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ABSTRACT

Robert Heikkilä: Distributed multi-agent pathfinding in horizontal transportation
Master’s Thesis
Tampere University
Degree Programme in Automation Engineering
April 2023

Horizontal transportation in maritime container terminals plays a crucial role in ensuring safe,
efficient, and cost-effective operations. Heavy working machines, such as straddle carriers, trucks,
and automated guided vehicles, transport containers between cranes, creating complex routing
problems known as multi-agent pathfinding (MAPF) problems. Existing solutions may not ade-
quately address the unique challenges presented by container terminals, necessitating the devel-
opment of new algorithms.

This thesis aims to develop and demonstrate a distributed MAPF algorithm for horizontal trans-
portation in container terminals. The MAPF problem is first formulated as a binary linear program-
ming (BLP) model by expressing the actions in the container terminal using a directed pseudo-
graph. Optimal solutions are obtained using PYOMO, an open-source Python-based optimization
software. The Augmented Lagrangian, a graph pathfinding algorithm, and a stochastic element
are then employed to create a sub-optimal, distributed algorithm.

The developed algorithm is evaluated against an optimal solution and a reference method
that prioritizes calculating the path for one agent at a time while taking into account previously
calculated paths. A simulator is set up to emulate horizontal transportation in a maritime container
terminal, by modeling the terminal as a graph in MATLAB. In the simulator, MAPF algorithms are
applied in combination with a high-level coordinator assigning destinations.

The experimental part of this thesis investigates the trade-off between solution time (iterations)
and solution quality by tuning algorithm parameters and evaluating the performance of the dis-
tributed algorithm in comparison to the priority-based method under two different map layouts,
particularly addressing the presence of a bottleneck. The results demonstrate the need to adapt
the algorithm’s parameters and strategies according to specific environments and map layouts,
to ensure good performance across various scenarios. The main contribution of this thesis lies
in the development of a adaptable, distributed MAPF solution that can ultimately address diverse
scenarios and environments.

Keywords: multi-agent pathfinding, container terminal, integer programming, graph theory
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TIIVISTELMÄ

Robert Heikkilä: Useiden maassa liikkuvien työkoneiden hajautettu reitittäminen satamassa
Diplomityö
Tampereen yliopisto
Automaatiotekniikan DI-ohjelma
Huhtikuu 2023

Merikonttiterminaaleissa konttien vaakatasoinen kuljettaminen on keskeinen tekijä turvallisen,
tehokkaan ja kustannustehokkaan toiminnan varmistamisessa. Raskaat työkoneet, kuten kontti-
lukit, kuorma-autot ja automaattisti ohjatut ajoneuvot (AGV:t), kuljettavat kontteja nosturien välillä,
luoden monimutkaisia reititysongelmia, joita kutsutaan monitoimija-reitinhaku (MAPF) -ongelmiksi.
Olemassa olevat ratkaisut eivät riittävästi käsittele konttiterminaaleille asetettuja erityisiä haastei-
ta, mikä edellyttää uusien hajautettujen MAPF-algoritmien kehittämistä.

Tämän diplomityön tavoitteena on kehittää ja esitellä hajautettu MAPF-algoritmi vaakasuuntai-
seen kuljetukseen konttiterminaaleissa. MAPF-ongelma mallinnetaan ensin binääriseksi lineaa-
riseksi ohjelmointimalliksi (BLP), jossa konttiterminaalissa liikkuminen mallinnetaan suunnattuna
pseudograafina. Optimaalisia ratkaisuja tutkitaan käyttämällä PYOMO-ohjelmistoa, joka on avoi-
men lähdekoodin Python-pohjainen optimointiohjelmisto. Tämän jälkeen laajennettua Lagrangen
kertoimien menetelmää, graafin polunetsintä algoritmia ja stokastistista elementtiä käytetään luo-
maan lähes optimaalinen, hajautettavissa oleva algoritmi.

Kehitettyä algoritmia arvioidaan vertaamalla sitä optimaaliseen ratkaisuun ja viite-menetelmään,
joka priorisoi polkujen laskemista yhden agentin kerrallaan ottaen huomioon aiemmin lasketut po-
lut. Simulaattori rakennetaan jäljittelemään vaakasuuntaista kuljetusta merikonttiterminaaleissa,
mallintamalla terminaali graafina MATLABissa. Simulaattorissa MAPF-algoritmeja sovelletaan yh-
dessä korkean tason koordinaattorin kanssa, joka määrittelee määränpäät.

Diplomityön kokeellisessa osuudessa tarkastellaan ratkaisuajan (iteraatioiden) ja ratkaisun laa-
dun välistä tasapainoa kokeilemalla erilaisia parametreja ja arvioimalla hajautetun algoritmin suori-
tuskykyä verrattuna prioriteettipohjaiseen menetelmään kahden erilaisen karttapohjan päällä, kes-
kittyen erityisesti pullonkaulan lisäämisen tuomiin vaikutuksiin. Tulokset osoittavat, että algoritmin
parametrien ja strategioiden mukauttaminen erityisiin ympäristöihin ja karttapohjiin on tarpeen,
jos halutaan varmistua tulosten olevan mahdollisimman lähellä optimaalisuutta erilaisissa skenaa-
rioissa. Tämän diplomityön pääasiallinen kontribuutio on joustavan, hajautetun MAPF-ratkaisun
kehittäminen, jolla voidaan tulevaisuudessa käsitellä erilaisia tilanteita ja ympäristöjä.

Avainsanat: reittioptimointi, konttisatama, kokonaislukuohjelmointi, graafiteoria

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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1. INTRODUCTION

As a vital component of the container transportation network, maritime container termi-

nals serve as a critical link in the global supply chain. With the ever-growing complexity

of modern economies, the ability to efficiently export and import containerized goods has

become increasingly important. From sophisticated machine parts and electronics to ba-

sic commodities such as agricultural produce, a wide variety of goods are transported

in these ubiquitous metal containers. Often hailed as the driving force behind globaliza-

tion, containerization has revolutionized international trade. For example, a recent study

by (Michail, Melas, and Batzilis 2021) attempts to establish a connection between global

gross domestic product (GDP) and containerization.

Rising container volumes have led to congestion issues in many terminals, prompting

the adoption of automation as an economically viable solution. Automation can signifi-

cantly enhance terminal efficiency and consistency while reducing labor costs. A recent

study by (B. Kim, G. Kim, and Kang 2022) examined the throughput, number of ship ar-

rivals, and berthing time at four ports (Rotterdam, Los Angeles/Long Beach, Qingdao,

and Yangshan) operating both fully and non-fully automated container terminals during

the COVID-19 pandemic. The results indicated better performance for fully automated

terminals across all selected indexes. It is reasonable to assume that automation will

continue to gain traction in ports worldwide, with the number of semi or fully automated

terminals estimated to be 63 in 2022 (Knatz, Notteboom, and Pallis 2022).

In most ports, designated rubber wheel machines, such as straddle carriers, are used

to transport container horizontally between cranes. Efficient and robust route planning

for these machines represents a crucial sub-problem in port automation. Recent stud-

ies have directly addressed this issue, such as (Hu et al. 2021), which employed rein-

forcement learning to plan paths for automated guided vehicles (AGVs) in terminal en-

vironments, and (Tang et al. 2021), which introduced a graph-based geometric A-star

algorithm for AGV pathing in terminals. Similar problems are often referred to as multi-

agent pathfinding (MAPF) or multi-robot path planning (MPP) problems. Numerous gen-

eral MAPF methods could be applicable in maritime container terminal settings, some of

which are introduced in Section 3.3.

This thesis aims to develop and assess the use of a distributed MAPF algorithm to ad-
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dress the outlined problem. The hypothesis is that a distributed algorithm would offer

better scalability and, consequently, faster computational times. The method for the

development of a distributed MAPF algorithm is inspired by (Nishi, Ando, and Konishi

2005), where an augmented Lagrangian decomposition and coordination technique are

employed to route AGVs in semiconductor fabrication bays in a distributed manner. In this

approach, individual machines determine the optimal route by communicating with each

other, enabling the use of parallel computing. Numerous other studies have investigated

distributed approaches to MAPF problems in various settings, such as (Z. Ma, Luo, and

H. Ma 2021), which employed deep Q-learning to develop a heuristic algorithm where

agents cooperate via graph convolution. Overall, the topic of distributed MAPF remains

highly relevant as no decisively effective solution has been presented thus far.

The structure of this thesis is organized into several chapters. Chapter 1 provides an

introduction to maritime container terminals and their significance in the global supply

chain. Chapter 2 delves into the details of intermodal container shipping, container han-

dling equipment used in horizontal transportation, and the layout of maritime container

terminals. Chapter 3 introduces the concept of multi-agent pathfinding (MAPF) and its

relevance to container terminal operations, along with a brief survey of existing methods

for solving the MAPF problem. Chapter 4 presents the formulation of the binary linear

programming (BLP) model and discusses both optimal and suboptimal approaches to the

MAPF problem, with a focus on the development of a distributed algorithm. In chapter 5

simulations are carried out to evaluate the performance of the proposed algorithm on a

bottleneck-free and bottleneck map. Finally, Chapter 6 offers a conclusion, summarizing

the key findings of the thesis and discussing potential avenues for future research.
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2. MARITIME CONTAINER TERMINALS

A maritime container terminal is an important connection hub of land and water logistics.

Vessels, trains and trucks arrive at the maritime container terminal, where they are un-

loaded and/or loaded with containers. The purpose of this chapter is to first provide an

overview of container shipping in general, then emphasize the elements that are relevant

to the thesis, such as horizontal transportation and the equipment involved in it. Lastly

typical layouts for maritime container terminals are introduced. Most importantly, read-

ing this chapter should provide sufficient information about horizontal transportation in

maritime container terminals, the case for which the routing algorithms in this thesis are

developed and tested.

2.1 Intermodal container shipping

Containers emerged in the 1960s and have become the unit of transport in integrated

transportation systems. A container is essentially a standard size transportation cuboid.

Maritime containers are often made of steel and are stackable. Container sizes are mea-

sured in twenty-foot equivalent units (TEU), which is the volume of one 20 ft long, 8.5

ft high and 8 ft wide container. In the maritime industry, a more popular container is a

longer 40 ft container, with a volume of 2 TEU or 1 FEU (fourty-foot equivalent unit). The

different attributes of the two container types are summarized in figure 2.1.

It is important to note that there are many types of containers that have the same external

dimensions previously mentioned. The five main types are:

• Standard container - also known as general purpose containers. Standard con-

tainers are mainly used in 20 ft or 40 ft sizes and are loaded and unloaded through a

double door.They are designed for non-specific dry cargo and can withstand harsh

conditions. Standard containers are often watertight and can handle temperatures

ranging from -40 ◦C to 70 ◦C. The fully enclosed rigid structure of the standard

container makes it ideal for stacking operations.

• Tank container - a container designed to carry liquid goods such as fuel, vegetable

oils and fruit juices. Usually either some sort of chemicals or foodstuff that are

uneconomical to transport in bulk carriers due to small quantities or location. A

tank container is essentially a tank capsule fitted inside a metal cuboid structure.
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It is loaded from the top and has the same dimensions as the standard container.

Modified versions of the tank container include insulation and temperature control.

• Open top container - a container that has no fixed top. Instead a removable

tarpaulin is usually used as a roof. Open top containers are often used for dry

cargo transportation that is too large to be fitted through a standard containers

double doors. The open top also allows for faster loading of small goods. Most

open top containers have the same dimensions as a standard container. They are

also usually stackable unless cargo height exceeds container height. They are not,

however, as structurally solid as standard containers.

• Flat container. - a container that has open top and sides. The floor-structure

is reinforced for heavy cargo and end walls are either fixed or collapsible. Flat

containers are designed to carry heavy or oversized cargo. The end walls are usu-

ally stable and strong enough to support the stacking and securing of multiple flat

containers on top of each other. The dimensions also match standard containers.

Unlike standard containers, however, the flat containers cargo is unprotected from

the elements.

• Refrigerated container - also known as reefers. An insulated container equipped

with a refrigeration unit. They are used to transport temperature-controlled cargo,

often acting as a moving freezer. Reefers require outside power while in transport.

Some reefers have integrated back-up generators for unexpected long cuts in sup-

plied power. Special attention is required in operations as to not cut power for too

long. The refrigerated container also have the outside dimensions of a standard

containers and are stackable.

Containerization refers to the increasing use of containers as a means of transporting

cargo. The main advantages of containerization are flexibility and scalability. A container

is essentially a small warehouse that can be transshipped between cities, countries or

even continents. A container will keep the cargo safe both from elements and outsiders.

The unified ISO-standard size of most containers makes terminal, machine and vessel

design significantly easier. Some challenges related to containerization include large land

footprint of terminals due to limited stacking height, empty containers not being where the

cargo is and high infrastructure and machine costs. (Rodrigue 2020)

In a maritime setting, most containers are transported by liner operators. Liner operators

such as Maersk, MSC and COSCO operate a large fleet of vessels. These vessels mainly

navigate between global trade hubs using increasingly well established international trade

routes. Vessel sizes have been steadily increasing overtime. The better economics of

large containers ships are mainly a result of increased fuel efficiency and reduced port

calls. Maritime container terminals have to keep up in handling capacity to be able pro-

cess large vessels efficiently. Both the terminal and liner operators aim for short transit
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Figure 2.1. 20- and 40-foot standard containers and their technical characteristics. (Har-
alambides 2019)

times and maximal container flow. This requires co-operation between terminal and liner

operators, well before the vessels arrival. (Review of Maritime Transport 2021)

Intermodal container shipping includes many modes of transport. The main mode of

transport is the maritime container vessel, but in order to reach the hinterlands, trains and

trucks are used. Between transportation modes, there are hubs, that transfer containers

from one mode to another. For example, a maritime container terminal is tasked with

the unloading and onloading of maritime vessels as well as receiving and sending off

containers via trucks and trains. There are also different type of container terminals, such

as the inland rail container terminal, where containers are transferred between trains

and trucks. The overall flow of containers in intermodal container logistics is heavily

dependent on the operation of all it’s container terminals, as they are naturally the bottle

necks of the transportation network. (Rodrigue 2020)

2.2 Container handling equipment in horizontal transportation

Containers are designed to be easily moved. For example, the corner locking points allow

for firm lifting and carrying. There exists a multitude of equipment aiming to achieve these

two basic tasks. In terminal setting, we can make a distinction based on direction of

container movement. Cranes are mainly responsible for vertical handling and machines

such as trucks handle most of the horizontal movement. There is also a hybrid category

of machinery that can handle both directions with limitations (straddle carriers etc.). This

section provides an introduction and some illustration on the equipment used.
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2.2.1 Quay cranes

Arriving vessels moor at a quayside berth, where the ship is unloaded/loaded by quay

cranes (QCs). A quay crane can also be referred to as a ship-to-shore crane (STS), but

note that the container flow goes in both directions. Due to their heavy weight, QCs move

on railtracks mounted on the quay wall. Sophisticated spreaders are used to grapple

and hoist containers from the ship to quayside wall and vise versa. The productivity of a

QC is indicated by the number of containers moved per hour. This productivity number

also defines an upperbound for container flow through the terminal, and as a result quay

cranes are one of the first things to consider in terminal planning. A schematic of a STS

crane can be seen in figure 2.2. (Meisel 2009)

Figure 2.2. STS/QC crane (Digiesi, Facchini, and Mummolo 2019)

The size of QCs and ships go hand in hand. A large ship can only be served by a large

QC, which in turn is a only a good investment for the terminal if there are going to be

large ships to serve. It is natural to classify QCs based on the size of ship they can serve.

There are 3 ocean ship categories, and subsequently 3 categories of QCs:

• Panamax QC - able to serve ships that fit through the Panama canal. This equates

to ships that have a maximum storage width of 11 - 13 containers. A crane of this

category has an outreach of 30-40m.

• Post-Panamax QC - able to serve ships that cannot fit though the Panama canal,

limited to ships with a maximum storage width of 17-19 containers. A crane of this

category has an outreach of 45-55m.
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• Super Post-Panamax QC - able to serve current larges ships with a maximum

storage width of 21-23 containers. A crane of this category has an outreach of

60-70m.

The categories fluctuate as vessel sizes keep growing, but the idea is that QCs are often

categorized along with vessels. Besides size, quay cranes can differ by the number of

hoists, spreader type and lifting capacity. In maritime container terminals, cranes typically

have one or two hoists, that are lifting either a regular spreader or a tandem spreader. A

speader is a device that is used to grapple containers. The mechanics involve the use

of twistlocks, that are locked/unlocked to the top corner fittings of containers. A regular

spreader can grapple either one 40 ft container or two adjacent 20 ft containers. A tandem

spreader is essentially two regular spreaders attached together, and can grapple, for

example, a 40 ft container and two 20 ft containers simultaneously. (Bartošek and Marek

2013)

2.2.2 Yard cranes

It is often necessary to stack containers on land. For this purpose a yard crane (YC) is

needed. A storage block is usually associated with one or two yard cranes. The yard

cranes are tasked with the intelligent reception and dispensation of containers in and out

of the blocks. The most prevalent yard cranes are gantry cranes such as rubber-tyred

gantry (RTG) crane and rail-mounted gantry (RMG) crane. The structure of yard cranes

is very different from quay cranes, as they are designed to arc over the containers, as

apposed to reaching for them via an appendage. A RTG can span up to 8 container rows

and a RMG even more. Both can usually stack piles up to 6 containers high, although

the last layer usually remains empty, to allow the passage of containers. A schematic of

a yard crane can be seen in 2.3. (Meisel 2009)

Given a large enough number of containers, the effectiveness of RTGs and RMGs de-

pends heavily on scheduling. The cranes have to scheduled in a way as to minimize

unnecessary shuffling of containers. Scheduling is also a kind of prerequisite to yard

crane automation. Automated yard cranes are referred to as automated stacking cranes

(ASC). ASCs are currently almost exclusively RMGs, as rails provide a higher level of pre-

dictability. The decision as to where to stack the container has to be made within seconds

of arrival. It is often not possible to calculate optimal solutions, but rather some heuristic

is used. Some yard planners also specifically prefer straightforward stacking strategies

that might be made by the terminal operating system (TOS) but can be easily supervised.

State-of-the-art yard crane scheduling and stacking is was recently examined in (Kemme

2020).
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Figure 2.3. Schematics of a yard crane. (Carlo, Vis, and Roodbergen 2014)

2.2.3 Straddle carriers and AGVs

Horizontal transportation is needed to move containers from quayside cranes to yard

cranes and vise versa. This can be achieved with or without the help of cranes. Straddle

carriers (SC) are an example of a machine that can independently lift a container from

the ground and move it anywhere on the pavement. Automated guided vehicles (AGVs)

on the other hand require crane assistance on both ends of the journey. A variation

of an AGV called the lift-AGV can lift the container independently with the use of rack.

Schematics of a straddle carrier and AGV can be seen in 2.4. Internal trucks are not

introduced, as the simplifications in the thesis would reduce them into AGVs.

In (Anvari et al. 2020), it is observed that straddle carrier-type machines, both manned

and unmanned, are referred to by various names, such as Shuttle Carrier/AutoShuttle

(Kalmar) and BoxRunner/A-Sprinter (Konecranes). Within automated terminal research,

three primary categories of machines capable of independently lifting containers are iden-

tified: automated lifting vehicles (ALVs), automated straddle carriers (AStCs), and lift-

AGVs.

It might seem logical to use ALV as a comprehensive term for all these machines; how-

ever, this would be incorrect. Research in this area may also present contradictions. In

(H. Yu et al. 2022), lift-AGVs are likely classified as ALVs, whereas in (Kumawat and Roy

2020), they are distinctly considered as a separate type of machinery. For the purpose of

this thesis, we will assume that ALVs encompass straddle carrier-type machines capable

of lifting containers from above.
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Figure 2.4. Straddle carrier (a) and AGV (b). (Carlo, Vis, and Roodbergen 2014)

The decision between crane-dependent and crane-independent equipment is more nu-

anced than one might initially assume. In (Bae et al. 2011), AGVs were compared to

ALVs, revealing that AGVs struggle to meet the demands of highly productive QCs, even

when additional vehicles are employed. This issue may arise due to increased waiting

times at the ACS as more vehicles are added. To address this, the ASC throughput is

also increased. When the throughput of QCs and ASC is balanced, it is discovered that,

with a sufficient number of vehicles, AGVs become more effective. This advantage is

likely attributed to their smaller size and increased agility, allowing them to better manage

congestion.

In (Kumawat and Roy 2020), AGVs and lift-AGVs are compared, with the study identi-

fying improved throughput performance in the simulated terminal when using lift-AGVs.

The enhancement is so significant that the higher unit cost of lift-AGVs can be justified.

However, according to a recent review of yard operation and management in container

terminals (H. Yu et al. 2022), no single type of horizontal transportation machinery has

emerged as the dominant choice in real automated ports thus far.

ACSs and their counterparts can also play a role in stacking operations. Historically,

manual straddle carriers were a popular choice for managing yard storage. The pros and

cons of utilizing straddle carriers in stacking operations, as opposed to yard cranes, have

been examined in (Vis 2006) and (CHU and HUANG 2005). In essence, yard cranes offer

higher container density and stacking height, along with easier automation. However,

they may not be as fast as straddle carriers.
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2.3 Layout of maritime container terminals

Maritime container terminals generally comprise a land interface, a water interface, and

storage in between. Although terminal size, layout, and equipment can vary significantly,

these terminals are typically divided into three distinct areas: the quayside (water inter-

face), the landside (land interface), and the yard (storage), as illustrated in Figure 2.6.

This thesis concentrates on the horizontal routing of vehicles between the quayside and

container stacks.

Container terminals can be further categorized based on the orientation of container

stacks in the yard, as depicted in Figure 2.5. In the parallel layout, containers are arranged

parallel to the waterline, while in the perpendicular layout, containers are positioned per-

pendicular to the waterline. In both cases, container stacks are typically placed as close

as possible to the quay side cranes to minimize horizontal transportation distances. Cur-

rently, most newly constructed automated container terminals prefer the perpendicular

layout (H. Yu et al. 2022).

Figure 2.5. Paraller vs perpendicular terminal layout. (Zhou, Lee, and Li 2020)
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Figure 2.6. A schematic side-view of a perpendicular layout. (Steenken, Voss, and
Stahlbock 2004)
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3. MULTI-AGENT PATHFINDING (MAPF)

In the domain of multi-agent pathfinding (MAPF), the primary objective is to identify

collision-free routes for numerous agents traversing a grid or graph. This area of research

has garnered attention due to its real-world applications, such as guiding autonomous

fleets, enhancing video games, and solving puzzles. Early investigations into this topic

can be traced back to pebble motion problems, with the 15 puzzle being a prominent

example, accessible online at (15-Puzzle 2022). In the 15 puzzle, the goal is to arrange

15 numbered tiles within a 4x4 frame by sliding them, ensuring that no two tiles occupy

the same space. The MAPF problem poses a similar challenge, but typically with more

available space, allowing multiple agents to move simultaneously (Sharon, Roni Stern,

Felner, et al. 2015).

The 15 puzzle provides valuable insight into MAPF as it requires predicting future config-

urations resulting from specific tile movements. Both the 15 puzzle and MAPF problems

can be classified as combinatorial optimization problems (H. Ma 2022). Identifying the

shortest solution (measured by the fewest moves) for the 15 puzzle is an NP-hard prob-

lem (Goldreich 2011). Similarly, path planning in MAPF is also NP-hard on graphs (J. Yu

and LaValle 2013), including grid-like graphs (Banfi, Basilico, and Amigoni 2017).

3.1 Graphs

To effectively formulate MAPF problems, it is crucial to first define graphs. Graphs provide

an intuitive means of representing networks consisting of nodes and connections. A

simple graph captures a network as a pair G = (V,E), where:

• V represents a finite set, termed vertices, and

• E ⊆ {{v1, v2}|v1, v2 ∈ V and v1 ̸= v2}, denoted as edges.

Graphs are typically depicted as 2D objects on a plane, with vertices portrayed by dots or

circles. Two vertices are considered neighbors if they are connected by an edge. Edges

are deemed adjacent if they share a common vertex. Vertices are connected when a

path exists between them, where a path is a finite set of distinct adjacent edges. Simple

graphs only permit a single multi-directional edge between vertices (Jungnickel 2008).

A directed graph, or digraph, assigns direction to edges, with edges defined by ordered
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Figure 3.1. A directed pseudograph with weighted edges.

vertex pairs. The first vertex designates the start, while the second marks the goal. The

possible combinations of unique vertex pairs (directed edges) can be determined using

the cartesian product V × V of a vertex set.

By assigning weights wi,j to each edge ei,j in the simple digraph, the graph transforms

into a weighted digraph. A weighted digraph is defined as G = (V,E), where:

• V constitutes a finite set, and

• E ⊆ {{v1, v2, w1,2}|(v1, v2) ∈ V × V, w1,2 ∈ R and v1 ̸= v2}.

In this thesis, a pseudograph is employed for modeling purposes. A pseudograph is a

graph containing edges with the same starting and ending vertex. These are referred

to as loops and can be utilized, for example, to model waiting. Figure 3.1 illustrates

an example of a weighted directed pseudograph. Note that the weights in the figure are

distance-based, demonstrating this modeling possibility. However, for a graph abstraction,

weights can be chosen arbitrarily.

3.2 MAPF on graphs

A MAPF instance can be defined as an ordered pair (G,A), where G represents the

underlying graph structure of the environment, and A is a set of agents. Each agent

ai ∈ A has an assigned starting vertex si and a goal vertex gi. Figure 3.2 illustrates an

example of a classical MAPF problem instance on a graph. Utilizing grid maps (with or

without holes) or graphs with constant node distances is advantageous, as it enables the

following assumptions:

1. Time is discretized into time steps

2. Agents perform one action per time step
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Figure 3.2. An example of a MAPF instance on a graph.

Figure 3.3. Types of conflict considered in MAPF: an edge conflict (a), a vertex conflict
(b), a following conflict (c), a cycle conflict (d) and a swapping conflict (e).(R. Stern et al.
2019)

In this context, an agent’s action refers to either remaining at a vertex or moving to a neigh-

boring vertex. These assumptions necessitate that agents traverse between vertices in

a fixed amount of time, potentially stopping at a vertex for the same duration. However,

when the distances between vertices vary, the assumptions become more challenging to

fulfill, as diverse accelerations are required to meet the simplification demands. In this

thesis, the simplifying assumptions are employed in conjunction with a graph where node

distances are constant.

Before tackling a Multi-Agent Pathfinding (MAPF) problem, it is crucial to take into account

potential conflict situations. Common types of conflicts in MAPF problems are depicted

in Figure 3.3. As MAPF problems typically involve two-dimensional scenarios, it is unde-

sirable for agents to share the same edge during transitions, as this would place them on

top of one another.
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Conflicts at vertices represent the most intuitive type of conflict, akin to vehicle collisions at

road intersections. Similarly, swapping conflicts can be thought of as head-on collisions.

The following conflict, though not always problematic in real systems, can be compared to

tailgating. Certain simulators disallow following, as their software prevents a vertex from

simultaneously "letting out" and "taking in" an agent. Cycle conflicts resemble following

conflicts, where actions must be executed synchronously, or no action can be taken at all.

Optimal solutions can be found for most MAPF instances, based on a specified metric.

For instance, the solution to an MAPF problem involving n agents might consist of a set

of action sequences π = π1, ..., πn, where each πi ∈ π represents a finite sequence of

actions (in this thesis, actions are edges on a directed pseudograph, with waiting repre-

sented as a loop). The length |πi| of these sequences indicates the number of time steps

needed for an agent to reach its destination. This information is utilized by the two most

prevalent cost functions:

• Makespan

Q: How many time steps are required before all agents reach their destina-

tions?

A: The longest sequence of actions, i.e., max1≤i≤n |πi|

• Sum of Costs

Q: What is the total number of actions performed by all agents?

A: The sum of action sequence lengths, i.e.,
∑︁

1≤i≤n |πi|

This thesis focuses on the sum of costs metric, as the goal in horizontal transportation is

to minimize the total distance and waiting time for the entire machine fleet.

3.3 Common strategies and methods

There are two overarching strategies to address a Multi-Agent Pathfinding (MAPF) prob-

lem: centralized and distributed approaches. In a centralized approach, a single CPU

or multiple CPUs with full knowledge sharing work together to solve the MAPF problem.

Conversely, the distributed approach allocates computing power to each agent, employ-

ing various communication methods between agents. Regardless of the chosen strategy,

solution attempts can be broadly categorized as follows:

• Reduction-based - The MAPF problem is transformed into a well-known problem,

such as integer linear programming (ILP), boolean satisfiability (SAT), or answer

set programming (ASP). This approach is typically used to find optimal solutions

but does not scale well for larger instances.

• Search-based - The MAPF problem is treated as a series of conflict resolution
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Figure 3.4. A conflict that cannot be solved using prioritized planning. (Roni Stern 2019)

instances, with each agent’s initial individual solution designed to avoid collisions

optimally or suboptimally. This can be achieved through prioritization or intelligent

conflict analysis. While generally suboptimal, search-based algorithms can be op-

timal and tend to scale better for larger problems compared to reduction-based ap-

proaches. However, priority-based methods are inherently incomplete (see Figure

3.4).

• Rule-based - Like search-based methods, the MAPF problem is viewed as a series

of conflict resolution instances. Instead of searching for alternative paths, individ-

ual conflicts are resolved using a predefined set of actions for the agents. This ap-

proach sacrifices optimality for faster computation times. Interestingly, rule-based

methods often ensure completeness, meaning that a solution will always be found

if it exists, unlike priority-based solutions. (Sharon, Roni Stern, Felner, et al. 2015)

In addressing the MAPF problem, there is an inherent trade-off between optimality, scal-

ability, and completeness. Recognizing this, several powerful ideas have been proposed

for optimal MAPF solving over the past decade. These ideas include:

• Independence detection (ID): (Standley 2010) presents a generalizable frame-

work for detecting path independence. The approach begins with separate agent

paths and groups colliding paths together for solving. In the worst-case scenario,

all agents are merged into the same group, effectively solving the original prob-

lem. However, in most cases, independent groups can be detected and solved

separately, saving time.

• Extensions of A*: By considering an agent state space, A* can be run to find the

sum of costs optimal solution to the MAPF instance. However, the branching factor

of a graph representing such a search-space is exponential (bn), where b is the

number of actions for one agent (wait/left/right/up/down) and n is the number of

agents. To address this issue, a few ideas have been proposed:

– Operator decomposition (OD): (Standley 2010) introduces a novel method

for decomposing the problem to reduce branching by creating a deeper search

tree. The vertices are divided into intermediate and full vertices. At each
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layer of the search tree, only one agent’s possible movements are considered.

If agents are at different time-steps, the vertex is considered intermediate;

otherwise, it is considered full. The search is completed when a full vertex,

representing the goal, is found.

– Enhanced partial expansion A* (EPEA): (M. Goldenberg et al. 2014) present

a novel method for reducing surplus nodes, which are nodes further away from

the start than the goal node. Most A* implementations visit but never expand

surplus nodes. EPEA uses a heuristic that prevents surplus nodes from being

visited, reducing the branching factor. EPEA is considered a state-of-the-art

A*-based MAPF solver (Kaduri, Boyarski, and Roni Stern 2020).

• Two-level solvers: Sharon et al. (Sharon, Roni Stern, Meir Goldenberg, et al.

2013) introduce the idea of using two separate solvers, involving a high-level and a

low-level solver. There are two ways to implement this approach. The first option

is for the high-level solver to find the lengths for individual solution paths, and the

low-level solver to determine if such lengths can generate a feasible solution. The

second option is for the high-level planner to use the conflict space and indicate

to the low-level planner which conflicts to consider. In both cases, the process is

repeated until a feasible solution is found, which, depending on the solver logic, will

also be the optimal solution to the MAPF instance. Two-level solvers include:

– The Increasing Cost Tree Search (ICTS): (Sharon, Roni Stern, Meir Golden-

berg, et al. 2013) introduce a two-level method called the increasing cost tree

(ICT) search. The high-level solver uses a vector tree, searched in a breadth-

first manner, to provide solution lengths to the low-level solver. The root of the

tree is a vector (c1, c2, ..., ck), consisting of the lowest individual path costs to

the destination. Each child node is a vector with a cost increase of one to any

of the path lengths. Creating and searching the ICT is an exponential process,

but ultimately an optimal solution will be found. Effective pruning of the ICT

can accelerate the process.

– Conflict-based search (CBS): (Sharon, Roni Stern, Felner, et al. 2015) in-

troduce a conflict space utilizing a two-level solver. Instead of an ICT, a con-

straint tree (CT) is used by the high-level solver. The nodes in the CT are

a pair ⟨n.conflict, n.plan⟩, where the root starts with no conflicts. The low-

level solver is tasked with generating a plan, given conflicts of agents at given

vertices and times ⟨a, v, t⟩. The generated plan is used to create more nodes

on the CT tree. The next node (conflict) to explore is chosen based on the

plan cost until a feasible plan is found. Due to the way the CT is constructed,

the first feasible plan will be the optimal solution to the MAPF instance.

• Constraint programming (CP): CP is a common methodology for combinatorial
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problems, such as the MAPF problem. The theoretical basis for CP lies in logical

inference rather than algebra, as in general mathematical optimization. CP is re-

stricted to discrete problems and can be further divided into two distinct categories:

– Constraint satisfaction problem (CSP): The CSP consists of a set of con-

straints and variables. To find an optimal solution, the cost function value is

predetermined. In the MAPF case, for example, an initial lower bound L for

the makespan cost can be found by examining the individual shortest paths

for agents. If no solution is found, L is incremented by one and the process

is repeated. CSP can be solved using various approaches such as Boolean

satisfiability (SAT) and answer set programming (ASP).

* Boolean satisfiability (SAT) - a particular case of CSP, commonly ap-

plied to MAPF problems. For instance, in (Surynek 2017), five distinct

SAT formulations of MAPF are examined using the makespan objec-

tive. The sum of cost objective, which appears to be more challenging

to model in SAT, is addressed, for example, by (Barták and Švancara

2021). The general concept in SAT involves formulating a boolean for-

mula, where each variable is binary (true/false), and the relationships

between variables are composed of only three basic logical operators:

not, or, and and. By providing such a formula for the MAPF problem,

highly efficient and continually improving solvers can be employed. An-

nual SAT algorithm competition results and source codes are available at

(SAT Competition 2022).

* Answer set programming (ASP) - can be employed to address CSP

problems. ASP problems are frequently converted into SAT problems

because they are simpler to solve, and the solution can be transformed

back. The key distinction between ASP and SAT lies in their logic. SAT

utilizes propositional logic, which means something is explicitly proposed,

and all involved variables are either true or false (the boolean formula). In

contrast, ASP employs predicate logic, featuring sets of predicates with

non-binary variables that yield a truth value based on a specified set of

rules. In (Erdem et al. 2013), an ASP approach is applied to address the

MAPF problem.

– Constraint optimization problem (COP): COP is a generalization of CSP

that includes an objective function. An optimal solution to a COP problem

minimizes or maximizes the objective function f(d). Several algorithms can

be used to achieve this result, such as primal simplex, dual simplex, interior-

point methods, and the branch-and-bound method.

* Primal Simplex - A simplex is a particular type of convex polyhedron in
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geometry that is a generalized triangle-like structure. In linear program-

ming, the feasible solutions to a problem can be represented as points

inside a polyhedron, where the vertices of the polyhedron correspond to

the basic feasible solutions. The optimal solution to the problem is also

located at one of these vertices. For convex LP problems, the Primal

Simplex method starts at a vertex and moves along the edges of the

polyhedron to neighboring vertices with lower (or higher) costs until the

global minimum (or maximum) is found. This algorithm is used to effi-

ciently solve linear programming problems with a convex feasible region.

(Kalai 1997).

* Dual Simplex - The Dual Simplex method is another algorithm used to

solve linear programming problems, and it takes a different approach than

the Primal Simplex method. Rather than moving through feasible solu-

tions to find the optimal feasible solution, the Dual Simplex method moves

through non-feasible optimal solutions until it finds a feasible optimal so-

lution. Despite the differences in approach, both the Dual and Primal

Simplex methods will converge to the same solution if an optimal feasible

solution exists. This is in accordance with the strong duality theorem for

linear programs. (PAN 2013).

* Interior-point methods - The Interior-point methods are another set of

algorithms used to solve linear programming problems. Unlike the Sim-

plex methods which move from one vertex to another to reach the optimal

solution, interior-point methods aim to reach the optimal solution vertex

from any direction. There are two types of interior-point methods: the bar-

rier method and the primal-dual method. The barrier method incorporates

inequalities into the objective function as a logarithmic barrier function,

and it follows a central path within the polyhedron towards the optimal

feasible solution using Newton’s method. The primal-dual method uses

Lagrangian multipliers to add dual problem constraints to the objective

function, and it also follows the central path towards the optimal solution

using Newton’s method. However, the primal-dual method requires fewer

iterations and has improved accuracy compared to the barrier method.

Both methods are suitable for solving convex linear programming prob-

lems. (VANDERBEI 2021).

* Branch-and-bound method - The branch-and-bound method is an al-

gorithm that can be used solve combinatorial non-convex integer linear

programming (ILP) problems, such as the ILP-reduced MAPF problem. It

works by generating a solution tree where only the solution nodes lead-

ing to the optimal solution are branched. The branching is guided by a
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bounding function that calculates the cost of each generated child node

and compares it to the current solution bounds. To find the initial upper

and lower bounds, the problem is first relaxed from a non-convex ILP

problem into a set of convex LP problems, which can be solved using

previously discussed methods such as the Simplex method. Once the

bounds are found, the algorithm branches and searches for the optimal

solution until it is no longer possible to branch. This method has been

applied to various optimization problems such as automated container

terminal routing and dispatching problems. (Wang and Zeng 2022).

The following three subsections will establish the foundation for creating two MAPF opti-

mization models in chapter 4.

3.3.1 Binary Linear Programming (BLP)

A fundamental problem in multi-agent pathfinding (MAPF) can be represented as a binary

linear programming (BLP) problem, which seeks to find a feasible solution that minimizes

or maximizes a given objective function, subject to constraints. Specifically, a BLP prob-

lem can be formulated as a constrained optimization problem (COP), where the decision

variable x is a binary vector with n dimensions, and each element is either 0 or 1. The

general form of a BLP problem can be written as:

min
x∈{0,1}n

f0(x)

s.t. fi(x) ≤ 0, i = 1, ...,m

hj(x) = 0, j = 1, ..., p

(3.1)

Here, f0, fi, and hj are affine functions, and the constraints are defined by fi(x) ≤ 0 and

hj(x) = 0. Note that the solution space of a BLP problem is not convex, which means

that standard convex optimization techniques cannot be used to solve it. Instead, com-

binatorial algorithms such as branch-and-bound are needed to find the optimal solution.

In the upcoming sections, we will discuss how BLP problems can be used to model and

solve MAPF problems, and explore various optimization techniques that can be employed

to improve their efficiency and efficacy.

3.3.2 The Lagrange Dual Problem

The Lagrange dual problem is a powerful tool that can be used to solve non-convex combi-

natorial problems, including the binary linear programming (BLP) problem discussed ear-

lier. The Lagrange dual problem involves transforming the constraints of an optimization

problem into the objective function, resulting in an augmented objective function called
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the Lagrangian. For the BLP problem 3.1 , the Lagrangian can be written as:

L(x, λ, υ) = f0(x) +
m∑︂
i=1

λifi(x) +

p∑︂
j=1

υjhj(x), (3.2)

where λi and υj are Lagrangian multipliers. Generally, λ and υ are real numbers, but for

the inequality constraints fi, the condition λ ≥ 0 is required, as only values on the wrong

side of the inequality should be penalized. In order to solve the original BLP problem, the

Lagrangian is minimized with respect to the decision variable x, while maximizing with

respect to the Lagrangian multipliers λ and υ.

The Lagrangian dual function is defined as the minimum of the Lagrangian over all possi-

ble values of x. The Lagrangian dual function can be written as:

g(λ, υ) = min
x
L(x, λ, υ), (3.3)

The Lagrange dual problem seeks to find the tightest possible lower bound for the La-

grangian dual function. In other words, the Lagrange dual problem seeks to maximize the

Lagrangian dual function subject to the constraint λ ≥ 0, which can be written as:

max
λ,υ

g(λ, υ)

s.t. λ ≥ 0.
(3.4)

Denoting the optimal solution to the Lagrange dual problem by d∗ = max
λ,υ

min
x
L(x, λ, υ),

and the optimal solution to the BLP problem 3.1 by p∗, a property called weak duality or

max-min inequality is defined by:

d∗ ≤ p∗. (3.5)

The possibility of a duality gap between d∗ and p∗ indicates that the Lagrangian dual

problem may not always be able to perfectly capture the optimal objective function value

of the original BLP problem. In other words, the optimal solution to the Lagrange dual

problem d∗ may be strictly less than the optimal solution to the original BLP problem p∗.

The Lagrange dual problem is a valuable tool for solving complex combinatorial problems

(such as MAPF) and can be used to provide lower bounds on the optimal objective func-

tion value of the original problem. In particular, the Lagrange dual problem can be used

to obtain tight lower bounds for the BLP problem, which can then be used in a branch-

and-bound algorithm to search for the optimal solution.

Furthermore, the Lagrange dual problem can be used to derive the Karush-Kuhn-Tucker

(KKT) conditions, which are necessary conditions for optimality for constrained optimiza-
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tion problems. The KKT conditions are a set of equations and inequalities that must

be satisfied by any solution to the optimization problem, including the optimal solution.

Therefore, verifying the KKT conditions for a given solution can help confirm its optimality.

In summary, the Lagrange dual problem is a useful tool for solving non-convex combina-

torial problems, including the BLP problem 3.1. It provides lower bounds on the optimal

objective function value of the original problem and can be used to derive necessary

conditions for optimality. (Boyd and Vandenberghe 2021)

3.3.3 The quadratic penalty function

Penalty function methods, such as the quadratic penalty function method, can also be

useful for solving combinatorial non-convex optimization problems, including the binary

linear programming (BLP) problem. The quadratic penalty function involves penalizing

deviations from the constraints quadratically in the objective function. For the BLP prob-

lem 3.1, the quadratic penalty function can be written as:

Q(x, u) = f0(x) +
α

2

m∑︂
i=1

hi(x)
2 +

α

2

p∑︂
j=1

[fj(x)
+]2, (3.6)

where f+
j = max {0, fj} and α is the penalty parameter. The quadratic penalty func-

tion method involves solving the original problem by fixing increasing values for α and

computing min
x

Q(x, u) iteratively until optimality or sufficient optimality is reached.

One advantage of the quadratic penalty function method is that it can be combined with

the Lagrange dual method to obtain even tighter lower bounds on the optimal objective

function value. This is achieved by using the augmented Lagrangian, which involves

adding an additional penalty term to the quadratic penalty function. (Nocedal and Wright

2006)

3.3.4 The augmented Lagrangian method

The augmented Lagrangian method, also known as the method of multipliers, is a pop-

ular technique used to solve constrained optimization problems by transforming difficult

constraints into the objective function. This method is described in detail in (Nocedal and

Wright 2006) and (Birgin and M. 2014), and it has been used in various applications such

as multi-agent path finding, as shown in (Nishi, Ando, and Konishi 2005).

One way to construct the augmented Lagrangian is by combining the Lagrangian and the

quadratic penalty function into the objective function. This approach is useful because

it allows for faster convergence for the Lagrangian and it’s dual problem and mitigates

some numerical issues associated with the quadratic penalty function method. For the
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BLP problem in 3.1, the augmented Lagrangian is defined as follows:

L(x, λ, υ)aug = f0(x) +
m∑︂
i=1

λifi(x) +

p∑︂
j=1

υjhj(x) +
α

2

m∑︂
i=1

λihi(x)
2 +

α

2

p∑︂
j=1

υj[f
+
j ]

2

(3.7)

where λ and υ are the Lagrange multipliers, and α is the penalty parameter. Now the

augmented Lagrangian problem can be formulated as follows:

min
x

max
λ,υ
Laug(x, λ, υ)

s.t. λ ≥ 0,
(3.8)

The solution to this problem will be the solution to the original problem, however, it is

typically difficult to solve. Therefore, similar to the Lagrangian problem, the augmented

Lagrangian problem is also approached via the it’s dual:

max
λ,υ

min
x
Laug(x, λ, υ)

s.t. λ ≥ 0.
(3.9)

The basic augmented Lagrangian method (method of multipliers) is described in (Bert-

sekas 2015). This method involves iteratively solving the dual problem to converge to the

optimal dual solution. The algorithm works as follows:

• Find xk+1 ∈ argmin
x
Laug(x, λk, υk)

• Update the Lagrange multipliers:

– Set λk+1 = λk + ckh(x), where ck is a step size and h(x) is the vector of

constraint violations.

– Set υk+1 = υk + ckf(x)
+, where f(x)+ is the vector of positive parts of the

constraint functions.

• Repeat until convergence.

It is worth noting that the choice of the step size ck can greatly affect the convergence

rate of the algorithm. Choosing a step size that is too small can lead to slow convergence,

while choosing a step size that is too large can lead to instability and divergence. There

are several methods for choosing the step size, including heuristics, line search methods,

and trust-region methods.
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4. SOLVING THE MAPF PROBLEM

In this chapter, the Multi-Agent Path Finding (MAPF) problem is formulated as an op-

timization problem. First, a framework is introduced for modeling the environment and

actions on a pseudograph. This framework is then used to formulate a constrained binary

optimization problem. While this standard form optimization problem can be solved opti-

mally, the combinatorial nature of the problem results in an exponential increase in com-

putational time as the number of agents or map size increases. To address these issues,

coupled constraints are relaxed using Lagrangian methods, which enable the decoupling

of machines. One approach to solving this decoupled problem is presented, wherein a

graph pathfinding algorithm is executed separately for each agent, and a solution to the

MAPF instance is obtained iteratively through communication between agents.

4.1 Formulating a BLP model

In a basic Multi-Agent Path Finding (MAPF) problem, each agent is capable of taking

an action at every time step. These actions consist of either moving to a neighboring

node or staying at the current node. To model these actions, a pseudograph is used

where each edge is assigned an integer identifier (not weight), as illustrated in Figure

4.1. The list of actions an agent must take to reach its goal is expressed as a sequence

of edge identifiers. For instance, in Figure 4.1, the optimal sequence of actions for the

agent starting at edge "1" and ending at edge "4" is π = {”2”, ”3”}, as no waiting

is required. It is important to note that the sequence of edge identifiers must remain

unshuffled, and repeating elements may occur, as waiting may add the same edge to the

sequence multiple times.

The decision of whether an agent uses an edge at a given time is a binary (1 or 0)

one. When combining the decisions of all agents, a binary vector is formed that rep-

resents the paths chosen by the entire fleet. To be more specific, for a given agent a,

Figure 4.1. The connection between edge choice and action.
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time k, and edge e, the edge is either used by the agent at that time (xa,e,k = 1) or

not used (xa,e,k = 0). Hence, the decision variable xa,e,k is binary, taking values in

0, 1. The solution to the problem (MAPF instance) is represented by the binary vector

xsol = xa,e,k ∈ {0, 1}, a ∈ A, k ∈ K, e ∈ E.

A BLP model (introduced in section 3.3.1) can now be formulated using the general con-

straints for the MAPF problem (figure 3.3). The BLP problem can be written as

min
xa,e,k

∑︁
a∈A

∑︁
e∈E

∑︁
k∈K ca,e,kxa,e,k

s.t. xa,es(a),0 − 1 = 0 ∀a ∈ A (1)∑︂
e∈Ein(n)

xa,e,k −
∑︂

e∈Eout(n)

xa,e,k+1 = 0 ∀a ∈ A,∀n ∈ N, ∀k ∈ K (2)∑︂
e∈E

xa,e,k − 1 = 0 ∀a ∈ A,∀k ∈ K (3)∑︂
a∈A

∑︂
e∈Ein(n)

xa,e,k − 1 ≤ 0 ∀n ∈ N, ∀k ∈ K (4)∑︂
a∈A

∑︂
e2∈Eswap(e)

(xa,e,k + xa,e2,k)− 1 ≤ 0 ∀e ∈ E,∀k ∈ K (5)

xa,e,k ∈ {0, 1}. ∀a ∈ A,∀e ∈ E,∀k ∈ K (6).

(4.1)

Table 4.1 summarizes the interpretations of the symbols used in the BLP model. In order

to minimize the total sum of actions taken by the fleet of agents, a cost function of the sum

of costs is considered. To achieve this, ca,e,k is assigned to be zero at the goal of the agent

and any positive constant elsewhere. This choice of cost function motivates agents to

reach their goals as quickly as possible, as lingering along the way incurs additional cost.

It is worth noting that in the MAPF setting, minimizing actions is equivalent to minimizing

space-time distance, as waiting also incurs a cost.

Let’s now examine the constraints of the BLP model 4.1. Assuming the decision variable

to be a binary vector, there are five additional constraints:

1. (1) At the first time step (k = 0), each agent must be at its starting position on the

graph. This constraint ensures that the initial state of the MAPF problem is satisfied.

2. (2) If an agent travels to a node, it must either remain there or move to a neighboring

node. This constraint ensures that agents cannot jump to their destination and must

traverse the edges in a continuous path.

3. (3) An agent must always be on exactly one edge. This constraint ensures that

agents do not disappear or duplicate during the course of the plan.

4. (4) Only one agent can occupy a node or an edge at a time. This constraint pre-

vents collisions between agents at nodes.
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Table 4.1. Interpretation of symbols in the BLP model.

Symbol Interpretation

x Decision variable, indicates the use of an edge by a given
agent at a given time

c Cost of using an edge

a Agent ID (natural number)

a2 Another agent’s ID, i.e., a ̸= a2

k Time step from start time (positive integer)

e Edge ID (positive integer)

n Node ID (positive integer)

A Set of agent IDs (positive integers)

K Set of times within the horizon, i.e., 0, 1, 2, . . . , end_time

E Set of edge IDs (positive integers)

N Set of node IDs (positive integers)

es(a) The starting edge of an agent (different for each agent)

Ein(n) Set of edges pointing to node n

Eout(n) Set of edges starting from node n

Ngoal(e) The node to which edge e is pointing to

Nstart(e) The node from which edge e starts

Eswap(e) Returns the parallel edge that connects the same pair of
nodes in the opposite direction

5. (5) A node cannot be left and entered at the same time. This constraint prevents

agents from colliding on edges or following each other too closely.

These constraints ensure that the BLP model produces feasible solutions that satisfy the

initial state and the constraints of the MAPF problem.

Constraints 1-3 are linearly independent for each machine, whereas constraints 4-5 are

not. Constraints 4 and 5 prevent conflicts of different types as shown in Figure 3.3: con-

straint 4 prevents conflicts of types a) and b), while constraint 5 prevents conflicts of types

c), d), and e). These constraints can also be written as Equations (4b) and (5b) respec-

tively:

xa,e,k +
∑︂

a2∈A\a

∑︂
e2∈Ein(Ngoal(e))

xa2,e2,k − 1 ≤ 0 ∀a ∈ A,∀e ∈ E,∀k ∈ K (4b)

xa,e,k +
∑︂

a2∈A\a

∑︂
e2∈Ein(Nstart(e))

xa2,e2,k − 1 ≤ 0 ∀a ∈ A,∀e ∈ E,∀k ∈ K (5b)

(4.2)
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However, this formulation results in more equations and is not used for the optimal solver

in the next section. This formulation is primarily for later decoupling studies.

4.2 Solving the MAPF problem optimally

In this section, a method for achieving an optimal solution to the BLP problem 4.1 and the

associated MAPF instance is presented. The approach involves two main components.

Firstly, a modeling tool is required to interpret and store the cost function and constraints.

In this study, the open source Python optimization modeling objects (Pyomo) software is

utilized for this purpose. Secondly, a solver is required to find a solution to the problem

given the constraints and cost function. Both commercial and open source solvers are

considered.

4.2.1 Pyomo

To algorithmically solve the compactly written BLP equations 4.1, modeling software is

needed. Algebraic modeling languages (AMLs) are often used for this purpose as they

have a syntax similar to mathematical notation, allowing for symbolic notations to be used.

These notations are then automatically translated into the low-level algebraic form re-

quired by algorithms. Open-source AMLs such as GNU MathProg and Zimpl, as well as

commercial AMLs like GAMS, MPL, AIMMS, and AMPL are available, each with their own

language syntax, solver compatibility, and data management.

In this thesis, the open-source Python optimization modeling objects (Pyomo) library is

used as an AML. Unlike most AMLs, Pyomo does not use a custom modeling language.

Instead, modeling objects are embedded within Python, enabling seamless incorporation

with other Python libraries, such as NumPy, SciPy, and Matplotlib, and virtually endless

possibilities for result analysis. The model created using Pyomo is a Python object with

attributes equating to the properties of the original problem, including information about

the cost function and constraints. Pyomo can be used to model various optimization

problems, such as linear programming problems (LP), binary linear programming (BLP),

integer linear programming (ILP), mixed-integer linear programming (MILP), nonlinear

programming problems (NLP), binary quadratic programming (BQP), integer quadratic

programming (IQP), and mixed-integer quadratic programming (MIQP).

The Pyomo model can be stored as either an abstract model or a concrete model, which

differ only in the time of component initialization. In the abstract model, the model com-

ponents (equations) are not initialized on creation, but instead, a high-level formulation

is stored, which can later be used to initialize the low-level algebraic equations on com-

mand. The concrete model initializes the lowest-level algebraic equations on creation and

can be sent to the solver as is. (Pyomo - optimization modeling in Python 2013)
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In this thesis, simple text files containing information about the graph the agents are oper-

ating on and their starting and destination edges are used to import data into the model.

The information is then used to create a concrete model of the BLP problem. Pyomo con-

siders each constraint in 4.1 and the objective (cost function) in modeling. Pyomo creates

a model object that can be examined to check the equivalence of the actual constraints

and the interpreted ones. In the final step by Pyomo, as seen in appendix A, a solver

is chosen, and the model is solved. Different kinds of solvers are introduced in the next

section.

4.2.2 LP solvers

The BLP problem 4.1 and the subsequent MAPF instance can be solved with well-established

linear programming (LP) solvers. LP solvers are used for at least four different kinds of

linear problems: BLP, ILP, MBLP, and MILP. In BLP, all variables are binary, in ILP, all

variables are integer, in MBLP, all variables are binary or continuous, and in MILP, all

variables are integer or continuous.

Although there is not much research on which solvers are best at solving large-scale

BLP problems, there seems to be a clear divide in performance by commercial and open-

source solvers. For example, in (Meindl and Templ 2013), a wide range of LP problems

were tested on open-source and commercial solvers, and the results indicated that the

best commercial solver was around five times faster than the best open-source solver.

There also seem to be problems for which even the commercial solvers struggle to find

solutions in adequate time, or perhaps even at all. The solvers that will be used to solve

the BLP problem 4.1 are listed in Table 4.2.

Ultimately, the choice of LP solver will depend on the specific needs and constraints of

the problem at hand. In the context of container terminals, where large-scale optimization

problems are common, it may be beneficial to consider using a powerful commercial

solver like CPLEX or Gurobi. However, open-source solvers like GLPK and lp_solve
may also be suitable, particularly if cost is a concern or if the problem is not particularly

complex.

4.3 Solving the MAPF problem suboptimally

In Section 4.2, a way to optimally solve the MAPF problem was introduced. However, the

combinatorial nature of the problem causes computation time to increase exponentially

as the graph size and agent count grow. To address this issue, a suboptimal solution

that distributes computational load is proposed. The idea is to decouple the common

constraints 4.2 and solve the optimization problem separately for each agent iteratively.

To achieve this result, two steps are taken. First, the BLP problem 4.1 is reformulated
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Table 4.2. Common LP solvers.

Solver Devoloped by Algorithms used Open source

glpk GNU project

Primal and dual Simplex,

Interior-point,

Branch-and-bound

Yes

lp_solve Michel Berkelaar
Primal and dual Simplex,

Branch-and-bound
Yes

Cplex IBM Unknown No

Gurobi Gurobi Optimization Unknown No

to be an augmented Lagrangian relaxed problem. Next, the dual of this reformulated

problem is solved suboptimally using graph algorithms. This approach has been shown to

be effective in many MAPF problems, including applications in semiconductor fabrication

bays (Nishi, Ando, and Konishi 2005).

4.3.1 Formulating the augmented Lagrangian dual

The penalty functions (see 3.3.3) of inequalities 4.2, can be written as

g(a, e, k)+ = max {0, xa,e,k +
∑︂

a2∈A\a

∑︂
e2∈Ein(Ngoal(e))

xa2,e2,k − 1}

h(a, e, k)+ = max {0, xa,e,k +
∑︂

a2∈A\a

∑︂
e2∈Ein(Nstart(e))

xa2,e2,k − 1}.
(4.3)

The penalty functions in equations 4.3 are designed to evaluate only constraint violations.

When the left side of the inequality is negative (-1), indicating that the constraint is not

violated, no penalty or reward is added to the cost function. This is ensured by using

the max function to take the maximum between 0 and amount violated. The augmented

Lagrangian can be written as

Laug(x, λ, ϕ) = J1 + J2 + J3 + J4 + J5, (4.4)
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where

J1 =
∑︂
a∈A

∑︂
e∈E

∑︂
k∈K

ca,e,kxa,e,k

J2 =
∑︂
a∈A

∑︂
e∈E

∑︂
k∈K

λ(a, e, k)g(a, e, k)+

J3 =
∑︂
a∈A

∑︂
e∈E

∑︂
k∈K

ϕ(a, e, k)h(a, e, k)+

J4 =
α

2

∑︂
a∈A

∑︂
e∈E

∑︂
k∈K

[g(a, e, k)+]2

J5 =
α

2

∑︂
a∈A

∑︂
e∈E

∑︂
k∈K

[h(a, e, k)+]2.

The augmented Lagrangian Laug(x, λ, ϕ), defined in equation 4.4, consists of the original

cost function J1 and Lagrangian costs J2 and J3, where λ(a, e, k) and ϕ(a, k, e) are

Lagrangian multipliers. The costs J4 and J5 are quadratic penalty terms, scaled by α > 0.

This new cost function can be used to solve the original minimization problem by finding

the optimal solution of the augmented Lagrangian.

The intuition behind the augmented Lagrangian method is that the Lagrangian multipliers

are chosen to maximize J2 and J3, causing the costs to be positive if there are violations

in the constraints, and zero otherwise. The quadratic penalty terms J4 and J5 always pull

the solution towards feasibility, resulting in positive costs when there are violations in the

constraints, and zero otherwise. As a result, in the feasible solution space, J2 = J3 =

J4 = J5 = 0, and only the original cost function remains. The augmented Lagrangian

dual problem (see section 3.3.4) can be written as

max
λa,e,k,ϕa,e,k

min
xa,e,k

Laug(x, λ, ϕ)

s.t. xa,es(a),k − 1 = 0 ∀a ∈ A (1)∑︂
e∈Ein(n)

xa,e,k −
∑︂

e∈Eout(n)

xa,e,k+1 = 0 ∀a ∈ A, ∀n ∈ N,∀k ∈ K (2)∑︂
e∈E

xa,e,k − 1 = 0 ∀a ∈ A, ∀k ∈ K (3)

xa,e,k ∈ {0, 1} ∀a ∈ A, ∀e ∈ E,∀k ∈ K. (6)

(4.5)

The augmented Lagrangian method provides an alternate approach for solving the prob-

lem, where the dual problem is solved instead. Rather than determining the least upper

bound of the augmented Lagrangian function with respect to x, the greatest lower bound

with respect to λ is determined instead. However, for non-convex problems like the BLP

problem, there might be a duality gap as discussed in 3.3.2 If there is no gap, the solution

to the dual is the solution to the original problem. This possibility of strong duality offers
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some justification for the following simplified optimization strategy:

• Attempt to solve the dual problem max
λa,e,k,ϕa,e,k

min
xa,e,k

Laug(x, λ, ϕ) (with constraints 1-

3).

• Use a found feasible solution as the solution to the original problem.

This strategy may result in a suboptimal solution, as even if the dual is optimally solved,

the possibility of a duality gap prevents the certainty that the found solution is optimal.

4.3.2 Decoupling

In this section a divide and conquer algorithm design paradigm is applied, and the op-

timization problem is divided to individual agent pathfinding subproblems, where each

agent’s singular pathfinding problem is solved iteratively in parallel fashion to obtain a

solution to the original MAPF problem. As established in section 3, the MAPF problem

consist of agents finding paths without colliding with each other. In the corresponding BLP

problem 4.1 there are agent decoupled (1-3) and coupled (4-5) constraints. The coupled

constraints essentially bind the sub-problems of individual pathfinding into a one large op-

timization problem. This works well for small instances, but adding more agents becomes

problematic very quickly, as even if it only increases the size of the optimization problem

linearly, together with increasing the map size, the problem starts to grow exponentially.

As mentioned earlier, the concept of using the augmented Lagrangian and its dual in

the MAPF setting was originated from (Nishi, Ando, and Konishi 2005). The directed

pseudograph-based MAPF formulation used in this thesis allows for a more straightfor-

ward formulation of the decoupled problem since each cost function in 4.4 can be written

directly as a function of the corresponding agent:

Laug(x, λ, ϕ, a) = J1(a) + J2(a) + J3(a) + J4(a) + J5(a), (4.6)
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where

J1(a) =
∑︂
e∈E

∑︂
k∈K

ca,e,kxa,e,k

J2(a) =
∑︂
e∈E

∑︂
k∈K

λ(a, e, k)g(a, e, k)+

J3(a) =
∑︂
e∈E

∑︂
k∈K

ϕ(a, e, k)h(a, e, k)+

J4(a) =
α

2

∑︂
e∈E

∑︂
k∈K

[g(a, e, k)+]2

J5(a) =
α

2

∑︂
e∈E

∑︂
k∈K

[h(a, e, k)+]2.

The decoupled, distributed problem can now be written as

max
λa,e,k,ϕa,e,k

min
xa,e,k

∑︂
a∈A

Laug(x, λ, ϕ, a)

s.t. xa,es(a),k − 1 = 0 (1)∑︂
e∈Ein(n)

xa,e,k −
∑︂

e∈Eout(n)

xa,e,k+1 = 0 ∀n ∈ N, ∀k ∈ K (2)∑︂
e∈E

xa,e,k − 1 = 0 ∀k ∈ K (3)

xa,e,k ∈ {0, 1} ∀e ∈ E,∀k ∈ K (6)

(4.7)

The intuition underlying this process is that each agent’s pathfinding problem becomes an

individual BLP problem, linked solely through shared Lagrangian multipliers. One crucial

question concerns the selection of these multipliers. Essentially, Lagrangian multipliers

determine which agent will yield in a conflict situation. This represents a fundamental

challenge in MAPF that must be addressed without resorting to priority-giving methods,

as they are inherently incomplete. For instance, Sharon and Guni (2015) present an

innovative yet straightforward method for optimally managing conflicts. In this thesis,

however, suboptimality is accepted in exchange for increased speed and scalability. The

following section introduces an iterative algorithm designed to solve problem (4.7) in a

distributed manner.

4.3.3 A Distributed algorithm

This section presents a distributed algorithm derived from the decoupled augmented La-

grangian dual problem outlined in equation 4.7. The primary concept involves employ-

ing pathfinding algorithms on graphs, as the dual problem can be interpreted as a least

weighted pathfinding problem on space-time graphs. A space-time graph refers to a di-
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Figure 4.2. An example of pathfinding on a space-time graph, where each node repre-
sents a location in space and time. The red path represents an agents path between
space (x,y) locations (4,2) and (0,2).

rected graph with nodes tied to specific locations in space-time. For instance, in a 2D hor-

izontal transportation scenario, the space-time graph nodes possess three parameters:

the x-coordinate, the y-coordinate, and the time coordinate. This concept is demonstrated

in Figure 4.2. The space-time representation effectively allows for modeling waiting and

transition time. Unlike on the pseudograph, it is now feasible to utilize well-established

graph pathfinding algorithms, eliminating the need for LP solvers.

The minimization problem in the dual 4.7 and finding a least-weighted path on a space-

time graph is equivalent, if the space-time graph’s edge weights are determined by the

following equation:

Wa(e, k) = w+ λa(e, k) + ϕa(e, k) +
α

2
·
∑︂
b∈A\a

(edges(xb)
2 + swap_edges(xb)

2). (4.8)

This equation takes into account Lagrangian multipliers λa(e, k), ϕa(e, k) which are used

to penalize node and edge collisions , and a quadratic penalty function which penal-

izes the use of the same edges (edges(xb)) or swapping edges (edges going between

same nodes (swap_edges(xb))) by a scaling factor of α/2. In other words the violation
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of penalty functions g(a, e, k)+ and h(a, e, k)+ in 4.3 are penalized by edge weights on a

space-time graph. Each agent has their own individual space-time graph with its own set

of weights. The initial weight w in this thesis is always set to 1.

A simple and potentially effective approach to iteratively solve the max min problem

4.7 is to utilize a variant of the augmented Lagrangian method, 3.3.4. The Lagrangian

multipliers are updated according to algorithm 1. With a constant step size assumed, the

multipliers increase with each iteration if constraints are violated.

Algorithm 1 Augmented Lagrangian algorithm (fixed step size)

1: xnext ∈ argmin
x∈{0,1}n

Laug(x, λ, ϕ)

2: λnext = λ+∆λ ∗ g(a, e, k)+
3: ϕnext = ϕ+∆ϕ ∗ h(a, e, k)+

When dealing with a non-convex problem and a fixed step size, convergence and op-

timality in the dual cannot be guaranteed. Moreover, it can be challenging to prevent

oscillations, which occur when agents attempt to correct conflicts in a symmetric man-

ner. This results in the same Lagrangian multipliers being continuously updated, which,

in turn, leads to another conflict and perpetuates the cycle. To address this issue, (Nishi,

Ando, and Konishi 2005) proposed a solution: allowing an agent to randomly maintain its

path without correction in the next iteration.

Based on these ideas, distributed stochastic heuristic algorithm 2 is designed to find the

shortest paths for multiple agents from their respective starting nodes to their goal nodes

without colliding. The idea of the algorithm 2 is to establish the location and goal for each

agent and then start to iteratively calculate the least weighted paths for each agent in

parallel. The agents continue to iterate until no collisions is confirmed via communication.

On each iteration, the algorithm adds penalty weight to the weights of edges that were

used by other agents, in order to discourage agents from using those edges. The size

of the penalty depends on the number of agents using the edge, and is determined by

the α parameter. This penalty encourages agents to explore different paths in the graph,

rather than following the same paths that other agents have previously taken. By exploring

different paths, agents are more likely to find collision-free and swap-free paths that are

better suited to their individual needs, and are less likely to get stuck in a cycle of repeated

conflicts.

The Lagrangian multipliers in the MAPF algorithm are used to discourage collisions be-

tween agents’ paths. They are updated in each iteration based on the current node and

edge collisions in the system. Specifically, when a node collision or edge collision (swap)

is detected, the Lagrangian multipliers associated with the affected edges are increased

by a fixed amount (∆λ for collisions, ∆ϕ for swaps). By continuously updating the La-

grangian multipliers based on the current state of the system, the algorithm can slowly
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increase the penalty for node and edge collisions, and encourage agents to avoid edges

that have led to conflicts in the past.

The edge weights are reset on each iteration because they are being updated in response

to the current set of agent paths. The updated edge weights are meant to penalize agents

for using edges that have been used by other agents or that lead to collisions. By reset-

ting the edge weights the algorithm ensures that the updated weights are based on the

current set of agent paths, without any carry-over from previous iterations expect for the

Lagrangian multipliers which slowly accumulate weight on frequent collision points. The

approach guarantees that the edge weights are consistent with the current set of paths,

which in turn ensures that the algorithm is correctly penalizing agents for using each

other’s paths.

Skipping is added to the algorithm 2, which refers to the process of not updating the paths

of all agents in each iteration. Instead, a random subset of agents are selected to update

their paths. This is controlled by the ξ parameter, which determines the probability of

an agent being updated in a given iteration. For example, if ξ = 0.6, then there is an

60% chance that an agent’s path will not be updated in a given iteration. Skipping is

important because it allows the algorithm to converge more quickly to a feasible solution.

By only updating a random subset of agents’ paths in each iteration, the algorithm can

avoid problematic cyclic patterns. This reduces the likelihood of collisions and increases

the chances of finding a feasible solution to the MAPF problem.

The MAPF algorithm 2 is distributable because it can be decomposed into independent

sub-problems that can be solved simultaneously by different processors or machines. In

other words, the algorithm can be parallelized, where different agents can be assigned

to different processors, and each processor can solve the sub-problem for its assigned

agent independently. Specifically, each agent’s path calculation can be done indepen-

dently, once each agent has figured out what the others are planning via communication.

Communication plays a vital role in coordinating the paths of multiple agents. Specifically,

the agents need to communicate their paths to each other in order to detect conflicts and

find a set of collision-free paths. There are two general types of communication that can

be used in the algorithm: all-to-all communication and local communication.

All-to-all communication refers to the process of each agent sending its current path to

all other agents in the system. This approach ensures that each agent has complete

information about the paths of all other agents. However, all-to-all communication can

be slow and can lead to a large amount of communication overhead, especially in large

systems with many agents. This can make it difficult to scale the algorithm to handle large

problems.

Local communication refers to the process of each agent sending its current path only

to its immediate neighbors in the graph. This approach reduces the amount of com-
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munication overhead and can be more scalable than all-to-all communication. However,

local communication can result in agents having incomplete information about the paths

of other agents that are not their immediate neighbors. This can make it more difficult to

detect conflicts and find collision-free paths.

Algorithm 2 A distributed pathfinding procedure for a single agent via communication to
handle conflicts with other agents.

ξ,∆λ,∆ϕ, α,G← Initialize()
1: location, goal ← RecieveMessage(”plan”)
2: solution← ShortestSpaceT imePath(G, location, goal)
3: BroadcastMessage(solution, ”paths”)
4: WaitForOthers()
5: solutions← RecieveMessage(”paths”)
6: while Conflicts(solutions) do
7: if RandomRealBetween(0, 1) ≤ ξ then
8: en, kn ← FindNodeCollisions(solution, solutions)
9: ee, kn ← FindEdgeCollisions(solution, solutions)

10: λ(en, kn)← λ(en, kn) + ∆λ
11: ϕ(ee, ke)← ϕ(ee, ke) + ∆ϕ
12: edges← EdgesUsed(solutions)
13: swap_edges← SwapEdgesUsed(solutions)
14: G.Weight← w + λ+ ϕ+ α

2
·
∑︁

solutions(edges
2 + swap_edges2)

15: solution← ShortestSpaceT imePath(G, location, goal)

16: BroadcastMessage(solution, ”paths”)
17: WaitForOthers()
18: solutions← RecieveMessage(”paths”)
19: G.Weight← w

20: return solution

In summary, this section presented a approach for solving the multi-agent pathfinding

problem using a distributable stochastic algorithm 2, based on the decoupled augmented

Lagrangian dual formulation of the MAPF problem 4.7. The proposed algorithm enables

using pathfinding algorithms on space-time graphs, where each node represents a loca-

tion in space and time, and each agent has its own individual space-time graph with its

own set of weights. The algorithm is designed to find the shortest paths for multiple agents

from their respective starting nodes to their goal nodes without colliding. The approach

guarantees that the edge weights are consistent with the current set of paths, which in

turn ensures that the algorithm is correctly penalizing agents for using each other’s paths.

The algorithm is distributable and can be parallelized, allowing for scalable solutions to

the multi-agent pathfinding problem. Lastly, it should be noted that practical implemen-

tation details, such as the specific communication protocols or hardware requirements

needed to implement the algorithm in a real-world setting, are outside the scope of this

thesis.
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5. SIMULATIONS

This chapter focuses on the applicability of the distributed MAPF algorithm 2 to the hor-

izontal transportation case in automated container terminals. The first step involves es-

tablishing a connection between MAPF and horizontal transportation through a graph

representation of the terminal. Next, a basic MAPF simulator is implemented in Matlab to

evaluate the effectiveness of the algorithm. The simulation is conducted on two maps: a

bottleneck-free map 5.2 and a map with a bottleneck 5.7. The impact of parameter se-

lection and the number of agents is studied through repeated simulations of randomized

missions on both maps.

5.1 Terminal simulator

To apply MAPF to horizontal transportation, the container terminal must be modeled as a

set of non-overlapping planning areas, with only one agent allowed to exist in each area

at any given time. This can be accomplished by representing the terminal layout as a grid

or a more general graph, as seen in related research such as (Hu et al. 2021) and (Wang

and Zeng 2022). In this chapter, the perpendicular layout of the terminal is used as an

example, as depicted in figure 2.5. The horizontal transportation area is further divided

into three functional areas: the quay crane operational area, the buffer area, and the yard

side area.

In the domain of horizontal transportation, the MAPF task involves moving containers

between the quayside and yardside. However, the problem is not limited to routing, as

each agent in the terminal is responsible for carrying out multiple container transporting

missions. The problem can be divided into three interconnected components: scheduling,

dispatching, and routing. Scheduling entails the ordering and timing of container handling,

while dispatching assigns equipment to handle specific containers based on the schedule.

Routing determines the paths for agents in line with the dispatcher’s instructions. While

this thesis focuses on the routing aspect, it is worth noting that any simulation of terminal

operations requires some level of dispatcher implementation.

To construct a simulator for horizontal transportation, a graph similar to figure 5.1 is imple-

mented in MATLAB. The goal is to simulate a vessel unloading mission, where containers

are unloaded by quay cranes and transported by horizontal equipment from quay cranes
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Figure 5.1. Graph representation of horizontal transportation (Hu et al. 2021).

to yard cranes. This situation requires a high-level coordinator and a continuously running

MAPF algorithm. The simulator follows the following basic procedure:

• Agents are initialized at queue nodes

• Quay and yard crane productivity are assumed to be infinite

• The MAPF algorithm is run at every time step, with a long enough time horizon to

plan a path all the way to the agent’s destination

• If an agent reaches its destination, a new destination is assigned by the high-level

coordinator

The high-level coordinator operates according to the following logic:

• Agents at queue nodes are assigned available quay crane nodes

• Agents at quay cranes are assigned random yard crane nodes

• Agents at yard cranes are assigned queue nodes with the shortest queue

When an agent visits a yard crane node, a container is delivered, and the mission is

considered completed when a fixed number of containers have been delivered.
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Figure 5.2. A graph model of a bottleneck-free container terminal layout.

5.2 Bottleneck-free case

The first case to be considered is a container terminal with a layout that allows for smooth

and efficient agent movement without any bottlenecks. This layout is illustrated in figure

5.2. The layout features multiple adjacent lanes that allow agents to avoid collisions eas-

ily, without having to significantly increase the distance traveled. The number of agents

considered on the map ranges from 1 to 24, resulting in a relatively low agent density. It

is worth noting that some optimal solution methods, such as solving the BLP optimiza-

tion problem 4.1, may not work well for these kinds of medium/large sparsely populated

graphs, as noted in (Švancara and Barták 2019). A search-based method could be con-

sidered, but the focus of this analysis is on evaluating the performance of the developed

distributable algorithm 2.

Two tests are conducted to analyze the impact of parameter selection and the number of

agents on the overall performance of the terminal. The first test examines the effect of

parameter choice (see algorithm 2) on the overall time steps and the number of iterations

required to transfer 500 containers with a fixed number of agents (15). The results of

the first test reveal a good set of parameters, which are used in the second test. The

second test examines the impact of varying agent amounts on the performance with fixed

parameter choices. Figures 5.3 and 5.4 depict the impact of different parameters on

optimality and number of iterations in the first test, while figures 5.5 and 5.6 illustrate the
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effect of varying agent numbers in the second test. Further details about the tests are

discussed in the following paragraphs.

Figure 5.3 shows the average completion time of ten 500-container missions in a simu-

lated container terminal. The x-axis represents different parameter combinations (which

can be found in table 5.2, while the y-axis shows the average mission completion time.

The figure contains three lines, with the proposed method’s completion time varying de-

pending on the parameter combination. The optimal completion time line is a lower bound

for the solution quality, determined using the BLP model, while the priority-based line is

an upper bound for the solution quality. This serves as an important reference value, as

any method performing over this threshold of convenience and reliability should not be

considered. In Figure 5.3, only four parameter combinations achieve a completion time

below the priority method, at the cost of higher iterations. The idea of priority planning is

explained in section 3.3.

Figure 5.4 illustrates the simulated time complexity of the algorithm 2 when used to solve

ten 500 container missions. The figure presents the average number of iterations and

maximum iterations required to during the completion of the missions using different pa-

rameter combinations. The x-axis represents the parameter combination used (which

can be found in table 5.2), while the y-axis shows the number of iterations required. The

figure reveals that achieving a good mission completion time may result in a high num-

ber of iterations. For example, choosing combination 2 requires on average 14 iterations

to solve each MAPF instance but may require up 80+ iterations in some cases. In the

bottleneck-free case, the choice of parameters is a very clear trade-off between mission

completion time and the number of iterations required.

Table 5.1 presents the correlation matrix between various indicators and parameters re-

lated to the algorithm’s performance. The table includes the average transfer time, av-

erage number of iterations, maximum number of iterations, collision weighting parame-

ters ∆λ,∆ϕ , other machines path weight parameter α, and skipping ratio parameter ξ.

The matrix indicates that there is a strong connection between transfer time and colli-

sion weighting parameter, meaning that increasing the collision weighting parameter can

significantly increase the time required to complete the mission. Additionally, there is a

negative connection (-0.4) between skipping ratio and average iterations, indicating that

increasing the skipping ratio parameter may result in a reduction of the average number

of iterations required to solve the problem. These main findings can also been seen from

figures 5.3 and 5.4. It is important to note that the parameters used are picked within a

certain range. Therefore, the results obtained from the analysis may not be generalizable

outside of this specific range. For example, from the figures, it is evident that choosing a

very small α increases iterations significantly, but this trend does not continue for larger

α. In essence, different parameter values may yield different results, and the optimal

parameter combination for one problem instance may not be the same for another.
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Figure 5.3. Impact of different parameter combinations on the average completion time
of ten 500-container missions conducted by 15 agents on a bottleneck-free map.

Figure 5.4. The effect of parameter selection on the average number of algorithm itera-
tions, measured as both the mean of the averages and the mean of the maximums, for
ten missions with 500 containers each on a bottleneck map, with 15 agents.
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Table 5.1. Correlation matrix between various indicators and parameters related to the
algorithm’s performance based on 10 simulated 500 container missions with 15 agents
on a bottleneck-free map.

Figure 5.5 provides an analysis of the average time required to transfer a single container

as a function of agent amount. The parameter combination 2 is chosen, as it provides the

best mission completion time for 15 agents, as seen in figure 5.3. The x-axis represents

the number of agents involved in the mission, while the y-axis shows the average time

required to transfer a single container. The simulation involves ten times more containers

than agents, and the time required for a single container to move from quay cranes to

yard cranes is calculated by dividing the total simulation time by 10, which is the number

of containers per agent. The process is repeated 100 times for a good average value. The

priority method is again used as a reference to evaluate the algorithm’s performance. The

results indicate that more than 15 agents are required before the algorithm outperforms

the priority method. On the other hand, for a low number of agents, the algorithm’s

performance may be worse than the priority method.

Figure 5.6 represents the relationship between the number of agents and the iterations re-

quired by the MAPF algorithm 2 during the mission. The x-axis corresponds to the agent

amount, while the y-axis represents the number of iterations. This visualization serves

as a form of simulated time complexity analysis, as it captures the average iterations and

average maximum iterations needed during the mission. The results indicate a almost

linear relationship between the number of agents and the iterations required. The figure

suggests that, in the given scenario, the developed algorithm demonstrates a relatively

consistent performance as the agent count increases, with only moderate growth in the

number of iterations required. It is important to note that this observed relationship be-

tween the number of agents and the iterations required is primarily due to the absence

of bottlenecks in the map, which allows for smooth and unconstrained navigation, thus

minimizing the impact of increasing agent density on the algorithm’s performance.
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Figure 5.5. Average time required to transfer a single container as a function of agent
amount by choosing parameter combination 2 on a bottleneck-free map.

Figure 5.6. Average iterations required for a single container transfer with parameter
combination 2 on a bottleneck-free map as a function of agent amount.
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Table 5.2. Parameter combinations used in figures 5.3 and 5.4

Combination ∆λ,∆ϕ α ξ

1 0.1 0.5 0.2

2 0.1 0.5 0.4

3 0.1 0.5 0.6

4 0.1 0.5 0.8

5 0.5 0.5 0.2

6 0.5 0.5 0.4

7 0.5 0.5 0.6

8 0.5 0.5 0.8

9 1 0.5 0.2

10 1 0.5 0.4

11 1 0.5 0.6

12 1 0.5 0.8

13 10 0.5 0.2

14 10 0.5 0.4

15 10 0.5 0.6

16 10 0.5 0.8

17 0.1 2 0.2

18 0.1 2 0.4

19 0.1 2 0.6

20 0.1 2 0.8

21 0.5 2 0.2

22 0.5 2 0.4

23 0.5 2 0.6

24 0.5 2 0.8

25 1 2 0.2

26 1 2 0.4

27 1 2 0.6

28 1 2 0.8

29 10 2 0.2

30 10 2 0.4

31 10 2 0.6

32 10 2 0.8

Combination ∆λ,∆ϕ α ξ

33 0.1 3 0.2

34 0.1 3 0.4

35 0.1 3 0.6

36 0.1 3 0.8

37 0.5 3 0.2

38 0.5 3 0.4

39 0.5 3 0.6

40 0.5 3 0.8

41 1 3 0.2

42 1 3 0.4

43 1 3 0.6

44 1 3 0.8

45 10 3 0.2

46 10 3 0.4

47 10 3 0.6

48 10 3 0.8

49 0.1 10 0.2

50 0.1 10 0.4

51 0.1 10 0.6

52 0.1 10 0.8

53 0.5 10 0.2

54 0.5 10 0.4

55 0.5 10 0.6

56 0.5 10 0.8

57 1 10 0.2

58 1 10 0.4

59 1 10 0.6

60 1 10 0.8

61 10 10 0.2

62 10 10 0.4

63 10 10 0.6

64 10 10 0.8
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Figure 5.7. A graph model of a container terminal layout with a conspicuous bottleneck.

5.3 Bottleneck case

The second case presents a more challenging environment for agent navigation by in-

troducing a bottleneck. The bottleneck divides the terminal layout into two clusters as

seen in figure 5.7. The narrow passage between the clusters constraints the available

movement options for agents and causes congestion and increased travel distances, de-

spite the relatively low agent density. Simulating this kind of scenario will help to better

understand the limitations and potential improvements when dealing with bottlenecks or

other challenging layout features. However, the main idea here is to further examine the

performance of the developed distributed algorithm 2.

As in the previous case, two tests are conducted. One test to see how the parameter

choices affect performance in the presence of a bottleneck, a second test to see how the

performance changes as a function of agent amount. The scenario remains the same,

only the map layout is changed. In the first test 500 containers are transferred from

the quay cranes to yard cranes by 15 machines, and results can be seen in figures 5.8

and 5.9. In the second test, the parameter combination resulting in the lowest mission

completion time is chosen and agent amount is varied. The results of the second test are

illustrated by figures 5.10 and 5.11.
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Figure 5.8. The effect of parameter selection on the average completion time for ten
missions, each with 500 containers, executed by 15 agents on a bottleneck map.

Figure 5.9. The impact of parameter selection on the average number of algorithm itera-
tions, considering both the mean of the averages and the mean of the maximums, across
ten missions with 500 containers each on a bottleneck map, conducted by 15 agents.
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Table 5.3. Correlation matrix between various indicators and parameters related to the
algorithm’s performance based on 10 simulated 500 container missions with 15 agents
on a bottleneck map

Figure 5.8 presents the simulated average completion time of ten 500 container transfer-

ring missions on a bottleneck map. Similarly to figure 5.3, the average mission completion

time on the y-axis is evaluated with different parameter combinations on the x-axis (found

in table 5.4). Notably, if the ratio between the priority parameter α and the collision pa-

rameters ∆λ and ∆ϕ is too small, the transfer time increases significantly. Therefore for

the bottleneck case, combinations 5-16 are completely excluded and the highest value for

∆λ and ∆ϕ is reduced to 1.5. The figure highlights that similar parameter combinations

can yield vastly different results due to the bottleneck, a good combination can now be

found between 17-20 and 33-36, unlike in figure 5.3. In addition, the gap between the

priority method and the optimal method is now ten times wider than without a bottleneck,

indicating that the priority method’s performance suffers from bottlenecks.

Figure 5.9 presents the relationship between parameter selection and the average num-

ber of algorithm iterations, similarly to figure 5.4. The x-axis displays the parameter

combinations (5.4) , while the y-axis represents the average iterations during the ten

500-container missions. The graph indicates peaks at low skipping ratios (0.2), while

maintaining relative consistency in other instances. Notably, the average number of iter-

ations is significantly higher than in figure 5.4, and the predictability is not as apparent.

Nevertheless, the downward trend observed in 5.4, caused by the priority parameter α,

is also present in figure 5.9,. This information highlights the even greater importance of

carefully selecting parameter combinations on a bottleneck map.

Table 5.3 provides a correlation matrix between various indicators and parameters asso-

ciated with the algorithm’s performance in the bottleneck case, comparable to the findings

in table 5.1. The table encompasses the average transfer time, average iterations, max-

imum iteration collision weighting parameters ∆λ,∆ϕ, other machines path weight pa-

rameter α, and skipping ratio parameter ξ. It demonstrates a diminished influence of the

collision weighting parameter on transfer time, implying that other factors may be more

crucial in determining the algorithm’s efficiency in bottleneck environments. Furthermore,

a noticeable shift occurs in the relationship between the skipping ratio parameter and av-
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Figure 5.10. Average time required to transfer a single container as a function of agent
amount by choosing parameter combination 19 on a bottlenecked map.

Figure 5.11. Average iterations required for a single container transfer with parameter
combination 19 on a bottleneck map as a function of agent amount.

erage iterations, now displaying a more pronounced impact on the number of iterations

instead of the mission completion time. It is essential to again reiterate that the parame-

ters employed fall within a specific range (see table 5.4), and the analysis results may not

apply outside this range. Consequently, caution should be exercised when generalizing

these findings.

Figure 5.10 provides an analysis of the average time required to transfer a single container

as a function of agent amount in the bottleneck case, using the parameter combination

19. The x-axis represents the number of agents involved in the mission, while the y-axis

shows the average time required to transfer a single container. The simulation involves

ten times more containers than agents, and the time required for a single container to

move from quay cranes to yard cranes is calculated by dividing the total simulation time

by 10, which is the number of containers per machine. The process is repeated 100 times

for a reliable average value. The priority method is again used as a reference to evalu-

ate the algorithm’s performance as in figure 5.5. The results indicate that the proposed
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algorithm 2 performs clearly below the priority method for 5-22 agents but rapidly sur-

passes it as the number of agents increases beyond this range. This contrast with the

non-bottleneck case 5.5 suggests that the presence of a bottleneck impacts the algo-

rithm’s performance in a different way compared to the priority method. One possible

explanation for the algorithm’s worse performance with a large number of agents could

be the increased congestion in the bottleneck areas of the map. As the agent density

increases, the algorithm may struggle to find efficient routes for all agents to avoid colli-

sions, leading to a slower overall mission completion time. This highlights the importance

of adapting the algorithm’s parameters, such as the chosen combination 19, to the spe-

cific environment and map layout to ensure optimal performance, especially in scenarios

with bottlenecks and varying agent densities.

Figure 5.11 represents the relationship between the number of agents and the iterations

required by the MAPF algorithm 2 during multiple missions in the bottleneck case. The

x-axis corresponds to the agent amount, while the y-axis represents the number of iter-

ations. Similarly to figure 5.6 his visualization again serves as a form of simulated time

complexity analysis, capturing the average iterations and average maximum iterations

needed during the mission. In contrast to figure 5.6, the results for the bottleneck case

indicate a clear exponential growth in the number of iterations required as more agents

are added. At 24 agents, there is, on average, 200 iterations and up to 1600 iterations in

some cases, which is significantly higher than the iterations observed in figure 5.6.

This stark difference between figure 5.6 and 5.11 demonstrates the substantial impact that

bottlenecks can have on the algorithm’s performance. The presence of bottlenecks in the

map creates additional navigation constraints and increases the complexity of avoiding

collisions for the agents, especially as the agent density rises. As a result, the algorithm

requires a considerably higher number of iterations to find feasible solutions in bottleneck

scenarios compared to non-bottleneck cases.
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Table 5.4. Parameter combinations used in figures 5.8 and 5.9

Combination ∆λ,∆ϕ α ξ

1 0.1 0.5 0.2

2 0.1 0.5 0.4

3 0.1 0.5 0.6

4 0.1 0.5 0.8

5 0.5 0.5 0.2

6 0.5 0.5 0.4

7 0.5 0.5 0.6

8 0.5 0.5 0.8

9 1 0.5 0.2

10 1 0.5 0.4

11 1 0.5 0.6

12 1 0.5 0.8

13 1.5 0.5 0.2

14 1.5 0.5 0.4

15 1.5 0.5 0.6

16 1.5 0.5 0.8

17 0.1 2 0.2

18 0.1 2 0.4

19 0.1 2 0.6

20 0.1 2 0.8

21 0.5 2 0.2

22 0.5 2 0.4

23 0.5 2 0.6

24 0.5 2 0.8

25 1 2 0.2

26 1 2 0.4

27 1 2 0.6

28 1 2 0.8

29 1.5 2 0.2

30 1.5 2 0.4

31 1.5 2 0.6

32 1.5 2 0.8

Combination ∆λ,∆ϕ α ξ

33 0.1 3 0.2

34 0.1 3 0.4

35 0.1 3 0.6

36 0.1 3 0.8

37 0.5 3 0.2

38 0.5 3 0.4

39 0.5 3 0.6

40 0.5 3 0.8

41 1 3 0.2

42 1 3 0.4

43 1 3 0.6

44 1 3 0.8

45 1.5 3 0.2

46 1.5 3 0.4

47 1.5 3 0.6

48 1.5 3 0.8

49 0.1 10 0.2

50 0.1 10 0.4

51 0.1 10 0.6

52 0.1 10 0.8

53 0.5 10 0.2

54 0.5 10 0.4

55 0.5 10 0.6

56 0.5 10 0.8

57 1 10 0.2

58 1 10 0.4

59 1 10 0.6

60 1 10 0.8

61 1.5 10 0.2

62 1.5 10 0.4

63 1.5 10 0.6

64 1.5 10 0.8
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6. CONCLUSION

In conclusion, this thesis has presented a distributed algorithm for multi-agent path finding

(MAPF) in the context of horizontal transportation in automated container terminals. To

evaluate the performance of the algorithm, a simulator was developed in MATLAB and the

algorithm was tested on both bottleneck-free and bottlenecked container terminal maps.

The tests conducted show the impact of parameter choice and the number of agents on

the performance of the algorithm. These results provide valuable insights into how the

algorithm can be optimized for different container terminal scenarios.

The results demonstrated that the proposed algorithm can outperform a straightforward

priority method, and can produce results close to optimal in some cases. The algorithm’s

performance is significantly impacted by the presence of bottlenecks, resulting in a higher

number of iterations required to find feasible solutions. These findings highlight the impor-

tance of adapting the algorithm’s parameters to the specific environment and map layout

to ensure good performance, especially in scenarios with bottlenecks and varying agent

densities.

Any practical implementation of the algorithm is not within the scope of this thesis. How-

ever, the presented algorithm and simulation framework provide a solid foundation for

further research and development in the field of MAPF in automated container terminals.

Overall, this thesis has contributed to advancing the understanding of the challenges and

potential solutions for the MAPF problem in the context of horizontal transportation in au-

tomated container terminals. The underlying distributed MAPF work is also applicable in

other contexts.

In future work, the proposed distributed algorithm could be further improved and extended

to account for other factors that impact container transfer tasks in maritime ports. For ex-

ample, the algorithm could be modified to consider crane scheduling and vehicle charg-

ing. Furthermore, the proposed algorithm could be tested and validated in a more realistic

container terminal environment to assess its applicability and effectiveness in practice.
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APPENDIX A: MAPF CODE

A.1 Optimal MAPF with Pyomo

# MAPF with Pyomo

import os
import pyomo.environ as pyo
import importlib

# Data importation not included for clarity

# List of imported sets:

# Es := starting edges
# E := set of edges
# N := set of nodes
# A := set of agents
# K := set of times instances: (0,1,2,... horizon)
# E_in := set of pairs: {node, edges going to node}
# E_out := set of pairs: {node, edges going out of node}
# E_swaps := set of pairs: {edge, "swap" edge}
# c := matrix: {edges, agents, value: 0 at goal, 1 elsewhere}

############################################################

# 1. Model creation

# Concrete model
model = pyo.ConcreteModel()

# Binary decision variables
model.x = pyo.Var(A,E,K, within=pyo.Binary)
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# Constraint creation

# (1)
# Starting nodes are fixed
for a in range(0,len(Es)):

model.x[a,Es[a],K[0]].fix(1.0)

# (2)
# Adjacency constraints
def adjacency_rule(mdl,a,n,k):

return sum(mdl.x[a,e,k] for e in E_in[n-1]) \
== sum(mdl.x[a,e,k+1] for e in E_out[n-1])

model.rule2 = pyo.Constraint(A,N,K[:-1],rule=adjacency_rule)

# (3)
# Agent number constraints
def number_rule(mdl, a,k):

return sum(mdl.x[a,e,k] for e in E) == 1
model.rule3 = pyo.Constraint(A,K, rule=number_rule)

# (4)
# Collision constraints
def approach_rule(mdl,n,k):

return sum(sum(mdl.x[a,e,k] for e in E_in[n-1]) \
for a in A) <= 1
model.rule4 = pyo.Constraint(N,K,rule=approach_rule)

# (5)
# Swapping constraints
def swapping_rule(mdl,i,k):

return sum(mdl.x[a,E_swaps[i][0],k] + \
mdl.x[a,E_swaps[i][1],k] for a in A)<= 1
I = [i for i in range(len(E_swaps))]
model.rule5 = pyo.Constraint(I,K[:-1],rule=swapping_rule)

# Objective
def obj_rule(mdl):

return sum(mdl.x[a,e,k]*c[e-1][a-1] \
for a in A for e in E for k in K)
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model.obj = pyo.Objective(rule=obj_rule,sense=pyo.minimize)

############################################################

# 2. Solving the MAPF problem

# Choosing solver: cplex, gurobi, glpk, cbc, clp
# Note: Only glpk is included in the Pyomo package,
# other solvers will need to be acquired elsewhere
solver = pyo.SolverFactory("cplex")

# Solve the problem
res = solver.solve(model)

# Report success/failure
pyo.assert_optimal_termination(res)

# Final solution
solution = model.x

############################################################
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