, and QR code, hybrid techniques, and UTDoA
with a 1.1% each. Also, we identi�ed that four of the total number of techniques
used are considered in only one or two studies.

Considering the method dimension, sixteen diverse methods were found. Within
them, we can distinguish three groups. The �rst group corresponds to the most stud-
ied and jointly used in both, the collaborative and non-collaborative phases, which
consists of PDRs and cooperative methods with 29.7% and 23.8%, respectively. Sec-
ond, the moderately studied, consists of ranging, RSSIs-based methods, with 14.2%
and 11.9%, respectively, and �ngerprinting-based methods and 9-NNs, with 9.5%
each. Finally, the less frequently studied, consists of multilateration, geometric rang-
ing, trilateration with 4.7%, 3.5%, and 2.3% respectively, and QR code recognition,
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Figure 2.5 Statistical results and combination of non-collaborative technologies, techniques, and
methods used in CIPSs. Source [3].
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entropy-based, ToA/ToFs, analytic, hybrid methods, Kullback-Leibler divergence,
9-means clustering + random forest, and maximum shared border with a 1.1% each.
Furthermore, 43.75% of the methods used were only found in one study.

The sum of percentages of each dimension in Figure 2.5 is greater than 100%,
so, we can deduce that certain works (14 works (16.6%)) use more than one posi-
tioning solution in the non-collaborative phase. In detail, the number of works that
combined technologies are as follows: 8 works (Wi-Fi andIMU [89, 87, 91, 107,
112, 41, 10, 136]); 2 works (RFID and IMU [118], and UWB and IMU [133], and
1 work (Wi-Fi and Bluetooth [131]). Regarding the works that combine techniques,
we identify 3 works (ToA/ToF and AoA+ [17], �ngerprinting and RSSI [9], and
ToA/ToF and RSSI+ [122]), which use Wi-Fi as main technology.

Figure 2.5, in addition to presenting the statistics within each dimension (tech-
nologies, techniques, andmethods), also presents information about the combination
between them. The most important observations are the following.

Technology dimension:

• Wi-Fi is the predominant technology, used in 53.5% of all papers. Wi-Fi is
widely used in conjunction with two techniques: �ngerprinting and RSSI,
which each account for 42% of all papers based on Wi-Fi.

• IMU technology is the second most widely used technology (20.9% of all
paper) and is combined exclusively with DR techniques and PDR methods,
except for one combination with a collaborative algorithm.

• The technologies that have been joined with the most techniques were UWB
and Wi-Fi (4 techniques each). The RSSI was the most often used technique
for both technologies.

Technique dimension:

• DR technique was only implemented with (IMU technology).

• ToA/ToF and RSSI were combined with the greatest variety of technologies,
3 and 7 technologies respectively. Followed by �ngerprinting, TDoA, TWR,
and AoA, which are used in combination with 2 technologies each. The re-
maining techniques were used with only one technology.

• ToA/ToF and �ngerprinting were combined with the greatest variety of meth-
ods, 6 methods each.
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Method dimension:

• Cooperative methods and PDR-based are the most prevalent methods (53.5%
of all papers). Then, the second most popular group is represented by RSSI-
based, 9-NN, �ngerprinting-based methods, and ranging, which together with
the most used are present in almost 98% of examined publications. Finally, the
less common (10 remaining methods) are present in less than 20% of articles.

• A variety of techniques are combined with the cooperative and ranging meth-
ods. In detail, the 100% of techniques linked with the cooperative methods are
listed, in descending order, as follows: RSSI with 45%, ToA/ToF, and TDoA
with 20% each, and �ngerprinting, DR, and TWR with 5% each. Regarding
the techniques linked with ranging method: the prevalent is RSSI with 67%
and in less proportion TWR with 17%, following by UTDoA and ToA/ToF
with 8% each.

• Arti�cial Intelligence (AI), which is mainly composed of 3 positioning meth-
ods, 9-NN, which represent the 9.5% of examined articles, Kullback-Leibler
divergence, and 9-means clustering + random forest with 1.1% of examined
articles each.

• Due to the particularity of the methods, 7 of the 16 were used only once, only
in the works that proposed them.

2.4.4 Collaborative technologies, techniques, and methods

Figure 2.6 illustrates a Sankey diagram, which, from left to right, presents the collab-
orative technologies, techniques, and methods. In the collaborative part, the sensor’s
data is exchanged between neighbors (node/actors), and the position is collabora-
tively computed. The Sankey diagram is built considering the same logic used in
Section 2.4.3.

From Figure 2.6, we clearly observe a widespread number of combinations be-
tween technologies, techniques, and methods with respect to the results presented
in Figure 2.5. Furthermore, it is noted that the RSSI technique is combined with a
large number of technologies and is the most dominant.

In the collaborative phase of CIPSs, we identi�ed twelve collaborative technolo-
gies. Sorting the identi�ed technologies in descendant order, we have that the most
popular are Wi-Fi, UWB, and Bluetooth with 41.6%, 23.8%, and 19%, respectively.
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Figure 2.6 Statistical results and combination of collaborative technologies, techniques, and methods
used in CIPSs. Source [3].
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The remaining technologies, presented on �ve or less papers, are acoustic, other
RF technologies, and RFIDs with 5.9%, 4.7%, and 3.5%, respectively, 5G, LTEs,
IEEE.802.15.4a.CSS, and VLC with 2.3% each, and magnetic resonant sensor and
laser+compass with 1.1% each.

Regarding the techniques, we identi�ed nine collaborative techniques. Sorting
the identi�ed techniques in descendant order, we notice that the �rst and second
prevalent techniques are RSSI and ToA/ToF with 72.6% and 13%, respectively.
The remaining techniques are TWR with 8.3%, and position sharing, �ngerprint-
ing, and TDoA with3.5% each, and multi-path components and AoA with 2.3%,
respectively, and UTDoA with 1.1%. Also, we encountered that six of the nine
techniques are only mentioned in three or fewer articles.

We identify a wide range of 30 di�erent collaborative methods. Within those
widespread methods, the most commons are the particle �lter with 22.6%, belief
propagation with 10.7%, and geometric algorithms and EKFs with 9.5% each. The
remaining methods are LS, trilateration, and bayesian �ltering with 7.1%, 5.9%,
and 4.7% respectively, and self-organizing map, semide�nite programming, Non-
Linear Least Squares (NLLSs), and multidimensional scaling with 3.5% each, and
edge springmodel, spatial analysis-based, likelihood function, information �lter, sim-
ulated annealing, dynamic location-convergence, coalitional game, non-parametric
belief propagation, devaluation function, maximum likelihood estimator, distributed
stochastic approx., kalman �lter, maximum shared border, probabilistic density dis-
tribution, recursive position estimation, and least lost matching error with 1.1%
each.

The sum of percentages of each dimension in Figure 2.6 is greater than 100%,
so, we can deduce that certain works (9 works (10.71%)) use more than one po-
sitioning solution in the collaborative phase. In detail, the number of works that
combined technologies are as follows: 6 works combine RSSI technique with two
technologies (Bluetooth and acoustic [120], Wi-Fi and UWB [135], Bluetooth and
Wi-Fi [9, 10, 131], and Wi-Fi and acoustic [107]) and 3 works combining Wi-Fi
techniques with two technologies(RSSI+�ngerprinting [91], AoA +ToA/ToF [17],
and RSSI+ToA/ToF [122]). The technologies/techniques of those nine papers were
combined by the collaborative positioning method.

Figure 2.6, in addition to presenting the statistics within each dimension (tech-
nologies, techniques, andmethods), also presents information about the combination

68



between them. The most important observations are the following.
Technology dimension:

• The Wi-Fi technology is the most commonly used, which is used in 41.6% of
all papers. 68% of papers, that include Wi-Fi technology, are combined with
the RSSI technique, which is the prevalent combination. To a lesser extent,
the combinations with ToA/ToF, �ngerprinting, and AoA with 20%, 9%,
and 3%, respectively.

• Wi-Fi, UWB, and Bluetooth are the three most used technologies. They are
combined with diverse techniques. In detail, as is shown in Figure 2.6, Wi-Fi
is combined with 4 techniques (�ngerprinting, RSSI, AoA, and ToA/ToF),
UWB with 5 techniques (Multipath components, TDoA,RSSI, TWR, and
ToA/ToF), and Bluetooth with 3 techniques (RSSI, position sharing, and
ToA/ToF).

Technique dimension:

• The RSSI technique, which is present in 72.6% of the papers, is the prevalent
collaborative technique. Also, the RSSI technique is combined with a large
number of methods and technologies. The most popular combinations of RSSI
technique are with Wi-Fi, Bluetooth, and UWB technologies with a 40.8%,
22.4%, and 14.4%, respectively, and the particle �lter method with 28%.

• Almost all techniques have a wide variety of combinations with technologies
and methods, with the exception of �ngerprinting, which is combined just
with Wi-Fi, and multipath components techniques, which is combined just
with UWB. Regarding the methods, all techniques were combined with mul-
tiple methods, except the UTDoA, which is present in only one article.

Method dimension:

• Particle �ltering is the most used method, which is used in combination with
RSSI (85%), TWR (10%), and �ngerprinting (5%).

• 20 of the 30 methods presented in collaborative methods correspond to AI.
The prevalent methods are particle �lter, belief propagation, least square, and
bayesian �ltering, which correspond to the 22.6%, 10.7%, 7.1%, and 4.7% of
works, respectively.
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• 16 out of 30 methods were used once and 6 out of 30 were used twice. The
methods used only once were combined with a single technology and tech-
nique.

It should be noted that, in the CIPSs included in the systematic review, the authors
only mentioned generic terms for Wi-Fi and BLE technologies in both collaborative
and non-collaborative phases, without providing additional information about the
speci�c version or frequency of these technologies used.

2.4.5 Evaluation of the systems

Knowing the systems’ evaluation enables us a greater comprehension to analyze and
compare the �ndings and results provided. The bar graph and pie chart in Fig-
ure 2.4(d) summarize the kind of systems evaluation identi�ed in this review. The
evaluation is classi�ed as simulated, experimental, simulated + experimental, or eval-
uation not speci�ed. We can observe, from the pie chart of Figure 2.4(d), that the
percentage of systems evaluated through simulation (45.24%) and experimentally
(41.67%) are very similar. Also, the percentage of systems evaluated using both
experimentally and simulated (8.33%) and not speci�ed (4.76%) are the least rep-
resentative. From the bar graph, we can observe the evolution of the evaluation of
the systems over the years. From 2006 to 2017 the evaluation through simulations
was predominant. In recent years (2018–2020), evaluation through experiments has
grown signi�cantly at the same time that evaluation through simulations decreased,
which originates a majority of experimental evaluations with a ratio of 2:1 approx-
imately. Over the period of 2006-2020, simulated + experimental evaluations are
rare.

2.5 Discussion

This section aims to thoroughly examine and discuss the articles included in our
systematic review based on the results reported in Section 2.4 to determine the fun-
damental causes of the �ndings. Also, we highlight the gaps, limits, and future re-
search directions, and, we elaborate on our responses to research questions RQ1@4D–
RQ4@4D.
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2.5.1 Architectures and infrastructure of CIPSs

In terms of architecture, we �nd that centralized architectures are less common than
decentralized architectures. On the one hand, implementation and deployment chal-
lenges are frequently described in articles reporting on centralized CIPSs, which may
discourage future use. The main problems reported are: the algorithms needed to
solve the positioning problem cooperatively are quite complex [18, 118, 115, 92],
massive data transmission between the centralized server and nodes, causing connec-
tivity bottlenecks and delays [89, 92], scalability issues caused by concurrent users
and computational load [118, 89, 84], and poor robustness against failure [118].
On the other hand, the decentralized architectures decrease the amount of shared
raw data as well as the computational load by distributing the processes across all
collaborative devices. For example, in decentralized architectures, each actor/node
preprocesses the gathered data (e.g., estimating its position) and then transmits it, to-
gether with important information, to neighboring nodes. Regarding performance
metrics, computational complexity metrics are the most used, mainly in centralized
architectures, which use them to evaluate the level of computational optimization
achieved [120, 121, 18, 126, 98, 79]. Other performance metrics (e.g., accuracy,
precision) take a secondary role in the evaluation of architectures, as they are highly
dependent on the technology, approach, and method used. To sum up, decentralized
systems provide the same positioning accuracy while having fewer computational
issues. This fact is one of the reasons why most systems prefer to implement decen-
tralized architectures (44.05%) instead of centralized ones, especially during the past
4 years.

The kind of sensing technology used plays an important role in the selection
between infrastructure and infrastructure-less approaches. Most of the positioning
scenarios, used in the research, take place in existing buildings, sometimes reusing
already deployed infrastructure for purposes other than positioning (signals of op-
portunity). Traditional indoor scenarios that are gaining popularity involve houses,
o�ces [41, 120, 112, 104], and universities [7, 62, 41, 87, 90, 108, 117, 120, 10, 109]
used to locate people. In such scenarios, unlike industrial or warehouse scenarios,
which can a�ord the deployment of complex and robust infrastructures for position-
ing, the viability of deploying similar infrastructures is low due to the economic cost
that it represents. In line with the aforementioned, our review demonstrates that, for
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CIPSs, the infrastructure-less approaches are preferred (see Figure 2.4(c)). Also, the
prevalent technologies in both collaborative and non-collaborative parts, presented
in Figure 2.6 and Figure 2.5, respectively, are present in the scenarios. Those tech-
nologies may not require installation such as laser, IMU, compass, or re-used such
as Wi-Fi.

2.5.2 Analysis of technologies, techniques, and methods used in CIPSs

2.5.2.1 Non-collaborative part

In accordance with the outcomes of Section 2.4.3, in 66 papers the positioning is
performed in a two-step procedure. In the �rst step, each node/actor estimates its
initial position using only its collected data and a position estimation method, which
uses one or more technologies [72, 73, 75, 76, 78, 80, 81, 82, 83, 17, 14, 86, 87,
89, 90, 91, 92, 12, 93, 7, 95, 96, 8, 97, 98, 99, 100, 102, 9, 103, 139, 105, 106,
107, 108, 109, 112, 113, 114, 116, 41, 117, 118, 119, 120, 10, 121, 11, 118, 15,
123, 13, 62, 124, 63, 18, 64, 16, 125, 126, 130, 132, 133, 134, 135, 136]. In the
second step (collaborative part), the initial estimated position of the raw data is used
to enable or enhance the position of other users. The other 18 papers are completely
collaborative, as they entirely relied on a collaborative method, named “cooperative
methods” in Figure 2.5, to compute the position of the nodes/actor. In short, the
systems did not perform stand-alone positioning but directly processed the raw data
with the corresponding proposed collaborative method [74, 77, 84, 79, 85, 88, 94,
101, 104, 115, 111, 110, 122, 129, 128, 127, 137, 131].

The most popular methods used in the non-collaborative phase are PDR [130,
41, 117, 120, 10, 118, 112, 116, 106, 107, 109, 99, 95, 96, 87, 89, 90, 91, 86,
81, 133, 134, 135, 136], Ranging [13, 64, 119, 100, 9, 139, 82, 98, 121, 14, 102,
133], RSS-based [18, 10, 118, 15, 112, 8, 92, 7, 78, 73], 9-NN [125, 62, 41, 123,
107, 108, 97, 103], �ngerprint-based [9, 87, 89, 91, 72, 132, 136, 138] and mul-
tilateration [126, 93, 83, 75]. The aforementioned methods are mainly combined
with two principal positioning techniques, RSSI, which includes �ngerprinting tech-
niques [123, 105, 97, 99, 103], and DR [125, 62, 64, 41, 118, 119, 10, 122, 15, 123,
111, 112, 105, 107, 108, 8, 97, 98, 101, 9, 103, 92, 12, 93, 94, 7, 87, 89, 91, 79, 82,
17, 84, 77, 78, 76, 74, 73, 72]. The �rst one is based on communications technolo-
gies, principally Wi-Fi, and the second on inertial sensors. Both technologies have
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well-known disadvantages, among which are that Wi-Fi-based systems have position-
ing accuracy errors of several meters and IMU-based systems could have cumulative
drift errors. On the contrary, both might be seen as solutions that do not require
infrastructure (infrastructure-less). In reference to the Wi-Fi technology, a regular
accuracy of a few meters of error can be achieved, at no extra expense, by reusing the
already existing deployed infrastructure designed for communications. Predictably,
the majority of collaborative works attempt to leverage frequently used, inexpen-
sive, and straightforward IPSs with known disadvantages to enhance them through
collaboration. Even though it is widespread in traditional IPS, in CIPSs, to combine
two or more technologies is infrequently in the non-collaborative [89, 87, 91, 107,
112, 41, 10, 118] and in the collaborative [9, 107, 120, 10] parts. It should also be
noted that only one article [10] combines multiple technologies in both parts, Wi-Fi
and Bluetooth in the collaborative part and Wi-Fi and IMU in the non-collaborative
part.

In the non-collaborative phase, there is less use of positioning technologies that
need high positioning accuracy, extensive infrastructure, and accurate calibration of
the anchors. Some of the probable reasons are: the low probability of �nding these
technologies embedded in wearable and mobile devices, and tracking hand-held, for
example, Wi-Fi and inertial sensors are embedded in mobile devices, but a scarce
number of them support UWB; the high implementation expenses of these tech-
nologies make it more attractive to explore inexpensive alternatives or without in-
frastructure; these technologies are no needed for collaborative approaches, due to
the deployed infrastructure covers completely the positioning scenario and the po-
sitioning technology is su�ciently accurate [52]. Another notable �nding in the
non-collaborative part is the absence of information about several crucial elements
of the CIPSs.

Approximately a 25% of the articles reviewed did not provide su�cient informa-
tion regarding the positioning methods used, they only group them as �ngerprint-
based [9, 87, 89, 91, 72, 132, 136, 138], ranging [13, 64, 119, 100, 9, 139, 82, 98,
121, 14, 102, 133] and RSS-based [18, 10, 118, 15, 112, 8, 92, 7, 78, 73] methods.

Regarding the bene�ts and drawbacks of the �ve most prevalent non-collaborative
methods, in general, the PDR-based methods produce a decent approximation of the
trajectory, however, due to cumulative errors, their positioning accuracy decreases
over time. Regarding the ranging methods, while NLOS conditions have a detri-
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mental e�ect on them, under LOS conditions and adequate modeling achieve a more
accurate position. RSSI-based methods are simple and easy to implement, neverthe-
less, the accuracy of the estimated position relies on the stability of the RSSI values
obtained. To work, �ngerprint-based methods require a top-notch radio map (i.e.,
a database of previously collected data in the environment). Despite the fact that
9-NN is a straightforward �ngerprint-based method able to provide excellent posi-
tion accuracy, its computational complexity increases as the data (APs and reference
samples) to be processed in the operational phase increases. Table 2.5 presents the
advantages and disadvantages of the aforementioned methods.

Table 2.5 Advantages and disadvantages of prevalent non-collaborative methods used in CIPSs.
Source [3].

Method Advantages Disadvantages

N
on

-C
ol
la
bo

ra
tiv

e

PDR-based •Provides reasonable estimate of a walk-
ing person’s trajectory moving in a
steady way

•Su�ers from accumulative errors

Ranging •Presents good performance on LOS
when the signal propagation is well mod-
eled (e.g., VLC technology and Lamber-
tian radiation pattern)

•Relies on radio wave propagation model

•Geometry of the scenarios may a�ect the
estimation accuracy

•NLOS condition usually degrades the
distance estimation

RSSI-based •very simple implementation

•Low computational cost

•Depends on radio propagation model
characterization

•Accuracy of the position estimation
directly dependent on the RF signal
strength quality

Fingerprint-based •Uses empirical data for calibration and
operation, which might better mimic the
real scenario

•Data collection can be very demanding

•Radio map’s quality degrades if environ-
mental conditions change

9-NN •Widely known and very simple imple-
mentation

•Low computational cost and high accu-
racy

•Selection of K determines the perfor-
mance

•It is a universal classi�cation/regression
model. Therefore, it does not consider
the logarithmic nature of the RSS values
and the non-linear nature of the signal
propagation.

•Very demanding if the number of refer-
ence samples and the number of APs are
both high.
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2.5.2.2 Collaborative part

In accordance with the outcomes of Section 2.4.4, the RSSI technique is prevalent
and is used with a wide variety of communication technologies. The RSSI is widely
used to compute the distance between transmitter and receiver devices. Generally,
the range positioning technique is often referred to as RSSI [140, 141, 142]. TWR
and ToA/ToF techniques are less common used, and typically they are combined
with communications technologies such as UWB, Bluetooth, and Wi-Fi. It should
be noted that an adequate combination of technologies, techniques, and methods
is necessary for e�ective CIPSs performance (e.g., position accuracy and precision,
robustness, energy consumption, etc.), ensuring that their advantages outweigh their
limitations. The best CIPS in terms of accuracy and precision positioning rely on
VLC [124] and UWB [104] technologies, which already o�er great accuracy and
precision in traditional positioning systems.

In around half of the works, to determine the relative distance between user-
s/actors, the collaborative part uses mainly methods based on RSSI (also known as
ranging/RSSI ranging). However, for the remaining works, the authors present a
particular positioning method for the collaborative part that is not frequently used by
other researchers. When analyzing these methods, we notice that each one of them
was proposed to ful�ll di�erent purposes. For example, the robustness of CIPSs is
enhancing through multidimensional scaling, gaussian weight function, and particle
�lter methods [17, 87, 105, 109]. Despite the high computational cost of belief
propagation, it is primarily implemented to provide low position error in CIPSs.
So, CIPSs that use these methods focus on providing an adequate balance between
position accuracy and computational processing [89, 88, 98, 15, 121, 13, 79, 126].
The power consumption issues in CIPSs have been addressed mainly with the imple-
mentation of geometric and trilateration algorithms [9, 10]. To enhance the position
precision the LS and EKF methods have been implemented in CIPSs based on UWB
technology [16, 104].

Similar to non-collaborative methods, collaborative ones have bene�ts and draw-
backs. The six prevalent collaborative methods are: particle �lter [125, 118, 118,
112, 115, 106, 107, 109, 87, 91, 82, 78, 72, 135, 136, 138]; belief propagation [13,
124, 119, 120, 121, 98, 85, 14]; EKF [129, 130, 114, 104, 139, 95, 96]; geometric
algorithm [10, 123, 113, 116, 131, 132]; LS [16, 126, 122, 12, 137]; trilateration [8,
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9, 7, 83].
One of the key bene�ts of particle �lter-based methods is their capacity to handle

non-gaussian and non-linear estimates; nevertheless, as position accuracy increments,
so does the computing cost of these methods (increasing the number of particles).
Despite the computational complexity of belief propagation-based methods, they
are very reliable and adaptable for use with many statistical models. Contrarily, the
advantage of the trilateration, geometric algorithms, EKF, and LS is their computa-
tional simplicity. EKF method can deal with no-linear problems, however, an opti-
mal estimation can be just achieved under gaussian noise conditions. The accuracy of
the position estimated by geometric algorithms is linked to the amount and distribu-
tion of nodes in the environment. For example, when they have poorly distributed
the accuracy of the estimated position decreases. One of the main disadvantages of
LS is that it is only designed to solve linear models. Trilateration methods rely on
node collinearity and a number of nodes greater than 2 to work, and its accuracy is
highly dependent on the line of sight between nodes.

Table 2.6 presents the advantages and disadvantages of aforementioned methods.

2.5.2.3 Overall concerns

Despite the literature about IPSs reporting numerous cases where diverse technolo-
gies are fused to enhance position accuracy and precision, and robustness [143, 144,
145], sensor fusion is uncommon in CIPS. In the non-collaborative part, only seven
works ([87, 91, 41, 10, 118, 112, 107]) use sensor fusion, and in the collaborative,
just one ([110]). Furthermore, none of CIPSs have presented a scenario consider-
ing heterogeneous non-collaborative positioning systems based on diverse methods,
techniques, and technologies (e.g., the collaborative scenario in Figure 2.1). Overall,
each CIPS provided a collaborative system based on a non-collaborative part, which
contains a straightforward positioning approach. In our opinion, device heterogene-
ity, and hence sensors, should not be overlooked, as real-world situations will involve
a variety of heterogeneous data sources. Therefore, the development and implemen-
tation of applications that can use as many data sources as possible in their algorithms
should be encouraged.

Other advantages of CIPSs found in our review are: CIPSs, through the use of
the collaborative users/devices as extra nodes of the infrastructure, have increased
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Table 2.6 Advantages and disadvantages of prevalent collaborative methods used in CIPSs.
Source [3].

Method Advantages Disadvantages
C
ol
la
bo

ra
tiv

e

Particle �lter •Capable of handling non-Gaussian and
non-linear estimations

•Methodologically simple and �exible

•Permits to control the e�ects of increas-
ing the number of dimensions of the
state space

•Able to approximate any probability
density function in the state space

•Performance degrades considerably as
the state-space dimension increases
(curse of dimensionality)

•Number of particles is a trade-o� be-
tween computational complexity and
accuracy

•Issue of �lter initialization

Belief propagation •High reliability

•Works with a wide variety of statistical
models

•E�cient computing of distribution
based on the graphical model

•Easy representation of multi-modal dis-
tributions

•The computational costs are consider-
ably high

EKF •Capable of handling Non-linear mod-
els

•Low computational complexity

•EKF is designed for Gaussian noises

Geometric algorithm •Low computational complexity, due to
estimate the position using only the ge-
ometry based on the signal parameters

•Accuracy is directly related to the geo-
metric positioning of the nodes

LS •Easy to implement

•Provides a solution of relatively low
complexity

•Works only with linear models

Trilateration •Low computational complexity and
easy implementation with basic geom-
etry principles

•3 non-collinear points are needed

•Requires LOS measurement

coverage area without building an extra costly and sophisticated infrastructure [7,
8, 9]. Also, some CIPSs improved the positioning certainty of users/devices by
using belief propagation and the absolute position and relative distance between users
computed in the non-collaborative and collaborative parts, respectively [124, 13, 14].
It seems that a critical factor to improve the position is the information/measures
provided by the users with LOS conditions.

Almost all the papers reviewed (90.5%) do not approach the communication
protocol or device synchronization since they are primarily concerned with proving
the viability of the collaborative system rather than dealing with real-world issues.
Collection Tree Protocol (CTP) [83] and User Datagram Protocol (UDP) [41] are
the unique protocols identi�ed in our review. In some cases (e.g., [62]), the papers
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refer to D2D communication without mentioning the speci�c protocol utilized. The
predominant device synchronization used reported is TWR [62, 117, 118, 115, 14].
Alternatively, as a more accurate way to determine the time of �ight between Blue-
tooth nodes, hop-synchronization with GNSS time is employed [12].

Several important underlying issues received low attention or none at all. For
instance, although optimizing the power consumption of CIPSs may motivate users
to use them, only three articles took energy usage into account. [134] presents a
method to reduce message re-broadcasting among users and conserve energy. The
work in [10] presents a decentralized CIPS and an evaluation of its keys compo-
nents, concluding that the components that use more energy are the operating sys-
tem, Wi-Fi and Bluetooth module with 30%, 20%, and 14% of the total device’s
energy. [9] and [10], concluded that the scanning process of surrounding nodes (e.g.,
BLE anchors, Wi-Fi APs, etc.) is one the tasks that drain more the energy in CIPS.
In [10], researchers reduce power consumption through intermittent node-scanning,
however, it also reduces position accuracy.

Security and privacy issues were not covered by the researchers in the CIPSs
presented, as they mostly focused on a proof-of-concept to demonstrate increased
accuracy. However, CIPS are speci�cally at risk since careless data transmission
during cooperation, such as the transmission of unencrypted data, may allow than
third-party determines the user location.

2.5.3 Evaluation of CIPSs

The design and planning of the experiments are one of the main aspects to consider in
the evaluation of CIPSs. Although experimental evaluations are preferred, and from
2018 to 2020 there was a signi�cant increase of them (outnumbering simulation-
based evaluations), in general, we still notice that the percentage of simulation-based
evaluations (45.24%) exceeds the experimental ones (41.67%). The experimental
evaluations allow evaluating in greater detail the operating conditions of the systems
under conditions intrinsic to real-world scenarios [62, 10]. However, they present
drawbacks such as: complexity in their con�guration and implementation [41, 118],
time-consuming [11, 120, 106], susceptible to diverse kind of failure and errors [10,
118], and (potentially) costly [118, 114, 104]. Also, experimental evaluations face
issues related to real-world conditions, which are no easy to control or avoid, such
as accuracy degradation due to NLOS conditions [10] and signal attenuation/inter-
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ference [10, 110].
Simulation-based evaluations allow us to simulate data and collaborative algo-

rithms in well-controlled environments, avoiding problems caused by hardware fail-
ure. Additionally, simulations give researchers the versatility to execute an exper-
iment multiple times with diverse setups. For instance, in diverse execution of an
experiment, we can set the granularity of samples and references [13, 119], the con-
�guration of virtual hardware used [122, 115, 88], the conditions of the environment
(e.g., NLOS and LOS areas) [13, 18], and the dimension of the collaborative user-
s/nodes network used [119]. Only a small percentage of papers (8.33%) uses both
evaluations: simulations to evaluate in more challenging environments while the ex-
perimental ones are used for simpler testing in real scenarios for system validation.

With respect to the metrics, from Figure 2.4(d), we can notice that all papers
of the review include positioning accuracy. In detail, we see that this metric has
been measured in di�erent ways. We list them in descending order by popularity
as follows: the Cumulative Distribution Function (CDF) error [62, 63, 123, 118,
10, 120, 11, 115, 105, 107, 108, 97, 101, 102, 139]; Root Mean Square Error
(RMSE) [124, 18, 16, 15, 111, 115, 98, 110]; standard deviation of the error [63,
41, 8, 99, 9, 7]; minimummean square error [13, 119, 122, 118, 106]; and �nally the
average positioning error [121, 123, 112, 94]. Because of this variety, a comparison
of position accuracy between proposed systems is unviable.

In terms of computational complexity, the systems evaluate it regarding factors
such as processing duration to determine/estimate the position [13, 121], the com-
putational load required by the CIPS to determine/estimate the position [13, 18,
119, 111], and the data tra�c [98]. Within the suggested solutions proposed to min-
imize the computational complexity, we have: to decrease the computational and
communication/data load by implementing an analytical approximation with a be-
lief propagation scheme to process the device-to-device data [119, 98]; to decrease
the processing duration through the reduction of the size of the users’ set that the
collaborative algorithm considers in the execution [13, 121]; to decrease the work-
load by simplifying the non-convex models, used to model the positioning problem,
using a quasi-convex model [18].

The robustness of the positioning system de�nes how stable the system is against
disturbances against failures and/or disturbances. Robustness was addressed by few
CIPSs [87, 109, 105, 14, 17]. The approaches that face robustness issues aim to
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protect the systems against inadequate ranging estimation, node failures, few posi-
tioning data, and outdated radio maps. Within the relevant suggested solutions, we
have: to guarantee robustness against node failure by using sum-product methods in
the wireless networks [14]; to prevent instability of position estimates due to noisy
and scarce positioning raw data by implementing procrustes analysis and multidi-
mensional scaling algorithms [105], and to reduce the impact of multi-path by using
a gaussian neighborhood weighting method [17].

Position precision [104, 16] and energy consumption [10, 9, 133] (discussed in
Section 2.5.2.3) are the two least used evaluation metrics. They have only lately
been taken into account and both rely on UWB.

2.5.4 Recommendations, gaps, and limitations

Considering the �ndings and the information extracted from the articles included in
our CIPS systematic review, we draw the following recommendations:

1. Architecture: In CIPSs, the decentralized architecture prevents issues related
to high-volume data transfer, such as delay in the data transmission/reception,
and saturation of communication channels, which are common in centralized
architectures. So, due to its advantages, the decentralized architecture is the
alternative most adequate for CIPSs. Nevertheless, from the view of com-
putational performance, the heterogeneity of devices might limit the imple-
mentation of complex algorithms or cause a not homogeneous execution in
collaborative devices.

2. Infrastructure: Infrastructure-less or signals of opportunity-based approaches
are preferred in CIPS, mainly because they provide versatility to the systems
to be used in diverse scenarios (i.e., users moving from a scenario to another)
and indoor environments applications, and their zero-cost infrastructure to
cover the operational area. Nevertheless, using an infrastructure-less approach
instead of an ad-hoc infrastructure for the CIPS creates design challenges such
as compensating for inaccuracies in position estimation caused by uncontrolled
scenarios. An infrastructure-based approach may be bene�cial only in certain
real-world scenarios.

3. Technologies: Although BLE and Wi-Fi technologies are not among the tech-
nologies that provide the best position accuracy (namely, high-accuracy posi-
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tioning technologies are VLC, UWB, and 5G), they are the best option for
collaborative systems. Additional to high accuracy and precision positioning,
others important requirements are the availability of the technology in the
devices and environments, cheap deployment, and low power consumption.
As is well-known, BLE and Wi-Fi ful�ll these requirements. Changes in the
supporting hardware and broad availability, such as those brought on by 5G,
might lead to a change in preferred technology.

4. Techniques: Focusing on the accuracy performance of CIPSs and one of the
most suitable technologies (i.e., Wi-Fi), we can consider that �ngerprinting
is one of the most suitable techniques. Unlike other techniques, �ngerprint-
ing does not require knowing the location of the anchors (e.g., APs) to esti-
mate the position. On the one hand, techniques such as RSSI coupled with
ranging/distance-based methods provide a better position accuracy than �n-
gerprinting due to the location of the reference anchors considered in the es-
timation methods. On the other hand, knowing the location of the reference
anchors is not an automatic task, which is one of the limitations of the RSSI
technique coupled with those methods.

5. Methods: It is challenging to de�ne which method is the most suitable because
the systems have been tested under a variety of scenarios and conditions. So,
in the design of CIPSs, diverse methods should be tested under operational
conditions and the method to be selected is the one that provides the best
result depending on the performance to be optimized (for example, position
accuracy, robustness, etc.).

The aforementioned recommendations provide hints in the design of CIPSs. How-
ever, due to the broad range of solutions reported, the selection of the technology,
techniques, and methods, must be done following the design requirements of the
CIPS to be designed.

As a result of the analysis performed in our systematic review, we identi�ed some
limitations, gaps, and future research avenues, which are described as follows:

• The studied collaborative systems concentrate on enhancing just one key as-
pect (e.g., position accuracy, robustness, power consumption, etc.). However,
a trade-o� between the di�erent aspects is missing, which is the principal lim-
itation identi�ed in CIPSs.
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• Overall, heterogeneous positioning solutions, that involve multiple technolo-
gies, techniques, and methods in each of the collaborating devices, are not
used in the collaborative systems included in the review. Also, sensor fusion
was not used by the CIPS reviewed. We consider that, as has been shown in
traditional IPS, technology variety in both parts, non-collaborative and col-
laborative, may provide additional robustness to the CIPS.

• The users’ privacy and security of the CIPSs were not taken into account in
the evaluated papers. Privacy is one of the major issues in systems that involve
the exchange of data. The CIPSs use communication technologies to exchange
information between devices. So, they are prone to be attacked and modify the
positioning data transmitted, and put at risk the users and their privacy. Also
understudied is power consumption, a key overall concern that may dissuade
people to install CIPS applications on their devices to help neighbouring users.

• The non-collaborative technology used in CIPS is the main in�uence in se-
lecting the type of evaluation used in CIPS. There is no impartial evaluation
methodology that can evaluate the non-collaborative technology used in CIPS
independently of the kind of non-collaborative technology used. Comparable
evaluation metrics are a key component of such a methodology. Additionally,
evaluation methodologies, which consider various technologies operating at
once has not yet been proposed.

• Approximately half of the examined works use simulations to avoid the expen-
sive hardware deployment and intensive physical labor needed in the experi-
mental evaluation. Despite the fact that advanced simulation algorithms can
reproduce conditions presented in real scenarios, experimental tests to validate
the performance of CIPSs under real scenarios are still needed. Therefore, pro-
viding databases containing positioning data involving various users and sen-
sors could be bene�cial for the reproducibility, repeatability, and evaluation of
CIPSs and also to motivate the development of more CIPSs.

2.6 Systematic review update

The systematic review presented above was carried out in the early stages of this
Phd research, in order to provide us with the state-of-the-art related to CIPS at that
moment (beginning of 2021), and to analyze and evaluate them. For completeness of
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this PhD dissertation, and to expand the systematic review’s usefulness and the results
presented, we updated it considering the articles published between 2020 and 2022.
We used the same methodology as explained in Section 2.3, restricting the search to
documents published between 2020 and 2022. Even though 7 articles from 2020
were included in the original systematic review, we included missing articles in the
update. The database queries for the original review were made on January 8th 2021,
and at that time, not all 2020 records were included in the databases.

As a result of the selection process, 15 additional articles were selected for thor-
ough analysis and inclusion in the systematic review update: 5 more articles in
2020 [146, 147, 148, 149, 150], 3 in 2021 [151, 152, 153] and 7 in 2022 [154,
155, 156, 157, 158, 159, 160]. Adding the articles from 2020 included in the origi-
nal systematic review (7 articles) with those included in the update of the same year
(5 articles), we arrive to a total of 12 articles in 2020, 2 less than in 2019. In addition,
in 2021, the number of articles decreased drastically (only 3 articles), and in 2022
the number of articles started to increase again. It should be noted that the num-
ber of publications between 2020 and 2022 must be carefully interpreted: �rstly,
the COVID-19 pandemic and lock-downs a�ected the research activities, such as
attendance at laboratories or workplaces and on-site experimentation; secondly, in-
ternational forums and congresses related to positioning, localization and navigation
were re-scheduled for 2021 or canceled; thirdly, some research groups working on
positioning and LBS reoriented their research to health-related topics (e.g., contact
tracing, mobility analysis) to contribute to facing the pandemic situation. The above
circumstances dropped the projected number of publications and experiments for
2020-2022. So, the years 2020, 2021, and 2022 are atypical in terms of publications,
and they cannot be considered representative in terms of the overall evolution of
articles. Figure 2.7 presents the distribution of the articles published regarding CIPS
between 2020 to 2022 and the results of the analyzed dimensions (i.e., evaluation
metric (Figure 2.7(a)), system’s architecture (Figure 2.7(b)), system’s infrastructure
(Figure 2.7(c)) and system’s evaluation (Figure 2.7(d)). Additionally, the percentage
of each dimension is shown in the pie charts.

Regarding the evaluation metric used in the 15 new articles selected, we found
that the position accuracy was evaluated in all the articles, and the computational
complexity together with position accuracy only in 2 articles [154, 155].

With respect to the architecture, listed in descending order by the number of arti-
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Figure 2.7 Updated distribution of CIPSs over time (a) Evaluation metrics. (b) Systems’ architecture.
(c) Systems’ infrastructure. (d) Systems’ evaluation.

cles, we found that 7 articles [154, 158, 152, 153, 146, 150, 148] did not specify the
architecture used, 4 [156, 160, 151, 147] used centralized architecture, 3 [155, 159,
149] a decentralized architecture, and 1 [157] can be used with both architectures.

The use of supporting infrastructure in CIPS was the most predominant with
9 systems [154, 155, 160, 152, 153, 146, 147, 149, 150], in second place, the
infrastructure-less with 4 systems [156, 158, 159, 151], and in third place, 2 sys-
tems [157, 148] for which the infrastructure used was not speci�ed.

Regarding the evaluation of the systems, 8 [154, 156, 157, 159, 160, 151, 149,
150] of them were evaluated experimentally, 4 [155, 158, 152, 153] were evaluated
using both experimental and simulated evaluations, and 3 [146, 147, 148] through
only simulation.

In the non-collaborative part of the systems, the most used technologies are
Wi-Fi [155, 156, 151, 147], UWB [154, 157, 149, 150] and IMU [158, 159, 160,
147] used in 4 systems each, followed by Bluetooth [160, 153, 147] and other tech-
nologies RF [152, 146, 148] used in 3 systems each, and the least used are 5G [153],
and camera [154] used in 1 system each. Regarding techniques, the most predom-
inant is RSSI used in 6 systems [155, 160, 152, 146, 147, 148], followed by DR
used in 3 [158, 159, 160], �ngerprinting [156, 151] and TWR [154, 149] used in 2
systems each, and AoA [153] used in 1 system. Considering the methods, the most
used are fully cooperative methods used in 6 systems [156, 157, 153, 146, 147, 149],
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followed by ranging used in 4 [154, 155, 152, 148], PDR-based used in 3 [158, 159,
160], and trilateration [160, 150] used in 2 and 9-NN [151] used in 1 system.

In the collaborative part of the systems, the Wi-Fi [155, 156, 151, 147], Blue-
tooth [159, 160, 153, 147], UWB [154, 157, 149, 150] and other RF technolo-
gies [158, 152, 146, 148] are used in 4 systems each, so there is no winning
technology. Regarding techniques, the most predominant is RSSI used in 6 sys-
tems [155, 160, 153, 146, 147, 148], followed by position sharing [157, 158, 159]
and TWR [154, 149, 150] used in 3 systems each, �ngerprint used in 2 [156, 151],
and ToA used in 1 system [152]. Considering the methods, the predominant meth-
ods are multidimensional scaling [154, 156], belief propagation [157, 149], and fac-
tor graph [152, 153], which are used in 2 systems each, and the least used are bezier
curve [158], geometric algorithm [160], EKF [150], semide�nite programing [155],
�sher information matrix [146], Deep Neural Network (DNN) [147], bayesian �l-
tering [159], gaussian process [147], and RSS di�erence [148] in 1 system each.

The results of the analysis of the articles included in the update of the system-
atic review veri�ed the correctness of the trends and proportions of the dimensions
(e.g., technologies, techniques, methods, etc.) analyzed and reported in the system-
atic review (2006-2020). Within the �ndings, regarding evaluation metrics, we can
observe from the pie chart (Figure 2.7(a)) that the prevalent metric is position accu-
racy (100% of papers), followed by computational complexity evaluation together
with position accuracy (13.6%). In terms of the system’s architecture, the pie chart
of Figure 2.7(b)) shows that decentralized is the most popular (36.36%). The only
exception with respect to the previous trends reported is the infrastructure used in
CIPSs. In the last 3 years, based on the pie chart of Figure 2.7(c), infrastructure-
based (50%) exceeds around 9% the percentage of the infrastructure-less (40.91%).
However, considering all the years (2006-2022), the trend of systems that do not use
infrastructure has not changed. In terms of the system’s evaluation, the pie chart of
Figure 2.7(d) shows that the experimental evaluations are prevalent (54.55%) main-
taining the trend reported in the previous systematic review.

Additionally, among the new results, we identi�ed the use of new methods in
the collaborative part, such as factor graph, bezier curve, �sher information matrix,
DNN, gaussian process, and RSS di�erences. Also, we can highlight that two articles
focused on two aspects not previously addressed in depth, privacy was dealt with
in [147]) while an incentive mechanism for CIPS was proposed in [146]. Regarding
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privacy, the authors proposed a framework based on federated learning, DNN and
the gaussian process to compute the position, and the parameters are encrypted using
homomorphic encryption. With respect to the incentive mechanism, the authors
proposed an economic-based mechanism to incentivize users to collaborate through
a game-theoretic algorithm for budget decisions, where the users/devices set a price
to buy data from other users/devices.

To sum up, the supplementary analysis con�rms that the trends and conclusions
in technologies, techniques, methods, evaluation metrics, architecture, and evalu-
ation are aligned with those reported in the previous systematic review (2006 to
2021). The only di�erence corresponds to the CIPSs infrastructure used. In this
new analysis, the predominant infrastructure is infrastructure-based. Nevertheless,
this change does not a�ect the overall trend (2006 to 2022), which indicates a prin-
cipal use of infrastructure-free. Moreover, we identi�ed an incipient interest in the
study of privacy in CIPSs.

2.7 Chapter summary and discussion

In this chapter, we presented a systematic review and its update focusing on CIPSs.
As a result of the systematic process, 84 signi�cant papers from 2006 to 2020 (sys-
tematic review) and 15 additional articles from 2020 to 2022 (systematic review
update), respectively, were identi�ed and grouped considering the following aspects:
evaluation metrics, infrastructure, technologies, techniques, methods, and architec-
ture. The analysis carried out showed that there has been an overall increase in the
number of papers over the years, indicating a rising interest in the study of the CIPSs
among scientists.

Our analysis demonstrates the widespread use of decentralized architectures, par-
ticularly in the past �ve years. On the one hand, decentralized architecture is pre-
ferred due to the computational load is divided among all the collaborative devices,
and the data shared mainly is preprocessed data, which reduces the transmission load
and avoids the overload of communication channels. Contrarily, the reported draw-
backs of a centralized architecture include delay in the data transmission/reception,
scalability, saturation of communication channels, lack of robustness against failure,
and computational workload due to high-volume data transfer and processing. Also,
we found that infrastructure-less systems are widely used, probably due to practical
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rather than technical considerations. These considerations include the utilization of
readily available hardware and generally cheaper costs, which allows the operation of
the positioning systems in real-life scenarios (e.g., universities, o�ces, libraries, etc.).
It should be noticed that, although deploying ad-hoc infrastructure for positioning
is a more expensive and exhausting activity, the approaches based on it may produce
results that are more accurate than infrastructure-less approaches.

We analyze the technologies, techniques, and methods in CIPSs considering inde-
pendently its collaborative and the non-collaborative part. In the non-collaborative
part, each device/node collects the raw data and independently computes its position.
The �ndings reveal a broad variety of technologies, methodologies, and procedures,
making it challenging to identify a successful combination. The popular coupled
technology and technique, used in the non-collaborative part, are: IMU with DR,
and Wi-Fi with RSSI and �ngerprinting. The use of the aforementioned combina-
tions is recommended inmobile device-based positioning systems and under scenarios
with a limited budget to implement the positioning infrastructure.

On the other hand, in the collaborative part, where relevant data is exchanged and
the user’s position is estimated based on it, researchers prefer RSSI based on Blue-
tooth and Wi-Fi technologies. These technologies are widely available, completely
infrastructure-less, energy e�cient, and inexpensive. With respect to methods, due
to each of them having di�erent goals, none of them stands out.

Some CIPS are completely collaborative. In those cases, the non-collaborative
part is only devoted to collecting data, which will later be processed by the collab-
orative method. We recommended decentralized systems in which the collaborative
and non-collaborative parts can work separately to estimate the user’s position. In
centralized systems, the central node is a critical part and the positions cannot be
estimated if it fails.

Until now, the majority of CIPSs evaluations have used simulations. Neverthe-
less, in the last years, experimental evaluations noticeable increased, therefore, it is
likely that in the coming years, we may be facing a change in trend. The complicated
real-world situations are considerably better mimicked by empirical evaluation, and
the resulting �ndings are more valuable to the community. Nevertheless, obtaining
the necessary results requires considerable labor and, occasionally, the deployment
of pricey technology. We consider that creating databases containing positioning
data involving various users, sensors and scenarios could be bene�cial for the repro-
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ducibility, repeatability, and evaluation of CIPSs. Also, to motivate the development
of more CIPSs.

CIPSs presents various advantages against traditional IPSs. CIPSs, through the
use of the collaborative users/devices as extra nodes of the infrastructure, may in-
crease the positioning coverage area, which allows positioning users outside of the
covered area. In addition, they improve the positioning accuracy of the group of
users, by considering in their algorithm the information of neighboring users and
using them to extend the number of anchor references. Nevertheless, CIPSs have
drawbacks, including long calculation times, heavy node-level computations, and
energy consumption. Accordingly, the principal challenge is to reach the trade-o�
between energy e�ciency and other performances such as computational workload,
positioning accuracy, and real-time constraints.

We consider that much work remains to be done to improve CIPSs in each of
the dimensions identi�ed in our review. For example, the implementation of sensor
fusion in both parts of CIPSs (collaborative and non-collaborative); construction of
advertising databases that consider heterogeneous devices and collaborative scenarios
for the testing and validation of collaborative approaches; inclusion of heterogeneous
positioning systems in collaborative devices; inclusion of heterogeneous devices in
CIPSs, and implementation of security and privacy in communication protocols.

Based on the information, challenges, and gaps presented in this systematic re-
view, in the next chapters, we �ll some gaps and challenges identi�ed. Speci�cally,
we create a mobile device-based BLE database for testing and validating ranging CIPS,
considering bidirectional and simultaneous transmission/reception between hetero-
geneous devices and two real-world scenarios (o�ce and lobby) due that there are no
publicity databases available; we propose a versatile and straightforward CIPS base-
line scheme designed for developing CIPSs. Based on the CIPS scheme, we developed
two variants of a mobile device-based CIPS based on Multilayer Perceptron (MLP)
Arti�cial Neural Networks (ANNs) models, which are evaluated experimentally
rather than through simulations. In the CIPSs design, we considered the most im-
portant aspects identi�ed in our systematic review, namely the concept of compatibil-
ity among CIPS, system modularity, architecture (decentralized), and infrastructure
(able to work as infrastructure-based and infrastructure-free). Also, our proposed
CIPSs considered the use of di�erent technologies (i.e., Wi-Fi and BLE), methods
(i.e., lateration and �ngerprinting-9-NN), and heterogeneous mobile devices.
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3 DATABASES AND SCENARIOS FOR
COLLABORATIVE AND NON-COLLABORATIVE
INDOOR POSITIONING APPROACHES

The Bluetooth Low Energy (BLE) beacon technology is widely deployed as a part of
indoor positioning infrastructure. However, in the research community, there is a
growing interest in developing straightforward and inexpensive ranging positioning
systems (i.e., infrastructure-less systems) and improving location accuracy in Non-
line-of-sight (NLOS) environments. These objectives have accelerated the research
in Indoor Positioning Systems (IPSs) based on wearables and collaboration among
devices/users. Unfortunately, obtaining the necessary experimental data to enable
such systems is very time and resource-demanding, as it requires simultaneously cap-
turing data from the various collaborating mobile devices.

As far as we know, no such empirical datasets existed in the literature before we
collected ours. This chapter has four aims:

• �rstly, to present a BLE database based on mobile devices, which act simulta-
neously as transmitters and receivers, for ranging-based collaborative indoor
positioning;

• second, to detail the methodology used for the data gathering phase, raw data
processing, and the structure of the database;

• third, to technically validate the usefulness of the database through an example
(lateration approach based on collaborative users), and

• fourth, to describe the two indoor scenarios where we have collected our
datasets for plain �ngerprinting, lateration, and ranging collaborative indoor
positioning in the aforementioned scenarios.

The information about the datasets and indoor scenarios provided in this chap-
ter were used to evaluate and analyze the approaches proposed in Chapter 4 and
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Chapter 5.
The scenarios and databases presented in this section were used as follows:

• The o�ce scenario together with the BLE database for range estimation in
collaborative indoor scenarios (Subset-C) presented in Sections 3.2.2 & 3.2.4,
respectively, were used to experimentally evaluate and validate the collabora-
tive approach presented in Section 5.2 and in [22].

• The o�ce scenario together with the BLE database for range estimation in
collaborative indoor scenarios (Subset-A) presented in Sections 3.2.2 & 3.2.3,
respectively, were used to experimentally evaluate the Logarithmic Distance
Path Loss (LDPL) model presented in Section 4.1.1 and in [21]. Furthermore,
the o�ce scenario and Subset-A were used as a basis for testing the Received
Signal Strength Indicator (RSSI)-fuzzy classi�er presented in Section 4.1.2 and
in [4].

• The new scenario (lobby scenario) together with the extended ranging collab-
orative dataset and the BLE and IEEE 802.11 Wireless LAN (Wi-Fi) radio
maps presented in Sections 3.5.1, 3.5.2 & 3.5.3, respectively, were used to
experimentally evaluate and validate the collaborative approach presented in
Section 5.3.

• The �rst BLE radio map presented in Section 3.5.3.1 was used to experimen-
tally evaluate and validate the collaborative approach presented in Section 5.3.

• The second BLE radio map presented in Section 3.5.3.1 was used to experi-
mentally evaluate and validate the lateration BLE–RSSI method based on com-
binatorial BLE anchor selection presented in Section 4.2.1 and in [6].

• The Wi-Fi radio map presented in Section 3.5.3.2 was used to experimen-
tally evaluate and validate the collaborative approach presented in Section 5.3.
Moreover, the Wi-Fi radio map, was used to experimentally evaluate the
�ngerprinting-based positioning system presented in Section 4.2.3.

3.1 BLE database for range estimation in collaborative indoor
scenarios

In the last few years, the technological advancement of wearable devices and the rising
demand for infrastructure-independent positioning systems have accelerated the de-
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velopment of wearable-based positioning systems for Location-based Services (LBS)
applications. In spite of the variety of indoor positioning technologies available, BLE
is extensively utilized because it is already built into mobile devices, is inexpensive,
has low power consumption, and provides both positioning and communication ca-
pabilities. Indeed, BLE is an easy-to-use technology for implementing IPS based on
RSSI [161, 162, 163, 164, 165]. For example, IPSs based on iBeacon protocol [166,
167, 165] allow mobile devices to transmit and receive information using the BLE
packets, in a short distance, between them [167]. In recent years, BLE has proven its
usefulness and importance in real-world applications, such as the COVID-19 contact-
tracing apps [168].

Nevertheless, the propagation of radio frequency signals, including BLE, is prone
to signal attenuation, interference, and multi-path propagation [169, 168], especially
in harsh environments under complex geometries, NLOS conditions, and the pres-
ence of crowds. These events cause a random variation in the RSSI, resulting in a �uc-
tuation in the position estimate [168]. RSSI-based positioning – such as proximity,
ranging and �ngerprinting – is the most a�ected by these adverse conditions [164].

Nowadays, the ubiquity of mobile devices and the increasing density of mo-
bile device users within small indoor environments (e.g., o�ces, libraries, and
classrooms) has been exploited to design Collaborative Indoor Positioning Systems
(CIPSs) and/or enhance distance estimation between users. CIPSs, as explained in
Section 2.2, estimate/improve the neighboring users’ position based on exchang-
ing absolute positions and measuring the relative distance between neighboring de-
vices [170]. Figure 3.1 exempli�es a CIPS integrated by six smartphones, where the
Line-of-sight (LOS) between anchors references (Ref.1-3) and User 6 is obstructed
by bookshelves causing a poor position accuracy, so, the neighboring users (1-5) col-
laboratively broadcast BLE information to improve the position of user 6. Nonethe-
less, in order to guarantee accuracy and robustness of the estimated position based
on collaborative approaches, it is fundamental to analyze and study the RSSI under
several conditions and environments, and involve diverse devices. On the other side,
thanks to its implementation in indoor contact-tracing apps, research for distance
estimation (i.e., proximity) applications, primarily based on BLE, has been boosted
during the COVID-19 pandemic. However, similar problems as those of IPSs are
noticed, mainly a high number of false positives caused by diverse factors related to
the indoor environment, such as signal interference between devices, NLOS condi-
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tions, and �uctuation in the signal transmission patterns [171].

Figure 3.1 Example of a mobile-device CIPS scenario. Source [21].

Although the new positioning and range approaches have been extensively eval-
uated mathematically and using simulations, the experimental evaluation with real
data (i.e., data collected from diverse real scenarios, devices, and conditions) is pri-
mordial to comprehend their behavior under real conditions. Nevertheless, such data
collections are time and resource demanding and the generalization of results can be
compromised if the data collection performed is limited to the own researchers’ facil-
ities. So, sharing databases, including a detailed and systematic methodology of data
collection and usage documentation, is a good research practice. Additionally, this
practice provides invaluable contributions to the research community, as in many
cases, researchers are not able to collect their own data. Using our database, they can
still test and validate their solutions using real data collected under diverse contexts
and scenarios. Finally, public databases promote the reproducibility of research.

As far as we know, the availability of public databases based on BLE and RSSI,
which uniquely rely on mobile devices, in both transmission and reception, is al-
most nil [161]. In the few that exist, the transmission/reception among multiple
mobile devices is not considered. An ample amount of databases are based on �nger-
printing systems, considering deployed anchors, o�-the-shelf BLE beacons, or other
ad-hoc devices, only as transmitters. The receivers, on the other hand, are typically
smartphones or other wearable devices [172, 173, 164].

The BLE database for range estimation in collaborative positioning scenarios
based on mobile devices is divided into three data collection subsets. The �rst sub-
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set is dedicated to the calibration of parameters used for position estimation in the
indoor environment. The second subset is dedicated to ranging and collaborative
positioning considering NLOS conditions. The third subset is dedicated to ranging
and collaborative positioning considering real o�ce conditions. In the scenarios, the
LOS conditions are considered as the direct line-of-sight between two devices with
no obstructions in between.

The main description for the three subsets is provided below:

• Subset-A “Calibration in Line-of-sight (LOS)”: Data necessary for calibrat-
ing the parameters used for distance estimation, based on RSSI measurements
in LOS, of six diverse mobile devices (�ve smartphones and one tablet) consid-
ering one indoor scenario. RSSI values are measured considering 12 reference
points spaced every meter in a straight line.

• Subset-B “Ranging and Collaborative positioning with NLOS, due to in-
tentional and recurrent walking in the environment”: Data for ranging and
collaborative positioning from �ve motionless mobile devices (also used in
Subset-A) in four set-ups with recurrent and intentional walks of one person
throughout the indoor scenario, inducing diverse conditions of NLOS.

• Subset-C “Ranging and Collaborative positioning in real o�ce condi-
tions”: Data for ranging and collaborative positioning from �ve motionless
mobile devices in seven set-ups in normal o�ce conditions (i.e., employees
sitting at their desks and periodically strolling around the environment con-
ducting regular o�ce duties).

3.2 Methodology

3.2.1 Hardware and software for BLE advertising and data collection procedure

The data collection and the BLE advertising in the experiments has been performed
using six mobile devices. Table 3.1 enlists the mobile devices, sorted by ID number,
and details the name, model, brand, and version of the Bluetooth, android, and API
of each.

Regarding the software used, the experiments were carried out based on a modi-
�ed version of the Android application GetSensorData [174, 175]. The application
was initially designed to collect data from smartphone wireless communications and
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Table 3.1 Description of mobile devices. Source [21].

ID Mobile name Model Brand Bluetooth Android API
version version version

01 Galaxy S8 SM-G950F Samsung 5 9 28
02 Lenovo Yoga Book Lenovo YB1-X90F Lenovo 4.0 6.0.1 23
03 Galaxy A7 Duos SM-A7100 Samsung 4.1 7.1.1 25
04 Galaxy S6 SM-G920F Samsung 4.1 7 24
05 Honor 20 Lite HRY-LX1T Huawei 4.2 9 28
06 Galaxy A5 SM-A500FU Samsung 4.0 6.0.1 23

sensors and save it to log�les, which are text �les (TXT extension) with the comma-
separated format. However, the BLE advertise mode feature was not included in the
original version. Hence, we added the BLE advertise mode feature to the GetSensor-
Data application allowing the smartphones to broadcast advertisements via Apple’s
iBeacon protocol, which is one of the most widely implemented on mobile devices.
The iBeacon protocol, through BLE packets, allows to broadcast and receive infor-
mation between mobile devices within a short range [167]. The broadcasting period
of the iBeaconBLE packets was set to 100ms (i.e., 10Hz). Then, on each of the
smartphones, the modi�ed version was installed. Although BLE has been supported
from Android version 4.3, the transmission of BLE beacons has only been possi-
ble since Android version 5.0 (LOLLIPOP) with API 21 [176]. The application is
available at the GitLab repository [177].

BLE4;4.160;iBeacon;43:40:4B:38:11:24;-71;-4;8;5;94339309-BFE2-4807-B747-9AEE23508620
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Figure 3.2 User interface of GetSensorData. Source [21].

The User Interface (UI) of the modi�ed version of GetSensorData application
installed on the smartphones is shown in Figure 3.2. The save sensor data and ad-
vertise BLE beacons buttons are on the upper right corner of the UI. The save
sensor data button circled in black, allows us to save the information of the received
BLE packets, the information of other wireless communications and device’s sen-
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sors (e.g., Wi-Fi, GNSS, inertial sensor, among others). For example, in our speci�c
case (BLE), the BLE data �le format includes the type of technology used (BLE),
recorded data timestamp, Beacon type (iBeacon), Media Access Control (MAC),
RSSI value measured, TX power, and the identi�ers Major, Minor and Universally
Unique IDenti�er (UUID). The broadcasting of BLE packets is initialized by press-
ing the advertise BLE beacons button (circled in red). The structure of iBeacon
advertisement packets comprises �ve elements, the iBeacon pre�x (9 bytes), Prox-
imity UUID (16 bytes), Major (2 bytes), Minor (2 bytes), and TX power (1 byte)
as is illustrated in Figure 3.2. The TX power value of each device corresponds to the
average of the RSSI values measured at 1 meter and in LOS from the transmitting
mobile. The UUID, Major, andMinor are device identi�ers, which allow us to iden-
tify and classify with di�erent levels of abstraction, within a network infrastructure,
the devices that are broadcasting. For instance, we could use the UUID to group
devices installed in a speci�c building, Major to group them by �oor, and Minor to
identify each device within the �oor. In addition, the receiver adds a sixth element
(RSSI), which contains the value of the strength of the received signal measured in
dBm. Table 3.2 details the con�guration data for the mobile devices used in the
data collection procedure. To avoid interference with radio frequency signals, each

Table 3.2 iBeacon identifiers of each mobile device. Source [21].

ID Mobile name UUID Major Minor

01 Galaxy S8 94339309-BFE2-4807-B747-9AEE23508620 8 1
02 Lenovo Yoga Book 94339309-BFE2-4807-B747-9AEE23508620 8 2
03 Galaxy A7 Duos 94339309-BFE2-4807-B747-9AEE23508620 8 3
04 Galaxy S6 94339309-BFE2-4807-B747-9AEE23508620 8 4
05 Honor 20 Lite 94339309-BFE2-4807-B747-9AEE23508620 8 5
06 Galaxy A5 94339309-BFE2-4807-B747-9AEE23508620 8 6

mobile device used in the experiments was mounted on its own pole at 1.5m from
the ground in portrait orientation (see Figure 3.3(a)).

3.2.2 Data collection scenario

The experiments for the data collection of the three subsets (Subset-A, Subset-B,
and Subset-C) were performed in the GEOTEC group’s o�ce based at University
Jaume I (Castellón, Spain).

Figure 3.1 and Figure 3.3 illustrate the o�ce. The approximate area of the o�ce
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is 10.76m by 16.71m. 14 bookshelves, 7 concrete columns, and three o�ce work
areas with desks, chairs, and computers make up the majority of the o�ce. This
site has previously been utilized for indoor positioning with Wi-Fi �ngerprinting,
magnetic �elds, conventional BLE, and even sensor fusion [178, 172, 179].

3.2.3 Configuration for the Subset-A data collection

The aim of the data collection of Subset-A is to analyze the BLE signal behavior
and calibrate the mobile devices in completely Line-of-sight (LOS) conditions in an
indoor environment, i.e., the o�ce scenario described above.

The red lines marked on Figure 3.3(b) and Figure 3.3(c) bound the area (main
corridor) used for empirical Subset-A data collection. On the �oor of the main corri-
dor, 12 reference points every 1m in a straight line and in LOS were set, considering
the initial point at 0m and the last point at 11m. Hence, the attenuation of the RSSI
can be measured at each reference point and, for example, be used for tuning propa-
gation models or calibrating the parameters of relative distance estimators.

(a)

(b)(a) Real
representation

(b) 3D model

16.71 m

10.76 m

x

y

(c) 2D model

Figure 3.3 Example of the setup for the Subset-A with the distribution of the emitters and received in
the office. Source [21].

On the initial point (0m), we set �ve of the six devices, listed in Table 3.1, hor-
izontally aligned, that act as transmitters. The unused device, which acts as the
receiver, was consecutively set at the reference points located at 1m to 11m. To
allow each device to act as a receiver, the above procedure was done six times. An
example case, where the transmitter devices are horizontally aligned in the initial
position (0m) and the receiver is at 4m, is illustrated in Figure 3.3(a).
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Each receiver mobile device recorded 90 s of raw data (BLE iBeacon and all phone
sensors and communications data) at each reference location using the GetSensors-
Data, and saved it in a log�le. 66 log�les, one for each transmitter and reference
point was generated. In total, because each of the 66 log�les contains data from 5
separate transmitters, 330 ranging transmitter-to-receiver pairs of 90 seconds were
saved. Furthermore, we ensured that the devices’ batteries were not less than 80%

of their capacity during the measurements, and, we stayed away from the devices,
always retreating to the same location.

3.2.4 Configurations for the Subset-B and Subset-C data collection

For the data collection of Subset-B and Subset-C, we used �ve mobile devices consid-
ering diverse set-ups. Contrary to Subset-A, designed for BLE calibration, Subset-B
and Subset-C are designed to test the feasibility of ranging and collaborative posi-
tioning using mobile devices and realistic situations.

To this aim, we implemented various device arrangements considering �ve de-
vices. Also, in order to create NLOS cases among devices, diverse approaches were
implemented. As a result, we o�er a wider variety and complexity of test conditions
re�ecting real-life situations for ranging and collaborative positioning approaches.
We included the alteration of the number of occupants in the o�ce, the frequency
with which people walk and obstruct the LOS between devices, and the use of var-
ious �xed obstacles among these approaches. In each setup, each mobile device si-
multaneously advertises its own BLE messages while reading/saving the RSSI of the
received advertisement emitted by surrounding devices (i.e., the other four mobile
devices). The ground truth of the mobile devices in each con�guration is presented
in Table 3.4.

The data collection of Subset-B includes four con�gurations, which are illustrated
in Figure 3.4. Each con�guration is composed of �ve mobile devices, Galaxy S8
(01), Lenovo Yoga Book (02), Galaxy A7 Duos (03) Galaxy S6 (04), and Honor
Lite (05). In each con�guration, as illustrated in the sketches, only one person in-
tentionally sits in front of the computer (blue person icon) in the o�ce or walks
through it (footprints paths) to create various NLOS conditions between devices.
The con�gurations are fully described as follows:

• The �rst multi-device con�guration, sketched in Figure 3.4(a), considers �ve
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mobile devices exchanging iBeacon advertisements. Nevertheless, the device
pairs 01&03, 01&05, and 05&04 present NLOS due to two wooden book-
cases, which obstruct the path signal between them. Furthermore, the LOS
path signal between the device pair 02&03 is obstructed by a concrete column.

• The second multi-device con�guration sketched in Figure 3.4(b), presents a ge-
ometric distribution that considers a mobile device (device 02) located equidis-
tant from the other mobile devices (devices 01, 03, 04, and 05). On the one
hand, the device pairs 03&02, 03&04, 03&05, and 02&04 present LOS. On
the other hand, the device pairs 01&02, 01&05, and 02&05 are partially ob-
structed by a set of desks.

• The third multi-device con�guration, sketched in Figure 3.4(c), presents a
con�guration in which device 02 blocks the signal traveling in LOS between
devices 01 and 03. In addition, a wooden bookcase blocks the LOS path signal
between the device pairs 01&05.

• In the fourth multi-device con�guration, sketched in Figure 3.4(d), device 02
is situated on a wooden bookcase shelf, blocking the signal from its LOS path
to devices 03 and 05, but preserving LOS conditions with devices 01 and 04.
The pairs 01&05, 04&05 present NLOS and device pairs 01&04, 03&04, and
03&05 LOS conditions. A set of desks is located between the device pairs
01&02 and 01&03.

The data collection of Subset-C includes seven con�gurations, which are illus-
trated in Figure 3.4 and Figure 3.5. Each con�guration includes �ve devices, Galaxy
S8 (01), Lenovo Yoga Book (02), Galaxy A7 Duos (03) Galaxy S6 (04), and Galaxy
A5 (06). Unlike Subset-B, in Subset-C the Honor 20 lite smartphone (05) was re-
placed by the device Galaxy A5 (06).

The �rst four multi-device con�gurations of Subset-C are similar to the ones
presented in Figure 3.4 for Subset-B. However, the number of people inside the
o�ce and walking around increased (blue person icon plus orange person icons).
In detail, 7 people were inside the o�ce for the �rst con�guration, 5, 6, and 5
people for the second, third, and fourth con�gurations, respectively. The change in
the number of people occupying and walking in the o�ce aims to more accurately
represent the behavior of workers in an o�ce environment and to observe how the
transmission/reception of the signals are a�ected by them.
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Figure 3.4 Multi–device configurations (1 to 4) office scenario. Source [21].

Regarding the �fth, sixth, and seventh multi-device con�gurations shown in Fig-
ure 3.5, we can notice that devices 01, 03, 04, and 06 are located in the same location,
near to the o�ce corners. However, mobile device 02 is located, in each con�gura-
tion, at a di�erent place.

In the �fth, sixth, and seventh multi-device con�gurations, the mobile devices 01,
03, 04, and 06 are located in the same location, near the o�ce corners, as it can be
seen in the sketches of Figure 3.5. The main di�erence between these con�gurations
is the location of mobile device 02. Observing only the four devices located near
corners, on the one hand, we notice that the device pairs 01&06, 01&04, and 03&06
present LOS conditions, on the other hand, the pairs 01&03, 03&04, and 04&06
present NLOS because of the central bookcases. In detail:

• In the �fth multi-device con�guration, sketched in Figure 3.5(a), device 02 is
located near device 04 and in LOS with devices 01 and 04. Furthermore, the
central bookcases of the o�ce blocked the LOS between device 02 and devices
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03 and 06.

• In the sixth multi-device con�guration, sketched in Figure 3.5(b), the LOS of
device 02 with the devices placed on the corners (devices 01, 03, 04, and 06)
is blocked by the central bookcases surrounding device 2.

• In the seventh multi-device con�guration, sketched in Figure 3.5(c), device 02
is in LOS with the devices 03 and 06, but in NLOS with the devices 01 and
04 due to central bookcases.
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Figure 3.5 Multi–device configurations (5 to 7) office scenario. Source [21].

The raw data collection, for Subset-B and Subset-C, was conducted using theGet-
SensorsData application for a period of 2 hours in each con�guration. During the
data collection, the mobile devices of each con�guration simultaneously advertise
their own BLE messages while reading/saving the information from all sensors, in-
cluding the received advertisements emitted by surrounding devices and their RSSI.
Hence, the raw data Subset-B contains 20 log�les and Subset-C contains 35 log�les.
During the measurements, the people moving around the o�ce, following the paths

100



shown in each con�guration (footprints depicted in Figure 3.4 and Figure 3.5), gen-
erate NLOS conditions between devices. Despite the desks set between mobile de-
vices do not completely block the LOS, they create interference with the BLE sig-
nal propagation. It should be pointed out that each device’s information storage is
not synchronized. Nevertheless, the time latency, which is in the order of seconds,
should not be a big drawback for static references.

The Table 3.4 reports the average with the standard deviation of the BLEmeasure-
ments collected by the six mobile devices in the Subset-A (90 s windows), Subset-B
(2 hwindows), and Subset-C (2 hwindows). BLE measurements emitted by external
devices to the mobile devices included in the con�gurations have been excluded from
Table 3.4. Overall, an average (with standard deviation) of1995±731, 79121±54443,
and 97371 ± 30650 valid BLE measurements were recorded in Subset-A, Subset-B,
and Subset-C, respectively. It should be noted that the recorded amount of BLE ad-
vertisement from a speci�c mobile device is related to the LOS/NLOS conditions,
the distance between emitter and receiver, and the BLE hardware at the receiver
side. Therefore, the number of BLE recorded can vary, which is represented by the
standard deviation. Regarding the last case, from Table 3.4, we can notice that the
Galaxy A5 is only receiving ⇡ 2 BLE messages per receiver and second for the cali-
bration collection in Subset-A, whereas the Galaxy S8 is receiving ⇡ 2 BLE messages
per receiver and second (⇥3 higher) in the same subset.

Table 3.3 Devices’ Ground truth in each configuration of subset B and C. Source [21].

ID
Ground truth (m)

SubsetCon�g. 1 Con�g. 2 Con�g. 3 Con�g. 4 Con�g. 5 Con�g. 6 Con�g. 7
x y x y x y x y x y x y x y

01 5.05 3.7 1.33 6.1 6.93 1.3 7.75 6.1 2.05 9.7 2.05 9.7 2.05 9.7 B&C
02 6.55 4.55 4.49 3.05 9.93 1.3 11.75 2.75 3.6 3.3 8.7 6.4 14.66 6.45 B&C
03 8.05 0.7 7.66 0.1 12.93 1.3 12.75 0.1 16.45 2.5 16.45 2.5 16.45 2.5 B&C
04 5.05 0.7 1.33 0.1 9.03 0.1 7.75 0.1 2.05 2.5 2.05 2.5 2.05 2.5 B&C
05 8.05 3.7 7.66 6.1 9.03 3.7 12.75 6.1 16.45 9.7 16.45 9.7 16.4 9.7 B
06 8.05 3.7 7.66 6.1 9.03 3.7 12.75 6.1 16.45 9.7 16.45 9.7 16.4 9.7 C

3.3 Database structure

The multi-device BLE-RSSI database is available at the Zenodo repository [23]. Its
structure is illustrated through its directory tree and �le structure in Figure 3.7. The
database is divided into three major sub-directories, Raw-Data, Processed-Data,
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Table 3.4 Average of BLE measurements collected by device in each 90s and 2 hours time windows.
Source [21].

ID Mobile name
Subset-A Subset-B Subset-C

(90 s time window) (2h time window) (2h time window)

01 Galaxy S8 2776 ± 63 80695 ± 60174 81100 ± 32178
02 Lenovo Yoga Book 2604 ± 57 117095 ± 67440 135738 ± 9090
03 Galaxy A7 Duos 1389 ± 188 62281 ± 35708 77029 ± 6454
04 Galaxy S6 2309 ± 127 100933 ± 57994 121047 ± 11955
05 Honor 20 Lite 2004 ± 136 34602 ± 19596 –
06 Galaxy A5 887 ± 99 – 71941 ± 10164

and Code. On the one hand, the raw data directory comprises all data gathered, from
the mobile device’s sensors and wireless communications, with the GetSensorsData
application. On the other hand, the processed data directory comprises the essential
BLE data for ranging and collaborative positioning, which has been obtained by
processing the raw data with the code provided.

The Raw-Data directory comprises the raw data of the three subsets A, B,
and C detailed in Section 3.2, which are organized into sub-directories Subset-A,
Subset-B, and Subset-C respectively. The sub-directories are structured similarly,
with a sub-directory for each scenario. At present, only one scenario (o�ce) raw
data is included in the three subsets within the Office folder. Within each sce-
nario directory, one or more sub-directories are included (i.e., con�guration sub-
directories). Within each con�guration directory, sub-directories that correspond to
each receiver device used to collect the data are included. Finally, within them, the
raw data �les from the independent data collections performed are included. For
example, Rawdata-A/Office/Config01/ReceiverDev01/*.txt contains the raw
data of subset A, o�ce scenario, con�guration Con�g01 and collected with device
01.

The Processed-Data directory comprises the BLE data and is organized simi-
larly to the Raw-Data, considering the subset, scenario, con�guration, and device as a
hierarchical folder. The path Processed-Data/Office/Config01/ReceiverDev01
/MeasurementsBLE.csv contains the processed data of the previous raw data exam-
ple. Contrary to the �les of raw data, the processed data �les are saved as comma-
separated values (CSV) �les for each combination of the receiver, con�guration,
scenario, and subset.

The Code directory comprises the Matlab script �les used for processing the raw
data, generating the processed data, visualizing valuable information, and performing
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technical validations. Despite the database currently focusing on a single scenario
(i.e., the o�ce) and a few con�gurations (one for Subset-A, four for Subset-B, and
Seven for Subset-C), the database has been planned to be readily expanded using the
systematic structure that was introduced. The Raw-Data, Processed-Data, and
Code sub-folders and �les are described in detail below.

Raw-Data sub-folders:

• Subset-A consists of 1 scenario (Office), 1 con�guration (Config01) and
6 receiver devices (ReceiverDev01 to ReceiverDev06). Each nested sub-
directory (ReceiverDev01 to ReceiverDev06) contains 11 TXT raw data
�les. The �les correspond to the measurements collected by each receiver de-
vice, at a particular reference point (1m to 11m), according to Con�guration
01 in the o�ce scenario. There is no need to change the �le name for the log-
�les if the data is collected consecutively, beginning at 1m and ending in 11m.
Overall, in Subset-A, 66 TXT raw data �les are saved.

• Subset-B consists of 1 scenario (Office) and 4 con�gurations (Config01 to
Config04) and 5 receiver devices (ReceiverDev01 to ReceiverDev05). Each
nested sub-directory (ReceiverDev01 to ReceiverDev05) contains 1 TXT
raw data �les. The �le contains the raw data of the receiver device indicated
by the sub-folder name. Overall, in Subset-B, 20 TXT raw data �les are
saved.

• Subset-C applies the same folders organization of Subset-B sub-directory,
but considering 7 con�gurations (Config01 to Config07) and 5 receiver de-
vices (ReceiverDev01 to and ReceiverDev06) sub-directories. There are 35
TXT raw data �les in all.

Processed-Data sub-folders:

• Subset-A comprises 6 processed data �les, saved in comma-separated values
(CSV) format. The �les are the result of processing the raw data. The data
recorded, by the speci�c receiver, for each CSV �le is 90 seconds long.

• Subset-B and Subset-C comprises 20 and 35 CSV processed data �les respec-
tively. The data recorded, by the speci�c receiver, for each CSV �le is 2 hours
long.

Code sub-directory contains the MatLab source code (4 main scripts):
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• ProcessMyRawData_ABC.m script, processes the raw data, which is contained
in the Raw-Data folder and saves the processed data into Processed-Data.
The supporting scripts dialogselectfolder.m, readrawfiles.m, and
bleformat.m are required in order to run this script.

• Disp_distribution.m displays the distribution of the subsets’ processed data
contained in Processed-Data;

• Val_pathloss.m and Val_collab.m are used for the technical validations of
the data collected in LOS. In order to detail in depth, the use of all the scripts
a Readme.txt �le is provided.

In order to keep the �les organized, we use the following �le naming conventions.
For CSV �les, which correspond to the processed data, we named all of them as
MeasurementsBLE.csv. The structure of CSV �les row is organized as follows (see
Figure 3.6):

• TestID: A six digits identi�er used to distinguish the subset, scenario, con�g-
uration, and device used in the data collection.

• Timestamp: Indicates the time, in seconds, in which the GetSensorData appli-
cation, installed on the receiving mobile device, reads the BLE packets trans-
mitted by mobile devices used in the experiments.

• RSSI: Received Signal Strength Indicator (RSSI) value of mobile devices used
in the experiments, in dBm, measured by the receiver device.

• Major: A two-digit identi�er used to classify the mobile devices’ BLE packets
and distinguish them from other groups.

• Minor: A two-digit identi�er used to classify the mobile devices’ BLE packets
within the group to which they belong.

• Ground Truth F: Speci�es the mobile devices’ real F coordinate in meters for
each con�guration in the o�ce scenario.

• Ground Truth G: Speci�es the mobile devices’ real G coordinate in meters for
each con�guration in the o�ce scenario.

For the log�les with raw data (TXT �les), the �le name consists of three parts:
�rst, an initial name (“log�le”); second, the date (yyyy_mm_dd); and third, the time
(HH_MM_SS) of the end of the recording, all them separated by underscores. The
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CSV file structure
MeasurementsBLE.csv

TestID structure 01010101

DeviceID (Galaxy S8 [01], Lenovo Yoga Book [02], 
Galaxy A7 [03], Galaxy S6 [04], Honor 20 lite [05], Galaxy A5 [06])

Scenario (Office [01])
Subset (Subset-A [01], Subset-B [02], Subset-C [03])

Configuration (Config01 [01], Config02 [02], Config03 [03], Config04 [04],
 Config05 [05], Config06 [06],Config07 [07])

TestID, Timestamp, RSS, Major, Minor, Ground truth x,  Ground truth y 
... 

01010101, 1.535, -69, 8, 5, 1, 0 

...

Figure 3.6 CSV file and TestID structure examples. Source [21].

information of BLE packets read is saved in the TXT �le chronologically as they are
received (one row per BLE packet) and each �eld in the row is divided by semicolons.
The BLE packet �elds saved are detailed as follows:

• Type of technology: An identi�er set at the beginning of each row, indicates
the type of sensor data measured. For the BLE case, the identi�er is: “BLE4”.

• Timestamp: indicates the time, in seconds, in which the GetSensorData appli-
cation, installed on the receiving mobile device, reads the BLE packets trans-
mitted by mobile devices used in the experiments.

• Type of beacon: Speci�es the beacon format read (“iBeacon”/“Eddystone”).

• MAC: The Media Access Control (MAC) of every device read by theGetSen-
sorData application in the receiving mobile device.

• RSSI: Received Signal Strength Indicator (RSSI) value of mobile devices used
in the experiments, in dBm, measured by the receiver device.

• Transmission Power: Speci�es the transmission power, in dBm, of BLE pack-
ets.

• Major: A two-digit identi�er used to classify the mobile devices’ BLE packets
and distinguish them from other groups.

• Minor: A two-digit identi�er used to classify the mobile devices’ BLE packets
within the group to which they belong.

• UUID: The Universal Unique Identi�er (UUID) is a unique number used to
identify the devices’ BLE packets.

Additional details about the sensors data formats used on theGetSensorData appli-
cation is available in [174, 175]. The remaining modules of the application remained
unchanged from the original version, as was already noted, with the exception of the
added broadcasting BLE advertisements.
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Collaborative_dataset

Raw-Data ................................................................................................Contains the raw data of subset A, B, and C
Subset-A .......................................Contains the raw data collected from the LOS experiments in the indoor environment (office scenario)

Office

Config01 ... This sub-directory holds the raw data files, Receiver devices 01 to 06,
in accordance with the LOS Configuration 01.

ReceiverDev<ID>

logfile_yyyy_mm_dd_HH_MM_SS.txt

Subset-B ....................................................................Contains the raw data collected from 4 configurations (office scenario)
Office

Config<nB> ... This sub-directory holds the raw data files, Receiver devices 01 to 05,
in accordance with the collaborative configuration <nB>.

ReceiverDev<ID>

logfile_yyyy_mm_dd_HH_MM_SS.txt

Subset-C ....................................................................Contains the raw data collected from 7 configurations (office scenario)
Office

Config<nC> ... This sub-directory holds the raw data files, Receiver devices 01 to 04,
and 06, in accordance with the collaborative configuration <nC>.

ReceiverDev<ID>

logfile_yyyy_mm_dd_HH_MM_SS.txt

Processed-Data ..................................................................................Contains the processed data of subset A, B, and C
Subset-A ........................Contains the processed calibration data obtained from the LOS experiments in the indoor environment (office scenario)

Office

Config01 ... This sub-directory holds the processed measurements files, Receiver
devices 01 to 06, in accordance with the LOS Configuration 01.

ReceiverDev<ID>

MeasurementsBLE.csv

Subset-B ........................................Contains the collaborative positioning processed data obtained from 4 configurations (office scenario)
Office

Config<nB> ... This sub-directory holds the measurements files, Receiver devices 01 to
05, in accordance with the collaborative Configuration <nB>.

ReceiverDev<ID>

MeasurementsBLE.csv

Subset-C .......................................Contains the collaborative Positioning processed data obtained from 7 configurations (office scenario)
Office

Config<nC> ... This sub-directory holds the measurements files, Receiver devices 01 to
04, and 06, in accordance with the collaborative Configuration <nC>.

ReceiverDev<ID>

MeasurementsBLE.csv

Code ....................................Contains the source code used for the creation of the Dataset, its visualization, and the technical validation examples
Readme.txt

ProcessMyRawdata_ABC.m

Disp_distribution.m

Val_pathloss.m

Val_collab.m

dialogselectfolder.m

readrawfiles.m

bleformat.m

Figure 3.7 Directory tree of the database. <nB>2{01,...,04} and <nC>2{01,...,07}.
Source [21].

3.4 Technical validation

This subsection presents an example to demonstrate the usefulness of the previously
described database. The example consists of a lateration approach considering col-
laborative users, which uses the data of Subset-B and Subset-C.

3.4.1 Lateration approach based on collaborative users

To validate the data contained in Subset-B and Subset-C, we present a collabora-
tive positioning approach, which uses the data corresponding to the �rst, second,
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and third collaborative con�gurations (see Figure 3.4(a), Figure 3.4(b), and Fig-
ure 3.4(c)) and saved by the Device 02. It should be noted that the data used in this
technical validation have been restricted to only those three con�gurations due to the
high data volume of subsets B and C. In detail, the path folder of the six �les used in
this validation (one per subset and collaborative con�guration) are as follows:

• /Processed-Data/Subset-B/Office/Config01/ReceiverDev02/MeasurementsBLE.csv

• /Processed-Data/Subset-B/Office/Config02/ReceiverDev02/MeasurementsBLE.csv

• /Processed-Data/Subset-B/Office/Config03/ReceiverDev02/MeasurementsBLE.csv

• /Processed-Data/Subset-C/Office/Config01/ReceiverDev02/MeasurementsBLE.csv

• /Processed-Data/Subset-C/Office/Config02/ReceiverDev02/MeasurementsBLE.csv

• /Processed-Data/Subset-C/Office/Config03/ReceiverDev02/MeasurementsBLE.csv

In this technical validation, we assume a collaborative scenario composed of �ve
users (Users 1–5), each of them holds a mobile device. Speci�cally, Mobile devices
01–05 for Subset-B and Mobile devices 01-04, and Mobile device 06 for Subset-
C. Also, we assume that Users 1 and 3–5 know their exact position (e.g., using a
position approach based on Ultra-Wideband (UWB)) and share it (e.g., using a cen-
tralized platform) with User 2, which, in contrary to devices 1 and 3–5, is not able
to self-determine its position with high accuracy. So, considering the exact position,
the dataset makes it possible to assess collaborative positioning methods without the
added accumulated error that the predicted positions would introduce. In order to
determine its own location through collaborative methods, User 2 uses the position
information of Users 1 and 3–5 and the estimated relative distances to them (based
on the RSSI values and Path Loss model). Despite the fact that this collaborative sce-
nario seems to represent a classical positioning scenario, which uses Users 1 and 3–5
as regular beacons, the variety of hardware (at the level of smartphones and Blue-
tooth chipsets) and software (at the level of operating system versions and vendor’s
customization layer) used makes this positioning more di�cult.

Figure 3.8 presents the work�ow for the collaborative method and is detailed as
follows:

• 1st step: Select the user (i.e., User 2) and load the registered data of the re-
maining devices (Users 1 and 3–5) registered on the user’s device;

• 2nd step: Cluster the RSSI values by device (Users 1 and 3–5) and obtain their
position from the centralized platform;
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• 3rd step: Cluster the RSSI values into 60 s bins;

• 4th step: Smooth the noisy RSSI and remove its outliers using a moving aver-
age of 30 samples;

• 5th step: To get only one RSSI value per device in each time interval (Bin),
average them considering the interval of time speci�ed in the �rst step;

• 6th step: Estimate the distances, between User 2 and Users 1 and 3–5, consid-
ering the LDPL (see eq. 4.1) and the averaged RSSI values from 4th step. The
path-loss attenuation factor ([) used for Users 1 and 3–5 are 0.6, 1.01, 0.61,
and 1.03 and the '((� (30) equal to �77.39 dBm, �67.97 dBm, �75.36 dBm
and �64.33 dBm respectively, and

• 7th step: Estimate the User 2 position considering the Levenberg-Marquardt
Least Squares (L-MLS) lateration method, which inputs are the distances esti-
mated in the �fth step, position of Users 1 and 3–5, and user’ weights (inverse
of their distance square).

1st step 2nd step 3rd step2nd step (Only Dev01)

4th step5th step (Only Bin 01)

7th step (Position estimation)

02

01 05/06

0304

Dev01

Dev03 Dev04

Dev05

Dev02

6th step

02

Figure 3.8 Collaborative positioning approach workflow. Source [21].
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Table 3.5, summarizes, through several metrics based on User 2’s positioning
error, the results of the collaborative approach.

Table 3.5 Statistical values of the Euclidean distance error of each collaborative scenario example.
Source [21].

Subset Conf. "40< (m) "4370< (m) %25 (m) %75 (m)

B
01

1.72 1.75 1.68 1.78
C 0.60 0.61 0.55 0.66

B
02

4.08 3.77 3.54 4.78
C 3.33 3.54 2.23 4.42

B
03

1.87 1.78 1.58 2.07
C 1.02 0.94 0.44 1.47

In detail, the results of collaborative con�gurations 01 and 03 demonstrated that
the proposed collaborative approach accurately estimates the position in conditions
of moderate NLOS and the short distance between the user and the target user (i.e.,
User 2). Nevertheless, the results of con�guration 2 (large and equidistant distance
between devices) presented the largest mean euclidean distance error, 4.08m and
3.33m due to two cases, the deliberate and frequent walking of workers in the o�ce
(prolonged NLOS) and for walking more moderately in the o�ce, respectively. It
should be noted that the presented positioning strategy just served to validate the
collected dataset. Additional improvements, e.g., more robust �lters and dynam-
ics parameters selection, could improve the accuracy and robustness of the method
proposed. Nevertheless, this is outside the scope of this section.

3.5 Database extensions

Collaborative indoor positioning approaches involve various aspects to be taken into
account for their design, evaluation, and implementation. For example, signal prop-
agation between mobile devices in LOS and NLOS conditions, unstable signal prop-
agation due to environmental conditions (e.g., geometries, wall materials, furniture,
diverse sources of wireless transmission), the variation of RSSI values and the esti-
mation of the distance between devices due to the use of heterogeneous collaborative
mobile devices, e�ects of the distribution of beacons in the environment, among
others. Therefore, in order to extend the analysis and evaluation of the aforemen-
tioned aspects of collaborative approaches, additional con�gurations and scenarios
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were considered. The following subsections describe them.

3.5.1 New Scenario: The lobby scenario

Additional to the o�ce scenario described in 3.2.2, we included a new scenario –the
lobby scenario. The lobby scenario is located on the second �oor of the Tietotalo
building at Tampere University (Tampere, Finland). The scenario has an approxi-
mate area of 26.2m by 13.7m and includes 7 concrete pillars, seater sofas, an o�ce
pod, tables, and lecture desks as illustrated in Figure 3.9. The lobby scenario, sim-
ilar to the o�ce scenario, provides rich NLOS and complex conditions. This new
scenario was used to extend the ranging collaborative dataset (see Section 3.5.2) and
create a Wi-Fi radio map (see Section 3.5.3.2). Moreover, we used the scenario and
the data of the two sections previously mentioned to experimentally evaluate and
validate the collaborative approach presented in Section 5.3.

Figure 3.9 3D lobby scenario representation.

3.5.2 Extended ranging collaborative dataset

The BLE data collection of the lobby scenario was done considering the same
methodology and database structure explained in Section 3.2 & 3.3 (Subset C) re-
spectively, but applied to di�erent con�gurations and using di�erent mobile devices.
In the data collection, we included six con�gurations, which are illustrated in Fig-
ure 3.10 and Figure 3.11. Each con�guration is made up of �ve mobile devices, of
which 2 (Galaxy S8 and Honor Lite) were also used in the experiments in the o�ce
scenario, and 3 (Galaxy S6 Edge, Huawei P40, Lite, and Galaxy A12) are only used
in this one. Table 3.6 lists the mobile devices, sorted by ID number, and details the
con�guration data for the mobile devices used in the data collection procedure. In
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detail, the con�gurations are described as follows:

• The �rst multi-device con�guration, sketched in Figure 3.10(a), considers �ve
mobile devices exchanging iBeacon advertisements. The distance between each
pair of devices is short in comparison with the other con�gurations, less than
4m. Nevertheless, the device pairs 07&09 and 08&09 present NLOS due to
a concrete pillar, which obstructs the path signal between them.

• The second multi-device con�guration, sketched in Figure 3.10(b), presents a
geometric distribution that considers a mobile device (device 09) located near
mobile devices (devices 07 and 08). On the one hand, the device pairs 01&05,
05&09, and 08&09 present LOS. On the other hand, the device pairs 01&09,
01&08, 01&07 are obstructed by an o�ce pod, the device pair 05&07 by a
concrete pillar, and 07&09 by a seater sofa.

• The third multi-device con�guration, sketched in Figure 3.10(c), presents a
con�guration in which device 09 blocks the signal traveling in LOS between
devices 01 and 07. In addition, a seater sofa partially blocks the LOS path
signal between the device pairs 01&05.

• In the fourth multi-device con�guration, sketched in Figure 3.10(d), device
09 is situated between seater sofas, which partially blocks the signal from its
LOS path to devices 01, 08, and 07, but preserves LOS conditions with device
05. The device pair 01&08 has LOS between them and the device pair 01&08
the LOS is partially blocked by seater sofas. Also, device 07 is located within
two-seater sofas, which block the LOS with devices 05, 01, and 09, but has
LOS with device 08.

• The �fth multi-device con�guration, sketched in Figure 3.11(a), presents a
geometric distribution that considers a mobile device (device 09) located near
mobile devices (devices 01 and 05). The device 09 has LOS with devices 01,
05, and 08, but NLOS with device 07. The device pairs 01&08, 01&07, and
05&07 present NLOS condition and devices pairs 01&05 and 07&08 LOS
condition.

• The sixth multi-device con�guration, sketched in Figure 3.11(b), presents a ge-
ometric distribution that considers a mobile device (device 09) located equidis-
tant from the other mobile devices (devices 01, 05, 07, and 08). Device 09 is
in LOS with devices 05 and 08 and in NLOS with devices 07 and 01.
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Table 3.6 iBeacon identifiers of each mobile device used in lobby scenario.

ID Mobile name UUID Major Minor

01 Galaxy S8 94339309-BFE2-4807-B747-9AEE23508620 8 1
05 Honor 20 Lite 94339309-BFE2-4807-B747-9AEE23508620 8 5
07 Galaxy S6 Edge 94339309-BFE2-4807-B747-9AEE23508620 8 7
08 Huawei P40 Lite 94339309-BFE2-4807-B747-9AEE23508620 8 8
09 Galaxy A12 94339309-BFE2-4807-B747-9AEE23508620 8 9
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Figure 3.10 Multi–device configurations (1 to 4) lobby scenario.

Table 3.7 Devices’ Ground truth in each configuration used in the lobby scenario.

ID
Ground truth (m)

Con�g. 1 Con�g. 2 Con�g. 3 Con�g. 4 Con�g. 5 Con�g. 6
x y x y x y x y x y x y

01 2 3 0 0.5 9 2 6 0.5 0 0.5 0 0.5
05 2 6 0 6 11 4.5 6 5.5 0 6 0 6
07 5 3 14 6 15 2 12 5.5 14 6 14 6
08 5 6 14 0.5 11 1 12 0.5 14 0.5 14 0.5
09 1 4.5 12 3 12 2 9.5 4.5 1.5 2 7 3

In addition to the LOS andNLOS conditions and geometries of the environment,
the con�gurations also present di�erent distances between device pairs. For example,
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Figure 3.11 Multi–device configurations (5 and 6) lobby scenario.

the �rst and third con�gurations are a short distance, the fourth a medium distance,
and the second, �fth, and sixth a large distance. The ground truth of the mobile
devices in each con�guration is presented in Table 3.7.
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3.5.3 Radio maps for fingerprinting

In order to complement the data collection for ranging and collaborative positioning
between collaborative mobile devices and experimentally evaluate and validate our
approaches presented in Chapter 4 and Chapter 5, we included three radio maps for
positioning the collaborative mobile devices using the BLE anchors deployed in the
o�ce scenario and the Wi-Fi Access Points (APs) available in the lobby scenario.
The objective of these new positioning databases is to provide the necessary data to
estimate the position of collaborative mobile devices in the non-collaborative phase
(see Section 5.3.2) of CIPSs through methods such as lateration and �ngerprinting–
9-Nearest Neighbors (9-NN). Also, to analyze the e�ect of adequate BLE anchors
to improve the positioning accuracy. Speci�cally, the �rst BLE radio map presented
in Section 3.5.3.1, was used to estimate the position of mobile devices in both the
non-collaborative phase (initial position) of the CIPS proposed and the stand-alone
BLE–�ngerprinting approach used in Section 5.3. The second BLE radio map pre-
sented in Section 3.5.3.1 was used to experimentally evaluate and validate the latera-
tion BLE–RSSI method based on combinatorial BLE anchor selection presented in
Section 4.2.1 and in [6]. The Wi-Fi radio map presented in Section 3.5.3.2 was used
to estimate the position of mobile devices in both the non-collaborative phase (initial
position) of the CIPS proposed and the stand-alone Wi-Fi–�ngerprinting approach
used in Section 5.3. Moreover, theWi-Fi radio map, was used to experimentally
evaluate the �ngerprinting-based positioning system presented in Section 4.2.3.

It should be noted the importance of the radio maps presented in this sec-
tion because one of the two CIPSs presented in Chapter 5 aims to enhance the
positioning accuracy of traditional IPSs based on BLE–�ngerprinting and Wi-
Fi–�ngerprinting approaches, as well as our CIPS rely on �ngerprinting approach in
its no-collaborative phase. The following subsections describe each of the new radio
maps.

3.5.3.1 BLE radio maps in the office scenario

In the o�ce scenario, 19 BLE anchors were deployed and 74 reference points were set
to collect the BLE–RSSI values. The transmission power and transmission period
were set at �4 dBm and 250ms respectively. Figure 3.12 (a) illustrates the distri-
bution of the 19 BLE anchors (red points) and 74 references points (blue points)
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used to build the BLE �ngerprint radio map. The radio map was collected using
each mobile device used in the six con�gurations described in Section 3.5.2. This
radio map was used to estimate the position of mobile devices in both the non-
collaborative phase (initial position) of the CIPS proposed and the stand-alone BLE–
�ngerprinting approach used in Section 5.3, andmentioned in the experiment section
(Section 5.3.4.1).

Additionally to the BLE radio map described before, we built a new con�guration
considering only 13 target points, carefully distributed around the o�ce scenario, to
provide LOS and NLOS conditions with respect to the 20 BLE anchors deployed.
Figure 3.12(b) illustrated the distribution of the 20 BLE anchors and 13 target points
(blue circles) around the o�ce scenario and Table 3.8 the Ground-Truth (GT) of
BLE anchors and the 13 target points. A unique mobile device (Galaxy A5) was
used to get the BLE RSSI data in each reference point. At each reference point,
we recorded data for 10 minutes. This con�guration is used to analyze the e�ect of
adequate BLE anchors selection to estimate position using lateration in Section 4.2.1
and in [6].
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Figure 3.12 Distribution of BLE anchors and radiomap reference/target points in the office scenario.

3.5.3.2 Wi-Fi radio map in the lobby scenario

In the lobby scenario, we did not deploy any infrastructure, but instead reused 67
MACs of the Wi-Fi APs available in the scenario and set 136 reference points where
theWi-Fi–RSSI values were collected. Themobile device Galaxy A12 was used to get
the Wi-Fi–RSSI data in each reference point. At each reference point, we recorded

115



Table 3.8 Ground truth of BLE anchors and target points.

Reference BLE anchors Target points

No. x (m) y (m) TX Power (dB) TX Period (ms) x (m) y (m)

1 0 0 -4 250 5.95 6.1
2 0 2.61 -4 250 3.85 9.6
3 0 7.66 -4 250 1.15 6.1
4 0 10.68 -4 250 3.85 1.9
5 3.88 3.54 -4 250 6.85 1.3
6 3.78 6.51 -4 250 7.75 3.7
7 3.87 8.64 -4 250 9.25 9.6
8 6.45 2.13 -4 250 10.75 5.5
9 6.68 10.64 -4 250 11.65 1.3
10 9.2 3.7 -4 250 14.05 2.5
11 9.08 5.95 -4 250 15.85 6.1
12 9.18 8.71 -4 250 14.05 10
13 11.4 3.6 -4 250 12.55 6.1
14 11.54 7.18 -4 250 – –
15 11.54 10.65 -4 250 – –
16 13.95 4.34 -4 250 – –
17 14.2 6.05 -4 250 – –
18 15.65 1.71 -4 250 – –
19 16.65 10.65 -4 250 – –
20 6.66 8.58 -4 250 – –

data for 90 seconds. Figure 3.13 illustrated the distribution of the 136 reference
points (blue points). The points cover the area where the six multi-device con�gura-
tions were placed. The Wi-Fi radio map was used to estimate the position of mobile
devices in both the non-collaborative phase (initial position) of the CIPS proposed
and the stand-alone Wi-Fi–�ngerprinting approach used in Section 5.3. Moreover,
the Wi-Fi radio map, was used to experimentally evaluate the �ngerprinting-based
positioning system presented in Section 4.2.3.
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3.6 Chapter summary and discussion

In this chapter, we presented a mobile device-based BLE database for testing ranging
collaborative indoor positioning approaches, considering bidirectional and simulta-
neous transmission/reception between devices. The data was collected experimen-
tally in two real indoor scenarios (o�ce and lobby) considering di�erent mobile
devices diversely distributed (con�gurations) in the scenarios. To guarantee the us-
ability, reproducibility, and extension of the database, we provided the code used, as
well as a detailed description of the structure of the database and the methodology
used for data collection and processing. To validate the usefulness of the database an
illustrative example of lateration approach based on collaborative users was provided.

In addition to the aforementioned database, we presented and describe three ra-
dio map collections performed in the o�ce and lobby scenarios. The information
provided by the radio maps (Wi-Fi and BLE �ngerprint) is used to estimate the posi-
tion of a collaborative mobile device. The data contained in the mobile device-based
BLE database together with the BLE and Wi-Fi radio maps of the o�ce and lobby
scenarios of this chapter were used to evaluate and analyze the approaches proposed
in Chapter 4 and Chapter 5.
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4 DISTANCE AND POSITION ESTIMATION
APPROACHES FOR MOBILE DEVICES

Nowadays, mobile/wearable devices incorporate diverse wireless technologies (e.g.,
IEEE 802.11 Wireless LAN (Wi-Fi), Bluetooth Low Energy (BLE), 5G, LTE,
among others). Among them,Wi-Fi and BLE are widely adopted for position estima-
tion. Accordingly, with the results reported in our systematic review (see Chapter 2),
in Collaborative Indoor Positioning Systems (CIPSs), the �rst is used in both collabo-
rative and non-collaborative parts, whereas the second is primordially used in the col-
laborative part. Moreover, such technologies are commonly coupled with Received
Signal Strength Indicator (RSSI) and �ngerprinting techniques. Within the meth-
ods implemented based on such technologies, the most common are RSSI-lateration
and �ngerprinting-9-Nearest Neighbors (9-NN) due to their easy implementation,
capability to use the technologies and measurements on mobile/wearable devices,
and acceptable accuracy [180]. Thus, we considered the aforementioned methods as
basis for developing the algorithms used in our CIPSs and in the traditional Indoor
Positioning System (IPS) presented in Chapter 5.

The RSSI-lateration methods to estimate the position require knowing the posi-
tion of reference anchors distributed in the environment. That information is used
�rst to estimate the relative distance between the unknown target to the reference
anchors and then to estimate the target’s position. Thus, a proper method to estimate
the relative distance between anchor-target and to select the anchors with an adequate
distribution is vital for accurate position estimation. In the case of �ngerprinting–
9-NN methods, in addition to data-representation and distance metric, two remark-
able factors that a�ect their accuracy are the number of anchors and the number of
neighbors considered (i.e., 9 value in 9-NN).

The main contributions of this chapter are:

• We describe and experimentally evaluate the traditional methods to estimate
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distance (i.e., based on Logarithmic Distance Path Loss (LDPL) model and
fuzzy logic) and position (i.e., RSSI-lateration and �ngerprinting–9-NN).
Also, we present their limitations and challenges.

• We present a distance estimator based on the LDPL model and experimentally
analyze, in an indoor environment, its performance considering heterogeneous
mobile devices.

• We propose an innovative and straightforward system based on a fuzzy classi-
�er to improve the accuracy and robustness of the LDPLmodel. Additionally,
we experimentally demonstrate its practicality in enhancing positioning accu-
racy.

• We propose an innovative lateration BLE–RSSI method based on combinato-
rial anchors selection to enhance the accuracy and reliability of the position
estimation. Furthermore, we demonstrate its e�ectiveness in improving the
accuracy and reliability of position estimation.

• We present a �ngerprinting–9-NN method for indoor positioning and exper-
imentally analyze the e�ect of variations of the number of anchors and 9-NN
values on positioning accuracy.

4.1 Distance estimation

In addition to using wireless technologies embedded in mobile/wearable devices in
communication systems, we can use them to estimate the relative distance between
the transmitter and the receiver. There are various techniques (e.g., Time of Arrival
(ToA), Angle of Arrival (AoA), RSSI) used in mobile/wearable devices to calculate
the distance between them. However, one of the most widely used techniques is
RSSI, because it is based on RSSI values [181], which are the simplest measurement
that we can obtain from a received signal and are usually provided by the operative
systems of mobile/wearable devices.

To estimate the distance based on RSSI, we use the correlation between the atten-
uation of RSSI as it propagates through space and the distance between transmitter
and receiver [182]. However, the estimation computed by that approach is a�ected
by various environmental factors (e.g., geometries, obstacles, etc.), hardware hetero-
geneity (e.g., transmit power, antenna gain, etc.), and well-identi�ed signal propaga-
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tion issues (e.g., multipath fading, re�ection, refraction, di�raction) [165]. There-
fore, providing a suitable model that accurately models the Radio Frequency (RF)
wave propagation in various environmental conditions and reduces the impact of
RSSI �uctuations on distance estimates is an open challenge.

4.1.1 Logarithmic Distance Path Loss (LDPL) model

The propagation of BLE signals in the environment, as part of RF signals, are not
excluded from the error sources inherent to the aforementioned RF wave propa-
gation, which add inaccuracy in the estimation of distance. Among the most used
models for modeling the RF wave propagation and its correlation with the distance
between transmitter and receiver, the two-ray ground, free space, and LDPL mod-
els are the most used [182, 181, 4]. This section considers the latter model due to
its general use and straightforward implementation. However, setting the proper
model parameters that accurately estimate distance in indoor environments, even in
Line-of-sight (LOS), is a di�cult task.

The main goals of this section are: �rst, to accurately estimate the distance be-
tween transmitter and receiver devices based on the LDPL model and proper setting
of its parameters. Second, to analyze the behavior of the BLE signal propagation at
di�erent reference distances in an indoor environment and under LOS conditions.
Third, under the same conditions, evaluate the impact of using heterogeneous trans-
mitters on the model’s parameters and the distance estimation accuracy.

In order to compute the distance between the transmitter and receiver considering
the RSSI values in dBm, we use the LDPL model [165, 36, 183] expressed in the
Eq. 4.1.

'((� (3) = '((� (30) � 10[ log

✓
3

30

◆
(4.1)

where '((� (3) denotes the RSSI value measured at a distance 3. Speci�cally, 3 is
the distance between transmitter and receiver devices; '((� (30) denotes the RSSI
at a reference distance 30, typically 30 = 1m; [ is a path-loss attenuation factor.
The units used for RSSI and distances values are decibels (dBm) and meters (m),
respectively.

It should be noted that adequate calibration in real-world environments positively
impacts the accuracy of distance and position estimates based on LDPL. While cal-
ibration measurements are valid for the speci�c scenario and devices used, the cal-
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ibrated parameters can also be applied to similar scenarios with the same devices.
However, if the scenario changes signi�cantly over time, periodical recalibration
will be required to preserve the accuracy.

4.1.1.1 Experiments and results

With the experiment, we aim to achieve four objectives. The �rst objective consists
of training or modeling the distance estimator based on the LDPL model to accu-
rately determine the model’s parameters ('((� (30) and [). Second objective is to
estimate the distance between the receiver and the transmitters. Third objective is to
analyze, under LOS conditions, the propagation behavior of the BLE signal transmit-
ted by various transmitting devices and measured at di�erent distance points. Fourth
objective is to evaluate the e�ect of the use of heterogeneous transmitters causes on
the model’s parameters and the distance estimation accuracy.

To achieve the aforementioned goals, we consider as input the calibration data
(RSSI values) contained in the Subset-A (Con�g01) of the mobile device-based BLE
database presented in Chapter 3. The data collection of Subset-A (Con�g01) was
performed in an o�ce scenario and measured in LOS. Its setup consists of 12 refer-
ence points, which were set on the �oor of the main corridor of the o�ce scenario
every 1m in a straight line and in LOS. On the initial point (0m), we set the devices
that act as transmitters and the device that acts as the receiver consecutively set at the
reference points located at 1m to 11m. Speci�cally, we use the data gathered with
the receiver Device 02; Devices 01, 03, 04, and 05 act as transmitters. The setup and
the o�ce scenario are shown in Figure 3.3. Additional details about the Subset-A
and o�ce scenario are described in Section 3.2.3 and Section 3.2.2, respectively.

Figure 4.1 presents four box-plots, which show the distribution of the RSSI values
of the Subset-A (Con�g01) collected with the Device 02 (receiver) on each reference
point, every 1m from 1m to 11m, and transmitted with the Device 01, 03, 04
and 05. In detail, the x-axis and y-axis in each box plot represent the reference
points distance where Device 02 (receiver) measured the RSSI and the RSSI values,
respectively. In addition, at each reference point, the box plots display the data
distribution using the minimum, �rst quartile, median, third quartile, and the data
outliers.

As it can be noticed in Figure 4.1, the RSSI measurements are very noisy even
in LOS conditions. So, a �ltering process, data smoothing, and reduction of the
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(b) Device 03 as transmitter
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(c) Device 04 as transmitter
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(d) Device 05 as transmitter

Figure 4.1 Distribution of the RSSI values of the Subset-A (Config01) collected with the Device 02
(receiver) on each reference point. Source [21].

e�ects of the outliers are needed before training the model. The �lters used are
the moving average, Robust Locally Weighted Scatterplot Smoothing (RLOWESS),
and moving median, which takes into account 30 samples. Also, a sample averaging
for each reference point was conducted. After that, to optimize the LDPL model
parameters ('((� (30) and [), we applied a curve �tting to the data based on the
non-linear least squares method.

The raw RSSI values �ltered (red crosses) by a moving average �lter are shown
in Figure 4.2. Also, we present the �tting curve (solid red line) for each transmitter
device.

Table 4.1 presents the �tting curve parameters ('((� (30) and [) and the distance
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error (di�erence between the estimated and Ground-Truth (GT) distance) using the
moving average, RLOWESS, and moving median of the Devices 01, 03, 04, 05
and 06. The estimated distance error was expressed in terms of Root Mean Square
Error (RMSE), Mean Square Error (MSE), and standard error. Moreover, for each
�lter and transmitter, the Sum Square Error (SSE), Rsquare, and RMSE values are
provided to evaluate how well the curve �ts the data.
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(a) Results of the Device 01 as transmitter
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(b) Results of the Device 03 as transmitter
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(c) Results of the Device 04 as transmitter
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(d) Results of the Device 05 as transmitter

Figure 4.2 Curve fitting based on LDPL model and distance estimation using the RSSI values,
smoothed with a moving average filter, of the Subset-A (Config01) collected with the De-
vice 02 (receiver). Source [21].

4.1.1.2 Discussion

Regarding the signal propagation in LOS, we can observe, considering the median
values of the box plots, that the curves do not present a strong logarithmic attenua-

124



Table 4.1 Goodness of curve fit and distance errors. Source [21].

Goodness of curve �t (RSSI) Distance
ID Filter RSSI(d0) ( SSE Rsquare RMSE MSE RMSE Std. Error

(-) (dBm) (dBm2) (-) (dBm) (m2) (m) (-)

01
Mov. Average -77.39 0.60 71.04 0.35 2.8 106.76 10.33 10.15
RLOWESS -77.48 0.59 67.32 0.35 2.73 103.65 10.18 10.13
Mov. Median -76.75 0.64 48.14 0.47 2.31 35.62 5.96 6.11

03
Mov. Average -67.97 1.01 23.24 0.82 1.6 6.43 2.53 2.64
RLOWESS -67.49 1.05 21.68 0.84 1.55 5.7 2.38 2.49
Mov. Median -67.43 1.06 22.6 0.84 1.58 7.96 2.82 2.83

04
Mov. Average -75.36 0.61 19.9 0.66 1.48 20.41 4.51 4.6
RLOWESS -75.21 0.61 24.91 0.61 1.66 45.26 6.72 6.83
Mov. Median -75.24 0.61 22.49 0.63 1.58 29.4 5.42 5.62

05
Mov. Average -64.33 1.03 19.84 0.84 1.48 11.3 3.36 3.5
RLOWESS -64.45 1.01 22.1 0.83 1.56 17.77 4.21 4.4
Mov. Median -64.11 1.03 26.22 0.8 1.7 35.16 5.93 6.08

06
Mov. Average -65.85 1.37 33.1 0.85 1.91 4.5 2.12 2.2
RLOWESS -65.86 1.37 34.99 0.84 1.97 5.16 2.27 2.36
Mov. Median -66 1.34 34.96 0.84 1.97 5.46 2.33 2.44

tion as the receiver moves away from the transmitter. For example, in Figure 4.1(a),
for Device 01 (transmitter), the mean RSSI values after 5 meters started to increase
rather than decrease and in Figure 4.1(c), for Device 04 (transmitter), the mean
RSSI values after 2 meters randomly decrease and increase. Also, from the curve
�tting plots in Figure 4.2 and values in Table 4.1, we can notice that the propaga-
tion of the BLE signal behaves di�erently depending on the transmitter device used,
since the receiver and the transmission medium are identical for each of the mobile
devices used as transmitters. For example, for each device transmitter (Device 01,
03, 04, 05 and 06), the RSSI at a reference distance 30 ('((� (30)) is on average
�77.2 dBm,�67.63 dBm, �75.27 dBm, �64.29 dBm, and �65.9 dBm respectively
and the LDPL attenuation factor ([) is not unique even though the test was per-
formed under similar conditions. The [ values are in a range from 0.59 to 1.37.

Regarding the proper setting of the model parameters ('((� (30) and [) to ac-
curately estimate the distance between transmitter and receiver, based on the results
presented in Table 4.1 and Figure 4.2, we observe that the type of �lter to smoothen
and remove the outliers considerably a�ects the selection of model parameters, and in
consequence, the accuracy of the estimated distance. For the three evaluated �lters,
the moving average �lter, provides for the majority of devices a better smoothing
of RSSI and a lower distance error in comparison with the other �lters. Although
the RMSE of the estimated distance is large, due to environmental conditions, we
observe, based on Table 4.1, that some devices (i.e., Device 03, 05, and 06) present
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a RMSE considerably lower compared to the other devices (i.e., Devices 01 and 04).
Additionally, we observe, based on Figure 4.2 (b), (c) and (d), that the distance error
in the �rst 4 meters is small (⇡ 1 meter). To sum up, the BLE signals propagation
indoors and in LOS conditions mainly varies depending on the transmitter device
and indoor environment. So, it is impossible to provide a unique set LDPL model
parameters that work for various devices and scenarios.

4.1.2 Fuzzy logic

In indoor environments, the estimation of the relative distance between the trans-
mitter and receiver devices, based on LDPL models, is often inaccurate even under
LOS conditions. Moreover, the distance estimation accuracy is highly dependent on
the model used and the correct tuning of the model’s parameters. Those parameters
vary depending on the environment and its setting, and tuning them to provide an
accurate estimation is a time-consuming task. Contrarly, after the parameters are
properly set, LDPL models have demonstrated moderate accuracy in scenarios with
a moderate source of degradation of radio wave propagation. Therefore, con�guring
a generalized set of parameters that can provide accurate distance estimation in a wide
variety of indoor environments is an open challenge. In this section, we propose a
fuzzy-logic based system, which relies on a RSSI-fuzzy classi�cation of BLE signals
transmitted by mobile devices to estimate distance.

The main contributions presented in this section are:

• We propose a novel and straightforward system to estimate the relative distance
between two mobile devices, which rely on a RSSI-fuzzy classi�er and BLE
RSSI measured values.

• Our system improves the robustness and accuracy of the distance estimating
process against signal variations.

• We demonstrate the system’s applicability and practicality for distance estima-
tion in indoor and outdoor scenarios.

4.1.2.1 RSSI-fuzzy classification as distance estimator

To reduce the distance estimation error due to the variability of environmental condi-
tions, we use a system based on fuzzy logic Single Input Single Output (SISO). Fuzzy
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logic systems are versatile and intuitive systems, which are easy to implement and
used to solve complex problems thanks to their capability to simulate human reason-
ing and decision-making without explicitly requiring mathematical modeling [184,
185, 186].

Figure 4.3 illustrates the SISO-Fuzzy logic system used. The system consists of
the following components: the crisp input (RSSI values); the fuzzy�er, which con-
verts the crisp input into fuzzy set values; the fuzzy inference engine, which processes
the fuzzy values based on the fuzzy rules of the fuzzy rule base and provided a pro-
cessed fuzzy set; the fuzzy rule base; the defuzzy�er, which converts the processed
fuzzy set into crisp output; and the crisp output. A detailed description of each of
these elements and their use to adjust the distance estimation in BLE–RSSI-based
positioning under varying conditions is presented in the following subsections.

Fuzzy rule base

Fuzzy inference engine

DefuzzyfierFuzzyfier
Crisp input Crisp output

Fuzzy set 
input 

Fuzzy set 
output 

Figure 4.3 SISO fuzzy logic system.

4.1.2.2 Crisp input and output variables and membership functions

The crisp input and crisp output correspond to BLE-RSSI (dBm) values gathered
by the mobile device (receiver) and the relative distance between mobile devices
(transmitter and receiver) estimated by the system.

We have selected a location indoors (o�ce scenario) and a location outdoors
(parking lot), where we placed the transmitter. In both scenarios, we set 11 ref-
erence points, where the transmitter-receiver distance ranges 1m to 11m. In these
points, the RSSI values are measured. The objective is to set eleven input membership
functions, which will be explained further on. The membership functions de�ne the
degree of membership of the crisp input/output values to equivalent fuzzy sets. We
de�ne the crisp outputs following the same considerations. Then, we labeled each of
the eleven membership functions for input (� ) and output ($) as ‘�01” to “�11” and
“$01” to “$11”, respectively.

Regarding the membership functions, we de�ned their parameters and type based
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on the data experimentally gathered in indoors and outdoors and its statistical analy-
sis. The type selected for the input and output membership functions are respectively
trapezoidal (for labels “01” and “11”) and triangular (for labels “02”–“10”). The
mathematical representation of the membership function is `

�
: - ! [0, 1], where

� is the fuzzy set and - is the set of elements to be mapped. Eq. (4.2), which con-
siders three parameters (0 < 1 < 2), mathematically expresses the triangular mem-
bership function and Eq. (4.3), which considers four parameters (0 < 1 < 2 < 3),
the trapezoidal membership function.

`
�,B 6 :

(F) =

8>>>>>>>><
>>>>>>>>:

F�0
1�0 , if 0  F < 1

1, if F = 1

2�F
2�1 , if 1 < F  2

0, =B⌘4@E7 A4

(4.2)

`
�,B@ 0 >4H

(F) =

8>>>>>>>><
>>>>>>>>:

F�0
1�0 , if 0  F < 1

1, if 1  F  2

3�F
3�2 , if 2 < F  3

0, =B⌘4@E7 A4

(4.3)

Speci�cally, the parameters 0, 1 and 2 for Eq. (4.2) de�ne the positions, in RSSI
(dBm), of the three triangle’s corners . Likewise, the parameters 0, 1, 2, and 3 for
Eq. (4.3) de�ne the position of the four trapezoid’s corners.

The input and output membership function values for indoor and outdoor sce-
narios are presented in Table 4.2 as vectors. The empirical procedure detailed in
Section 4.1.2.8 was used to determine these values.

4.1.2.3 Step 1: Fuzzification

In accordance with the scheme shown in Figure 4.3, the �rst step is the fuzzi�cation
process. In the fuzzi�cation process the crisp input, F (the RSSI in dBm), is mapped
inmembership degrees ([0,1]) for every fuzzy set (labels “01”–“11”). To this end, the
membership functions (`

�,B 6 :
(F) and `

�,B@ 0 >4H
(F)) expressed in eq.(4.2) and eq.(4.3)

together with their parameters presented in Table 4.2 are used. As a result, we get
the input fuzzy set M(F), which contains a vector of membership values (M(F) =
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Table 4.2 Membership function values. Source [4].

Input Membership Output Membership
Class Indoor Outdoor Indoor/Outdoor

01 [-57,-52,-42,-41] [-60,-54,-42,-41] [-0.7,0,1.5,2.4]
02 [-58,-55,-52] [-62,-60,-59] [1.5, 2, 2.5]
03 [-57,-56,-55] [-65,-63,-61] [2,3,4]
04 [-64,-57,-56] [-68,-65.5,-63] [3,4,5]
05 [-60,-58,-56] [-71,-69.5 -67] [4,5,6]
06 [-65,-60,-58] [-71,-70,-69] [5,6,7]
07 [-69,-65,-60] [-72.5,-72,-70.5] [6,7,8]
08 [-68,-66,-65] [-74,-73,-72]] [7,8,9]
09 [-69,-68,-67] [-75,-74,-73] [8,9,10]
10 [-76,-69,-68] [-74.5,-74,-73.5] [9,10,11]
11 [-80.8,-80.2,-71,-70] [-80.8,-80.2,-75,-74.5] [11,12,13,20]

[`�01 (F), ..., `�11 (F)]).

4.1.2.4 Step 2: Fuzzy rules application

The Mamdani method [187] performs fuzzy logic reasoning in our system. It evalu-
ates the rules in the fuzzy rule base as well as the fuzzy set input, which is obtained
from a crisp input using the fuzzi�cation process described in Section 4.1.2.3, to
come up with the fuzzy set output. During the evaluation, the fuzzy implication op-
erator (;7<) is used, and each rule is applied to each element of the input fuzzy set to
get the respective fuzzy set outputs, each of which represents the output membership
degrees (as determined by a speci�c rule) based on the input fuzzy set.

For each of the eleven reference distances, the following fuzzy rule is speci�ed
(i.e., eleven rules in total): the input membership degree to a reference distance is used
to calculate the area falling below that degree in the corresponding output membership
function. Figure 4.4 presents a graphic rule example using reference distance “01”.

Signal Strengh (dBm)
-40-80 -45-55 -50-60-65-70-750

1

Distance (m)
0 10 1286420

1
Crisp Input: -57 dBmInput Membership Function  Output Membership Function 

Figure 4.4 Graphical representation of the fuzzy rule for the class “01”. Source [4].

The outputs from each rule are then combined into a single, visually displayed

129



fuzzy set output using the fuzzy aggregation operator (max).

4.1.2.5 Step 3: Defuzzification

The defuzzi�cation process is the �nal step of the fuzzy logic system. After applying
the fuzzy rules and �nishing the fuzzy implication and aggregation operations, the
crisp output (�nal distance estimate) is computed by applying the center of gravity
to the resulting area.
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Figure 4.5 Example of a RSSI-Fuzzy classification approach to estimate distance in the outdoor sce-
nario. Given the eleven input/output fuzzy membership functions, it shows the workflow
from the crisp input, �73.8 dBm, to the estimated distance of 9.25m. Source [4].

4.1.2.6 Full example of the distance estimator based on the RSSI-fuzzy classification

The example presented in this section aims to exemplify the computation process car-
ried out by the proposed distance estimator based on the RSSI-fuzzy classi�cation
and to explain and describe the operation of the systems and its main components, re-
spectively. The input and output membership functions (see Section 4.1.2.2), along
with their parameters, are the unique requirements that must be established to use
the proposed RSSI-fuzzy classi�cation. Table 4.2 contains the parameter values for
both, indoor and outdoor scenarios used in this evaluation, and in Section 4.1.2.8
the empirical procedure to obtain the parameters is explained to guarantee repro-
ducibility. The versatility of our proposed system allows us to apply it to a new
environment and hardware setup, only updating the parameters of the membership
functions considering the statistical distribution (box plots) of the new RSSI values
at di�erent reference distances.

The crisp input in our case is the RSSI value of �73.8 dBm, which corresponds
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to the average of the RSSI values gathered in the reference point located at 9m. It
should be noted that RSSI are typically integer values. However, computations as
the average to reduce noise levels may produce decimal RSSI values.

The �rst step corresponds to the fuzzi�cation, which maps the crisp input value
(RSSI value) using the eleven input membership functions (see Figure 4.5 step 1)
to get the input fuzzy set M(F). In our case, only three membership functions
(`�08 (green), `�09 (blue), and `�10 (orange)) presented non-zero input membership
probabilities. `�09 (�73.8) reported the highest probability (0.84).

The second step corresponds to the fuzzy rule application. Here, we calculate
the area falling under the corresponding membership output functions based on the
intersection between the �73.8 dBm line and the non-zero membership input func-
tions �73.8 dBm (`�08 , `�09 and `�10). For example, the area of $09 corresponds
to a probability equal to or lower than 0.84, the membership degree provided by
`�09 (�73.8).

In the last step, to create a single area, we merge the overlapping areas, and then,
we compute the center of gravity to get the estimated distance. In this example is
9.25m. A graphical representation of the work�ow of the system is presented in
Figure 4.5.

4.1.2.7 Objectives and experimental setup

The experiments of this section aim to validate and evaluate the accuracy of the esti-
mated distance and robustness provided by our fuzzy logic-based system in compar-
ison with a standard LDPL model. The scenarios used to carry out the experiments
correspond to a real o�ce scenario (indoor scenario) described in Section 3.2.2 and
depicted in Figure 3.3 and a parking lot (outdoor scenario). In each scenario, two
smartphones were located face to face in LOS –one of them transmitting and the
other receiving iBeacon messages– at distance intervals of 1m from 1m to 11m. In
order to apply our proposed approach and the traditional LDPL model baseline, we
use the data collected in the indoor scenario (o�ce data1) and the outdoor scenario
(parking lot data2). The o�ce and parking lot data sets include 427 and 656 samples,
respectively. The corresponding data sets, which include both indoor and outdoor
environments, are available as supplementary materials in [188]. We divide both data

1�le: Set01_Config01_Honor_office_portrait_090.csv
2�le: Set01_Config01_Honor_parking_portrait_090.csv
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sets into two subsets (training (70%) and testing (30%)). We applied a moving av-
erage �lter in the training subset to process outlier RSSI values and remove samples
higher than 3 times the Median Absolute Deviation (MAD) method for the testing
subset.

4.1.2.8 Empirical setting of RSSI–fuzzy system

The input and output membership functions parameters (see Table 4.2) used in our
proposed RSSI–fuzzy classi�cation are speci�ed in two phases. The �rst phase uses
box-plots (see Figure 4.6(a) and Figure 4.6(b)) to provide the statistical information
at every reference distance (from 1m to 11m). The values of the input triangular
membership functions ([0,1,2]) are determined by the �rst, second (median), and
third quartiles. For the trapezoidal input membership functions, the values for [0,3]
are given by the �rst and third quartiles. The value for 2 (class “01”) and 1 (class
“11”) are given by the second quartile (median). The remaining values –1 (class
“01”) & 2 (class “11”)– are set to guarantee the trapezoids symmetry.
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Figure 4.6 Box plots of train subset (outdoor and indoor scenarios). Source [4].

We equally distribute the parameters for the output membership functions
throughout the [1, . . . , 11] range. We set the highest membership degrees at the
eleven reference distances, and the width of the functions is set to 2 (i.e., 2 � 0 = 2

and 3 � 0 = 2). In the second phase, we manually �ne-adjusted the input and out-
put membership function parameters set in the �rst phase by comparing the output
to the expected reference value and checking the input values corresponding to the
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median, �rst and second quartile. The membership function was manually moved
or even skewed to its center value in the event of a signi�cant amount of overlap
between the membership functions and/or a signi�cant error in the distance.

Finally, the output membership functions of fuzzy sets (“01” & “02”) and (“10”
& “11”) were re-tuned (changes on vertex angles/small horizontal function shift) to
avoid large errors near the distance range boundaries due to the increase/attenuation
of the RSSI in short and large distances between transmitter and receiver.

The output membership functions are the same for indoor and outdoor scenarios,
as the locations for the reference points kept the same distances between the emitter
and the receiver.

4.1.2.9 Setting of traditional LDPL model

To compare our proposed system, we used a standard LDPL model to estimate the
distance, which is described in detail in Section 4.1.1 and mathematically expressed
in the Eq. 4.1.

The setting of the parameter values '((� (30) and [ were computed based on
the non-linear least squares method considering the data of the training subsets. The
[ value for the outdoor and indoor scenarios are 2.1 and 1.2 respectively, and the
'((� (30) value is �53 dBm for both scenarios.

4.1.2.10 Results

For the two analyzed models (RSSI–fuzzy classi�cation and LDPL) in indoor and
outdoor scenarios, we have evaluated their accuracy considering the absolute error
of the distance estimated between two mobile devices. The Empirical Cumulative
Distribution Function (ECDF) plot in Figure 4.6(a) and Figure 4.6(b) present the
results for outdoor and indoor scenarios, respectively. In each plot, the red line
corresponds to the results of the RSSI–fuzzy classi�cation approach and the black
dashed line of the LDPL model.

Moreover, in Table 4.3, we present a detailed summary of the results in each of
the eleven reference points separately and the overall results for each scenario using
the RMSE values.
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Figure 4.7 Empirical Cumulative Distribution Function (ECDF) of the distance error (outdoor and in-
door scenarios). Source [4].

Table 4.3 RMSE of the fuzzy Logic and LDPL approaches in the diverse scenarios. Source [4].

Parking RMSE (m) O�ce RMSE (m)

Distance (m) RSSI–fuzzy classi�cation LDPL model RSSI–fuzzy classi�cation LDPL model

1 0.008 0.1142 2.7535 1.6045
2 0 0.1313 0.6977 0.5322
3 0.2212 0.2249 3.5779 9.9766
4 0 0.5423 2.1143 2.2062
5 1.3599 1.3906 0.6809 2.4262
6 0.8095 0.6487 1.4053 3.068
7 1.0587 1.1712 0.3861 4.3054
8 1.0003 0.2014 0.6003 3.8444
8 2.0003 0.5008 1.1887 17.9901
10 0.5008 0.3191 1.9755 14.2319
11 0 4.007 3.2986 4.4846

Average over 1-11 0.854 1.3474 2.0443 8.1543

4.1.2.11 Discussion

The box plots in Figure 4.6(a) and Figure 4.6(b) show the propagation BLE signal
through the RSSI values, measured at each reference point, in the outdoor and in-
door scenarios, respectively. Analyzing the outdoor scenario (the parking lot), we
can notice, through Figure 4.6(a), a smaller dispersion in the distribution of the data
collected at each reference point, which indicates a low �uctuation as the BLE signals
propagate. In addition, the signals follow an evident logarithmic attenuation pattern
as they propagate in the environment, as is to be expected in the outdoor environ-
ments with LOS conditions. Considering the ECDF (Figure 4.7(a)) and RMSE
values (Table 4.3), we visually observe that our proposed fuzzy-logic based system
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presents a large area of practically zero error, and in comparison with LDPL model
results, our approach performs better than the LDPL model approach, except in a
few cases.

Unlike the behavior of the signals of BLE in the outdoor scenario, the signals
of BLE in the indoor scenario (the o�ce) present a greater �uctuation, as it can be
seen in Figure 4.6(b). In addition, the BLE signals do not exhibit a clear logarithmic
attenuation behavior as they move away from the mobile device transmitter. Despite
the uncertainty of RSSI values, the empirical results shown in Figure 4.7(b) and
Table 4.3 demonstrated that our proposed Fuzzy-RSSI approach not only enhances
the LDPL model’s overall accuracy (RMSE), but it also minimizes the large values
of error present in the distance estimate. The error of the distances estimated by our
fuzzy-logic based system is on average four times lower than LDPL model.

The proposed fuzzy-logic based system minimizes the presence of signi�cant er-
rors in estimating relative distances in both scenarios (indoor and outdoor), demon-
strating the robustness of our approach. In addition, the range of the distances for
the fuzzy-logic based system is [�0.7, . . . , 20], but the LDPLmodel does not provide
limits for the estimated distances and it is hence more vulnerable to severe outliers.

4.2 Position estimation

There is a growing interest in improving the accuracy of mobile/wearable de-
vice position estimation using Wi-Fi and BLE technologies. Within the methods
implemented based on such technologies, the most common are RSSI-lateration
and �ngerprinting–9-NN due to their easy implementation, capability to use the
technologies and measurements on mobile/wearable devices, and acceptable accu-
racy [180]. Despite the advantages of RSSI-lateration and �ngerprinting–9-NN,
they present some positioning accuracy decrements due to the anchors and the set of
parameters used in the estimation of the position, and the environmental conditions.

In this section, we explain the operational principle and the sources of positioning
errors of the conventional RSSI-lateration and �ngerprinting–9-NNmethods, which
are used as the baseline in our proposed collaborative indoor positioning presented in
Chapter 5. Based on the premise that not all anchors deployed contribute positively
to improving the positioning accuracy, we propose a lateration BLE–RSSI method
based on combinatorial anchors selection. This method selects suitable anchors to

135



enhance the accuracy and reliability of the position estimation. Also, we introduce
a �ngerprinting–9-NN method based on BLE and analyze the e�ect of the number
of samples and 9 values on positioning accuracy.

4.2.1 Lateration and anchors selection

One of the most common methods for IPSs is lateration [189, 6]. Lateration uses
the GT position of anchors present in the indoor environment, at least 3 anchors
as references, and the relative distance (measured or estimated) between them and
the unknown target [6, 48]. As it was stated in the section about distance estimation
(Section 4.1), among the diverse techniques to estimate distance, the RSSI-based tech-
niques are widely used in mobile/wearable devices. In addition, the wide availabil-
ity and energy e�ciency of BLE technology embedded in mobile/wearable devices,
and its increasing deployment in indoor environments, makes lateration approaches,
based on BLE–RSSI, popular in IPSs.

The positioning accuracy for those IPSs using lateration with BLE-RSSI is mostly
determined by two factors: �rst, the adequate distribution (density and geometric
position) of chosen BLE anchors; and second, the accurate distance estimation be-
tween the unknown target and reference BLE anchors [190, 4, 191]. Consequently,
those are its two main sources of positioning inaccuracy.

Although in ideal conditions, a greater number of BLE anchors can enhance po-
sition estimation, in real scenarios, this is not always feasible, and furthermore, some
(additional) anchors may not provide an accurate distance estimation that positively
contributes to enhancing the positioning accuracy [79]. Thus, di�erent levels of
positioning accuracy of the same target can be reached depending on the group of
BLE anchors selected. So, the reliability and positioning accuracy of lateration ap-
proaches can be improved by adding a method capable of exploiting the availability
and geometric distribution of BLE anchors and e�ectively selecting them. On the
one hand, in outdoors, the anchors’ selection problem and the analysis of their geo-
metric distribution have been widely addressed [192, 193, 194]. On the other hand,
in indoors it remains as an open issue. The few existing approaches are based on
variations of Cramér Rao Lower Bound (CRLB) [79], Geometric Dilution of Pre-
cision (GDOP) [195, 194], and MSE [196], which are mainly applied to Ultra-wide
band (UWB) and Wi-Fi. However, such solutions have not yet been proposed for
BLE.
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In this section, we present a BLE–RSSI lateration method based on combina-
torial BLE anchors selection to enhance the positioning accuracy, which relies on
the geometrical analysis of BLE anchors and combinatorial positional estimation.
Moreover, we evaluate and experimentally demonstrate, in a real indoor scenario,
its usefulness in increasing positioning accuracy. The main contributions are:

• We propose a novel BLE–RSSI lateration method based on combinatorial BLE
anchor selection.

• Our method enhances the accuracy and reliability of the position estimation
thanks to a suitable BLE anchor selection, which is based on a geometrical
analysis of BLE anchors and combinatorial positional estimation.

• We demonstrate the usefulness of BLE anchor selection to increase positioning
accuracy experimentally in a real indoor environment.

4.2.1.1 Lateration BLE-RSSI based indoor positioning system

Lateration BLE-RSSI method computes the target position based on the distance
between the target and " BLE reference anchors and the GT coordinates of the
anchors [191, 197]. The computation is performed in two sequential steps. The �rst
step, which estimates the relative distance based on the relationship between BLE
RSSI and the distance between transmitter and receiver, is computed. In our speci�c
case, by the LDPL model described in Section 4.1 and expressed in the Eq. 4.1. The
second step, based on the estimated distances (BLE anchors-target), computes the
target position considering it as an optimization problem, which is solved using the
least squares method [197, 198]. Speci�cally, we consider the Levenberg-Marquardt
algorithm for nonlinear least squares. The lateration method is represented as a
minimization of the sum of squared errors between the measured distances (3;) and
hypothetical ones (6; (x

¯
)), which is denoted by Eq. (4.4) and 6; (x

¯
), the unknown

target position, by Eq. (4.5) [199].

minx
¯

"’
;=1

�
6; (x

¯
) � 3;

�2 (4.4)

6; (x
¯
) ,

q
(F � 1F;)2 �

�
G � 1G;

�2 (4.5)

; = {1, 2..." } denotes the number of BLE reference anchors; x
¯
= {F, G} denotes
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the unknown coordinates of the target; and {1F;, 1G;} the GT coordinates of BLE
reference anchors.

4.2.2 Proposed lateration based on effective combinatorial BLE anchors selection

The goal of our proposed BLE anchors selection is to enhance the reliability and
accuracy of the target position estimated by the IPS. To this aim, we estimate diverse
positions, of the same target, considering di�erent combinations of surrounding BLE
reference anchors and the geometric analysis of each of them.

For the sake of clarity, �rst, we explain the methodology of our approach, which
consists of four phases, and then its practical implementation in nine steps.

The �rst phase aims to gather all the detectable BLE anchors and summarize
their RSSI values. To do this, the nearby BLE anchors detected by the target mobile
device, within 1 minute, are categorized according to their minor and major values
(BLE anchors unique identi�ers). Consequently, each BLE anchor has a unique
set of RSSI values. Then, the RSSI outliers of each BLE anchor set are removed,
considering three scaled MAD from the median, and the remaining RSSI values of
each set are averaged. Finally, each BLE anchor set (called initial BLE anchor set)
contains a unique RSSI value for every anchor detected by the target. We apply two
considerations when building the initial BLE anchor set: �rst, to guarantee a reliable
lateration, we just include anchors with an average RSSI values � �83 dBm as a
threshold, which correspond to the range of usable signal strength in BLE (nearest
anchors) for our scenario. The value was de�ned experimentally; and second, due to
computational feasibility, we only include a maximum of 9 anchors, those with the
strongest RSSI values.

The second phase aims to combinatorially group the detected BLE anchors and
estimate the position of each group. Our analysis is based on subsets of 5 anchors
to keep a trade-o� between the number of anchors used in the lateration with the
number of combinations to be explored (126 combinations according to Eq. (4.6))
and to avoid a heavy computational load. The value of n=5 allows us to test the
maximum number of combinations possible (126), which is needed in our approach
focused on combinations to determine the best-estimated position. Larger numbers
enhance the probability of incorporating data from anchors with signi�cant Non-
line-of-sight (NLOS) components, but smaller numbers would be within the bottom
boundaries for 2d and 3d lateration. The lateration method is used to get a single
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position estimated ( >̂ = [ >̂F , >̂G]) for each combination of 5 anchors. Eq. 4.6 is used
to compute the number of combinations.

✓
<

 

◆
=

<!

 ! (< �  )! , 5 =@ 0    < (4.6)

Where < denotes the number of anchors in the reduced subsets and  is the total
number in the pool of available BLE anchors. As mentioned above,  = 9 and
< = 5. The third phase aims to determine the accuracy deviation of the estimated
target position based on a triangulation approach. To this aim, for each of the subsets
with 5 anchors, the following steps are performed:

• Triangulation: we consider two types of triangles: the �rst, the area–estimated
triangle (green triangles in Figure 4.8), with two of its vertices corresponding
to two reference points and the third one to the estimated target position ( >̂ =

[ >̂F , >̂G]) computed in phase 2; and the second, the area–target triangle (blue
triangles in Figure 4.8, with two of its vertices corresponding to two reference
points and the third one to the (virtual) target position (> = [ >F , >G]). The
(virtual) target position is estimated by a lateration method that uses the  

anchors used to create the combinations. In our case,  = 9. Figure 4.8
exemplify both types of triangles (4 each) for a concrete combination of 5
BLE reference points (11, 12, 13, 14, 15).

• Compute pair-wise accuracy deviation: after the triangles have been de�ned, a
pair-wise di�erence, based on vertices of the same BLE reference point, is con-
ducted between the areas of the area-target (blue - �) and the area–estimated
(green - �̂) triangles to get a single accuracy deviation of the estimated position.
The triangle areas are calculated by Eq. (4.7) and Eq. (4.8) and the di�erence
between triangles by Eq. (4.9). It should be noted that the di�erence tends to
zero when the estimated position gets closer to the actual position ( >̂ ⇡ >).

• Compute overall accuracy deviation: �nally, we sum every pair-wise individual
degree of error obtained from the previous step to get an overall accuracy
deviation.
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where �2
34D

is the accuracy deviation of the (4B under evaluation; " is the number
of BLE reference anchors contained in the (4B under evaluation; �; the area-target
triangle of the; pair-wise triangle; 0; and 0;+1 the �rst and second edge of the �;

triangle; �̂; the area-estimated triangle of the of the ; pair-wise triangle; 0̂; and
0̂;+1 the �rst and second edge of the �̂; triangle, and 2; the common edge of the
triangles �; and �̂;.

BLE anchors
Target position
Estimated target
position

Area - target position 

Area - estimated target
position 

b3

p

p̂ 

b1

c1

b2

a1

a 2

â1

â 2 b4

b5

Figure 4.8 Example of triangle areas used in the pair-wise accuracy deviation calculation to evaluate
the accuracy of estimated target position ( >̂), estimated considering the BLE reference
anchors set ({11, 12, 13, 14, 15}). Source [6].

The �nal phase aims to select the combination of 5 BLE reference anchors that
provide the best accuracy. To this end, the results from phase 3, accuracy devia-
tion, are sorted in ascending order and the combination with the lowest accuracy
deviation is selected. The selected combination is considered to have the best indi-
vidual accuracy, and our method provides its estimated position as the �nal estimated
position.

The practical implementation of our proposed methodological approach is pre-
sented in Algorithm 1, and its work�ow is summarized as follows:

• 1st step: Gather the RSSI from from surrounding BLE anchors during 60 s

excluding those not belonging to the reference anchor set Algorithm 1);
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• 2nd step: Categorize the RSSI values by anchor removing outlier values. An
outlier is considered as a value falling out of 3 times the scaled MAD from the
median (lines 1–2 in Algorithm 1);

• 3rd step: Average the RSSI values of each reference anchor to obtain a single
averaged RSSI value per reference anchor (line 3 in Algorithm 1);

• 4rd step: Select the reference BLE anchors with averaged RSSI equal or greater
than �83 dBm (lines 4–8 in Algorithm 1), and in case of more than 9 anchors,
just consider the 9 strongest ones (lines 9-11 in Algorithm 1);

• 5th step: Estimate the relative distances of selected reference BLE anchors to
the target position, using the LDPL model (expressed by eq.(4.1)), and their
RSSI values (line 12 in Algorithm 1). We considered the path-loss attenuation
factor ([) of 2.1 and the '((� (30) equal to �63.78 dBm (input values in
Algorithm 1), which were de�ned experimentally for our scenario;

• 6th step: For the set of the 9 selected reference anchors selected in the previ-
ous steps, create

�5
9
�
= 126 combinations (without repetitions) of 5 reference

anchors (line 13 in Algorithm 1);

• 7th step: Estimate the target position for each combination created, using the
Levenberg-Marquardt Least Squares (L-MLS) lateration method to �t the eu-
clidean distance model. We get one estimated target position per combination
(line 15 in Algorithm 1). The input data to �t the model are the distances
estimated in the �fth step, and the weights and the GT of the BLE anchors
corresponding to each subset. The weight value for every BLE anchor is com-
puted as the inverse of its distance square with respect to the target;

• 8th step: We evaluate the appropriateness of the estimated target position of
each of the 126 combinations using the di�erence of triangles approach de�ned
by Eq. (4.9) and supported by the triangle areas provided in Eq. (4.7) and
Eq. (4.8) (line 16 in Algorithm 1), and

• 9th step: The combination reporting the lowest di�erence of the triangle ap-
proach is selected and its estimated position is set as the �nal estimated position
(line 18 in Algorithm 1).
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Algorithm 1 Estimation of Target Position
Input: Deployed anchors information
Input: RSSI values
Input: LDPL: [ = 2.1 and '((0B1; = �63.7816dBm
Input: B⌘@4A⌘=:3 = �83dBm
Output: estimated position
1: Group the RSSI values by anchor
2: Remove RSSI outliers of each group
3: Average RSSI values of each group: '((� (7)
4: for 7  1 to number of '((� (7) do
5: if ('((� (7) � B⌘@4A⌘=:3) then
6: Include 7-th anchor to reference anchors set (@4 5

⌫!⇢ A4B
)

7: end if
8: end for
9: if (length(@4 5

⌫!⇢ A4B
) � 9) then

10: Sort @4 5
⌫!⇢ A4B

according to the corresponding RSSI values in descending order and remove those anchors
above the 9th position (e.g., 10th, 11th, . . .)

11: end if
12: Estimate the relative distance between anchors of @4 5

⌫!⇢ A4B
and the target position using eq.(5.1), with values

[ and '((0B1;
13: Create

�5
9
�
= 126 combinations without repetition. Where 9 represents the anchors in @4 5

⌫!⇢ A4B
and 5 is the

number of reference anchors per combination
14: for 8  1 to 126 do
15: Estimate the target position with the combination (8 ) using the Levenberg-Marquardt Least Squares (L-

MLS) lateration method
16: Evaluate the target position estimated considering the anchors used in combination (8 ) and using the dif-

ference of triangle approach de�ned by Eq. (4.9).
17: end for
18: Select the estimated position considering the combination with the lowest di�erence of triangle approach value.

4.2.2.1 Experimental evaluation

The empirical experiments aim to demonstrate the usefulness of our proposed BLE
anchor selection method to reduce the positioning error and to validate the position-
ing accuracy of our method with respect to the traditional lateration baseline. To
these aims, we estimate the position of each reference point (target point) with both
approaches, our proposed method and a traditional nearest node lateration strategy,
which is widely used in IPSs.

The experimental scenario corresponds to the o�ce scenario introduced in Sec-
tion 3.2.2 and shown in Figure 3.3(b). The scenario contains 20 BLE anchors de-
ployed in the o�ce (red circles depicted in Figure 3.12(b)) and 13 target points (blue
circles depicted in Figure 3.12(b)). Table 3.8 presents their GT coordinates.

We conduct the BLE RSSI data collection for 10 minutes in each reference point
using a mobile device (Samsung A5). However, in the traditional and our pro-
posed method, we used 10 non-overlapping intervals of 1 minute at each test point.
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The relative distance estimation, using lateration, is computed based on the LDPL
model. For our speci�c scenario, we empirically de�ned its parameters as 2.1 and
�63.7816 dBm for the path-loss attenuation factor and '((� at 1 m, respectively.
Additional details are provided in Section 3.5.3.1.

4.2.2.2 Results

The principal positioning results for our proposed method (Prop.), the traditional
nearest node lateration method (Trad.), and an ensemble approach (Trad. + Prop.),
which combines the estimated positions from both methods, are presented in Table
4.4. Additionally, the percentage of the error di�erences between the traditional
(Trad.) with respect to our methods and the ensemble approach is presented.

Table 4.4 Main results metrics provided by the traditional lateration, our proposed approach, and an
ensemble model. Source [6].

Trad. Prop. Trad. + Prop.

Eval. metric Error (m) Error (m) Di�. Error (m) Di�.

RMSE 3.07 2.74 #10.75% 2.68 #12.70%
Average 2.71 2.34 #13.65% 2.33 #14.02%
Median 2.71 2.57 # 5.16% 2.46 # 9.23%

75th percentile 3.46 3.18 # 8.09% 3.01 #13.01%
90th percentile 4.46 3.74 #16.14% 3.54 #20.63%

We present in Figure 4.9(a) the ECDF positioning error plots of our proposed
method (blue dotted line), traditional method (black dashed line), and the ensemble
approach (red line). Moreover, we present a general view of the point-by-point
positioning errors of our proposed method and the traditional one in Figure 4.9(b).

4.2.2.3 Discussion

According to the results reported in Table 4.4, our proposed method performs better
than the traditional lateration, with between 5% (median) and 16% (90 percentile).
However, analyzing the errors one by one using the ECDF (see Figure 4.9(a)), we
observe that in a few cases our method provides worse results than the traditional
lateration.

Figure 4.9(b) provides an overview of the individual positioning errors of both
the proposed and traditional methods. As it can be deduced, the proposed method
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Figure 4.9 Result of the traditional lateration, our proposed method, and the ensemble approach.
Source [6].

provides better results than the traditional method in the majority of the cases (points
above the red diagonal) – being much better in some of them – whereas the tradi-
tional method is only better than the proposed method in a few cases (points under
the red diagonal).

As a way to minimize this e�ect, we decided to combine the estimated positions
provided by the traditional lateration and our proposed method with a simple point
average. As a result, the ensemble approach (combining the traditional and proposed
methods) provided even better results compared to the proposed method (see Table
4.4) and is the best overall approach, generally beating any of the individual methods.

4.2.3 Fingerprinting

Fingerprinting-based positioning systems are widely used, mainly because they can
exploit wireless signals previously designed for other purposes (opportunistic sig-
nals) and, under favorable conditions, provide positioning accuracies around 2.5m.
A scheme that exempli�es the operational principle of systems based on �ngerprint-
ing is illustrated in Fig. 4.10. The scheme describes an indoor environment, which
contains;Access Points (APs) ([�>1, . . . , �>;]) and < reference points marked on
the �oor ([%1, . . . , %<]) = [(-1,.1), . . . (-<,.<)]) ). The aim of the �ngerprinting
positioning approach is to estimate the unknown position of device D1 ((?F , ?G)⇡1).
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The �ngerprinting approach consists of two phases, a preliminary phase (training
phase) and an operational phase.

In the preliminary phase (indicated in blue in Fig. 4.10), a data collection cam-
paign is performed to save the ; RSSI values of the APs in each < reference point.
For example, for reference point %1, corresponding to [-1,.1] (purple pin on the
upper left corner in Fig. 4.10), we save the row ['((�1,1 . . . '((�1,;]. In case an
AP is not heard, a default bogus value –for instance, a very low RSSI value such as
�150 dBm– is stored instead. This step may be performed one or multiple times
on the reference point, resulting in one or multiple �ngerprints per reference point.
A similar procedure is performed for each reference point to create a �ngerprinting
radio map, which contains a matrix with the coordinates of each reference point and
its corresponding RSSI values.

In the operational phase (indicated in green in Fig. 4.10), the device D1 collects
the RSSI values (i.e., ['((�1 . . . '((�;]) of the APs. Similarly to the training
phase, In case an AP is not heard, a default bogus value is used instead. Then a
matching algorithm (e.g., 9-NN) compares the RSSI row of D1 with those stored in
the radio map to estimate the position of device D1 ((%̂ � %

F
, %̂

� %

G
)(⇡1) ). A matching

algorithm based on 9-NN will be explained further on.
It should be noted that the number and order of the elements of the rows (database

and operational phase) corresponding to the; RSSI values of APs must be preserved
to perform the comparison between them.

D1AP1
Operational Phase

AP2

AP3 AP4APm

RSSI2

(?x,?y)D1 [RSSI1,...,RSSIm]

Data collection

Training Phase

RSSI1

RSSI3
RSSIm RSSI4

AP1 AP2

AP4

Pn

(Xn,Yn)

P1

(X1,Y1)

AP3

RSSI1,m

RSSI1,2

RSSI1,4

RSSI1,1

APm

RSSI1,3 (X1,Y1)  [RSSI1,1,...,RSSI1,m] 
     ...                ...     
(Xn,Yn)  [RSSIn,1,...,RSSIn,m]

Fingerprint  
Radio map

(X1,Y1) |  [RSSI1,1,...,RSSI1,m] 

Positioning
algorithm 

(KNN)

Figure 4.10 Fingerprinting-based positioning system scheme.
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Regarding the matching algorithm, 9-NN is the most used due to its easy imple-
mentation and its few parameters (i.e., 9 value and a distance metric) [200].

Fig. 4.11 graphically explains, in 4 steps, the 9-NN algorithm. In the �rst
step, the algorithm computes the distance, using the euclidean distance, between
the row of RSSI values collected in the unknown position of the device D1 (i.e.,
['((�1 . . . '((�;]) and each of the rows of the �ngerprinting radio map. As a
result, a vector is obtained with the distances of each row of the �ngerprinting ra-
dio map that corresponds to the vector of coordinates where they were collected.
Second, the elements of the distance vector are sorted in ascending order, which
also applies to their respectively coordinates vectors; in the third step, the elements
of the vector are selected accordance with the 9 value; and in the last step, the
centroid is applied to the corresponding coordinates to get the estimated position
((%̂ � %

F
, %̂

� %

G
)(⇡1) ).

RSSI collected by D1

* Where:
Ed2 > ... > Ed1 > Ed3 > Edn 

Ed1

Edn

Ed2
Ed3

Sort distance values in  
ascending order 

 

Edn

Ed2

Ed3
Ed1 (X1,Y1)

(X3,Y3)

(Xn,Yn)
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Figure 4.11 9-NN matching algorithm scheme.

4.2.3.1 Experiments and results

The scenario used for the training and operational phase of the �ngerprinting–9-NN
method based on BLE technology is the o�ce scenario described in Section 3.5.3.1
and sketched in Figure 3.12(a). The scenario contains 19 BLE anchors deployed in
the o�ce (red circles depicted in Figure 3.12(a)) and 74 reference points (blue circles
depicted in Figure 3.12(a)) used to create the radio map. The radio map contains
962 samples, 13 per reference point. The sample values correspond to the RSSI
values from the 19 BLE anchors deployed in the environment. The operational
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phase estimated the position of the devices in the seven con�gurations depicted in
Figure 3.4 and Figure 3.5.

We performed two experiments. Experiment one estimates the positioning of
the devices based on the �ngerprinting–9-NN method and considers two aspects:
di�erent odd values of 9 (i.e., 1, 3,...,27) and subsets of the 19 BLE deployed anchors.
Speci�cally, we create 16 subsets that combine 3,...,19 BLE anchors, respectively.
Each subset includes ten random combinations of each (i.e., 10 subsets of 3, 10
subsets of 4, etc.). Due to the variation in the number of BLE anchors considered,
the dimension of the radio map also varies. In experiment two, the value of 9 (9 = 5)
is �xed, and instead of including only ten random combinations, we include all the
possible combinations in each subset. The combinations are performed considering
all the 19 available anchors deployed. The number of combinations for each BLE
anchor subset is shown in Figure 4.13(a). The 9 value was selected based on the
positioning accuracy results of experiment one and to reduce the computational load.

Figure 4.12 presents the results of the experiment one. In Figure 4.12(a) the
x-axis, y-axis, and z-axis indicate the number of BLE anchors selected from the 19
BLE anchors in each subset, the value of 9 used in the 9-NN algorithm, and the po-
sitioning error, respectively. Similarly, in Figure 4.12(b), except that the positioning
error is represented with a bar color.
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(b) Scatter plot

Figure 4.12 Positioning error of fingerprinting using different BLE anchors and  values.

Figure 4.13(b) presents the result of experiment two. The x-axis indicates the
number of BLE anchors selected from the 19 BLE anchors in each subset, and the
y-axis indicates the positioning error.
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Figure 4.13 Number of combinations of BLE anchors and positioning error of fingerprinting–9-NN
using different BLE anchors and 9 = 5.

4.2.3.2 Discussion

Fingerprinting approaches consider three important elements to estimate the posi-
tion. One is the radio map, which collects the RSSI information in diverse reference
points from the surrounding APs or anchors. The second is the matching algorithm,
in our case, the 9-NN algorithm, whose performance depends on the value of 9, and
the third is the data gathered in the operational phase. Our experiments explored
the e�ect of the number of BLE anchors used to build the radio map and the values
of 9 on positioning accuracy.

As it can be noticed in Figure 4.12, the positioning error is di�erent in each
combination of BLE anchor and 9 value used. In detail, the number of BLE an-
chors impacts the positioning accuracy more than the values of 9 selected (see Fig-
ure 4.12(b)). Similarly to the results plotted in Figure 4.12 regarding the number of
BLE anchors, in Figure 4.13(b), we can observe the reduction of positioning error
as the number of BLE anchors increases. Speci�cally, the mean positioning error
with 19 BLE anchors is 3 meters, and with all possible combinations of 3 anchors,
it is 4.4 meters.

To sum up, we observe that a low number of BLE anchors (i.e., below ten BLE
anchors) decrements the positioning accuracy considerably in �ngerprinting–9-NN.
Moreover, for positioning accuracy, an increased value of 9 is less important than
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the increase of the number of BLE anchors. Although there is no method to choose
the most suitable value of 9, based on our results the lowest values of 9 (i.e., 5 to 11)
when there are at least 5 anchors present a good result.

4.3 Chapter summary and discussion

In this chapter, we described and experimentally evaluated the traditional methods
to estimate distance (i.e., based on LDPL model and fuzzy logic) and position (i.e.,
RSSI-lateration and �ngerprinting–9-NN), which allowed us to identify their limi-
tations and challenges.

The importance of studying the previous approaches is for their use in developing
the algorithms used in our CIPSs and in the traditional IPS presented in Chapter 5.
Additionally, we proposed an innovative lateration BLE-RSSI method to enhance the
accuracy and reliability of position estimation and a fuzzy-logic-based system that
improves distance estimation accuracy. The lateration BLE-RSSI method is based
on an e�ective and combinatorial BLE anchors selection and the fuzzy-logic based
system on a fuzzy classi�er which replaces the traditional LDPL models used to
estimate distance.

While setting the LDPL model parameters and evaluating the BLE signals (trans-
mitted from various mobile devices), we identi�ed the following aspects. First, the
behavior of BLE signal propagation indoors and under LOS does not follow the
expected logarithmic attenuation. Instead, it varies depending on the transmitter de-
vice and indoor environment. We consider that this behavior is mainly due to the
diverse power transmission of each device and signal �uctuations generated by the
environment’s geometry. So, it is impossible to provide a unique set of LDPL model
parameters that work for various devices and scenarios. Nevertheless, an average
of the parameter values can give a moderate distance accuracy if the conditions are
similar in both devices and the environment. Second, the pre-processed (�ltering
and smoothing) of BLE signals a�ects the selection of model parameters ('((� (30)
and [) and consequently, the accuracy of the estimated distance. Among the �lters
tested, the �lter based on the moving average provides a lower distance error in most
cases.

We found the following �ndings based on our fuzzy-logic based system’s per-
formance analysis and its comparison with the LDPL model approach. First, in-
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doors, our proposed scheme outperforms the LDPL model distance accuracy. This
is because the designed triangular membership functions can encompass the data
dispersion caused by the environmental characteristics. Also, the defuzzi�er mod-
ule merges the fuzzy set output through the center of gravity algorithm. Second,
our proposed system behaves better than the LDPL-based outdoors. Although our
scheme presents similar performance indoors and outdoors, the di�erence is that
the LDPL model approach performs better outdoors than indoors. It is due to less
BLE signal propagation �uctuating (e.g., no propagation obstructions) and follow-
ing a logarithmic attenuation pattern. So, the LDPL model can model the signal
propagation better outdoors than indoors. However, a limitation of our proposed
approach is that it cannot o�er robustness against power transmission variation due
to how we set the membership functions. We de�ne them based on the �rst, sec-
ond, and third quartile values of the signals measured at each reference point. So, if
the power transmission of each device is di�erent from the one used in training, the
membership functions are shifted and provide erroneous estimations.

Regarding the lateration method based on e�ective selection and combinatorial
BLE anchors selection, the analysis of the results demonstrated that our method,
in comparison with the traditional lateration method, reduces the positioning error
by between 5% (median) and 16% (90 percentile). Also, the use of an ensemble ap-
proach that averages the traditional and our proposed method outperforms both. Al-
though our method does not use sine and cosine computations to select the adequate
anchors as in GDOP, one of its limitations is the computational load to evaluate all
possible combinations of deployed anchors. Therefore, to guarantee computational
feasibility, we limited the maximum total number of available BLE anchors to 9
( = 9 in Eq. 4.6). With respect to �ngerprinting–9-NN evaluation, the analysis of
the e�ect of the numbers of BLE anchors used to build the radio map, and the values
of 9 on positioning accuracy demonstrated the following: �rst, a low number of BLE
anchors (below ten BLE anchors) decrements the positioning accuracy considerably
in �ngerprinting. Second, for positioning accuracy, an increased value of 9 is less im-
portant than the increase of the number of BLE anchors. So, the design of methods
that help to improve the positioning accuracy of RSSI-lateration and �ngerprinting–
9-NN methods when there are few BLE anchors available in the environment is an
open issue. In the next chapter, we propose collaborative approaches that enhance
the positioning accuracy of RSSI-lateration and �ngerprinting–9-NN methods.
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5 COLLABORATIVE INDOOR POSITIONING
SYSTEMS

Collaborative Indoor Positioning Systems (CIPSs) focused on human positioning,
which aim to improve the performance of traditional Indoor Positioning Systems
(IPSs) through collaboration among neighboring devices, have been investigated
since 2006, and have had a growing interest within the scienti�c community ever
since [3]. During this time, the increasing availability of mobile/wearable devices
with diverse built-in technologies has sped up the development of indoor position-
ing applications based on them [22]. Within the enabling technologies, Bluetooth
Low Energy (BLE) and IEEE 802.11 Wireless LAN (Wi-Fi), together with latera-
tion and �ngerprinting-based methods, have been widely investigated both as non-
collaborative and collaborative indoor positioning solutions [3].

Lateration and �ngerprinting-based methods present good performance for po-
sitioning devices in simulations and controlled environments. However, in real en-
vironmental conditions, their performance dramatically decreases. The results pre-
sented in Chapter 4 showed that the position accuracy of these methods depends on
the number and distribution of the available anchors. Also, Received Signal Strength
Indicator (RSSI)–lateration methods depend on the proper modeling of the signal
propagation (e.g., Logarithmic Distance Path Loss (LDPL)). Although we improved
the positioning accuracy of the lateration methods by proposing an e�ective com-
binatorial anchor selection method and the LDPL through a model based on fuzzy
logic, these solutions present limitations to work with heterogeneous devices and
diverse scenarios. In addition, it cannot model diverse Non-line-of-sight (NLOS)
conditions and provide robustness against conditions not identically to those present
in previously trained models re�ecting the captured environment.

Therefore, in this chapter, we propose a versatile and straightforward CIPS base-
line scheme designed for developing CIPSs capable of improving the performance
(i.e., position accuracy) of traditional IPSs, at least in speci�c environmental situ-
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ations. In detail, we develop and experimentally evaluate two variants of a mobile
device-based CIPS based on Multilayer Perceptron (MLP) Arti�cial Neural Net-
works (ANNs) considering di�erent technologies (i.e., Wi-Fi and BLE), methods
(i.e., lateration and �ngerprinting-based), NLOS conditions, and two real-world sce-
narios.

The main contributions of this chapter are:

• We propose a mobile device-based CIPS baseline scheme using MLP ANNs to
enhance the performance (e.g., position accuracy, computational complexity,
etc.) of traditional IPSs, considering speci�c environmental conditions.

• We propose two variants of a mobile device-based CIPS using MLP ANNs.
The �rst aims to improve the positioning accuracy of traditional IPSs based on
BLE–RSSI lateration methods. The second aims to enhance the positioning
accuracy of traditional IPSs based on BLE–�ngerprinting–9-Nearest Neigh-
bors (9-NN) and Wi-Fi–�ngerprinting–9-NN methods.

• We experimentally validate and demonstrate the usefulness of our proposed
mobile device-based CIPSs to enhance the positioning accuracy of traditional
indoor positioning systems based on RSSI-lateration and �ngerprinting–9-NN
methods.

• We experimentally analyze and validate the suitability of our proposed mo-
bile device-based CIPSs using MLP ANNs under various conditions (i.e., di-
verse distribution of collaborative users/devices in the environment, di�erent
NLOS conditions) and indoor environments (o�ce and lobby scenarios).

• We present the bene�ts of our proposed approaches and enlist their limitations.

5.1 Collaborative indoor positioning system baseline scheme

The analysis of the results and recommendations presented in our systematic review
on CIPSs (Chapter 2) provided the foundation for structuring our mobile device-
based CIPS baseline scheme. Mainly in the breakdown of the primary parts of the
system, its architecture, and infrastructure. One of the fundamental features consid-
ered is the modular design of the system. A modular design allows us to divide the
system into parts that can be evaluated, con�gured, improved, and re-used indepen-
dently. Furthermore, the modular design allows us to exchange and test diverse mod-
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ules among various proposed CIPSs that follow the same modular structure. Unlike
the breakdown of the CIPSs introduced in our systematic review (Section 2.3.4),
which divided the CIPSs into two phases (non-collaborative and collaborative), we
designed our baseline considering three phases - the two previously mentioned and a
new one. The additional phase aims to include information about the heterogeneous
devices used in CIPSs. Speci�cally, the additional phase is dedicated to performing
the collaborative devices’ calibration & registration process. By strictly separating
this calibration & registration step into a di�erent phase, we further improve the
modularity of the system.

Another important feature of CIPSs corresponds to architecture. We consid-
ered a decentralized architecture in our CIPS baseline founded on the advantages
of decentralized systems over centralized ones, identi�ed in our systematic review.
Under the decentralized architecture, each device can execute the algorithms and
exchange information with the neighboring devices without using a central unit or
server. In addition, the decentralized architecture enables each of the devices, in the
non-collaborative phase, to execute positioning algorithms or use technologies and
techniques di�erent from the rest of the devices. For example, some devices can use
BLE, ranging, and lateration, while the rest uses Wi-Fi, �ngerprinting, and 9-NN.

The infrastructure needed for our CIPS baseline scheme depends on the tech-
nology implemented in the non-collaborative phase. The non-collaborative phase
can be used as infrastructure-based (e.g., using BLE anchors deployed in the envi-
ronment for positioning purposes) or infrastructure-less (e.g., using Wi-Fi Access
Points (APs) present in the environment as a signal of opportunity). In contrast,
the proposed collaborative phase is infrastructure-less, as it uses embedded wire-
less technologies in the mobile devices. Overall, the CIPS baseline is considered
infrastructure-less when both phases are fully infrastructure-less, and hybrid when
the non-collaborative phase is infrastructure-based.

The principal aims of our proposed CIPS baseline are:

• To provide a mobile device-based CIPS baseline using MLP ANNs to enhance
the performance (e.g., position accuracy, computational complexity, etc.) of
traditional IPSs.

• To propose a versatile and straightforward CIPS baseline scheme that allows us
to develop CIPSs and evaluate the performance of diverse collaborative indoor
positioning technologies, techniques, and methods.
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Figure 5.1 presents the scheme of our proposed CIPS based on MLP ANNs to
improve the accuracy of the traditional IPSs. The baseline is divided into three phases
as follows.

• Calibration phase: the �rst phase is dedicated to calibrating and registering the
devices used in the collaborative approach.

• Non-collaborative phase: the second phase, the non-collaborative phase, is
devoted to the stand-alone IPS algorithm used to estimate the position of each
device/user.

• Collaborative phase: the third phase, the collaborative phase, is dedicated to
collaboratively improving the estimated position of the target device/user. In
our proposed scheme, this phase is subdivided into four main parts as follows.

– A. Information exchange between devices.

– B. Estimation of the relative distance between devices.

– C. Collaborative algorithm to estimate the position of the target de-
vice/user collaboratively.

– D. Algortitm to combine the positions estimated in the stand-alone phase
(�rst phase) with the collaborative estimated position (third phase - part
C).

In Section 5.2 and Section 5.3, we demonstrate the usefulness of the proposed
CIPS baseline scheme to develop CIPSs that enhance the positioning accuracy of
traditional IPSs. To this end, in Section 5.2, we present and evaluate the �rst variant
of mobile device-based CIPS using MLP ANNs and BLE technology to improve
the positioning accuracy of traditional IPSs based on BLE–RSSI lateration meth-
ods. Similarly, in Section 5.3, we present and evaluate the second variant of mobile
device-based CIPS using MLP ANNs to enhance the positioning accuracy of tra-
ditional IPSs based on BLE–�ngerprinting–9-NN and Wi-Fi–�ngerprinting–9-NN
methods. The corresponding sections present additional details about the developed
CIPSs, their phases, and their setting.
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Figure 5.1 Scheme of the proposed CIPS baseline.
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5.2 Collaborative approach for BLE–RSSI lateration

IPSs based on BLE–RSSI lateration methods under ideal environments (e.g., testbeds
with an appropriate amount and distribution of BLE anchors and in Line-of-sight
(LOS) conditions) and simulations present high positioning accuracy and a posi-
tion error in the range of 0.8m to 1.3m [197, 201]. Contrary, in real-world envi-
ronments (e.g., malls, classrooms, o�ces, bookstores), which include ample NLOS
conditions and anchor deployments that are not always optimized for positioning
activities, the positioning accuracy decreases drastically. Moreover, they depend on
the modeling of the Radio Frequency (RF) signal propagation in each environment
to convert RSSI values into distances, which is not trivial. For that reason, although
the use of BLE-RSSI anchors is feasible for proximity detection applications [202,
203] and easy to implement, its use for more accurate positioning applications is still
an open issue.

In this section, we propose a mobile device-based CIPS using MLP ANNs to
improve the positioning accuracy of traditional IPSs based on BLE–RSSI lateration
methods. Our approach copes with three principal drawbacks of lateration methods
that decrements their positioning accuracy. First, reducing the inaccuracy caused by
NLOS conditions and de�cient anchors deployment. Second, minimizing the in�u-
ence caused by ine�cient modeling of the signal propagation. Third, mitigating the
e�ect of device heterogeneity on positioning accuracy. Our approach’s application
covers scenarios with limited BLE anchors deployment but with a moderate number
of mobile devices/users, and the latency of users’ position is moderate. Some appli-
cation examples include tracking patients in hospitals, sta� in government o�ces,
and people in shopping malls.

Our proposed collaborative approach uses the surrounding mobile devices (col-
laborative devices) to extend the positioning network. The collaboration between
them starts with the information sharing (e.g., its current position estimated by the
stand-alone lateration approach and the BLE–RSSI values measured) and process-
ing by a MLP ANNs model to estimate the relative distance between them. Then,
that information is used to estimate the device’s collaborative position using latera-
tion. Finally, using a midpoint algorithm, we merge the estimated position of both
collaborative and non-collaborative parts to provide a �nal estimated position of
each collaborative device. Our approach uses a neural network model to replace the
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LDPL model. LDPL models mainly estimate the distance based on theoretical sig-
nal attenuation formulas. With the neural network model, the distance estimation is
improved by considering the relation between distance and RSSI patterns, pairwise
device position, identi�cation of devices (transmitter and receiver), and variation of
RSSI measurements due to the devices’ hardware heterogeneity. In the next subsec-
tions, our proposed collaborative approach is detailed. Furthermore, the proposed
collaborative and traditional lateration approaches are compared and evaluated in a
real-world scenario, and their main results are presented and discussed.

The main contributions are:

• We propose a variant of mobile device-based CIPS using MLP ANNs to im-
prove the positioning accuracy of traditional IPSs based on BLE–RSSI latera-
tion methods.

• We demonstrate through the development and evaluation of our CIPS the
usefulness of the CIPS baseline scheme proposed in Section 5.1. We detail the
use and setting of each of its phases and components.

• We present a novel model to estimate the relative distance between collab-
orative mobile devices based on an MLP ANNs approach. Our proposed
model provides a better modeling of signal propagation in LOS and NLOS
conditions with respect to the models based on LDPL, as well as, the receiver
devices variables involved in the estimation of the distance.

• We experimentally evaluate and demonstrate that our CIPS outperforms a tra-
ditional lateration approach under a real indoor scenario (o�ce scenario) with
poor density and distribution of BLE anchors and diverse NLOS conditions.

5.2.1 First phase: calibration phase

The �rst phase of the collaborative approach is the calibration and registration of
mobile devices, which identi�es mobile devices and stores the required parameters
to be processed in the collaborative algorithm for each device. In this work, the RSSI
values to 1m are gathered per device. The procedure is requesting each new user to
stand at a �oor mark, 1m away from a reference anchor (⌫- ) during 60 s, in order
to measure and record the RSSI values (i.e., '((�

1;
'-

(⌫- )), then averaged them to
get only one value per device. Experimentally it was determined that 60 s is enough
time to compensate for any delay in the transmission of the BLE signal and remove
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any anomaly detected. The reference anchor broadcasts BLE advertisements and can
be installed, for example, at the main entrance of the scenario. For each (new) device,
this quick calibration process is only carried out once. A practical implementation of
this procedure could be to connect the calibration with the electronic door-locking
system applications installed in mobile devices and reduce measurement time (e.g.,
5 s).

5.2.2 Second phase: non-collaborative phase

The second phase corresponds to the non-collaborative phase. In our speci�c case,
we implement a stand-alone BLE-RSSI lateration method, which aims to estimate
the initial position of each device/user using the Ground-Truth (GT) coordinates
of the BLE anchors distributed in the scenario and the RSSI values measured. The
lateration method used to estimate the position relies on the LDPL model, a mini-
mization problem, and the Levenberg-Marquardt algorithm for weighted nonlinear
least-squares to solve the minimization problem. A detailed description of the later-
ation method is provided in Section 4.2.1.1. Also, its mathematical formulation is
provided in Eq. (4.4) and Eq. (4.5).

The correlation between the attenuation of RSSI as it propagates through space
and the distance, between the transmitter and the receiver, is described by the LDPL
model and mathematically expressed by the equation (5.1) [191]:

'((�
3

'-
() - ) = '((�

1;
'-

(⌫- ) � 10 [ := 6

✓
3

30

◆
(5.1)

where '((�
3

'-
() - ) denotes the RSSI value measured by the receiver ('- ), which

is at a distance 3 from the mobile device transmitter () - ); '((�
1;
'-

(⌫- ) denotes
the RSSI value measured by the receiver ('- ), which is at a distance of 1m from the
BLE anchor transmitter (⌫- ); The transmitter could be a BLE anchor or a mobile
device; and [ is the path-loss attenuation factor.

The stand-alone lateration approach is described by the Algorithm 2, and its
working procedure is outlined as follows:

• 1st step: Gather the RSSI from BLE anchors ('((�
3

'-
() - )) that are reach-

able in a time window (BE) of 60 s, excluding those that are not part of the
deployment scenario (input data for Algorithm 2);
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• 2nd step: Group the RSSI gathered in 1st step by anchors, then remove the
outliers of each group, which are those values outside of 25 and 75 percentiles
(lines 1–2 in Algorithm 2);

• 3rd step: Average RSSI value per anchor by applying the average operator to
the RSSI values in each group. (line 3 in Algorithm 2);

• 4rd step: Choose those BLE anchors whose averaged RSSI value is equal to or
within a pre-set threshold (lines 4–8 in Algorithm 2);

• 5th step: Estimate the relative distance between the chosen BLE anchors in 4rd

step and the target position of the device/user by applying the LDPL model
(eq.(5.1)) and considering the RSSI values and [ (line 9 in Algorithm 2);

• 6th step: Estimate the position of the device/user (P̂!0B1) by applying the
Levenberg-Marquardt Weighted Least Squares (L-MWLS) lateration method,
which uses the data computed in the 5th step, the weights, and the GT of
the BLE anchors. In the weighted centroid calculation, the weight for every
BLE anchor is calculated as the inverse of the estimated distance between the
anchor and the device/user. !0B1 refers to the L-MWLS lateration method
in the stand-alone phase, and

• 7th step: Share the estimated position, P̂!0B1('- ) = [%̂ !0B1
F

('- ), %̂ !0B1
G

('- )].

The B⌘@4A⌘=:3 and the path-loss attenuation factor ([) values are �83 dBm and
2.1 respectively, as we used before in [6] and which are aligned with values proposed
in the literature [197]. The devices used in the collaborative positioning approach
have their own '((�

1;
'-

(⌫- ) value according to the data gathered during the device
calibration phase (see Table 5.1).

5.2.3 Third phase: collaborative phase

The third phase corresponds to the collaborative phase, which uses information from
the neighboring mobile devices, including the position of the receiver and transmitter
devices estimated in the stand-alone phase, the measured BLE-RSSIs, and the RSSI at
1m of the receiver to estimate the position of the device/user collaboratively. Then,
we calculate the �nal position of the device/user combining the collaborative and
independent estimates to improve the latter. In the collaborative phase, the collabo-
rative devices/users extend the original coverage area of the network by acting as an
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Algorithm 2 Stand-alone lateration
Input: Deployed anchors information collected within a time window BE: '((�

3

'-
() - ) values and GT

Input: LDPL: [ = 2.1 and '((�
1;
'-

(⌫- )
Input: B⌘@4A⌘=:3

Output: Estimated device/user position P̂!0B1 ('- )
1: Group the '((�

3

'-
() - ) values by beacon

2: Remove '((�
3

'-
() - ) outliers values of each group

3: Average '((�
3

'-
() - ) values of each group : '((�

3

'-
() - )

4: for 7  1 to number of '((�
3

'-
() - ) (7) do

5: if ('((�
3

'-
() - ) (7) � B⌘@4A⌘=:3) then

6: Include 7-th anchors to reference anchors set (@4 5
0<2⌘=@ A4B

)
7: end if
8: end for
9: Estimate the distances between anchors of @4 5

0<2⌘=@ A4B
and the device/user position using Eq.5.1, [ and

'((
1;
'-

(⌫- )
10: Estimate the device/user position (P̂!0B1 ('- )) using the Levenberg-Marquardt Weighted Least Squares

method
11: Share the estimated device/user position (P̂!0B1 ('- ) = [%̂ !0B1

F
('- ) , %̂ !0B1

G
('- ) ])

extra anchor of the network (extended ad-hoc position network based on collabora-
tive devices).

The collaborative phase is comprised of four major components: A) exchange
of information between devices; B) a MLP neural network to estimate the relative
distance between the devices; C) a collaborative lateration algorithm, which collabo-
ratively estimates the position of the target device/user; and D) a method to combine
the stand-alone and collaborative position estimations.

5.2.3.1 A. Information exchanged between devices/users

Nowadays, broadcasting BLE advertisements is possible thanks to updated mobile
and wearable device operating systems, which now allow them to act as BLE anchors
and share information between them [167]. As a consequence, they enable the devel-
opment of collaborative systems that depend on this feature used in our collaborative
positioning system includes: the RSSI received at the receiver from the transmitter
('((�'- () - )), the RSSI at 1m ('((�

1;
'-

(⌫- )) of the receiver obtained after reg-
istering the device, and the position of each collaborative device/user estimated by
the stand-alone lateration (%̂ !0B1

F
() - ), %̂ !0B1

G
() - ), %̂ !0B1

F
('- ), %̂ !0B1

G
('- )).

The aforementioned feature data are used as input for the neural network de-
scribed in the next section and the collaborative algorithm described in Algorithm
3. It should be noted that the sharing data in our proposed CIPS is unidirectional
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(e.g., surrounding devices sharing information with the receiver).

5.2.3.2 B. Estimation of the relative distance between devices

Figure 5.2 depicts the architecture of theMLP neural networkmodel used to estimate
the relative distances between mobile devices. The architecture is composed of one
input layer with six neurons, one hidden layer with three neurons, and one output
layer. The activation and training functions used are the hyperbolic tangent, and the
scaled conjugate gradient backpropagation, respectively, and 50 epochs were used.
Additional details on the selection of the MLP neural network’s hyperparameters
are presented in Section 5.2.4.

The input of the MLP neural network model corresponds to the information
exchanged between each pair (target device–neighbor device) and the output to the
estimated distance of that speci�ed pair. In detail, the six features used in the input
are: 1) the '((�'- () - ), which is the RSSI value of the BLE advertisement trans-
mitted by the transmitter) - and measured by the receiver '- ; 2–3) the estimated
position coordinates F (%̂ !0B1

F
() - )) and G (%̂ !0B1

G
() - )) of the transmitter (neigh-

bor device/user), which were estimated by the stand-alone lateration algorithm; 4–5)
the estimated position coordinates F(%̂ !0B1

F
('- )) and G (%̂ !0B1

G
('- )) of the receiver

(target device/user), which were estimated by the stand-alone lateration algorithm
too; and 6) the '((�

1;
'-

(⌫- ) corresponding to the RSSI value measured at 1m of
the distance between transmitter and receiver assigned at each mobile device by phase
one (see Table 5.1).

Input Layer Output LayerHidden Layer
(3 neurons)

  
 

 

 

 

Estimated
distance

Figure 5.2 MLP neural network model architecture (lateration). Used to estimate the relative pairwise
distance between the target and neighboring devices/users.
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5.2.3.3 C. Collaborative lateration algorithm

The collaborative lateration algorithm is similar to the algorithm used in the stand-
alone phase (see Section 5.2.2). The two principal di�erences correspond to the data
provided to execute the lateration. First, the anchors used by the collaborative later-
ation algorithm are the neighboring devices/users acting as anchors, whose position
is estimated by the stand-alone lateration, instead of the BLE beacons deployed in the
scenario with a well-known position. Second, rather than using the LDPL model
to estimate the relative distance between neighboring devices/users and the target
device/user, we use a MLP neural network model.

5.2.3.4 D. Combining stand-alone and collaborative estimated positions

After the target device’s position has been collaboratively estimated using neighbor-
ing devices/users as anchors, it is combined with the stand-alone estimation to obtain
the �nal estimated position. To this end, we used a midpoint line algorithm, which
is described in Eq. (5.2) and Eq. (5.3).

ˆ̂
%F ('- ) = %̂

:0B1
F

('- ) + %̂
:0B2
F

('- )
2

(5.2)

ˆ̂
%G ('- ) =

%̂
:0B1
G

('- ) + %̂
:0B2
G

('- )
2

(5.3)

where ˆ̂P('- ) = [ ˆ̂%F ('- ), ˆ̂
%G ('- )] denotes the �nal estimated position, with F

and G coordinates, of device/user '- , with '- = {1, 2....# } and # the number
of devices. %̂ :0B2

F
('- ) and %̂

:0B2
G

('- ) denotes the position estimated, F and G co-
ordinates, with the collaborative lateration and %̂

:0B1
F

('- ) and %̂
:0B1
G

('- ) denotes
the position estimated, F and G coordinates, with the stand-alone lateration, both for
device/user '- .

5.2.3.5 Full collaborative workflow

The pseudo-code for the collaborative positioning algorithm is described by the al-
gorithm 3. Its inputs correspond to the shared information exchanged by each col-
laborative device/user within a time window (EB) of 60 s. In detail, the inputs are
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the RSSI values transmitted by each collaborative device/user ('((�'- () - )); the
estimated position of each collaborative device/user estimated by the stand-alone lat-
eration (%̂ !0B1

F
() - ), %̂ !0B1

G
() - ), %̂ !0B1

F
('- ), %̂ !0B1

G
('- )); and the RSSI at 1m

('((�
1;
'-

(⌫- )). The algorithm working procedure is outlined as follows:

• 1nd step: Group the RSSI readings by device, then remove the outliers from
each group based on the interquartile method, which removes those values
outside of the range between the 25 and 75 percentile values (lines 1–2 in
Algorithm 3);

• 2rd step: Average the RSSI values per each device/user, getting one average
RSSI value per device/user (line 3 in Algorithm 3);

• 3th step: Estimate the relative distances between the neighboring devices/users
and the target device/user, by applying the MLP model (see Figure 5.2).
The features used in the input of the ANNs model are: '((�'- () - ),
(%̂ !0B1

F
() - ), %̂

!0B1
G

() - )), (%̂ !0B1
F

('- ), %̂
!0B1
G

('- )), and '((�
1;
'-

(⌫- )
(input values in Algorithm 3);

• 4th step: Estimate the position of the device/user (P̂!0B2('- )) by apply-
ing the Levenberg-Marquardt Weighted Least Squares (L-MWLS) lateration
method, whose input data are the relative distances estimated by the MLP neu-
ral network model (3th step), the weights, and the estimated positions (P̂!0B1)
of the neighboring devices/users. Similarly to the stand-alone algorithm, the
weight value for every BLE anchor is calculated as the inverse of its squared
distance with respect to the device/user, and

• 5th step: Compute the �nal estimated position of the device/user (ˆ̂P('- ))
using the formula expressed in Eq. (5.2) and Eq. (5.3), considering the esti-
mated stand-alone position (P̂:0B1 ('- )) and collaborative estimated position
(P̂:0B2 ('- ). ('- )) is the identi�er of the device/user to estimate its position.

5.2.4 Experiments and results

5.2.4.1 Experimental setup

This section describes the setup of the experiments performed. The experiments aim
to evaluate the feasibility and advantages of our proposed collaborative approach in
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Algorithm 3 Collaborative module
Input: Collaborative devices information collected within a time window BE: '((�

'-
() - ),

%̂
!0B1
F

() - ),%̂ !0B1
G

() - ),%̂ !0B1
F

('- ),%̂ !0B1
G

('- ), and '((�
1;
'-

(⌫- )
Output: Improved estimated device/user position (ˆ̂P

34D
(<))

1: Group the '((�
'-

() - ) values by device
2: Remove '((�

'-
() - ) outliers values of each group

3: Average '((�
'-

() - ) values of each group: '((�
34D

(7)
4: Estimate the relative distance between the target device and the near collaborative devices using the trained

ANN model
5: Estimate the device/user’s position (P̂!0B2 ('- )) using the Levenberg-Marquardt Weighted Least Squares (L-

MWLS) lateration method
6: Compute the �nal estimated device/user’s position (ˆ̂P('- )) using the midpoint line algorithm in Eq. (5.2)

and Eq. (5.3)

comparison with a traditional BLE–RSSI lateration baseline to counteract insu�-
cient BLE anchor deployment and NLOS conditions in the scenario. In particular,
we assess and compare both approaches’ positioning accuracy in a realistic scenario.

The scenario used to carry out the experiments corresponds to a real o�ce lo-
cated at Universitat Jaume I, Spain, which covers an approximate area of 10.76m
by 16.71m. The 3D representation, which illustrated the complexity of the envi-
ronment, is shown in Figure 3.3(b). The scenario is characterized by NLOS condi-
tions, principally due to the scenario’s furniture (i.e., pillars, desks, chairs, and book-
shelves). In the scenario, six diverse collaborative con�gurations (con�gurations 1
– 6) were used, considering �ve mobile devices (devices 1, 2, 3, 4, and 6) to create
diverse NLOS cases among devices. The con�gurations are illustrated in Figure 5.3.
A detailed description of them is provided in Section 3.2.4 (Subset-C). Also, we de-
ployed seven BLE anchors, whose transmission power and period are �4 dBm and
250ms, respectively. Complementary information of the o�ce scenario is available
in Section 3.2.2.

A thorough data collection was carried out in this o�ce scenario. First, during
the calibration and registration process, the �ve collaborating mobile devices were
registered (see Section 5.2.1) and each mobile device measured its '((�

1;
'-

using a
�xed BLE anchor from the scenario. The '((�

1;
'-

values corresponding to each of
the �ve mobiles used in the experiment, as well as the mobile devices used (devices 1,
2, 3, 4, and 6), are summarized in Table 5.1. It should be noted that each '((�

1;
'-

value depends on the mobile device model and is utilized as a means of identi�cation
in the MLP ANN model. The '((�

1;
'-

values are within the range �78.79 dBm to
�62.39 dBm.
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Table 5.1 '((�
1;
'-

(⌫- ) values by device (office scenario).

ID/'- Device name Model '((�
1;
'-

(⌫- ) values Scenario
(dBm)

1 Galaxy S8 SM-G950F -68.88 O�ce
2 Lenovo Yoga Book Lenovo YB1-X90F -74.75 O�ce
3 Galaxy A7 Duos SM-A7100 -62.39 O�ce
4 Galaxy S6 SM-G920F -62.99 O�ce
6 Galaxy A5 SM-A500FU -78.79 O�ce

Next, the collaborative con�gurations 1 to 6 (described in Section 3.2.4 (Subset-
C)) were considered. Speci�cally, for 2 hours, the �ve devices, in each con�guration,
broadcasted and recorded data from neighboring devices, including the BLE anchors.
According to the low latency mode supported by Android devices [204], the mobile
devices’ broadcast latency was set to 100ms. Since the mobile devices are not ad-hoc
positioning devices, the broadcast latency presents variations. The main causes are
the power-saving modes installed in the device’s operative system and the tasks exe-
cution priorities. Each con�guration’s data was gathered separately and at a di�erent
time. As previously stated, the path-loss factor for the lateration approach based on
the LDPL is [ = 2.1 for all �ve devices.

The distribution of the mobile devices (i.e., devices 1, 2, 3, 4, and 6) in each
con�guration together with the BLE anchors (i.e., anchors 1, 4, 6, 9, 10, 17 and
19) considered in the o�ce scenario is shown in Figure 5.3. Table 5.2 and Table 5.3
summarize the GT coordinates of mobile devices and BLE anchors, respectively.

Table 5.2 Devices’ Ground truth in each configuration in the office scenario.

ID/RX
Ground truth (m)

ScenarioCon�g. 1 Con�g. 2 Con�g. 3 Con�g. 4 Con�g. 5 Con�g. 6 Con�g. 7
x y x y x y x y x y x y x y

1 5.05 3.7 1.33 6.1 6.93 1.3 7.75 6.1 2.05 9.7 2.05 9.7 2.05 9.7 O�ce
2 6.55 4.55 4.49 3.05 9.93 1.3 11.75 2.75 3.6 3.3 8.7 6.4 14.66 6.45 O�ce
3 8.05 0.7 7.66 0.1 12.93 1.3 12.75 0.1 16.45 2.5 16.45 2.5 16.45 2.5 O�ce
4 5.05 0.7 1.33 0.1 9.03 0.1 7.75 0.1 2.05 2.5 2.05 2.5 2.05 2.5 O�ce
6 8.05 3.7 7.66 6.1 9.03 3.7 12.75 6.1 16.45 9.7 16.45 9.7 16.4 9.7 O�ce

We divided the data acquired, in the six con�gurations, into two datasets, ensuring
that both datasets cover di�erent zones of the scenario and the distances between
devices and between anchors vary. Each dataset contributes to diverse objectives:
con�gurations 1, 4, and 5 (see Figure 5.3(a)) are used for testing the model, and
con�gurations 2, 3, and 6 (see Figure 5.3(b)) are used for evaluation. The second
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Table 5.3 Ground Truth of BLE anchors deployed in the office scenario.

BLE anchor (No.) x (m) y (m) TX Power (dB) TX Period (ms)

1 0 0 -4 250
2 0 2.61 -4 250
3 0 7.66 -4 250
4 0 10.68 -4 250
5 3.88 3.54 -4 250
6 3.78 6.51 -4 250
7 3.87 8.64 -4 250
8 6.45 2.13 -4 250
9 6.68 10.64 -4 250
10 9.2 3.7 -4 250
11 9.08 5.95 -4 250
12 9.18 8.71 -4 250
13 11.4 3.6 -4 250
14 11.54 7.18 -4 250
15 11.54 10.65 -4 250
16 13.95 4.34 -4 250
17 14.2 6.05 -4 250
18 15.65 1.71 -4 250
19 16.65 10.65 -4 250
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Figure 5.3 Distribution of the configurations used in the training& evaluation and testing in the office
scenario.

dataset (training) was randomly divided into training (70%) and validation (30%)
with 741143 and 185285 samples, respectively, to tune theMLP neural network. The
testing dataset contains 936103 samples and it was used to test the MLP ANNs for
relative distances, and implement the BLE-RSSI lateration baseline and collaborative
approach.

The o�ce scenario used presents di�erent adverse conditions from the point of
view of positioning. The most important are: diverse and strong NLOS generated
by the obstacles in the scenario; an area with low Geometric Dilution of Precision
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(GDOP), poor number and distributions of anchors for positioning (only 7 BLE
anchors); and device heterogeneity (5 diverse mobile devices) for the collaborative
phase. Our proposed collaborative model aims to increase the coverage area of the
BLE anchors deployed in the scenario through the use of collaborative devices, and
replace the LDPL model with a MLP ANNs, which estimate the relative distance
considering the receiver and emitter position, its RSSI values and the calibration of
RSSI (at 1m) to mitigate the mobile device heterogeneity e�ect.

5.2.4.2 Tuning the Multilayer Perceptron (MLP) neural network

In order to de�ne the most suitable MLP architecture and its hyperparameters for
our model, we evaluate four architectures. The hyperparameters considered were
the number of hidden layers (1 and 2), the number of hidden neurons and the acti-
vation function used among the log-sigmoid (logsig) and hyperbolic tangent sigmoid
(tansig). It is well-known that in the tunning of MLP neural networks there is no
standard method to set the number of hidden layers and the number of neurons by
layer. Nevertheless, some initial considerations could be useful in the tuning. So,
in our case, we �rst consider 2 architectures with 1 hidden layer as a starting point,
since it can model a wide number of nonlinear problems, and is useful for de�ning
the activation function. Then, we consider 2 architectures with an extra layer to try
to improve the results. Regarding the maximum number of neurons tested in each
layer, we use as a reference two times the number of neurons in the input layer. The
hyperparameters set up for each architecture are detailed in Table 5.4.

Table 5.4 Tested MLP architectures and hyperparameters for office scenario. Source [21].

Parameters MLP1 MLP2 MLP3 MLP4

No. Input layers 1 1 1 1
No. Hidden layers (HLs) 1 1 2 2
No. Output Layer 1 1 1 1
No. Neurons HL1 3 3 6 12
No. Neurons HL2 - - 3 6
Training function trainscg
Activation function tansig logsic tansig tansig
Performance function Mean Square error

Before discussing the main results of both, the lateration baseline and our pro-
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posed collaborative approach, we introduce the results obtained from the evaluation
of the four proposed MLP architectures with the training dataset to determine which
of them provides the most accurate estimation of relative distances. The results of
comparing the real distance with the estimated distance in each of the 4 neural net-
work architectures MLP are presented in Figure 5.4 through density scatter plots, as
well as their correlation coe�cient (R) and the Root Mean Square Error (RMSE).
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Figure 5.4 Target vs Predicted distances from the test dataset estimated with MLP1–MLP4 architec-
tures (Office escenario–BLE-lateration).

Based on the information presented in Figure 5.4, we can observe that one hidden
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layer MLP architectures (MLP1 and MLP2) have lower RMSE than the two hidden
layer ones (MLP3 and MLP4), and a greater correlation coe�cient, namely 0.62

and 0.60 for MLP1 and MLP2, respectively. Consequently, in terms of accuracy,
one hidden layer MLP architectures are better able to estimate the distance. In par-
ticular, comparing MLP1 and MLP2 through the density scatter plots illustrated in
Figure 5.4(a) and (b), respectively, we notice that the former (MLP1), which uses a
hyperbolic tangent sigmoid activation function (tansig), has a higher density of pre-
dicted values near to the real values than MLP2, which uses a log-sigmoid activation
function. Moreover, we can observe that within the range 3m to 6m and near to
15m the density increase. The �ndings of high-density values near the short distance
show that the MLP architecture has the ability to enhance the estimated positioning
accuracy in CIPS scenarios with a high density of collaborative mobile devices (i.e.,
when the distance between neighboring devices is short).

After evaluating the 4 di�erentMLP architectures, theMLP1with a single hidden
layer (3 neurons), a hyperbolic tangent sigmoid activation function, and a scaled
conjugate gradient backpropagation training function was chosen to estimate the
relative distance using BLE–RSSI data.

5.2.4.3 Results of the collaborative model

The principal results of the evaluation of our CIPS using MLP ANNs (collabora-
tive approach) and the stand-alone lateration (lateration baseline) considering the
evaluation metrics RMSE, mean, median, 75th, and 90th percentile and the relative
di�erence between them. Speci�cally, we present the results of each con�guration
used for testing (con�gurations 1, 4, and 5) independently. Table 5.5 summarizes
the results of our collaborative approach and the lateration baseline considering the
aforementioned metrics. The down arrows in the table indicate that our proposed
CIPS decreases the error with respect to the baseline in the percentage indicated.

Figure 5.5 shows the Empirical Cumulative Distribution Function (ECDF) plots
of each con�guration and above them the sketch of the corresponding con�gura-
tion. The red lines represent the result for CIPS using MLP ANNs (collaborative
approach) and the black dashed lines for the stand-alone lateration (lateration base-
line). In detail, Figure 5.5(a) presents the ECDF of con�guration 1, Figure 5.5(b),
and Figure 5.5(c) presents the ECDF of con�guration 5, whose results are used to
evaluate the e�ect of short, medium and large distance between collaborative devices

169



Table 5.5 Main results metrics provided by the lateration baseline and our proposed collaborative
approach.

Lateration baseline Collaborative approach
Error (m) Error (m) Di�

Eval. metric Con�g. 1 Con�g. 4 Con�g. 5 Con�g. 1 Con�g. 4 Con�g. 5 Con�g. 1 Con�g. 4 Con�g. 5

RMSE 4.52 6.98 5.5 2.77 6.1 4.94 # 38.72% # 12.61% # 10.18%
Mean 4.29 6.85 4.94 2.42 5.8 4.34 # 43.59% # 15.33% # 12.15%
Median 4.11 7.12 5.54 2.09 5.75 4.35 # 49.15% # 19.24% # 21.48%
75

B⌘ percentile 4.76 7.92 6.2 2.93 7.49 5.49 # 38.45% # 5.43% # 11.45%
90

B⌘ percentile 6.72 8.48 8.38 4.75 8.1 8.22 # 29.32% # 4.48% # 1.91%

on positioning accuracy, respectively.
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Figure 5.5 CDF of the lateration baseline and collaborative approach (7 BLE anchors) of configura-
tions 1, 4, and 5 in the office scenario.

5.2.5 Discussion

In this section, we presented a variant of mobile device-based CIPS using MLP
ANNs to improve the positioning accuracy of traditional IPSs based on BLE–RSSI
lateration methods used under challenging environmental conditions, such as hard-
ware heterogeneity, strong NLOS and unstable signal strength conditions, and un-
favorable distribution of few BLE anchors (i.e., anchors 1, 4, 6, 9, 10, 17 and 19 in
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Figure 5.3). Our approach is divided into three phases. The �rst phase is dedicated
to calibrating and registering the new devices, used in the collaborative approach,
through the registration of them and a set of RSSI baseline measurements at 1m.
The second phase corresponds to the stand-alone (non-collaborative) lateration algo-
rithm, which estimates the initial position of each device using the GT coordinates
of BLE anchors and the RSSI values measured. The last phase is dedicated to collab-
oratively estimating the position of the target device/user and combining it with the
non-collaborative position estimated in the second phase. To this end, A) the col-
laborative devices exchange information between them (i.e., data of the �rst phase,
position estimated in the second phase, and the BLE-RSSIs measured); B) the relative
distance between devices is estimated based on a MLP ANNs model; C) a collab-
orative lateration algorithm is used to collaboratively estimate the device’s position
based on the relative distance estimated and the initial position of each device esti-
mated in the second phase, and D) a midpoint line algorithm is used to combine the
non-collaborative position estimated in the second phase with the position estimated
collaboratively.

Regarding the evaluation, our proposed mobile device-based CIPS using MLP
ANNs was tested in an o�ce scenario and compared with a lateration baseline con-
sidering three con�gurations (con�gurations 1, 4, and 5 in Figure 5.3(a)), which
correspond to short, medium, and large distances between collaborative devices dis-
tributed in each con�guration, respectively. The previously listed challenging en-
vironment conditions are part of the o�ce scenario, which generates a signi�cant
decrement of positioning accuracy in approaches based on RSSI. As it can be seen
from Table 5.5, our proposed collaborative approach performs better than the lat-
eration baseline in all the evaluation metrics of all the con�gurations (con�gurations
1, 4, and 5) evaluated. Speci�cally, in con�guration 1 (short distances  4m), con-
�guration 4 (4m < medium distances  8m), and con�guration 5 (large distances >
8m) the maximum di�erence are 49.15 %, 19.24 %, and 21.48 % for the “median”
metric, respectively. Moreover, considering the relative di�erence of the “RMSE”,
“mean” and “75th percentile” metric, we can observe that our proposed collabo-
rative approach signi�cantly outperforms the lateration baseline in con�guration 1
(short distances), moderately outperforms the lateration baseline in con�guration 4
(medium distances) and a little less in con�guration 5 (large distances).We can observe
the same behavior in Figure 5.5, which shows the ECDF plots of each con�gura-
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tion. The ECDF plot of con�guration 1 (Figure 5.5(a)) shows that our collabora-
tive approach outperforms the lateration baseline in all the cases. The ECDF plot of
con�guration 4 (Figure 5.5(b)) shows that our proposed approach outperforms the
lateration baseline, but after 70 % of the cases, the positioning error of our approach
begins to be close to that of lateration baseline. The ECDF plot of con�guration
5 (Figure 5.5(c)) shows that within the �rst 80 % of cases, our proposed approach
outperforms the lateration baseline. Nevertheless, in the �rst 40 % of cases, the po-
sitioning error of our approach is close to that of lateration baseline. Also, from 80
% to 90 % the lateration baseline outperforms our collaborative approach.

It should be pointed out that the lateration baseline’s positioning accuracy was
drastically reduced when compared to BLE–RSSI presented in the literature (2m to
3m error [6, 205]), due to the unfavorable test scenario conditions (i.e., hardware
heterogeneity, strong NLOS and unstable signal strength conditions and the poor
amount and inappropriate distribution of BLE anchors), which are however a reality
in real-world scenarios. Nevertheless, the error values obtained are consistent with
scenarios that take the low-density anchors’ deployment issues into account. For
instance, Cengiz [201] reported a mean position accuracy of 7.5m in their lateration
algorithm, which was evaluated in a scenario with 24m by 24m area and 8 anchors.

In general, the results demonstrated the feasibility and advantages of our mobile
device-based CIPS using MLP ANNs to surpass the positioning accuracy of the con-
ventional lateration baseline under the aforementioned challenging circumstances.
Our approach decreases its positioning accuracy as the distance between collabo-
rative devices in the con�guration increases. While the magnitude of improvement
obtained with our proposed CIPS (as shown in Table 5.5) may vary depending on the
speci�c experimental conditions in other scenarios, the trend of accuracy achieved by
the di�erent device con�gurations (for the short, medium, and large distance between
devices) can remain consistent for similar setups. Additionally, the results demon-
strated the suitability of the MLP ANNs model for modeling the propagation of
signals over short distances, while taking into account the unique properties of each
receiving device and under NLOS conditions, which is crucial for determining the
distance between (heterogeneous) collaborative devices under real-world conditions.
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5.3 Hybrid collaborative approach for BLE–Wi-Fi RSSI fingerprinting

In accordance with the main �ndings and recommendations reported in our sys-
tematic review (Chapter 2), the most suitable technologies for CIPSs are BLE and
Wi-Fi in combination with techniques that rely on RSSI and �ngerprinting. Al-
though there are technologies with better positioning accuracy (i.e., 5G, Ultra-wide
band (UWB), and Visible Light Communication (VLC)), other factors are consid-
ered in the development of CIPS for human use, namely, the ubiquity of technologies
in both, mobile devices and indoor environments, low-cost deployment, and low
energy consumption, which can be provided by the BLE and Wi-Fi technologies.
Wi-Fi technology, like BLE technology, was primarily designed to provide wireless
communication among electronic devices [206] and has positioning limitations due
to �uctuations in signal propagation mainly caused by obstacles and environmental
geometries, which alter the measurements of the RSSI values and decrease the po-
sitioning accuracy. However, approaches based on �ngerprinting provide a more
accurate position but require complex implementation and long-term maintenance
of their infrastructure increasing the cost and making them not accessible for a wide
range of applications [207, 208].

In this section, we focus on enhancing the positioning accuracy of traditional
IPSs based on BLE–�ngerprinting and Wi-Fi–�ngerprinting. So, we propose a new
variant of mobile device-based CIPS using MLP ANNs based on our CIPS base-
line scheme presented in Section 5.1. The following sections detail its phases and
main parts. Also, the performance of our approach and traditional IPSs based on
BLE–�ngerprinting and Wi-Fi–�ngerprinting approaches are compared and evalu-
ated considering two real-world scenarios, and their main results are presented and
discussed.

The main contributions are:

• We propose a variant of mobile device-based CIPS using MLP ANNs model
proposed in Section 5.2 to enhance the positioning accuracy of traditional IPSs
based on BLE–�ngerprinting–9-NN and Wi-Fi–�ngerprinting–9-NN meth-
ods.

• We demonstrate through the development and evaluation of our CIPS the
usefulness of the CIPS baseline scheme proposed in Section 5.1.

• We experimentally evaluate and demonstrate the generalization of our pro-
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posed variant of CIPS based on MLP ANNs model to enhance the positioning
accuracy under di�erent indoor environment conditions (i.e., o�ce and lobby
scenarios) and technologies (i.e., BLE and Wi-Fi).

• We experimentally demonstrate that our proposed variant of mobile device-
based CIPS using MLP ANNs outperforms the traditional IPSs based on
BLE–�ngerprinting–9-NN and Wi-Fi–�ngerprinting–9-NN methods when
the collaborative devices have short and medium distances between them.

5.3.1 First phase: calibration phase

The �rst phase of our proposed CIPS is identical to the �rst phase described in
Section 5.2.1.

5.3.2 Second phase: non-collaborative phase

In our second phase, unlike the stand-alone BLE-RSSI lateration method imple-
mented in Section 5.2.2, we implement a stand-alone �ngerprinting-9-NN method
for Wi-Fi and BLE technologies.

Our stand-alone �ngerprinting–9-NN method is described by the Algorithm 4
and based on the 9-NN algorithm used in [172]. Its work�ow is as follows:

• 1st step: Gather the RSSI from BLE anchors/Wi-Fi APs ('((�'- () - ))
during a time window (BE) of 10 s, excluding those that do not are part of the
�ngerprinting radio map (input data for Algorithm 4);

• 2nd step: Group the RSSI, gathering in 1st step, by BLE anchor/Wi-Fi AP,
(line 1 in Algorithm 4);

• 3rd step: Average the RSSI value per BLE anchor/Wi-Fi AP by applying the
average operator to the RSSI values in each group. (line 2 in Algorithm 4);

• 4rd step: Create a row vector with the averaged values (FP@=E =

['((�
�%1, . . . , '((�

�%;
]) considering the length and elements’ order of the

�ngerprinting radio map rows. The missing elements in the row vector are
replaced with a positive value (i.e., 100). (line 3 in Algorithm 4);

• 5th step: Compute the euclidean distance between FP@=E and each of the 7 row
of the �ngerprinting radio map (� %@037=;0>) to obtain a euclidean distance
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vector (⇢C2:7340<
3
). (lines 4–6 in Algorithm 4);

• 6th step: Arrange the �ngerprinting radio map rows’ index based on the sort-
ing euclidean distance vector (⇢C2:7340<

3
) values in ascending order. (line 7

in Algorithm 4);

• 7th step: Select the (x,y) coordinates, stored in the �ngerprinting radio map,
corresponding to the �rst 9 rows’ index. (line 8 in Algorithm 4);

• 8th step: Estimate the position of the device/user (P̂� % ('- )) by applying the
centroid algorithm, which use the (x,y) coordinates selected in the 7th step.
(line 9 in Algorithm 4), and

• 9th step: Share the estimated position, P̂� % ('- ) = [%̂ � %

F
('- ), %̂ � %

G
('- )].

The �ngerprint radio map (� %@037=;0>), used as input, contains the informa-
tion of the '((� values and the (x, y) coordinates where they were gathered. In the
9-NN algorithm, we considered 9 = 5.

Algorithm 4 Stand-alone �ngerprinting-KNN
Input: Information collected, within a time window BE, from the BLE anchors/Wi-Fi APs available:

'((�
'-

() - ) values
Input: 9 value
Input: � %@037=;0>: (x,y) coordinates and '((�

@037=;0>
() - ) values

Output: Estimated device/user position P̂� % ('- ) = [%̂ � %

F
('- ) , %̂ � %

G
('- ) ]

1: Group the '((�
'-

() - ) values by BLE anchor/Wi-Fi AP
2: Average '((�

'-
() - ) values of each group : '((�

'-
() - )

3: Create a row vector with the averaged elements andmatch its length and element’s order with the � %@037=;0>

rows. Missing elements are replaced with a positive value (i.e., 100): FP@=E = ['((�
�%1, . . . , '((�

�%;
]

4: for 7  1 to rows size of � %@037=;0> do
5: Compute the euclidean distance between FP@=E and � %@037=;0> @=E (7): ⇢C2:7340<

3
(7)

6: end for
7: Arrange the � %@037=;0> rows’ index based on the sorting ⇢C2:7340<

3
values in ascending order.

8: Select the (x,y) coordinates corresponding to the �rst 9 rows’ index
9: Estimate the device/user position (P̂� % ('- )) applying the centroid algorithm, which uses the (x,y) coordinates

values.
10: Share the estimated device/user position (P̂� % ('- ) = [%̂ � %

F
('- ) , %̂ � %

G
('- ) ])

5.3.3 Third phase: collaborative phase

In our third phase, we re-use three of the four parts of the third phase implemented
in Section 5.2.3, namely the information exchange between devices (part A, Sec-
tion 5.2.3.1), collaborative lateration algorithm (part C, Section 5.2.3.3) and the
algorithm that combines the estimated position in the non-collaborative and collab-
orative phases (part D, Section 5.2.3.4). Although for part B the MLP1 architecture
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with a single hidden layer proposed in Section 5.2.3 presents a similar performance
in terms of RMSE for the o�ce scenario, in the lobby scenario, its performance
decreases. So, for part B, we designed a new MLP ANNs model to estimate the rela-
tive distance between devices. Our new model presents a di�erent architecture with
respect to the MLP ANNs model proposed in Section 5.2.3 to cope with diverse sce-
narios (i.e., o�ce and lobby), technologies (i.e., BLE and Wi-Fi) and �ngerprinting-
based methods instead of lateration. In detail, the architecture consists of one input
layer, three hidden layers, and one output layer. The input layer has six neurons, the
�rst hidden layer has three neurons, and the second and third layers have fourteen
neurons each. We used the hyperbolic tangent sigmoid (tangsig) activation function,
the conjugate gradient backpropagation (trainscg) training function, and 25 and 12
epochs for the o�ce and lobby scenarios, respectively.

Figure 5.6 shows the proposed MLP ANNs model architecture. The six fea-
tures used in the input are: the '((�'- () - ); the estimated position coordinates
F (%̂ � %

F
() - )) and G (%̂ � %

G
() - )) of the transmitter (neighbor device/user), which

were estimated by the stand-alone �ngerprinting–9-NN algorithm (Algorithm 4);
the estimated position coordinates F (%̂ � %

F
('- )) and G (%̂ � %

G
('- )) of the receiver

(target device/user), which were estimated by the stand-alone �ngerprinting–9-NN
algorithm too; and the '((�

1;
'-

(⌫- ) (see Table 5.1 and Table 5.7 for the o�ce and
lobby scenarios, respectively).

Input Layer Hidden Layers Output Layer

Estimated
distance

HL1 
(3) 

HL2 
(14) 

HL3 
(14) 

Figure 5.6 MLP neural network model architecture (fingerprinting). Used to estimate the relative pair-
wise distance between the target and neighboring devices/users.

The full collaborative positioning algorithm is based on the algorithm 3 described
in Section 5.2.3.5. In order to re-use the algorithm, the following considerations
must be taken into account:
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• Instead of using the position of each collaborative device/user estimated by the
stand-alone lateration (%̂ !0B1

F
() - ), %̂ !0B1

G
() - ), %̂ !0B1

F
('- ), %̂ !0B1

G
('- )) as

input, we use the position estimated by the stand-alone �ngerprinting–9-NN
method (%̂ � %

F
() - ), %̂ � %

G
() - ), %̂ � %

F
('- ), %̂ � %

G
('- )), computed in the sec-

ond phase (Section 5.3.2).

• To compute the �nal estimated position of the device/user (ˆ̂P('- )) using the
formulas expressed in Eq. (5.2) and Eq. (5.3) (part D, Section 5.2.3.4), instead
of considering the estimated stand-alone position P̂:0B1 ('- ), we consider the
P̂� % ('- ) computed by the stand-alone �ngerprinting–9-NN (second phase,
Section 5.3.2) and instead of naming the collaborative estimated position as
P̂:0B2 ('- ), we renamed as P̂:0B1 ('- ) to keep the coherence of the variables
names because in Section 5.3 the stand-alone devices’ position is not estimated
by lateration, only the collaborative estimated position is computed by the
collaboratively lateration algorithm in part C.

5.3.4 Experiments and results

5.3.4.1 Experimental setup

This section enlists the main objectives and describes the setup of the experiments
conducted to validate and test our proposed variant of mobile device-based CIPS
using MLP ANNs with respect to stand-alone IPSs (i.e., BLE �ngerprinting and
Wi-Fi �ngerprinting). The aims of the experiments are:

• To demonstrate the usefulness of the CIPS baseline scheme (presented in Sec-
tion 5.1) to develop and test CIPSs that enhance the performance of stand-
alone IPSs.

• To assess the feasibility of our proposed variant of CIPS to enhance the posi-
tioning accuracy of stand-alone IPSs (i.e., BLE �ngerprinting and Wi-Fi �n-
gerprinting).

• To evaluate the generalization of our CIPS based on MLP ANNs to work
under di�erent indoor scenarios conditions (i.e., o�ce and lobby scenarios
conditions) and technologies (i.e., BLE and Wi-Fi).

• To study the e�ect that the distance and NLOS conditions between collabo-
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rative devices have on the positioning accuracy of CIPS.

We selected two real-world scenarios, o�ce and lobby scenarios, to perform the
data collection and experimentally test the stand-alone IPSs and CIPS proposed. The
o�ce scenario, located at Universitat Jaume I, Spain, is described in Section 3.2.2
and its 3D representation is shown in Figure 3.3(b). The same o�ce scenario is
used in the experiments of Section 5.2. The lobby scenario, located at Tampere
University, Finland, is described in Section 3.5.1 and its 3D representation is shown
in Figure 3.9.

In each scenario, we designed six collaborative con�gurations made up of �ve mo-
bile devices. Each con�guration presents a diverse distribution of mobile devices in
the scenario, which provides di�erent distances between devices and NLOS condi-
tions. The collaborative data collection (broadcast and record data from neighboring
devices) was carried out for 2 hours in each scenario. Also, simultaneously, the data
from the deployed BLE anchors in the o�ce scenario and Wi-Fi APs available in
the lobby scenario were recorded. It should be pointed out that the version and fre-
quency related to the Wi-Fi collected in the scenario are not available as the access
points used were those available in the particular scenario and the software installed
in the smartphones does not register such information. In detail, the collaborative
data collection procedure for both, o�ce and lobby scenarios, is in accordance with
the described in Section 3.2.4 (Subset-C) and Section 3.5.1 respectively. Figure 5.3
present the distribution of mobile devices in the o�ce scenario for each con�gura-
tion and Figure 5.7 the distribution of mobile devices in the lobby scenario. In both
scenarios, con�gurations 1, 4, and 5 are dedicated for testing (see Figure 5.3(a)) and
Figure 5.7 (a)), and the con�gurations 3, 6, and 7 (see Figure 5.3(b)) and the con�g-
urations 2, 3 and 6 (see Figure 5.7 (b)) are dedicated for training and evaluation in
the o�ce and lobby scenarios, respectively. Table 5.2 and Table 5.6 summarize the
position of devices GT coordinates in each scenario.

Table 5.6 Devices’ Ground truth in each configuration in the lobby scenario.

ID/RX
Ground truth (m)

ScenarioCon�g. 1 Con�g. 2 Con�g. 3 Con�g. 4 Con�g. 5 Con�g. 6 Con�g. 7
x y x y x y x y x y x y x y

1 2 3 0 0.5 9 2 6 0.5 0 0.5 0 0.5 - - Lobby
5 2 6 0 6 11 4.5 6 5.5 0 6 0 6 - - Lobby
7 5 3 14 6 15 2 12 5.5 14 6 14 6 - - Lobby
8 5 6 14 0.5 11 1 12 0.5 14 0.5 14 0.5 - - Lobby
9 1 4.5 12 3 12 2 9.5 4.5 1.5 2 7 3 - - Lobby
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Figure 5.7 Distribution of the configurations used in the training& evaluation and testing in the lobby
scenario.

Regarding the hardware, we used a total of nine mobile devices to perform the
experiments in the scenarios. Devices 1, 2, 3, 4, and 6 for the o�ce and 1, 5, 7, 8,
and 9 for the lobby scenario. Each device is able to measure the RSSI of neighboring
collaborative devices and to transmit BLE packets using the iBeacon protocol. Also,
they are able to measure the RSSI ofWi-Fi APs available in the lobby and the RSSI of
deployed BLE anchors in the o�ce scenario. Further information about the devices,
as well as the '((�

1;
'-

values corresponding to each of them used in the experiments,
is provided in Table 5.1 and Table 5.7 for the o�ce and lobby scenarios, respectively.

Table 5.7 '((�
1;
'-

(⌫- ) values by device (lobby scenario).

ID/'- Device name Model '((�
1;
'-

(⌫- ) values Scenario
(dBm)

1 Galaxy S8 SM-G950F -68.88 Lobby
5 Honor 20 Lite HRY-LX1T -62.11 Lobby
7 Galaxy S6 Edge SM-G928F -61.17 Lobby
8 Huawei P40 Lite CDY-NX9A -69.74 Lobby
9 Galaxy A12 SM-A125F -66.79 Lobby

The stand-alone �ngerprinting–9-NN approach is implemented in two sequential
phases. The �rst phase is a training phase, where surrounded RSSIs are measured on
reference points of the scenario to create a database of RSSI-signatures (radio map)
[209, 210]. The second phase, known as the operational or online phase, is devoted
to estimating the unknown position based on the comparison between the created
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radio map and the signatures measured on the unknown position [209].
For the experiments conducted in the o�ce scenario, we created a radio map based

on the BLE anchors deployed in the environment. This BLE radio map considers
�ve BLE anchors (red points 1, 4, 9, 18, and 19 in Figure 3.12 (a)) deployed in the
o�ce scenario and 72 reference points (blue points) marked on the �oor as shown
in Figure 3.12 (a). Eleven samples by reference point were collected and saved. In
total, the BLE radio map contains 792 samples.

For the experiments conducted in the lobby scenario, we created a radio map
based on the opportunistic Wi-Fi signals present in the lobby scenario. This Wi-Fi
radio map considers the 67 Wi-Fi APs presents in the lobby scenario and 136 refer-
ence points marked on the �oor as shown in Figure 3.13. In each reference point,
eight samples were collected and saved. In total, the Wi-Fi radio map contains 1088
samples.

5.3.4.2 Tuning the Multilayer Perceptron (MLP) neural network

To de�ne the most suitable MLP architecture and its hyperparameters for the models
used in the o�ce and lobby scenario, we evaluate four architectures in each scenario.
The hyperparameters considered were the number of hidden layers (1 to 3) and
the number of hidden neurons. We use as a reference for the tunning of our MLP
neural network the results of the evaluation conducted in Section5.2.4.2. Speci�cally,
the parameters of the MLP1, which presented the most accurate relative distance
estimation in the o�ce scenario, namely the number of neurons in the �rst layer (3),
the hyperbolic tangent sigmoid (tansig) activation function, and a scaled conjugate
gradient backpropagation training function (trainscg). Then, based on the initial
results of the MLP neural network architecture in both scenarios, we consider 3
architectures, one with 2 hidden layers and two with 3 hidden layers, to improve the
results. The hyperparameters set up for each architecture are detailed in Table 5.8.

The results of comparing the real distance with the estimated distance in each
of the 4 neural network architectures MLP are presented in Figure 5.8 (o�ce sce-
nario) and Figure 5.9 (lobby scenario) through density scatter plots, as well as their
correlation coe�cient (R), and the RMSE.

Analyzing the results of Figure 5.8 (o�ce scenario), we can observe that the
correlation coe�cient (R) of the three hidden layers MLP architectures (MLP2 and
MLP3) is greater than the one hidden layer (MLP1). Considering the three hidden

180



Table 5.8 Tested MLP architectures and hyperparameters for office and lobby scenarios.

Parameters MLP1 MLP2 MLP3 MLP4

No. Input layers 1 1 1 1
No. Hidden layers (HLs) 1 2 3 3
No. Output Layer 1 1 1 1
No. Neurons HL1 3 3 3 3
No. Neurons HL2 - 6 6 14
No. Neurons HL3 - - 6 14
Training function trainscg
Activation function tansig
Performance function Mean Square error

layers MLP architectures (MLP3 and MLP4), we can notice that a higher number
of neurons in the second and third layers (i.e., 14 neurons) increase the correlation
coe�cient and reduce the RMSE. Comparing the density scatter plots of MLP3
and MLP4 through illustrated in Figure 5.4 (c) and (d), respectively, we notice that
the MLP architecture with a higher number of neurons in the second and third
layers (MLP4) has a higher density of predicted values near to the real values than
the one with the lower number of neurons in the second and third layers (MLP3).
Regarding the results of Figure 5.9 (lobby scenario), we observe that in the four
MLP architectures (MLP1 – MLP4) the predicted values near the real values are no
so dense as the presented in Figure 5.8, which is also indicated by the low value of
the correlation coe�cient. However, similar to the evaluation of MLP architecture
with the training dataset of the o�ce scenario, the MLP architecture with a greater
number of neurons in the second and third layers (MLP4) presents the highest value
of the correlation coe�cient and the lowest value of RMSE in comparison with
MLP1, MLP2, and MLP3.

It should be noted that the MLP1 architecture with a single hidden layer (Fig-
ure 5.8 (a)), evaluated in the o�ce scenario, presents similar values to those of the
architecture selected in Section 5.2.4.2 (MLP1) for the same scenario. However, for
the lobby scenario, the value of the correlation coe�cient is lower, and the RMSE is
slightly higher in comparison with the MLP1 of Section 5.2.4.2. Consequently, in
terms of accuracy and correlation coe�cient, the MLP4 with three hidden layers (3,
14, and 14 neurons for the �rst, second, and third layer, respectively), a hyperbolic
tangent sigmoid activation function, and a scaled conjugate gradient backpropagation
training function are better able to estimate the relative distance using BLE–RSSI
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Figure 5.8 Target vs Predicted distances from the test dataset estimated with MLP1–MLP4 architec-
tures (Office scenario–BLE-fingerprinting).

data in both o�ce and lobby scenarios.

5.3.4.3 Results of the collaborative model

The main results of the evaluation of our proposed CIPS using MLP ANNs and the
stand-alone �ngerprinting–9-NN approach are presented in this section. Table 5.9
and Figure 5.10 present the o�ce scenario’s results and Table 5.10 and Figure 5.11
the lobby scenario’s results. Also, we present the results divided by con�guration
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Figure 5.9 Target vs Predicted distances from the test dataset estimated with MLP1–MLP4 architec-
tures (Lobby scenario–Wi-Fi-fingerprinting).

to show the e�ect of the relative distance between collaborative devices and NLOS
conditions on positioning accuracy in CIPS.

Table 5.9 summarizes the results of the evaluation of the CIPS usingMLPANNs,
and the stand-alone �ngerprinting–9-NN approach, which considered a reduced
number of BLE anchors (i.e., anchors 1, 4, 9, 18, and 19 in Figure 5.3(a)) in the
o�ce scenario. The Table 5.9 presents the evaluation metrics RMSE, mean, median,
75th and 90th percentile, and the relative di�erence of con�gurations 1, 4, and 5 of
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both approaches.

Table 5.9 Main results metrics provided by the BLE fingerprinting baseline and our proposed collabo-
rative approach.

BLE �ngerprinting baseline Collaborative approach
Error (m) Error (m) Di�

Eval. metric Con�g. 1 Con�g. 4 Con�g. 5 Con�g. 1 Con�g. 4 Con�g. 5 Con�g. 1 Con�g. 4 Con�g. 5

RMSE 4.92 4.7 2.54 3.91 4.64 3.72 # 20.53% # 1.28% " 46.46%
Mean 4.58 4.25 1.96 3.55 4.12 3.16 # 22.49% # 3.06% " 61.22%
Median 4.25 4.16 1.53 3.45 3.86 2.65 # 18.82% # 7.21% " 61.22%
75

B⌘ percentile 5.81 5.31 2.68 4.45 5.67 4.86 # 23.41% " 6.78% " 73.20%
90

B⌘ percentile 7.14 6.97 4.34 5.64 7.06 5.75 # 21.01% " 1.29% " 32.49%

Figure 5.10 shows the devices’ distribution of the three con�gurations set in the
o�ce scenario. The con�gurations present di�erent relative distances between de-
vices, namely short distance (con�guration 1), medium distance (con�guration 4),
and large distance (con�guration 5). Also, the ECDF plots of each con�guration are
presented. The red lines represent the results for CIPS using MLP ANNs and black
dashed lines for the stand-alone �ngerprinting–9-NN approach.
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Figure 5.10 CDF of the fingerprinting baseline and collaborative approach (5 BLE anchors) of config-
urations 1, 4, and 5 in the office scenario.

Table 5.10 summarizes the results of the evaluation of the CIPS using MLP
ANNs, and the stand-alone �ngerprinting–9-NN approach, which considered the
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Wi-Fi APs available in the lobby scenario. The evaluation metrics used are the same
that in Table 5.9.

Table 5.10 Main results metrics provided by the Wi-Fi fingerprinting baseline and our proposed col-
laborative approach.

Wi-Fi �ngerprinting baseline Collaborative approach
Error (m) Error (m) Di�

Eval. metric Con�g. 1 Con�g. 4 Con�g. 5 Con�g. 1 Con�g. 4 Con�g. 5 Con�g. 1 Con�g. 4 Con�g. 5

RMSE 5.83 4.04 5.4 5.37 4.1 6.19 # 7.89% " 1.49% " 14.63%
Mean 5.2 3.51 4.86 5 3.68 5.89 # 3.85% " 4.84% " 21.19%
Median 4.74 3.18 4.34 5.12 3.59 5.79 " 8.02% " 12.89% " 33.41%
75

B⌘ percentile 7.13 4.62 5.68 6.29 4.92 7.12 # 11.78% " 6.49% " 25.35%
90

B⌘ percentile 9.3 6.25 7.88 7.49 5.88 8.2 # 19.49% # 5.92% " 4.06%

Figure 5.11 shows the devices’ distribution of the three con�gurations set in the
lobby scenario and their ECDF plots. Similarly that in Figure 5.10, con�gurations
1, 4, and 5 represent short, medium, and large relative distance between devices,
respectively. Black dashed lines and red lines in the plots represent the stand-alone
and collaborative approaches, respectively.
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Figure 5.11 CDF of the fingerprinting baseline and collaborative approach (67 Wi-Fi APs) of configu-
rations 1, 4, and 5 in the lobby scenario.
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5.3.5 Discussion

We proposed a variant of mobile device-based CIPS using MLP ANNs to enhance
the positioning accuracy of traditional BLE and Wi-Fi �ngerprinting IPSs. The sys-
tem’s structure is based on our proposed CIPS baseline scheme described in Sec-
tion 5.1. We experimentally test the proposed collaborative approach in two real-
world indoor scenarios (i.e., o�ce and lobby). In those scenarios, we consider vari-
ous distributions of di�erent collaborative mobile devices (con�gurations) and tech-
nologies (Wi-Fi and BLE) to evaluate the generalization and positioning accuracy of
our approach. In each scenario, we distributed the mobile devices considering three
distances between them, namely short, medium, and large distances for con�gura-
tions 1, 4, and 5, respectively. The di�erent distances allow us to study their e�ect
on the positioning accuracy of CIPS.

The o�ce scenario’s results presented in Section 5.3.4.3 (Table 5.9 and Fig-
ure 5.10) show that our collaborative approach outperforms the stand-alone one
when the mobile devices are very near to each other (con�guration 1). Speci�cally,
Table 5.9 shows that in con�guration 1, our collaborative approach reduced the er-
ror in all the evaluation metrics. The maximum di�erence is 23.41% for the “75th
percentile” metric. Under the shortest distance between collaborative devices (trans-
mitters and receivers), the signal propagation presents less attenuation and reduced
multipath propagation. Similarly, in the medium distance (con�guration 4), we can
notice from the ECDF of Figure 5.10(b) that our approach in the �rst 60% and after
the 90% of cases outperform the stand-alone, also provides a most stable position es-
timation. As the devices are more distant from each other, the physical obstruction
and multipath propagation due to surrounding objects are more frequent (see the
sketches in Figure 5.10). It causes a decrease in the accuracy of the estimated relative
distance between the devices and the system’s overall accuracy. Nevertheless, our
approach, thanks to its MLP ANNs model used for estimating relative distance, can
partially mitigate some of those e�ects in the medium distance. In the large distance
case (con�guration 5), we can observe from the ECDF of Figure 5.10(c) that our
approach performance is worse than the stand-alone. Additionally, from Table 5.9,
we notice that in con�guration 5, the stand-alone in all its evaluation metrics reduced
by around 50% the error in comparison with their other con�gurations. The cause
is that in con�guration 5, the collaborative devices are closer to the BLE anchors
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(i.e., anchors 1, 4, 9, 18, and 19 in Figure 5.3(a)) used for creating the BLE radio
map. So, the high improvement of positioning accuracy of the stand-alone approach,
together with the large distance, contributes to increasing the di�erence between the
collaborative and stand-alone approach results in con�guration 5.

The lobby scenario’s results presented in Section 5.3.4.3 (Table 5.10 and Fig-
ure 5.11) show that our collaborative approach in the short distance case (con�gu-
ration 1) outperform the stand-alone approach. Unlike the o�ce scenario, its per-
formance is more moderate, reducing the error in four of �ve evaluation metrics,
as it can be seen in Table 5.10. In the medium distance (con�guration 4), from the
ECDF of Figure Figure 5.11(b), we observe that until the 80% of cases, the stand-
alone approach outperform the collaborative one, but in the remaining cases, the
collaborative approach outperforms the stand-alone. In the large distance case (con-
�guration 5), we notice from the ECDF of Figure 5.11(c) that our approach after
the 90% of cases moderate outperform the stand-alone approach. However, in the
rest of the cases, its performance is worse than the stand-alone. Even though in the
lobby scenario, the distance between the collaborative devices of the con�gurations is
similar to that of the o�ce scenario and our CIPS is the same, the environment geom-
etry, scenario’s area, the mobile devices (see Table5.1 and Table 5.7 for the o�ce and
lobby scenarios, respectively), and technology used (Wi-Fi instead of BLE) are di�er-
ent. Nevertheless, we can see that in the lobby scenario, the con�gurations with the
shortest distance between collaborative devices present the best performance as in the
o�ce scenario. It should be noted that our proposed mobile device-based CIPS using
MLP ANNs improved positioning accuracy in both experiments independently that
the scenarios, technologies, and mobile devices were di�erent. Also, based on the
results, we can mention that its usability and performance can be exploited in cases
with a high density of collaborative users/devices in the environment.

To sump up, the main results of the evaluation of our proposed variant of mobile
device-based CIPS using MLP ANNs demonstrated that CIPS enhances the posi-
tioning accuracy of traditional �ngerprinting IPSs under speci�c conditions. Mainly,
conditions where the collaborative devices have short and medium distances between
them. Moreover, the integration of MLP ANNs model in CIPSs allows us to use
our approach under di�erent scenarios and technologies, showing its level of gener-
alization, usefulness, and feasibility.
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5.4 Comparison with other collaborative methods

Finally, to assess how well our proposed CIPS variants perform in comparison with
state-of-the-art (SOTA) CIPSs, we compare their accuracy to eight SOTA CIPSs.
We selected these SOTAs CIPSs based on their mobile device orientation and simi-
lar evaluation metrics to our proposed CIPS, such as “mean”, “90th percentile” and
“RMSE”. This made them suitable for a fair comparison. We not only considered
the CIPSs that have been experimentally evaluated but also those evaluated through
simulations. Simulations provide a controlled environment that can be more ideal
than experimental conditions, allowing for a more comprehensive comparison of
di�erences in accuracy. However, it is important to note that results based on sim-
ulations may not necessarily re�ect real-world performance, and could potentially
give a distorted picture of the results. To address this, we have clearly indicated
which CIPSs were experimentally evaluated and which based on simulations.

Reproducing and replicating the existing SOTAmodels and their reported results
is practically not feasible, as they may use speci�c technologies, settings, and/or in-
frastructure which are not available in our scenarios and collected datasets. There-
fore, the comparison is based on published results, which provide a reasonable per-
formance comparison benchmark. Speci�cally, the comparison focused on three
aspects: �rst, the accuracy improvement compared to the non-collaborative baseline
system; second, the test conditions, which included the homogeneity/heterogene-
ity of devices, LOS/NLOS environments, and the type of evaluation (experimen-
tal/simulated/hybrid); and third, the complexity of our proposed solutions com-
pared to the SOTA CIPSs. To determine the complexity, we consider the number
of parameters needed for the model and the size and type of model implemented.

Within the SOTA CIPSs tested experimentally, we have included the following:

• Taniuchi, Liu, Nakai, and Maekawa [97] proposed a CIPS based on a spring
model and homogeneous smartphones using Wi-Fi-�ngerprinting and BLE
RSSI. Their system was tested through experiments and improved the “mean”
accuracy within 2.7%-32.6% in several scenarios.

• Seco and Jiménez [118] proposed a particle �lter approach for CIPS , which
relied on smartphones with homogeneous Radio-Frequency Identi�cation
(RFID) tags attached to them. This system was tested through experiments,
and the results showed an improvement of 9.09% for the “90th percentile”.
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• Ta, Dao, Vaufreydaz, and Castelli [138] introduced two CIPS versions based
on particle �lter and Wi-Fi and BLE RSSI values. The implemented ver-
sions were tested experimentally considering heterogeneous devices in LOS
between them in a corridor scenario. The results showed an improvement of
the “mean” accuracy within 5.3%-47.5%.

• Della Rosa, Wardana, Mayorga, Simone, Raynal, Figueiras, and Frattasi [74]
presented a proof of concept of a collaborative mobile positioning approach
for RSSI Wi-Fi using Extended Kalman Filter (EKF) and Non-Linear Least
Square (NLLS). The positioning accuracy was tested experimentally consid-
ering LOS conditions between devices. The results showed an improvement
of the “RMSE” accuracy within 35.22%-57.25%.

• Morral and Dieng [94] proposed a collaborative RSSI-based indoor position-
ing system based on Distributed Stochastic Approximation (DSA) algorithm,
which re�nes the positioning accuracy of the nodes computed by a Biased-
maximum Likelihood Estimator (B-MLE) algorithm. The system was tested
on real indoor scenarios using TMote Sky and TinyOS CC2420 devices under
NLOS conditions. The system improved the “mean” accuracy within 2.96%-
44.6%.

Additionally, we included the following SOTA CIPSs tested through simulations or
in a hybrid mode:

• Chen, Yang, and Wang [105] proposed a �ngerprinting-based cooperative po-
sitioning method that used pairwise distances between peer users as a physical
constraint and probabilistic peer selection to enhance mobile users’ position es-
timates. The authors conducted a hybrid test by estimating the initial positions
of users with a real radio map and simulating multiple users with pairwise dis-
tances. The distance measurement model is based on the true distances with
noise added. The results showed an improvement of the “90th percentile”
within 54.78%-66.1% for this method.

• Noh, Yamaguchi, and Lee [41] presented an infrastructure-less CIPS, which
uses collaborative peer-to-peer Wi-Fi beaconing and dead reckoning based on
smartphones. The positioning accuracy of the general system was tested using
commercial simulator software (Qualnet), and the radio propagation data was
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generated by Wireless InSite software using the ray-tracing technique. The
system improved the “mean” accuracy within 51.43%-51.56%.

• Vaghe� and Buehrer [111] proposed an algorithm for cooperatively tracking
mobile nodes in NLOS environments based on semide�nite programming.
The simulation results showed an improvement of 33.87% for the “90th per-
centile”.

Our two CIPS variants utilize ANN to enhance positioning accuracy in real-world
scenarios, taking into account the presence of heterogeneous mobile devices and
NLOS conditions. Our experiments demonstrated a maximum improvement of
43.49%, 29.32%, and 38.72% in the “mean”, the “90th percentile” and “RMSE”,
respectively, when compared to a baseline system.

Table 5.11 summarizes the reported results used in the comparison between the
SOTA CIPSs and our proposed CIPSs.

Table 5.11 Comparison of SOTA CIPSs vs proposed CIPS

System Ref. Eval. metric Baseline
error (m)

Collaborative
error (m) Di�. (%)

Test conditions Device used

Complexity

N
LO

S

LO
S

Ex
p.

Si
m
.

H
om

og
.

H
et
.

Type

[97] Mean
2.08 2.02 2.7 (Min.)

– – – Smartphones
1.45 0.98 32.6 (Max.)

[118] 90
B⌘ percentile 4.4 4 9.09 – – –

Smartphones
with RFID
tags

[138] Mean
3.8 3.6 5.3 (Min.)

– – – Smartphones
4 2.1 47.5 (Max.)

[74] RMSE
3.35 2.17 35.22 (Min.)

– – – Laptops
3.77 1.61 57.25 (Max.)

[94] Mean
1.35 1.31 2.96 (Min.)

– – N/S N/S
TMote Sky
and TinyOS
CC24201.39 0.77 44.6 (Max.)

*[105] 90
B⌘ percentile

1.57 0.71 54.78 (Min.)
– – Smartphones

0.59 0.2 66.1 (Max.)
*
[41] Mean

4.55 1.24 51.43(Min.)
– – N/S N/S Smartphones

(DR part)40.98 19.85 51.56 (Max.)

*[111] 90
B⌘ percentile 6.2 4.1 33.87 – – N/A N/A N/A

CIPS proposed
Mean 4.29 2.42 43.49 (Max.)

– – – Smartphones90
B⌘ percentile 6.72 4.75 29.32 (Max.)
RMSE 4.52 2.77 38.72 (Max.)

Note:
N/S: Not Speci�ed; N/A: Not Applicable; Exp.: Experimental; Sim.: Simulated; Homog.: Homogeneous; Het.: Heterogeneous;
*: Systems tested through simulations or in a hybrid mode

and : Low; : Medium ; and : High

Based on the SOTA CIPSs tested experimentally [97, 118, 138, 74, 94], we can
observe that our proposed CIPS variants outperform the CIPS in [97] by 10.89%
and that two CIPS ([138, 94]) slightly outperform our proposed CIPS variants by
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4.01% and 1.11%, respectively, based on the maximum “mean” accuracy di�er-
ence. Considering themaximum “90th percentile” accuracy di�erence, our proposed
CIPSs variants outperform the CIPS in [118] by 20.23%. Regarding the maximum
“RMSE” accuracy di�erence, the CIPS in [74] outperform our proposed variants
by 18.53%. Qualifying the aforementioned results, we note that those CIPSs that
outperformed our CIPS variants by more than 2% ([138, 74]) were all tested in LOS
conditions. It is important to note that LOS conditions provide a direct path between
the transmitter and receiver, which reduces variance and eases position estimation.
On the other hand, the CIPS with similar or lower performance as our proposed
variants ([97, 94, 118]) were tested in NLOS conditions, where obstacles may scat-
ter the signal and therefore reduce accuracy. Considering the hardware used, we
can notice that the superior performance achieved by the CIPS in [94] with respect
to our proposed CIPSs may be attributed to the use of speci�c telecommunication
boards. Moreover, due to the limited availability of heterogeneous device cases in
the SOTA systems and their diverse test conditions, we can not conduct a precise
comparison to evaluate the impact of homogeneous and heterogeneous devices on
positioning accuracy.

The SOTA CIPSs in [41], [105] and [111], tested through simulation or hybrid
mode and in NLOS conditions, slightly outperform our proposed CIPS variants
by 8.07% in terms of maximum “mean”, and by 36.78% and 4.55% considering the
maximum “90th percentile” accuracy di�erence, respectively. On one hand, the eval-
uation of systems based on simulations allows for greater control and manipulation
of factors that can impact the positioning accuracy, such as the number and place-
ment of obstacles and devices, the signal-to-noise ratio, and the receiver sensitivity.
For example, a greater density of collaborative devices can improve the positioning
accuracy of CIPS. On the other hand, the experimental evaluation of the systems
is prone to environmental and hardware limitations that can introduce uncertainty
and variability in the results.

Regarding complexity, our proposed systems are comparable to CIPS in [138]
and [74] based on particle �lter and the CIPS in [74] based on EKF and NLLS.
Nevertheless, the modularity of our system allows us their straightforward imple-
mentation and con�guration. Moreover, compared with [118], our systems do not
rely on additional hardware.

To sum up, our proposed CIPS variants demonstrate positioning accuracy im-
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provements that are either better or similar to SOTA CIPSs under similar test con-
ditions (i.e., NLOS conditions and tested experimentally). Although our CIPSs are
experimentally tested, we obtained positioning accuracy improvements that are close
to those reported by simulation-based systems. Also, the complexity of our proposed
CIPSs is comparable with the SOTA CIPS included in the comparison.

5.5 Chapter summary and discussion

In this chapter, we proposed a versatile and straightforward CIPS baseline scheme
designed for developing CIPSs capable of improving the performance of traditional
IPSs. To this end, the modularity of our baseline scheme allows us to implement,
evaluate and improve the performance of its modules and the collaborative indoor po-
sitioning technologies, techniques, and methods. Moreover, to validate and demon-
strate the usefulness of our baseline scheme for enhancing the performance (i.e., po-
sition accuracy) of traditional IPSs, we developed and experimentally evaluated two
variants of a mobile device-based CIPS using MLP ANNs model. In those developed
CIPSs, we considered di�erent technologies (i.e., Wi-Fi and BLE), techniques (i.e.,
lateration and �ngerprinting), and two real-world scenarios.

The CIPS baseline scheme considered in its design the information presented
in our CIPS systematic review, namely the concept of compatibility among CIPS,
system modularity, architecture, and infrastructure. The considerations about tech-
nologies, techniques, and methods are explained further in the description of the
two CIPS designed based on our baseline scheme. Our baseline scheme consists of
a modular system, which provides versatility to be modi�ed and implemented and
facilitates compatibility with other CIPS modules designed under the same scheme.
It also includes a decentralized architecture, which is able to distribute the compu-
tational load, reduce the data transfer among devices, and enable each device to use
di�erent technologies, techniques, and methods in the IPS. Regarding the infrastruc-
ture, the baseline scheme permits both infrastructure-based and infrastructure-free
use.

Unlike most of the CIPSs analyzed in the systematic review that considers only
one type of device, we considered using heterogeneous devices in our CIPSs. There-
fore, we added one more phase to the two existing phases (collaborative and non-
collaborative) to register the various devices used in the system. Our baseline scheme
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divides the system into 3 phases: the registration phase, which is used to register het-
erogeneous mobiles devices that interact in the CIPS; the non-collaborative phase,
where each device independently estimates its initial position based on a IPS; and
a collaborative phase, which collaboratively enhance the estimated position of the
target device/user.

In the �rst variant of CIPS, presented in Section 5.2, we designed a mobile device-
based CIPS using MLP ANNs to improve the positioning accuracy of BLE–RSSI
lateration-based methods. In the system, we used the BLE technology and the lat-
eration approach in both the non-collaborative and collaborative phases. In detail,
our proposed CIPS faces three aspects that decrement the positioning accuracy in
reduced the positioning error traditional lateration-based IPS without increasing the
infrastructure cost. The �rst aspect is the NLOS conditions and de�cient anchors
deployment. Second, ine�cient modeling of the signal propagation. Third, the ef-
fect of device heterogeneity on positioning accuracy. In our solution, in addition
to using the surrounding mobile device to extend the positioning network, we pro-
posed a novel model to estimate the relative distance between collaborative mobile
devices based on the MLP ANNs model. Our approach uses the MLP ANNs model
to replace the LDPL model. LDPL models mainly estimate the distance based on
the signal attenuation formulas and a few parameter settings. Nevertheless, with the
neural network model, the distance estimation is improved by considering the rela-
tion between distance and RSSI patterns, pairwise device position, identi�cation of
devices (transmitter and receiver), and variation of RSSI measurements due to the
devices’ hardware heterogeneity.

The evaluation of both, our proposed collaborative approach and the traditional
lateration-based IPS was conducted in an o�ce scenario. The scenario considers the
diverse distributions of heterogeneous mobile devices (con�gurations) and the as-
pects that a�ect the positioning accuracy, mentioned before. The result of compar-
ing both approaches demonstrated the feasibility and advantages of our approach to
outperform the traditional lateration-based IPS under these challenging conditions.
Considering the relative di�erence of the “RMSE”, “mean” and “75th percentile”
metric, we observed that our proposed collaborative approach signi�cantly outper-
forms the lateration baseline in con�guration 1 (short distances  4m), moderately
outperforms the lateration baseline in con�guration 4 (4m < medium distances 
8m) and a little less in con�guration 5 (large distances > 8m).
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Additionally, it should be pointed out the suitability of theMLPANNsmodel for
modeling the propagation of signals over short distances (see density scatter plot Fig-
ure 5.4(a)) while taking into account the unique properties of each receiving device
and under NLOS conditions, which is crucial for determining the distance between
(heterogeneous) collaborative devices in real applications.

In the second variant of CIPS, presented in Section 5.3, we designed a mobile
device-based CIPS using MLP ANNs to enhance the positioning accuracy of IPSs
based on �ngerprinting approaches. Although we designed a similar system (same
baseline scheme) in Section 5.2.3.2, the new proposed MLP ANNs model presents a
di�erent architecture, which enables the collaborative system to work under diverse
scenarios (i.e., o�ce and lobby) and technologies (i.e., BLE and Wi-Fi). Moreover,
the new architecture is designed to process the input data provided by �ngerprinting–
9-NN instead of lateration methods of the non-collaborative phase.

We experimentally tested the proposed collaborative approach in two indoor sce-
narios (i.e., o�ce and lobby). In those scenarios, we considered various distributions
of di�erent collaborative mobile devices (con�gurations), NLOS conditions, and in
each scenario, a diverse technology (Wi-Fi and BLE) to evaluate the generalization
and positioning accuracy of our approach. Moreover, we evaluated the e�ect of the
distance between collaborative devices on the positioning accuracy of CIPSs. In the
evaluation, we considered three di�erent distances between the collaborative devices
(short, medium, and large distance).

The results demonstrated that: for short distances between collaborating de-
vices, our proposed approach outperforms the traditional IPSs based on BLE–
�ngerprinting andWi-Fi–�ngerprinting with a maximum error reduction of 23.41%
and 19.49% for the “75th percentile” and “90th percentile” metric, respectively. For
medium distances, our proposed approach outperforms the traditional IPSs based on
BLE–�ngerprinting in the �rst 60% and after the 90% of cases in the ECDF and
only partially (20% of cases in the ECDF) the traditional IPSs based on Wi-Fi–
�ngerprinting. For large distances, our proposed approach performance is worse
than the traditional IPSs based on �ngerprinting.

Additionally, we performed a literature-based comparison of our proposed CIPS
variants with SOTA CIPSs. The results showed that our proposed systems achieve
comparable or better accuracy than the SOTA systems, while using heterogeneous
devices and NLOS conditions in the test scenarios. We also note that their complex-
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ity is comparable with the evaluated SOTA systems.
Overall, the results demonstrate the usefulness and usability of our CIPS baseline

scheme to develop newCIPS considering di�erent technologies (i.e., Wi-Fi and BLE)
and techniques (i.e., lateration and �ngerprinting) to improve the positioning accu-
racy of traditional IPSs, namely IPSs based on BLE–lateration, BLE–�ngerprinting,
and Wi-Fi–�ngerprinting. Speci�cally, our �rst variant of mobile device-based CIPS
using MLP ANNs proposed demonstrated that outperforms the positioning accu-
racy of the lateration baseline in all the con�gurations tested (i.e., where the collab-
orative devices have short, medium, and large distances between them), the second
variant of mobile device-based CIPS using MLP ANNs demonstrated that CIPS en-
hances the positioning accuracy of traditional IPSs based on �ngerprinting under
speci�c conditions. Mainly, conditions where the collaborative devices have short
and medium distances between them. Moreover, the integration of MLP ANNs
model in CIPSs allows us to use our approach under di�erent scenarios and tech-
nologies, showing its level of generalization, usefulness, and feasibility.
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6 CONCLUSIONS

The research of this doctoral thesis focused on the development and evaluation of
mobile device-based collaborative indoor techniques, using Multilayer Perceptron
(MLP) Arti�cial Neural Networks (ANNs), for human positioning to enhance the
position accuracy of traditional Indoor Positioning Systems (IPSs) based on Received
Signal Strength Indicator (RSSI).

As an initial step of our research, we thoroughly investigated the Collaborative
Indoor Positioning Systems (CIPSs) for humans reported in the literature through
a systematic review to obtain a state-of-the-art. We identi�ed the system’s architec-
ture, infrastructure, technologies, techniques, methods, and evaluation metrics im-
plemented on CIPSs, and studied their combined use. Based on the �ndings of the
systematic review, we discovered that there are no publicly available databases to ex-
perimentally test and validate ranging-based CIPSs considering heterogeneous mobile
devices. Therefore, we collected experimental data considering real-world collabora-
tive scenarios (i.e., o�ce and lobby scenarios) and heterogeneous mobile devices to
create an open access mobile device-based Bluetooth Low Energy (BLE) database,
which is available together with its description and complementary material for re-
producibility and extension. Moreover, we created BLE and IEEE 802.11 Wire-
less LAN (Wi-Fi) radio maps to estimate devices’ position in the non-collaborative
phase of CIPSs. Next, we devised a CIPS, consisting of three sequential phases.
The calibration phase, which is used to register and calibrate heterogeneous mobiles
devices that interact in the CIPS; the non-collaborative phase, where each device in-
dependently estimates its initial position based on a IPS, and the collaborative phase,
which collaboratively enhance the estimated position of the target device/user. Tra-
ditional non-collaborative IPSs based on lateration and �ngerprinting are part of
the non-collaborative phase of our CIPSs and are used as benchmarks for evaluat-
ing them. Similarly, a lateration method, based on collaborative devices acting as
anchors, and a distance estimation model are part of the collaborative phase of our

197



CIPSs. Given the importance of the traditional methods to estimate distance (i.e.,
based on Logarithmic Distance Path Loss (LDPL)) and position (i.e., RSSI-lateration
and �ngerprinting–9-Nearest Neighbors (9-NN)) as benchmarks and as part of our
CIPS phases, we experimentally evaluated them considering mobile devices. As a
result, we identi�ed their limitations and challenges, and taking them into account,
we proposed two non-collaborative solutions to improve the distance and position-
ing accuracy of the LDPL model and lateration methods, respectively. The �rst is
a system that relates distance and RSSI values based on a fuzzy logic system to im-
prove the distance estimation accuracy. The second is a lateration method based on
an e�ective selection of available anchors to enhance positioning accuracy. Although
they improve the distance and positioning accuracy, they are impractical in scenar-
ios with heterogeneous devices and are not scalable. Considering all the takeaway
points from the systematic review and the experiments carried out, we proposed
a CIPS baseline scheme for developing CIPSs which allows us to enhance the po-
sitioning accuracy of traditional IPSs based on RSSI measurements (i.e., lateration
and �ngerprinting). Based on the CIPS scheme, we developed and experimentally
evaluated two variants of a mobile device-based CIPS based on MLP ANNs model
for improving positioning accuracy of lateration and �ngerprinting–9-NNmethods,
respectively. The reason for implementing a MLP ANNs model instead of LDPL
model in both variants is due to the complexity of the indoor environments and het-
erogeneity of mobile devices used in CIPS, also the well-known capacity of neural
networks to learn and approximate patterns/functions based on the mapped inputs.
The �rst variant is solely based on BLE technology and lateration and was tested in
an o�ce scenario with rich Non-line-of-sight (NLOS) conditions and a poor distri-
bution and number of anchors. The second variant is a hybrid version, which can
be used with BLE or Wi-Fi technologies together with �ngerprinting–9-NN, and
was tested in two real-world scenarios with diverse NLOS conditions. The imple-
mentation of the MLP ANNs model allows CIPSs to work in di�erent scenarios,
with di�erent technologies, and outperform the aforementioned traditional IPS un-
der speci�c conditions.

In the following sections, we address the research questions formulated at the
beginning of this dissertation (see Section 1.2) together with the main conclusions.
Moreover, we present the limitations of our proposed mobile device-based CIPS us-
ing MLP ANNs, propose some future research avenues to enhance the performance

198



of CIPSs, and list the international journals, conferences, and repositories where our
contributions and results were published.

6.1 Answers to research questions

RQ1: What are the infrastructures, architectures, technologies, techniques, methods, and
evaluation aspects used in/for CIPSs, and what are the current trends and the main gaps
in CIPS?

To answer this research question and provide an overall review of CIPSs, we
performed a systematic review on CIPSs covering 99 signi�cant papers from 2006
to 2022. The analysis carried out indicated increasing interest in the study of
collaborative positioning among scientists and that decentralized architectures and
infrastructure-less systems are becoming more popular. To analyze the technologies,
techniques, and methods, we divided the CIPSs into non-collaborative and collabo-
rative parts. Regarding the non-collaborative part, the �ndings revealed a broad vari-
ety of technologies, methodologies, and methods, making it challenging to identify a
predominant combination. The popular coupled technology and technique, used in
the non-collaborative part, are: Wi-Fi/RSSI, Wi-Fi/�ngerprinting and Inertial Mea-
surement Unit (IMU)/Dead Reckoning (DR). In the collaborative part, researchers
prefer RSSI based on Wi-Fi and Bluetooth technologies. This is because these tech-
nologies are widely available, completely infrastructure-less, energy e�cient, and
inexpensive. With respect to methods, due to each of them having di�erent goals,
none of them stands out. Some CIPSs are based on a non-collaborative phase, which
estimates the user’s position non-collaboratively, and subsequently try to improve
this estimate using a collaborative approach. Other CIPS are completely collabo-
rative: they only use the non-collaborative part to collect the data, which is then
processed by the collaborative method. Simulations are used as the main evalua-
tion procedure. The predominant evaluation metrics in CIPSs in relevant order are
position accuracy, computational complexity, computational complexity + robust-
ness, position precision, robustness, and energy. The main gaps identi�ed are that
the majority of evaluation of CIPSs is based on simulations and only a few of them
consider realistic collaborative scenarios including diverse devices. Therefore, pro-
viding databases containing positioning data involving various users/mobile devices
and real-world scenarios could be bene�cial for the reproducibility, repeatability, and

199



evaluation of CIPSs and motivate the development of more CIPS. Also, only a scarce
number of CIPSs take into account the users’ privacy and security, the inclusion of
heterogeneous devices, and none considered the inclusion of heterogeneous position-
ing systems in collaborative devices (devices using diverse technologies, techniques,
and methods for positioning in the non-collaborative phase). Further information
related to RQ1 is provided in Chapter 2 and in [3].

RQ2: How can the ranging-based collaborative indoor positioning systems be exper-
imentally tested and validated considering heterogeneous mobile devices?

Based on the information provided by the systematic review on CIPSs presented
in Chapter 2, we identify that approximately half of the examined articles use sim-
ulations to evaluate CIPSs mainly to avoid the expensive hardware deployment and
intensive physical labor needed in the experimental evaluation. Although advanced
simulation algorithms can reproduce conditions similar to those present in real sce-
narios, experimental tests to validate the performance of CIPS under real scenarios
are still needed.

To the best of our knowledge, there are no publicly available databases, before we
published ours in [21, 23], that allow us to experimentally test and validate ranging-
based CIPSs considering the transmission and reception from multiple mobile de-
vices. Speci�cally, we created a mobile device-based BLE database for testing and val-
idating ranging CIPSs, considering bidirectional and simultaneous transmission/re-
ception between devices. The data was collected experimentally in two real indoor
scenarios (o�ce and lobby scenarios), considering di�erent mobile devices diversely
distributed (con�gurations) in the scenarios. We provide the description, usage ex-
amples, and supplementary material to guarantee the usability, reproducibility, and
extension of the mobile device-based BLE database. In addition to this database, we
created three radio maps (Wi-Fi and BLE �ngerprint and BLE lateration), which are
used to (non-collaboratively) estimate the position of a collaborative mobile device.
The information contained in the mobile device-based BLE database together with
the BLE and Wi-Fi radio maps of the o�ce and lobby scenarios were used to evalu-
ate and analyze our own approaches proposed in Chapter 4 and Chapter 5. Detailed
information about the database and radio maps is provided in Chapter 3 and [21, 23].

RQ3: What are the limitations and challenges of the traditional methods to esti-
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mate distance (i.e., based on LDPL model and fuzzy logic) and position (lateration and
�ngerprinting–9-NN) based on BLE/Wi-Fi-RSSI and how can the positioning accuracy
and robustness of LDPL model and lateration be improved?

Our two variants of a mobile device-based CIPSs proposed in Chapter 5 aim to
improve traditional IPSs, which we experimentally validated by integrating a later-
ation and �ngerprinting positioning system in the non-collaborative phase and the
lateration and a distance estimation model in the collaborative phase of our CIPSs.
To understand any possible improvement of our collaborative positioning system, it
is important to �rst evaluate the non-collaborative part and identify its limitations
and challenges. To this end, we experimentally evaluated the traditional methods to
estimate distance (i.e., based on LDPL model and fuzzy logic) and position (RSSI-
lateration and �ngerprinting–9-NN) based on BLE/Wi-Fi-RSSI and mobile devices
to identify their limitations and challenges. Moreover, we proposed an innovative
lateration method to enhance the accuracy and reliability of position estimation and
an alternative system to the LDPLmodel that improves distance estimation accuracy.
The �rst, lateration method, is based on an e�ective and combinatorial BLE anchors
selection, and the second, alternative system, on a fuzzy classi�er that replaces the
LDPL model to estimate the distance.

Regarding the distance estimation based on the LDPL model, we found that the
behavior of BLE signal propagation indoors and under Line-of-sight (LOS) does
not follow the expected logarithmic attenuation. Instead, it varies depending on
the transmitter device and indoor environment used. The main causes could be
the diverse and unstable power transmission of each device and signal �uctuations
generated by the environment’s geometry. Therefore, it is impractical to provide a
unique set of LDPL model parameters that work for various devices and scenarios.
We have shown that it is possible to outperform the LDPL model distance accuracy
and robustness with a system based on fuzzy logic. However, a limitation of our
fuzzy logic approach is that it cannot o�er robustness against power transmission
variations, due to how we set the membership functions (i.e., based on the �rst,
second, and third quartiles of the RSSI values measured at each reference point).
In other words, if the power transmission of each device is di�erent from the one
used in training, the membership functions will be shifted and provide inaccurate
estimations.

Regarding the lateration method based on RSSI, its main sources of positioning
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inaccuracy depend on two factors: �rst, the inadequate distribution (density and
geometric position) of chosen BLE anchors; and second, large errors in the distance
estimation between an unknown target and reference BLE anchors. To address this
and improve the reliability and positioning accuracy of lateration approaches, we
proposed a method capable of exploiting the availability and geometric distribution
of BLE anchors, and e�ectively selecting a subset of them. Although our method
improves the positioning accuracy and does not use sine and cosine computations
to select the adequate anchors as in Geometric Dilution of Precision (GDOP), one
of its limitations is the computational load to evaluate all possible combinations of
deployed anchors. Therefore, to guarantee computational feasibility, we limited the
maximum total number of available BLE anchors to 9 ( = 9 in Eq. 4.6).

With respect to �ngerprinting evaluation, the analysis of the e�ect of the numbers
of BLE anchors used to build the radio map, and the values of 9 nearest neighbors
of 9-NN algorithm on positioning accuracy demonstrated the following: �rst, a low
number of BLE anchors (below ten BLE anchors) decrement the positioning accu-
racy considerably in �ngerprinting. Second, the values of 9 as the number of BLE
anchors increases are less relevant to the positioning accuracy. In general, the design
of alternative methods that help to improve the positioning accuracy of lateration
and �ngerprinting when there are few anchors available in the environment is an
open issue. Additionally, estimating the distance between devices in indoor scenar-
ios, considering di�erent scenarios and heterogeneous devices is an open challenge
too. Detailed information about the limitations and challenges, as well as the imple-
mentation and evaluation of the approaches used are provided in Chapter 4 and in
[21, 4, 6].

RQ4: How can the positioning accuracy of traditional IPSs based on RSSI measure-
ments (i.e., lateration and �ngerprinting) be enhanced by the collaboration of surrounding
devices/users?

In order to enhance the positioning accuracy of traditional IPSs based on RSSI
measurements (i.e., lateration and �ngerprinting), we proposed a versatile and
straightforward CIPS baseline scheme designed for developing CIPSs. CIPSs are
systems that determine the position as a result of the indirect/direct interoperabil-
ity between nearby actors/users or several IPSs. The scheme considered the most
important aspects presented in our CIPS systematic review, namely the concept of
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compatibility among CIPS, system modularity, architecture (decentralized), and in-
frastructure (able to work as infrastructure-based and infrastructure-free). The base-
line scheme divides the CIPS into 3 phases. In the �rst phase (calibration), the
heterogenous devices are registered and a calibration process is carried out to allow
the system to use them. In the non-collaborative phase, each device of the system
estimates its initial position through traditional non-collaborative IPSs. In the col-
laborative phase, the positioning accuracy of the target device/user, estimated in
the previous phase, is improved based on the exchange of information gathered in
the previous phase between collaborative devices and the estimation of the relative
distance between them.

Speci�cally, we developed and experimentally evaluated two variants of a mobile
device-based CIPS based on MLP ANNs model, considering di�erent base technolo-
gies (i.e., Wi-Fi and BLE), methods (i.e., lateration and �ngerprinting–9-NN), and
the two real-world scenarios (i.e. o�ce and lobby scenario) and data described in
Chapter 3. In our CIPS, in addition to using the surrounding mobile device to ex-
tend the positioning network, we proposed a novel model to estimate the relative
distance between collaborative mobile devices based on the MLP ANNs model in-
stead of the LDPL model. As mentioned above, LDPL models are not practical for
estimating the distance of heterogeneous mobile devices and cannot be used under
diverse scenarios due to the diverse and unstable power transmission of each device
and signal �uctuations generated by the environment’s geometry. Our proposed
neural network model improved the distance estimation by considering the relation
between distance and RSSI patterns, the pairwise device positions, the identi�cation
of devices (transmitter and receiver), and the variation of RSSI measurements due to
the devices’ hardware heterogeneity.

The �rst variant of mobile device-based CIPS proposed to enhance the traditional
lateration-based IPSs faces three issues that decrement the positioning accuracy of
lateration-based IPSs. The �rst is the NLOS conditions and de�cient anchors de-
ployment. Second, ine�cient modeling of the signal propagation. Third, the ef-
fect of device heterogeneity on positioning accuracy. The results of evaluating our
CIPS demonstrated the feasibility and advantages of our approach to outperform
the positioning accuracy of the traditional lateration-based IPS under the aforemen-
tioned challenging conditions. Moreover, considering the distances among collabo-
rating devices in each con�guration and the relative di�erence of the “Root Mean
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Square Error (RMSE)”, “mean” and “75th percentile” metric, our proposed CIPS
demonstrated that it signi�cantly outperforms the lateration baseline in con�gura-
tion 1 (short distances  4m), moderately outperforms the lateration baseline in
con�guration 4 (4m < medium distances  8m), and a slightly less in con�gura-
tion 5 (large distances > 8m). Regarding the second variant of CIPS proposed to
enhance the traditional �ngerprinting-based IPSs, although we designed a similar sys-
tem (same CIPS baseline scheme), the new proposed MLP ANNs model presents
a di�erent architecture, which enables to the collaborative system to work under
diverse scenarios (i.e., both o�ce and lobby scenarios) and technologies (i.e., BLE
and Wi-Fi). The new architecture is designed to process the input data provided by
�ngerprinting–9-NN instead of lateration methods of the non-collaborative phase.
The results demonstrated that: for short distances among collaborating devices, our
proposed approach outperforms the traditional IPSs based on BLE–�ngerprinting
and Wi-Fi–�ngerprinting with a maximum error reduction of 23.41% and 19.49%
for the “75th percentile” and “90th percentile” metric, respectively; for medium
distances, our proposed approach outperforms the traditional IPSs based on BLE–
�ngerprinting in the �rst 60% and after the 90% of cases in the Empirical Cumulative
Distribution Function (ECDF) and only partially (20% of cases in the ECDF) the
traditional IPSs based onWi-Fi–�ngerprinting; for larger distances, our proposed ap-
proach performance is worse than the traditional IPSs based on �ngerprinting, and
in such cases, it is better to fall back on the non-collaborative estimation. Further
details of the CIPSs proposed are provided in Chapter 5 and [22]. Additionally, we
performed a literature-based comparison of our proposed CIPS variants with exist-
ing state-of-the-art (SOTA) CIPSs. The results showed that our proposed systems
achieve comparable or better accuracy than the SOTA systems while using heteroge-
neous devices and NLOS conditions in the test scenarios. Also that their complexity
is comparable with the SOTA systems evaluated.
Overall, the results demonstrated the usefulness of our CIPS baseline scheme to de-
velop new CIPS considering di�erent technologies (i.e., Wi-Fi and BLE) and meth-
ods (i.e., lateration and �ngerprinting–9-NN) to improve the positioning accuracy
of traditional IPSs, namely IPSs based on BLE–lateration, BLE–�ngerprinting, and
Wi-Fi–�ngerprinting. Speci�cally, our �rst variant of mobile device-based CIPS us-
ing MLP ANNs proposed demonstrated that outperforms the positioning accuracy
of the lateration baseline in all the con�gurations tested (i.e., where the collaborative
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devices have short, medium, and large distances between them), the second variant
of mobile device-based CIPS using MLP ANNs proposed demonstrated that CIPS
enhances the positioning accuracy of traditional IPSs based on �ngerprinting under
speci�c conditions (i.e., where the collaborative devices have short and medium dis-
tances between them). Moreover, the integration of MLP ANNs model in CIPSs
allows us to use our approach under di�erent scenarios and for di�erent technolo-
gies, showing its generality, feasibility and usefulness.

6.2 Limitations

Although the two proposed variants of mobile device-based CIPS using MLP ANNs
enhance the positioning accuracy of traditional IPSs based on RSSI under speci�c
conditions, one of the main disadvantages is that its performance depends on the dis-
tance between collaborative mobile devices (mobile device density). Speci�cally, the
positioning accuracy of our proposed CIPS decreases as the distance between collab-
orative mobile devices increases. In other words, the usefulness of our MLP ANNs
model used to estimate distance is limited in scenarios where the distance between
mobile devices is large. Therefore, addressing those cases remains an open issue.
Nevertheless, for moderate or high density of mobile devices – and thus short and
medium distances between mobile devices – as present in the real indoor scenarios,
our proposal provides an improvement compared to IPSs.

The advantages of using the widely available embedded technologies in wearable/-
mobile devices for positioning are well known. Our CIPS has been implemented
using Wi-Fi and BLE technologies for both the non-collaborative and collaborative
parts. Those technologies are straightforward to implement, able to exchange data,
and widely available in real-world scenarios and devices. On the downside, they only
provide meter-level positioning accuracy. Also, to provide a balance between posi-
tioning accuracy and computational cost, our CIPS uses a single technology instead
of technologies/sensors fusion. For example, technologies/sensors fusion requires
methods based on particle �lters that increase the computational load as the particle
size increase (bigger particle size provides the best positioning accuracy). Therefore,
the main advantages of our CIPS in terms of easy implementation and low com-
putational cost, are also some possible limitations with respect to a more accurate
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positioning.
Our CIPS is based on MLP ANN, which must be trained in order to estimate

the position. The size of the training datasets impacts the accuracy of the estimation.
Our datasets consider a maximum of 9 diverse mobile devices, 2 scenarios, and 7 dif-
ferent con�gurations in each scenario where the mobile devices are placed statically.
Therefore, the cases in which the devices are continuously moving in the scenarios
were not analyzed. Also, the online and continuous positioning estimation of the
devices was not considered.

6.3 Future research avenues

This thesis covered several aspects of CIPS in order to enhance traditional IPSs.
However, the study and implementation of CIPSs encompass many study areas,
leaving room for improvement. Therefore, based on the limitations previously iden-
ti�ed, we suggest the following future research avenues to extend/improve our pro-
posed solutions:

A future research avenue to mitigate the impact of low device density on the
positioning accuracy of CIPS could be to test diverse machine-learning methods
to increase the accuracy of inter-device distance estimation. For example, methods
based on convolutional neural networks, which consider as input screenshots (i.e.,
heatmap image) based on the scenario area, the estimated position (x,y coordinates)
of the mobile devices, and the RSSI measured between devices.

In the medium-large term, new technologies (e.g., 6G, Ultra-wide band (UWB))
with better positioning features could be widely embedded in wearable/mobile de-
vices and used in the collaboration between devices of the CIPSs. Nowadays, UWB
technology, which provides centimeter-level positioning accuracy, has been included
in several �agship wearable/mobile devices (e.g., Google Pixel 7, Samsung S22,
iPhone 14, AirTags, MagSafe Charging Case for AirPods Pro, among others). Nev-
ertheless, in public areas, UWB anchors are currently not yet deployed on large scale.
Therefore, in addition to our previously proposed research avenue, we suggest two
more research avenues to enhance the overall positioning accuracy of our CIPS based
on the new technologies and technologies/sensors fusion. First, we could implement
and study the use of UWB technology embedded in the devices (device-based UWB
anchors) to increase the accuracy of the inter-device distance estimated in the collab-
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orative phase. Also, to guarantee compatibility with the technologies deployed in
the scenarios, we could use Wi-Fi and/or BLE in the non-collaborative phase. Sec-
ond, to perform a deep study and evaluate technologies/sensors fusion methods to
propose a solution that balances low computational cost and positioning accuracy.

In Chapter 3, we presented an open access mobile device-based BLE database for
testing and validating ranging CIPSs. The database can be continuously extended
considering other indoor scenarios, con�gurations, and mobile devices, and include
diverse rotations or positions of devices on the body to enrich the database’s diver-
sity and allow the research community to train and test their CIPSs experimentally
under diverse conditions. In addition, another future work could be the design of a
multi-platform application that allows users to position themselves in real-time and
collaboratively in the scenarios (i.e., based on scenarios’ maps) and that can also be
used for straightforward data collection.

6.4 Impact of publication and supporting material

The contributions and results presented in this thesis correspond to the outcomes
of the scienti�c works conducted by the author at the Institute of New Imag-
ing Technologies, University Jaume I (Castellón, Spain) and Electrical Engineering
Unit, Tampere University (Tampere, Finland), between 2019 and 2022, which have
been published in international journals [3, 21], and renowned international confer-
ences [4, 6, 22]. The journal article [3] has been selected as an “Editor’s Choice
Article”. The supporting materials, software and datasets, have been published in
open access repositories [23, 188].
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