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ABSTRACT

Oskari Laurila: Acoustic simulation of a large four-stroke internal combustion engine
Master’s thesis
Tampere University
Master’s Programme in Mechanical Engineering
April 2023

Recently, reducing noise and vibration levels has become a more important goal in the design
of engines due to tightening regulations and growing customer demands. Traditionally the design
process has relied on physical measurements.

In this thesis, the acoustic simulation approach is investigated as an alternative or comple-
mentary tool for the design of engines with reduced noise levels. The goal is to construct a finite
element method based acoustic simulation model for the W8L25 engine and to validate it against
the measurements made in the Wärtsilä test lab.

The simulation process can be divided into two main steps: the multibody dynamics (MBD)
simulation and the exterior acoustic radiation simulation. The MBD model was provided by Wärt-
silä, while the acoustic simulation model was built with Actran VI simulation software and run up
to 2 kHz frequency.

The simulated results were found to have quite good correspondence with the measurements
in the 800 to 1250 Hz frequency range. At lower frequencies, the simulated values were signif-
icantly higher, and at higher frequencies, the simulated values start to decrease faster than the
measured values. Some of the differences observed at high frequencies are likely explained by
the existing MBD model being more optimized for low-frequency vibration analysis.

The thesis provides a valuable starting point to begin the optimization of the acoustic simulation
model and simulation process. Additional research and development are still needed to fully adapt
the acoustic simulation as a part of the engine design process.

Keywords: acoustic simulation, engine, finite element method

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.
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TIIVISTELMÄ

Oskari Laurila: Suuren nelitahtisen polttomoottorin akustinen simulointi
Diplomityö
Tampereen yliopisto
Konetekniikan diplomi-insinöörin tutkinto-ohjelma
Huhtikuu 2023

Viime vuosina melu- ja värähtelytasojen alentaminen on muodostunut yhä tärkeämmäksi ta-
voitteeksi moottorien suunnittelussa tiukentuneiden määräysten ja kasvaneiden asiakasvaatimus-
ten takia. Perinteisesti suunnitteluprosessi on pohjautunut fyysisiin mittauksiin.

Tässä diplomityössä akustista simulointia tutkitaan vaihtoehtoisena tai täydentävänä työkaluna
osana hiljaisempien moottorien suunnitteluprosessia. Työn tavoitteena on luoda elementtimene-
telmään pohjautuva akustinen simulointimalli W8L25 moottorille ja todentaa sen toiminta vertaa-
malla tuloksia Wärtsilän testilaboratoriossa tehtyihin mittauksiin.

Simulointiprosessi voidaan jakaa kahteen päävaiheeseen: monikappaledynamiikan (MBD) si-
mulointiin ja akustisen säteilyn simulointiin. MBD malli toimitettiin Wärtsilältä, kun taas akustinen
simulaatiomalli luotiin Actran VI simulointiohjelmalla ja sitä ajettiin 2 kHz taajuuteen asti.

Simuloidut tulokset vastasivat mitattuja arvoja melko hyvin 800-1250 Hz taajuusalueella. Al-
haisemmilla taajuuksilla simuloidut tulokset olivat huomattavasti korkeampia kuin mitatut arvot ja
korkeammilla taajuuksilla simuloidut arvot alkoivat laskea nopeammin kuin mitatut arvot. Osa ha-
vaituista eroista korkeilla taajuuksilla voidaan todennäköisesti selittää sillä, että olemassa oleva
MBD malli on enemmän optimoitu matalataajuisten värähtelyjen tutkimiseen.

Diplomityö tarjoaa arvokkaan lähtökohdan akustisen simulointimallin ja simulointiprosessin op-
timointiin. Lisätutkimusta ja kehitystä tarvitaan kuitenkin vielä ennen akustisen simulointimallin täy-
simääräistä käyttöönottoa osana moottorien suunnitteluprosessia.

Avainsanat: akustiikka simulaatio, moottori, elementtimenetelmä

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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GLOSSARY

A amplitude of motion [m]

Ac cross sectional area [m2]

Ã steady state pressure or force

B longitudinal stiffness of the material [N/m2]

B̃ steady state velocity or volume velocity

C damping matrix

D bending stiffness of a plate [Nm]

D matrix with boundary admittance terms

E Young’s modulus [N/m2]

ER reversible mechanical energy in the system

ES reversible energy in a structure

Ei vibrational energy in a subsystem

El energy dissipated per cycle

Erad radiated energy

F force [N]

F0 amplitude of a force function [N]

G matrix of single layer potential

G(. . . ) Green’s function

H matrix of double layer potential

I intensity [W/m2], second moment of area [m4]

Ii normal intensity of the incident wave [W/m2]

Ir normal intensity of the reflected wave [W/m2]

I0 reference intensity [W/m2]

I
′

instantaneous sound intensity vector

I mean sound intensity vector

K stiffness matrix

L length [m]
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LI sound intensity level [dB]

Lp sound pressure level [dB]

LW sound power level [dB]

M mass matrix

P,Π sound power [W]

P0 reference sound power [W]

Q systems amplification factor at resonant frequency

S surface area [m2]

T temperature [K], time [s]

T0 reference temperature [K]

T60 reverberation time

T0 reference temperature [K]

U volume velocity [m3/s]

V volume [m3]

W,Wrad radiated power

WS inputted power

Wh power transformed into heat

X system response at resonant frequency

Xst systems static response

Y boundary admittance

Ỹ normalized boundary admittance

Z impedance

Z̄ complex impedance

ZA acoustic impedance [Pa s/m3]

ZM mechanical impedance [N s/m]

ZS specific acoustic impedance [Pa s/m]

a radius of a sphere [m]

b relative bandwidth

c speed of sound [m/s]

cB bending wave speed [m/s]

cg group speed [m/s]

cgB bending wave group speed [m/s]
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cc critical damping coefficient

c
′′
L longitudinal wave speed in a bar [m/s]

c
′
L longitudinal wave speed in a plate [m/s]

cL pure longitudinal wave speed [m/s]

cv viscous damping coefficient

d nodal distance [m]

e Euler’s number

f frequency [1/s]

f0 frequency bands centre frequency [1/s]

fc critical frequency [1/s]

fl frequency bands lower frequency [1/s]

fu frequency bands upper frequency [1/s]

h plate thickness [m]

i imaginary unit

k wavenumber [1/m]

kB bending wavenumber

ks spring stiffness [N/m]

m mass [kg]

n normal vector, modal density

p pressure [N/m2]

pe element nodal pressure vector [N/m2]

ph discretized solution for pressure distribution [N/m2]

pr radial pressure [N/m2]

p̄ time-harmonic pressure [N/m2]

p0 reference pressure [N/m2]

p̃ small fluctuation in total pressure [N/m2]

q volume velocity of an acoustic source

r radial coordinate

r(. . . ) distance function

t time [s]

u displacement [m]

u0 initial displacement [m]
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u̇0 initial velocity [m/s]

u̇ velocity [m/s]

ü acceleration [m/s2]

uh homogeneous solution

up partial solution

u particle velocity vector

v Velocity [m/s]

va surface velocity [m/s]

vf normal velocity of a fluid particle

vr radial velocity [m/s]

vs structural surface velocity

x position vector (x, y, z) in Cartesian coordinate system

z solution to a characteristic polynomial equation

zl collocation point

Γ closed boundary surface between the domain and the complemen-

tary domain

Ω acoustic domain

Ωc complementary acoustic domain

Πij energy flow between subsystems

Θ boundary mass matrix

β ratio between excitation and natural frequency

∇ nabla operator

χ weight function

χ̃ test function

∆ Laplace operator (∇2), difference

δ logarithmic decrement

δlk Kronecker delta

δ(. . . ) dirac delta function
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ηS structural radiation loss factor
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ηrad radiation loss factor
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ν Poisson’s constant
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1. INTRODUCTION

Since the late 1980s, stricter regulations for engine gaseous and particulate emissions

have led engine manufacturers to favor higher cylinder pressures, more complicated me-

chanical solutions, and lighter engine components. All of these developments tend to con-

tribute to higher engine noise levels. Meanwhile, increased public awareness of health,

safety, and comfort have led to increased regulations for engine noise levels. For ex-

ample, in July 2014 a regulation by the International Maritime Organization (IMO) came

into force imposing a maximum limit of 110 dB(A) for the noise levels measured at 1 m

distance from the engine.

Wärtsilä has been actively working with noise and vibration topics since the late 1990s.

With the increased research knowledge and advanced measurement technology, Wärtsilä

is now able to accurately identify the major engine noise sources and limit engine noise

to acceptable levels. Over recent years, a reduction of 5 dB in engine noise levels has

been achieved with technical solutions.

The current design process for lower noise levels has been centered around measure-

ments and iterative design changes with the help of physical prototypes. This need for

physical prototypes and measurements is a time-consuming and expensive process. The

goal of this thesis is to investigate the acoustic simulation approach as an alternative

or complementary design tool for engines with lower noise radiation. The simulation

approach should allow one to more cost-friendly and quickly explore several design it-

erations, and gain a better understanding of where the noise is generated and radiated

from. This enables the design to focus more efficiently on the most problematic areas or

components.

The first step in adopting the simulation approach as a part of the design process is model

validation. In this thesis, an acoustic simulation model is created for the W8L25-engine

(shown in Figure 1.1), and the simulation results are compared to the measurements

made in the Wärtsilä test lab. The following research questions are then answered.

• How do the simulated sound pressure, intensity, and power results for the engine

compare to the measured values?

• What are the possible sources of errors in the simulated results?

• How the simulation procedure could be improved?
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• Is the acoustic simulation a feasible design tool to be utilized in the design process

of engines with reduced noise radiation?

3,7 m

5,8 m

Parameter Value

Cylinders 8

Bore 250 mm

Speed 1000 rpm

Power 2760 kW

Weight 27,8 t

W8L25DF

Figure 1.1. W8L25DF engine and some key properties [19].

Previously similar acoustic radiation analyses [5] have been made for smaller-scale en-

gines, but the large size of the Wärtsilä engines provides an additional challenge for the

acoustical simulation. The number of unknowns in the simulation model grows rapidly as

the model size and analysis frequency increase. Efficient solution algorithms and large

amount of computation resources are needed to obtain a solution in a reasonable amount

of time.

The thesis starts with an overview of the basic principles in acoustic, and the key theorems

of structural dynamics and sound radiation are discussed. An introduction to different nu-

merical methods for solving acoustical problems is given, and the methods are compared

to find the one best suited for the particular case in the thesis. Next, the simulation pro-

cess and acoustic radiation model are discussed in detail. Finally, the simulation results

are compared to measurements, and conclusions along with topics for further research

are presented.
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2. BASIC ACOUSTIC CONCEPTS

Understanding the fundamental principles and equations behind acoustical phenomena

is the first step toward the analysis of more complex problems. In this chapter, a short

introduction to the basic acoustical principles and concepts is presented. The introduction

is started with a description of the wave motion. Next, the key quantities in acoustics are

discussed. Finally, some concepts related to signal analysis and hearing perception are

introduced.

2.1 Wave motion

Wave motion in an ideal fluid is transferred in a form of longitudinal or compression waves.

This means that the displacement of the medium is parallel to the propagation direction of

the wavefront. Transverse waves or waves where the displacement is perpendicular to the

propagation direction are not possible in fluids since fluids do not have adequate shear

resistance to sustain these deformations. Figure 2.1 shows a schematic representation of

longitudinal and transverse wave motion. The concept of different wave types is returned

later in the context of the wave motion in structures.

The most simple type of longitudinal wave is an infinite plane wave consisting of a single

frequency. This type of wave can be generated by an ideal acoustic piston or a rigid plate

oscillating along a single direction. Another type of simple wave is a spherical wave that

is generated by a small vibrating point-like source. Pure plain waves are not often present

in physical systems but they can be used to approximate the waves generated by most

ordinary sources at large distances away from the source. [17]

Starting from the fundamental axioms of conservation of mass and the balance of mo-

mentum and applying the linearized form of the equations we can arrive at the partial

differential equation that represents simple wave motion

∆p̃(x, t) =
1

c2
∂2p̃(x, t)

∂t2
, (2.1)

where ∆ is the Laplace operator, p̃ = p − p0 represents the small fluctuation in total

pressure p and c is the speed of sound.
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Compressional (longitudinal) wave

Flexural (transverse or bending) wave

+ ve- ve
Particle velocity is parallel to wave velocity

Wave velocity

Wavelength (or period) Compression Rarefaction

Wave velocity

Wavelength 
(or period)

+ ve

- ve

Particle velocity is 
perpendicular to wave velocity

Figure 2.1. Schematic representation of longitudinal and transverse wave motion,
adapted from [15].

If the problem is assumed to be time-harmonic such as p̃(x, t) = p̄(x)e−iωt and the time-

harmonic sound pressure is denoted as p̄(x) = p(x) the equation (2.1) reduces to the

Helmholtz equation

∆p(x) + k2p(x) = 0, (2.2)

where k = ω/c is the wave number and ω is the angular frequency. The angular fre-

quency ω and frequency f are linked with equation ω = 2πf . [7]

2.2 Speed of sound

The speed of sound in a medium is dependent on several factors. For longitudinal waves

in a fluid, the deformation process is thought to be adiabatic. For an ideal gas, this leads

to the following equation for the speed of sound



5

c =

√︃
γp

ρ0
, (2.3)

where γ is the dimensionless ratio of the specific heat of the gas at constant pressure to

the specific heat at constant volume, and ρ0 is the reference density. A typical value of γ

for air is 1.403. The resulting speed of sound in air at 20◦C temperature is 343 m/s.

The specific heat ratio is thought to be relatively independent of the temperature in normal

conditions. Also, if the problem is considered to be set in a large volume such as outdoors,

the change in pressure due to temperature is not relevant. The density of the air, however,

is greatly dependent on the temperature, and thus the speed of sound can be written as a

function of temperature. If the speed of sound at T0 = 273 K is chosen as the reference

value the equation becomes

c(T ) = c273

√︃
T

T0
, (2.4)

where T is absolute temperature. The increase in the speed of sound with temperature

becomes an important factor when analyzing acoustical problems in elevated tempera-

tures. One common example is found in exhaust gas systems [17].

2.3 Sound power level and intensity

The intensity in a sound wave is defined as the energy flow per unit time per unit area,

where the area is taken normal to the direction of the wave propagation. For normal

audible sound waves the intensities are in a range of 10−12 to 1Wm−2. Due to this large

range in typical values and the nature of how human hearing works, it is beneficial to

introduce a logarithmic scale to quantify sound intensity.

One such scale is the decibel scale. The decibel (dB) is not an absolute but a comparative

measurement. It can be used to compare the difference between two intensities as

Intensity difference in dB = 10 log10
I1
I2
. (2.5)

A common way to quantify intensities is to relate them to a chosen reference intensity.

Then the term I1/I2 in equation (2.5) can be replaced by term I/I0, where the I is the

measured intensity value and I0 is the reference value. A typical reference value is 10−12

Wm−2, which is thought to be the lower limit for human hearing. The equation (2.5) then

becomes
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LI = 10 log10
I

I0
dB. (2.6)

This is the value commonly related to the term sound intensity level [17].

In general, the sound intensity is a vector quantity. The instantaneous sound intensity

vector can be calculated as

I
′
= pu, (2.7)

where p is the acoustic pressure and u is the particle velocity vector. Taking the time

average from the instantaneous sound intensity the mean intensity vector is obtained as

I =
1

T

∫︂ T

0

pu dt. (2.8)

Sound intensity decreases with distance from the source and it is dependent on environ-

mental factors. The sound power of the source, however, is independent of distance and

solely a property of the source. The sound power can be calculated from intensity by

integrating it over an area that is perpendicular to the flow direction of sound energy

Π =

∫︂
S

I dS. (2.9)

Similarly to the sound intensity, it is convenient to express the sound power on a decibel

scale. Typical reference value used is P0 = 10−12W. Then the sound power compared

to the reference level can be expressed as

LW = 10 log10
P

P0

dB, (2.10)

where P is the measured sound power. The quantity LW is associated with the commonly

referred term sound power level [15].

2.4 Sound pressure level

Most waves can be approximated by plane waves at far away distances from the source.

In these cases, the sound intensity of the field is proportional to the mean-square value of

the pressure fluctuation. This means that the equation (2.6) for the sound intensity level

LI can be adopted for the sound pressure level as
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Lp = 10 log10
p2

p20
dB = 20 log10

p

p0
dB, (2.11)

where the reference pressure is p0 = 2 · 10−5Nm−2. For a plane wave, the intensity can

be expressed in terms of pressure as I = p2/ρ0c. From this, the following equation for

the sound intensity level is obtained

LI = Lp + 10 log10
p20
ρ0cI0

, (2.12)

where ρ0 is the air density and c is the speed of sound. At sufficiently large distances

away from the source the equation (2.12) is a convenient way to approximate intensity

level since pressure is often an easier quantity to measure [15].

2.5 Impedance

It is convenient to define the impedance by the use of complex quantities as

Z̄ =
|Ã|ei(ωt+ϕ1)

|B̃|ei(ωt+ϕ2)
= |Z|eiϕ, (2.13)

where Ã is the steady state pressure or force, B̃ is the steady state velocity or volume

velocity, and ϕ = ϕ1 − ϕ2 is the phase difference. From this more general complex

notation, several specific measures for impedance can be derived.

Acoustic impedance ZA = p/U is the complex ratio between the pressure averaged over

some surface S, and the volume velocity through the surface U = uS. The surface can

either be a real part of a moving body or some arbitrary surface in the acoustic medium.

Specific acoustic impedance is defined as ZS = p/u, where p and u are the pressure and

velocity at a point in an acoustic medium or mechanical structure. For plane waves, the

pressure and velocity are in phase and specific acoustic impedance reduces to ZS = ρc.

Mechanical impedance ZM = F/u is the ratio between the force on a specific area to the

particle velocity through that area. It can also be defined in the acoustic medium or in the

mechanical structure.

Specific impedance is an important measure of how well waves are transmitted through

boundaries between two different mediums. For plane waves, the normal intensity relation

between the incident wave Ii and the reflected wave Ir at the boundary can be stated as

Ir
Ii

=

(︃
ZS1 − ZS2

ZS1 + ZS2

)︃2

, (2.14)
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where ZS1 is the specific acoustical impedance in the first medium and ZS2 in the sec-

ond medium. The equation (2.14) shows that if the two mediums have equal normal

impedances at the boundary, no wave is reflected. In general, this impedance matching

can be used to efficiently transfer acoustic or vibration energy across a boundary. It can

be also utilized in sound or vibration isolation by introducing boundaries with impedance

mismatch to the system.

2.6 Time vs frequency domain

In signal analysis, it is important to understand the difference between the time and fre-

quency domains. In the time domain, the signal can be thought of as a simple recording

of the acoustical parameter being measured against time. According to Fourier’s theo-

rem, every complex signal can be constructed as a sum of simple sinusoidal functions

with a single frequency. In the time domain, only the superposition of these elementary

signals is observed. This provides good insight into the overall signal properties such as

global maximums but does not provide any information about the participation factors of

different frequencies.

The contribution of different elementary signals can be observed in the frequency do-

main. The signal is first transformed from the time domain to the frequency domain by

the use of a Fourier transformation. In practice digital fast Fourier transformation (FFT)

techniques are used. Analysis of the signal in the frequency domain can then be used to

identify frequencies or frequency ranges that have the highest contribution to the overall

signal. This can provide useful information about the possible resonant frequencies of the

analyzed system [15].

2.7 1/n octave bands

The analysis of noise and vibration signals is often made in the frequency domain. Often

industrial sounds, including most engine noise, can be considered random noise signals

since they consist of several frequencies having differing amplitudes. It is convenient to

analyze this kind of distributed frequency spectrum by the use of frequency bands.

Octave bands are the widest bands used, where each band’s center frequency is double

the previous one. The reference center frequency used for the octave bands is 1000 Hz,

and from this, the other band’s center frequencies can be derived. Frequency bands can

be generalized by equations

fu = 2mfl (2.15)



9

f0 = (flfu)
1/2, (2.16)

where f0 is the bands center frequency, fl is the lower limit and fu is the upper limit. For

octave bands the exponent m = 1. It is often more convenient to use narrower bands

like the one-third-octave band, where m = 1/3. Other narrower bands in the form of

m = 1/n can also be used. Table 2.1 shows the center, lower and upper frequencies of

the octave and one-third-octave bands.

Octave and 1/n octave frequency bands are constant percentage bands since the ratio

between the bandwidth and the center frequency is always constant. From table 2.1 it

can be observed that as the center frequency increases so does the bandwidth. Octave

bands apply to situations, where the amplitude distribution inside the banded frequencies

is close to constant. If a single frequency dominates the band, then this information is lost

during the averaging operation [15].
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Table 2.1. Octave and one-third-octave frequency bands, adapted from [15].

Octave band
center frequency (Hz)

One-third-octave band
center frequency (Hz)

Band frequency limits (Hz)
Lower Upper

31.5
25
31.5
40

22
28
35

28
35
44

63
50
63
80

44
57
71

57
71
88

125
100
125
160

88
113
141

113
141
176

250
200
250
315

176
225
283

225
283
353

500
400
500
630

353
440
565

440
565
707

1000
800
1000
1250

707
880
1130

880
1130
1414

2000
1600
2000
2500

1414
1760
2250

1760
2250
2825

4000
3150
4000
5000

2825
3530
4400

3530
4400
5650

8000
6300
8000

10 000

5650
7070
8800

7070
8800

11 300

16 000
12 500
16 000
20 000

11 300
14 140
17 600

14 140
17 600
22 500
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2.8 Sound perception

The audible range of sounds for human hearing can be thought to be from around 20 Hz

to 20 kHz. It is important to note that the perceived loudness of sounds is not constant

with the actual sound pressure levels in this frequency range. For this, reason several

weighting networks have been created to approximate the perceived loudness of sounds

across the audible spectrum. The most commonly used one is the A-weighting or dB(A)

values. Figure 2.2 shows the relative weighting applied by A-, B-, C- and D-weighting

networks for one-third-octave bands [9].
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Figure 2.2. Weighting networks, adapted from [15].

From Figure 2.2 it is seen that the A-weighting network applies the most attenuation to

low frequencies. The D-weighting amplifies the higher frequencies. It is sometimes used

to emphasize the higher frequencies emitted by airplanes and other high-frequency noise

sources [15].

Although, the A-weighting is widely used in industrial applications its limitations in pre-

senting the perceived loudness should be noted. A-weighting curve was constructed by

starting from a reference pure tone sound of 1000 Hz with 40 dB sound pressure level.

Then the sound pressure levels that resulted in similar perceived loudness values were

noted for different audible frequencies. This means that the A-weighting loses some of

its accuracy when applied to higher sound pressure levels. Also, the use of pure tone

sounds omits the effect of sound bandwidth on the perceived loudness [9].
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3. STRUCTURE-BORNE SOUND

Structures are a major part of real-world systems, where noise and vibration are present.

The field of structure-borne sound can be divided into four main processes: generation,

transmission, propagation, and radiation [8]. This process path is shown in Figure 3.1.

Generation Transmission Propagation Radiation

Figure 3.1. Structural acoustic process, adapted from [8].

Generation encompasses the source of the oscillation and the mechanism behind it. In

an engine, a major part of the vibrations is generated in the cylinder during the ignition

event and in the gear trains during meshing contact. In the generation phase energy is

transformed into a form that can cause structural vibrations.

Transmission deals with the transfer of energy from the source to the structure. In terms

of the engine, this covers the transfer of the energy from the fluid inside the cylinder into

the surrounding structure after the ignition event.

Propagation covers the part, where the energy is distributed along the structure starting

from the sources and the points of transmission. Propagation and transfer of vibrations

mean that in an engine even the parts quite far away from the sources such as the oil

pan could provide a major contribution to eventual sound radiation. This propagation can

be mitigated by introducing damping to the structure and trying to isolate parts of the

structure from the sources.

The last part of the structural acoustic process is radiation, where the vibration energy of

the structure is transferred to the surrounding fluid as sound waves. Different parts of the

engine can produce various levels of sound power. The radiated sound power depends

on the vibration amplitudes of the structure and on how efficiently structural vibrations are

converted into sound waves. This is called radiation efficiency.

In the context of this thesis and the acoustic simulation procedure, the first three parts of

the structural acoustic process (generation, transmission, and propagation) are covered
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by the multibody dynamics model (MBD). The last part or the radiation is included in the

acoustic simulation model. This part is of the most interest in this thesis.

The noise reduction measures can be applied to any of the stages in the structural acous-

tic process presented in Figure 3.1. The most beneficial would be to reduce the generated

noise at the source level. However, this is not always feasible like in the case of an engine,

where performance and other attributes are often a higher priority. During transmission

and propagation, the energy can be dissipated by introducing damping or isolating parts

of the structure. For the radiation part, the radiation efficiency is a key concept. By re-

ducing the radiation efficiency a smaller portion of the vibration energy is transferred into

the actual sound waves. Radiation efficiency is dependent on both the geometric and

material properties of the part.

3.1 Basic dynamics

3.1.1 Undamped SDOF system

The obvious place to begin the description of the structural vibrations is the analysis of a

simple linear single degree of freedom (SDOF) system. The system shown in Figure 3.2

consists of a point-like mass connected to a spring and damper.

Mass m

Excitation 
Force F(t) Displacement x(t)

Spring 
𝑘𝑠

Damper 
𝑐𝑣

Figure 3.2. Single degree of freedom system, adapted from [15].

The equation of motion for the undamped system with no external force excitation can be

written as

mü+ ksu = 0, (3.1)

where u is the displacement, ü its second time-derivative, m is the mass and ks is the

spring stiffness [6]. Introducing the angular frequency as ω =
√︁
ks/m to the equation
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(3.1) it can be rewritten as

ü+ ω2u = 0. (3.2)

The solution for equation (3.2) can be attained as

u(t) = A sin(ωt+ ϕ), (3.3)

where A is the amplitude of the motion, and ϕ is the phase-angle. From equation (3.3)

velocity and acceleration are obtained by derivation as

u̇(t) = ωA cos(ωt+ ϕ), (3.4)

ü(t) = −ω2A sin(ωt+ ϕ). (3.5)

From equations (3.3)–(3.5), it can be seen that the acceleration is in the same phase as

displacement. The velocity, however, is π/2 out of phase. This means that displacement

and acceleration reach their maximum absolute values at the same time while velocity

reaches its maximum when displacement is zero.

3.1.2 Viscously damped SDOF system

Continuing with the SDOF system analyzed previously some viscous damping can be

introduced to the system. Then the equation of motion (3.2) becomes

ü+
cv
m
u̇+ ω2u = 0, (3.6)

where cv is the viscous damping coefficient. The damping ratio ξ is then introduced as

ξ =
cv
cc

=
cv

2
√
ksm

, (3.7)

where cc is the critical damping. The equation (3.6) can then be written as

ü+ 2ξωu̇+ ω2u = 0. (3.8)

By assuming a harmonic solution u(t) = Aezt the equation (3.8) becomes
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(z2 + 2ξωz + ω2)Aezt = 0. (3.9)

The solution to equation (3.9) is then obtained as

z2 + 2ξωz + ω2 = 0 −→ z1,2 = ω
[︂
−ξ ±

√︁
ξ2 − 1

]︂
. (3.10)

The solutions are dependent on the damping ratio, and three different cases can be iden-

tified. These are the underdamped, critically damped, and overdamped system.

For underdamped system ξ < 1 and cv < cc. Most real-world structures are under-

damped since their viscous damping coefficient is less than the critical damping value.

Now the solution to the equation (3.10) is obtained as complex conjugate

z1,2 = −ξω ± iωD, (3.11)

where ωD = ω
√︁

1− ξ2 is the damped natural frequency of the system. It can be ob-

served that for small damping ratios in the order of a couple of percents, the damped

natural frequency is very close to the undamped natural frequency. For an underdamped

system, the solution for the equation (3.8) is then attained as

u(t) = Ae−ξωt sin(ωDt+ ϕ). (3.12)

The solution is very similar to the one for the undamped system in equation (3.3). If the

damping ratio is small the damped and undamped natural frequencies are similar, and

the solutions differ only by the exponential term. This term causes the amplitude of the

damped system to decay exponentially and tend towards zero as time increases.

It can be assumed that concurrent peak amplitudes for the damped system are in an

almost fixed ratio. This can be utilized in the approximation of the damping ratio for the

system as

δ = ln(
un
un+1

) ≃ 2πξ
ω

ωD

≃ 2πξ, (3.13)

where un is the nth peak value and the un+1 is the next peak value. It is assumed that

the damping ratio is relatively small so the ratio ω/ωD approaches one.

For critically damped system ξ = 1 and cv = cc. This results in a double root solution for

the equation (3.10) as
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z1,2 = −ω. (3.14)

Now the general solution for displacement is in the form of

u(t) = (C1 + C2t)e
−ωt, (3.15)

where C1 and C2 are some constants dependant on the initial conditions. It should be

noted that the solution (3.15) is not periodic in nature, but strictly exponentially decaying.

For overdamped system ξ > 1 and cv > cc. This leads to two distinct real solutions for

the equation (3.10) in the form of

z1,2 = ω
[︂
−ξ ±

√︁
ξ2 − 1

]︂
. (3.16)

Then the general solution for displacement is obtained as

u(t) = C1e
−ω

(︂
ξ−
√

ξ2−1
)︂
t
+ C2e

−ω
(︂
ξ+
√

ξ2−1
)︂
t
. (3.17)

Similarly to the critically damped case the solution is not periodic, but exponentially de-

caying. Figure 3.3 shows the relative displacement responses of damped SDOF systems

with different damping ratios and initial conditions u(0) = u0 and u̇(0) = u̇0.

From Figure 3.3 it can be observed that the critically damped systems (ξ = 1) displace-

ment response decays faster than the overdamped systems responses. However, at the

start of the response curve, the critically damped system has the highest overshoot. As

the damping ratio is increased, the overshoot at the start is lower and the response de-

cays slower.
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𝜉 = 1

𝜉 = 2

𝜉 = 3

𝜉 = 4

1
ሶ𝑢0

𝑢0

𝑇𝑛 2𝑇𝑛

𝑢 𝑡

𝑡

Figure 3.3. Comparison of displacement response of SDOF system with different damp-
ing ratios and initial conditions u(0) = u0 and u̇(0) = u̇0, adapted from [6].
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3.1.3 Undamped SDOF system with harmonic force excitation

If a harmonic external force in the form of F (t) = F0 sin(ωf t) is assumed the equation of

motion (3.1) for undamped SDOF system becomes

mü+ ksu = F0 sin(ωf t), (3.18)

where harmonic excitation frequency is denoted by ωf . Since the equation (3.18) is a

second-order nonhomogeneous differential equation, its solution can be attained as a

sum of the homogeneous solution uh and a partial solution up. Now the solution to the

equation (3.18) can be obtained as

u(t) = uh(t)+up(t) = u0 cos(ωt)+

[︃
u̇0
ω

− F0

ks(1− β2)
β

]︃
sin(ωt)+

F0

ks(1− β2)
sin(ωf t),

(3.19)

where u0 and u̇0 are some initial conditions and β = ωf/ωn is a ratio between excitation

and natural frequency. The homogeneous solution uh is connected to the free vibrations

and is also called the transient part. In a realistic damped system, this part tends to zero

as time increases. The partial solution up defines the steady-state solution.

An interesting observation can be made that as the frequency ratio β approaches one,

the displacement amplitude given by equation (3.19) tends to infinity. The resonance

phenomenon happens when the excitation frequency coincides with the system’s natural

frequency. In real systems, the amplitude at resonance is limited by the system’s damping

and geometric non-linearities.

3.2 Damping in structures

The dynamic response of structures is governed by three main parameters of the system:

mass, stiffness, and damping. Mass and stiffness are related to the storage of energy,

and damping introduces a mechanism that dissipates energy. In damping the energy is

transformed into a form (usually heat) that does not contribute to the structural vibration

motion.[18]

Increased damping leads to:

1. faster decay of unforced vibrations,

2. freely propagating structure-borne waves decaying quicker,

3. reduced amplitude for resonance peaks of structures with steady excitations.

The level of damping can be quantified in several ways. As previously seen for the simple
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SDOF system the viscous damping was quantified by the damping coefficient cv or more

commonly by the non-dimensional damping ratio ξ. Another commonly used measure is

the relative amplification factor Q at resonance frequency. It is defined as

Q =
X

Xst

⃓⃓⃓⃓
ωf=ωn

, (3.20)

where X is the displacement response at resonant frequency, and Xst = F/ks is the

equivalent static displacement under force F . More generally the amplification of the

system can be written as

X

Xst

=
1√︁

(1− β2)2 + (2βξ)2
, (3.21)

where β = ωf/ωn is the ratio between excitation and natural frequency. Now if ωf = ωn

or β = 1 is substituted to the equation (3.21) the relation Q = 1/2ξ is obtained.

Another useful measure of the systems damping at resonant frequencies is obtained by

the half-power bandwidth method. The relative bandwidth is defined as

b = ∆ω/ωn, (3.22)

where ∆ω is the difference between frequencies above and below the resonant fre-

quency, where the amplification factor is Q/
√
2 or 1/

√
2 times the maximum value at

resonance. At these frequencies, which are also called the half-power points, the total

energy stored in the system is half of the maximum value at resonance. At steady-state,

this also equals the amount of energy dissipated by damping since all the energy input

to the system must be dissipated in order to maintain equilibrium. Figure 3.4 shows the

amplification of a simple SDOF system under sinusoidal excitation force of frequency ωf .

From Figure 3.4 a resonant peak is observed, where the excitation frequency coincides

with the system’s natural frequency. At the resonance, the system’s amplification is the Q

factor. At either side of the peak, there are the half-power points, where the amplification

is Q/
√
2 or 1/

√
2 times the maximum value. The relative difference of these frequencies

is then noted as the relative bandwidth b.

The half-power bandwidth method often provides a more convenient way to measure

damping parameters compared to measuring Q factor directly from equation (3.20). The

relative bandwidth can be evaluated from the systems response plot directly, and the

measurement of Xst is not needed. However, the half-power bandwidth method requires

a very accurate measurement of the resonant amplitude, which could be challenging for

low damping. Additionally, if the modal density of a multiple degrees of freedom system
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Figure 3.4. Steady-state response of SDOF system to sinusoidal force, adapted from
[18].

is high, it is not feasible to measure the half-power points around a single resonant peak.

[4]

Another more general way to quantify damping is the use of loss factor η. The loss factor

is defined as the damping capacity ψ in radians or as the ratio of energy dissipated per

cycle to the total energy stored. If the energy dissipated per cycle is denoted as El and

the reversible mechanical energy in the system as ER, the following relation is obtained

η =
ψ

2π
=

El

2πER

. (3.23)

The loss factor can be applied to any damping mechanism and is not limited to simple

systems. For a viscously damped SDOF system, the loss factor is attained as

η ≈ ωfcv
ks

=
2ξωf

ωn

. (3.24)

From equation (3.24) it is observed that in this case, the loss factor is proportional to the

frequency. In a more general case, the frequency dependency can be more complex or

determined experimentally. The equation (3.24) holds for all frequencies. For resonant

frequencies the following relations hold
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η =
1

Q
= 2ξ. (3.25)

Also, η ≈ b holds for small values of damping.

3.3 Wave-types in solids

Unlike fluids, solids can store potential energy in both compression and shear strains.

This results in a large number of possible wave types [15].

1. Pure longitudinal waves: particle motion is parallel to the wave direction. Only

possible in large solids, where the cross-sectional contraction is not present.

2. Quasi-longitudinal waves: particle motion perpendicular to the wave direction is

also present due to cross-sectional contraction.

3. Transverse plane waves: particle motion is perpendicular to the wave propagation.

4. Torsional waves: present in beams excited by torsional moments.

5. Pure bending waves: bending waves, where the wavelength is large compared to

the cross-sectional dimensions of the structure.

6. Corrected bending waves: bending waves, where inertial effects and shear defor-

mations are also considered.

7. Rayleigh waves: surface waves in thick structures, where disturbance caused by

the wave is limited close to the surface.

Out of the different wave types mentioned above the most important ones regarding

noise and vibration in engineering structures at audible frequencies are quasi-longitudinal

waves and pure bending waves. For radiation into the air, the bending waves present the

most contribution due to their lower wave speed and impedance. Better impedance match

at the fluid-structure interface allows for more efficient energy transport.

Pure longitudinal waves can only exist in solids, where all the dimensions are large com-

pared to the wavelengths [12]. In a solid bar or plate, where one or more surfaces are

not constrained some particle motion perpendicular to the longitudinal wave direction is

also present due to the Poisson contraction of the material. Such waves are called quasi-

longitudinal waves. The one-dimensional wave equation for a quasi-longitudinal wave in

a bar can be written as

∂2u

∂t2
= (c

′′

L)
2∂

2u

∂x2
, (3.26)

where c
′′
L =

√︁
E/ρ is the propagation speed of the quasi-longitudinal wave in a bar. This

speed is slightly different from the propagation speed of the pure longitudinal wave, which
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can be written as

cL =
√︁
B/ρ, where B =

E(1− ν)

(1 + ν)(1− 2ν)
. (3.27)

Here ν denotes the material Poisson’s constant and E Young’s modulus. For quasi-

longitudinal waves in a plate the same wave equation as (3.26) can be used, but the

wave speed c
′′
L is replaced with the wave speed c

′
L =

√︁
E/ρ(1− ν2). For most metals,

the different longitudinal wave speeds are relatively close to each other and the relation

cL > c
′
L > c

′′
L holds [8].

In a bending-type deformation of a beam, the small beam element considered is both

rotated and displaced in a transverse direction. Several assumptions are made to simplify

the derivation of the equations of motion for bending vibrations in a beam.

1. Rotary inertia and shear deformations are ignored.

2. Beam cross section and bending stiffness EI are assumed to be constant.

3. Beam is symmetric about its neutral axis.

4. No net axial forces are present. [15]

Then the bending equation for the beam can be expressed in the form

∂2u

∂t2
+
EI

ρL

∂4u

∂x4
= 0, (3.28)

where ρL = ρAc is the mass per unit length, x is the coordinate along the beam axis, and

u is the transverse displacement. Contrary to the wave equation for quasi-longitudinal

waves the equation (3.28) is now a fourth-order partial differential equation. If a solution

is then considered in the form of

u(x, t) = Aei(ωt−kBx), (3.29)

the equation (3.28) simplifies to

k4B =
ρL
EI

ω2. (3.30)

Now the bending wavenumber kB has four roots, of which two are imaginary

kB = ±
(︃
ρLω

2

EI

)︃1/4

, and kB = ±i
(︃
ρLω

2

EI

)︃1/4

. (3.31)

The complete solution for equation (3.28) is then obtained as
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u(x, t) =
(︁
A1e

−ikBx + A2e
ikBx + A3e

−kBx + A4e
kBx

)︁
eiωt. (3.32)

From this solution, four different wave components are observed: two waves propagat-

ing in opposite directions and two exponentially decaying non-propagating waves. The

bending wave speed can then be attained from the bending wavenumber kB as

cB =
ω

kB
= ω1/2

(︃
EI

ρL

)︃1/4

. (3.33)

An interesting observation can be made here, that the bending wave speed is frequency

dependent. This means that different frequency components travel at different speeds

and the wave is thus dispersive. Due to this dispersive nature, it is convenient to introduce

some measure of overall speed for the combined wave. This can be done with the use

of group speed cg = ∂ω/∂kB, which defines the rate of average energy transport. For

bending waves the group speed obeys cg = 2cB.

Figure 3.5 shows the relationship between the frequency ω and wavenumber for linear

and non-linear dispersion. For plane waves, where the relationship is linear, the spatial

form of the wave does not change over time. For flexural or bending waves in a bar or

plate, the dispersion is non-linear. This means that the wave components with different

frequencies travel at different speeds, and the spatial form of the wave changes over

time. From Figure 3.5 an intersection point of the curves is observed, where the different

wave types have the same wavenumber, frequency, and wave speed. This coincidence

phenomenon allows for an efficient interaction and energy transport between the two

different types of waves.

Similarly to the equation (3.28) for a beam the two-dimensional bending wave equation

for a thin plate can be written as

ρs
∂2u

∂t2
+

Eh3

12(1− ν2)

(︃
∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+
∂4u

∂y4

)︃
= 0, (3.34)

where ρs = ρh is the mass per unit area and h is the plate thickness. The bending wave

velocity in a plate is then obtained as

cB = ω1/2

(︃
Eh3

12(1− ν2)ρs

)︃1/4

≈ (1.8c
′

Lhf)
1/2. (3.35)

From the equation (3.35) it is seen that the wave speed is again dependent on the fre-

quency, and the wave speed increases with the plate stiffness.
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Figure 3.5. Linear and non-linear dispersion relationships, adapted from [15].

3.4 Sound radiation from structures

The interaction between a structure and surrounding fluid can be thought of as the in-

teraction of two coupled subsystems, each having its own possible sources of energy.

Energy is radiated from the structure to the fluid as waves, and the acoustical waves in

the fluid excite structural vibrations. It is convenient to separate the study of this interac-

tion into two distinct cases. For heavy structures radiating in a light fluid, the structural

excitation by acoustical waves is often negligible. For this reason, only the sound radiated

from structures is investigated in this section. [9]

An important parameter when considering sound radiation from structures is radiation

efficiency. It is defined as

σ =
W

ρcS|v|2/2
, (3.36)

where W is the radiated power, S is the surface area of the radiating body, and |v|2 is

the spatially averaged mean square velocity of the vibrating surface. For a large vibrating

rigid surface, such as an ideal acoustic piston, the radiated sound power is obtained

as W = ρcS|v|2/2. Thus, the radiation efficiency becomes σ = 1. This means that

radiation efficiency is also a measure of how well a structure radiates compared to an

acoustic piston with the same area. Usually, the radiation efficiency is quite low at low
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frequencies and then approaches unity after some critical frequency. In some cases, it is

also possible to obtain efficiencies above one [8].

Measuring the radiation efficiency can prove to be challenging since the average mean

surface velocity needs to be determined. Also, if the velocity distribution is highly concen-

trated the results will be inaccurate. Thus, the radiation efficiency evaluated with equation

(3.36) should be used only when the velocity is distributed relatively uniformly.

Another way to characterize the radiation from structures is the use of a ratio between the

radiated power Wrad and the power input to the structure WS as

ζ =
Wrad

WS

. (3.37)

This provides a physically very instinctive measure of how efficiently the structure radi-

ates, but the input power is often challenging to measure. Another quantity analogous to

the loss factor previously discussed is the radiation loss factor

ηrad =
Erad

2πES

=
Wrad

ωES

, (3.38)

where Erad is the energy radiated during one cycle, and ES is the reversible energy in the

structure. For typical structural components, such as beams, plates, and shells, vibrating

in flexure the reversible energy is ES = ρsS|v|2/2. Utilizing this the relation between

radiation loss factor and radiation efficiency is obtained as

ηS =
ρcσ

ωρs
, (3.39)

where ρs is the mass per unit area. It should be noted that the equation (3.39) assumes

that the radiation is single-sided.

The power ratio defined in equation (3.37) can also be stated by the use of the radia-

tion loss factor. The total inputted power is divided into radiated power Wrad and power

transformed into heat Wh. Equation (3.37) then becomes

ζ =
Wrad

Wrad +Wh

=
1

1 + ωηhES/Wrad

=
1

1 + ηh/ηrad
, (3.40)

where ηh is the fraction of energy converted into heat. As one would expect the factor ζ

approaches unity when losses to heat are low compared to radiated power (ηh << ηrad).

To understand the sound radiation from more complex geometries often found in real-

world structures one should first observe the simple elemental sources. One such exam-
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ple is the spherical radiator that vibrates symmetrically by changing its volume. The radial

velocity vr and pressure field pr around the sphere of radius a can be expressed as

vr = va
a2

1 + ika

1 + ikr

r2
e−ik(r−a), (3.41)

pr = va
iωρa2

1 + ika

1

r
e−ik(r−a), (3.42)

where va is the velocity at the surface. Now the radiated power can be found by integrating

over a spherical surface at any radius r as

W =
1

2
Re

[︃∫︂
S

prv
∗
rdS

]︃
= 2πa2|va|2ρc

(ka)2

1 + (ka)2
, (3.43)

where v∗r notes the complex conjugate of the radial velocity. Introducing equation (3.43)

into the equation for radiation efficiency (3.36) the radiation efficiency for the pulsating

sphere is written as

σ =
(ka)2

1 + (ka)2
. (3.44)

From this, it is seen that for very small frequencies or radii the radiation efficiency in-

creases with the square of the frequency. For large radiators or at high frequencies the

radiation efficiency approaches unity. A special case can be derived for small point-like

radiators or monopoles, when ka << 1. Then equation (3.42) simplifies to

p = iωρ
va4πa

2

4πr
e−ikr = iωρq0

e−ikr

4πr
, (3.45)

where q0 is the volume velocity or the product of the surface velocity and surface area of

the radiator. Equation (3.45) is convenient since it can be applied to small radiators of any

shape by adopting the appropriate value of the volume velocity q0.

Next, a collection of small point sources in a plane surrounded by a large baffle is con-

sidered. The contribution of the individual sources can be summed up to obtain the net

pressure. Expanding the equation (3.45) to cover multiple sources the following is ob-

tained

p =
iωρ

2π

∑︂ qn
rn
e−ikrn , (3.46)

where qn is the volume velocity of the nth source and rn is the distance from the nth
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source. It should be noted that the source in a large baffle provides half of the volume

velocity compared to a source in free space, but the pressure around the source stays

the same. This means that the denominator in the equation (3.45) is changed from 4π to

2π. The equation (3.46) can also be expanded to a continuous velocity field as

p =
iωρ

2π

∫︂
v(s)

r
e−ikrdS. (3.47)

A similar multiple-source analogy can be extended to an arbitrarily shaped object. If the

vibrating surface is divided into small subsections, where qn = vn∆S the total pressure

around the object can be derived as

p =
N∑︂

n=1

iωρvn
4πrn

e−ikrn∆S. (3.48)

This is also called the Rayleigh method. Here it is assumed that the small sources do not

influence each other and that the source object itself does not obstruct the radiation in any

direction. These assumptions make the method unsuitable for sound directivity analysis.

For concave objects, the Rayleigh method gives useful estimates of the radiated power.

The radiation efficiency of a plate vibrating in bending is highly affected by the relative

wavelength of the radiator to the wavelength in the surrounding air. Radiation is strong

for large radiator wavelengths, where kB < k, and weak for short radiator wavelengths,

where kB > k. Here kB = 2π/λB is the bending wavenumber of the radiator. The critical

frequency, where kB = k is a very important concept for the radiation from bending

waves. For a plate, the bending wavelength is given by

λB = 2π 4
√︁
D/ω2ρs, (3.49)

where D = Eh3/12(1 − ν2) is the bending stiffness of the plate and ρs is the mass

per unit area. Now the critical frequency is obtained from equation (3.49) by noting that

kB = k or λB = λ = c/fc. This results in

fc =
c2

2π

√︃
ρs
D
. (3.50)

An alternative way to note the critical frequency is by the use of the plate longitudinal

wave speed c
′
L as

fc =
c2

1.8c
′
Lh
, (3.51)
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where h is the thickness of the plate. From equations (3.50) and (3.51) it is observed

that the critical frequency increases with the increased mass, and decreases with the

increased bending stiffness.

Often in the design of structures, the goal is to maximize the critical frequency and to

get it above the most critical excitation frequencies. For large plate-like structures, the

most obvious way to achieve this is to decrease the stiffness and increase the mass.

Usually, these requirements go against each other and the more preferable way is to focus

on the stiffness. Good improvements on the higher critical frequency can be achieved

for example by changing a cast aluminum panel to a plated steel one with much lower

stiffness.
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4. NUMERICAL METHODS FOR SOLVING

ACOUSTICAL PROBLEMS

Since the analytical solutions for sound propagation and transfer are only available in

some particular cases, numerical approximations are needed. In this chapter, an intro-

duction is given to some of the most prominent methods such as finite element method

(FEM), boundary element method (BEM), and statistical energy analysis (SEA). Also,

some discussion is presented about the problems arising from the need to artificially

divide the calculation domain into bounded and unbounded domains. Lastly, a short

comparison is presented on the strengths and weaknesses of different numerical solution

methods for solving acoustical problems.

4.1 Finite element method

The introduction to the finite element method starts by defining the calculation domain

and some relevant terms. The same descriptions are then also applicable to the boundary

element method.

The linear acoustic problem considered is defined in domain Ω . Only the case in three

dimensions is considered here, but the formulation is easily extended to other dimen-

sions also. The complementary domain is noted by Ωc , and the closed boundary surface

between the domain and complementary domain is noted by Γ . Normal vector on the

surface Γ pointed into the complementary domain Ωc is noted by n. This configuration is

presented in Figure 4.1 below for both exterior and interior acoustic problems. [7]

For time-harmonic acoustical problems, the wave motion is described by the Helmholtz

equation (2.2). To further describe the acoustical problem presented in Figure 4.1 some

boundary condition is introduced for the surface Γ in the form of

vf (x)− vs(x) = Y (x)p(x) x ∈ Γ ⊂ R2, (4.1)

where Y is the boundary admittance, vs is the surface velocity of the structural part,

and vf is the fluid particle velocity in the direction of the surface normal. The boundary

condition in equation (4.1) is the so-called Robin boundary condition. It reduces to the
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Interior problem Exterior problem

Figure 4.1. Definition of acoustic domains, adapted from [7]

Neumann boundary condition when admittance Y is zero. Normal direction fluid particle

velocity is related to the normal derivative of the pressure as

vf (x) =
1

iωρ0

∂p(x)

∂n(x)
, (4.2)

where ρ0 is the average density of the fluid. Alternatively, the Dirichlet boundary condition

can also be considered as

Z(x) [vf (x)− vs(x)] = p(x) and Z(x) =
1

Y (x)
, (4.3)

where Z is the boundary impedance. From this the homogeneous Dirichlet boundary

condition can be derived, where Z = 0 and thus p(x) = 0. Similarly, the inhomogeneous

Dirichlet boundary condition leads to p(x) = p0(x). In addition to fulfilling the Helmholtz

equation (2.2) and the chosen boundary conditions the solution for the external acoustic

problem has to comply with the Sommerfeld radiation condition at infinity

lim
r→∞

r

(︃
∂p

∂r
+ ikp

)︃
= 0. (4.4)

This condition imposes that only outwards propagating wave components can be present

at large distances.

The formulation for both the finite element and boundary element methods begins from

the weak formulation, which is obtained by introducing the weight function χ(x) along

with the Helmholtz equation (2.2) such that
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∫︂
Ω

χ(x)
[︁
∆p(x) + k2p(x)

]︁
dΩ(x) = 0. (4.5)

Now integrating by parts, applying the divergence theorem, using the boundary condition

(4.1), and rearranging terms the weak form becomes

∫︂
Ω

[︁
∇χ(x)∇p(x)− k2χ(x)p(x)

]︁
dΩ(x)− sk

∫︂
Γ

χ(x)Y (x)p(x)dΓ (x)

= sk

∫︂
Γ

χ(x)vs(x)dΓ (x),

(4.6)

where s = iρ0c. Equation (4.6) is the basis for the Galerkin discretization of finite element

formulation.

Regardless of the discretization method used approximations for the continuous physical

quantities are first introduced. Sound pressure is approximated by

p(x) =
N∑︂
l=1

ϕl(x)pl = ϕT (x)p, (4.7)

where pl is the discrete sound pressure at point xl, and ϕl is the l – th basis function.

Similar approximations are also derived for the particle velocity of the structure vs and the

boundary admittance Y as

vs(x) =
N̄∑︂
j=1

ϕ̄j(x)vsj = ϕ̄
T
(x)vs (4.8)

Y (x) =
Ñ∑︂
k=1

ϕ̃k(x)Yk = ϕ̃
T
(x)Y . (4.9)

It is not strictly necessary to approximate the velocity vs or admittance Y if they are

explicitly known, but it is often more convenient. In real-world cases, the structural velocity

is often a result of FE simulation, and thus only defined as a piecewise function. Also, the

boundary admittance may vary locally. Next, the approximated quantities from equations

(4.7) – (4.9) are substituted to the weak formulation presented in the equation (4.6) and

the basis functions ϕl(x) are substituted for the test function χ(x). In matrix form, this

results in

(︁
K − ikC − k2M

)︁
p = skΘvs = f . (4.10)

Here the boundary mass matrix Θ has entries θlj in the form
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θlj =

∫︂
Γ

ϕl(x)ϕ̄j(x)dΓ (x). (4.11)

Mass matrix M has entries mlj as

mlj =

∫︂
Ω

ϕl(x)ϕj(x)dΩ(x). (4.12)

Stiffness matrix K has entries klj as

klj =

∫︂
Ω

∇ϕl(x)∇ϕj(x)dΩ(x). (4.13)

Damping matrix C has entries clj as

clj =

∫︂
Γ

ϕl(x)
[︂
ϕ̃

T
(x)Ỹ

]︂
ϕ̄j(x)dΓ (x), (4.14)

where Ỹ = ρ0cY contains the values of the normalized boundary admittances.

Next, the actual elements that are used to discretize the acoustic domain are introduced.

For 3 dimensional problems the hexahedral element has great use in practical problems.

Elements with 8, 20, 27, or 32 nodes are proposed. Elements are defined in both local

coordinates ξ = (ξ, η, ζ)T and global coordinates x = (x, y, z)T . Local coordinates

(ξ, η, ζ)T range from −1 to 1.

For an isoparametric 8-node hexahedral element with Lagrange-type shape functions the

shape functions are in the form of

ϕ̂a(x̂) =
1

8
(1 + ξaξ)(1 + ηaη)(1 + ζaζ), a = 1, . . . , 8, (4.15)

where ξa, ηa, ζa are the local corner coordinates of the hexahedron. Similar expressions

can be derived for the higher order hexahedral elements also. The shape functions are

then collected to a vector ϕ. Acoustic pressure at any point of the elements can then be

approximated by

p(ξ) ≈ ph(ξ) =
8∑︂

a=1

ϕ̂a(ξ)p
e
a = ϕTpe, (4.16)

where p is the analytical and ph is the discretized solution for the pressure distribution.

In general, different kinds of polynomial functions can be used to construct the element

interpolation functions.
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Next, some mesh size requirements for acoustical problems are considered. The required

mesh size depends on the analysis frequency, element type, and desired accuracy. Gen-

erally, 8 to 10 linear or 4 to 6 quadratic elements per acoustic wavelength are required to

achieve adequate solution accuracy.

A case study in [16] compares the relative errors (compared to analytical solution) in

eigenvalues of a one-dimensional tube calculated with different finite elements. The study

shows that 27 node elements with spline interpolation functions (Spl27) were able to

achieve relative errors in the order of 1% when λ/d > 4.4. Here λ is the acoustic wave-

length and d is the nodal distance. 27 node Lagrange elements (Lag27) had relative error

less than 3% when λ/d > 4.4, and linear 8 node Lagrange elements (Lin8) had relative

error in the order of 2.5 % when λ/d > 8.

Another approach to reducing solution error is to increase the order of the polynomial

basis functions. This is the so-called p-FEM, while mesh refinement is called h-FEM. By

increasing the order of the basis functions, but keeping the mesh size fixed, lower relative

errors with the same number of unknowns are obtained. However, increasing the order of

basis functions often comes with a penalty to the actual computation times compared to

the problem with the same number of degrees of freedom, but lower order basis functions.

This is due to the matrix structure becoming denser with higher order basis functions, and

thus solution methods optimized for sparse matrix structures become less efficient. [7]

4.2 Boundary element method

The boundary element formulation is started with the weak form in equation (4.5). The

free-space Green’s function G is first introduced as

∆G(x;y) + k2G(x;y) = −δ(x− y), (4.17)

where δ(x−y) is the Dirac delta function. Green’s function represents the sound pressure

distribution in free space with a monopole source in y. When time-harmonic dependency

of e−iωt is assumed, the fundamental Green’s function in R3 becomes

G(x;y) =
1

4π

eikr(x,y)

r(x,y)
, (4.18)

where r(x,y) = |x − y| is the distance between the field point x and the source point

y. Similarly to the finite element formulation the boundary condition from equation (4.1)

is used. Next, Green’s function is inputted, and another test function χ̃(y) is introduced

to the weak form in equation (4.5). After integration, this leads to the equation
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∫︂
Γ

χ̃(y)c(y)p(y)dΓ (y)

+

∫︂
Γ

χ̃(y)

{︃∫︂
Γ

[︃
∂G(x;y)

∂n(x)
− skG(x;y)Y (x)

]︃
p(x)dΓ (x)

}︃
dΓ (y)

= sk

∫︂
Γ

χ̃(y)

{︃∫︂
Γ

G(x;y)vs(x)dΓ (x)

}︃
dΓ (y),

(4.19)

where c(y) is the speed of sound. The equation (4.19) will be the base for the discretiza-

tion process for the boundary elements. Same as in the finite element formulation the

approximated quantities (4.7) – (4.9) for the pressure, velocity, and boundary admittance

are used. The collocation discretization will be discussed here, but other methods such

as Galerkin discretization are also available for boundary elements.

The collocation method starts by substituting Dirac function δ(y − z) for the test function

χ̃(y) in the equation (4.19). This results in an integral equation that is only valid in discrete

points noted as the collocation points zl. These points are commonly coincident with

the nodes of the approximated pressure in the equation (4.7). It is also assumed that

ϕl(zk) = δlk, where δlk is the Kronecker symbol with δlk = 0 for l ̸= k and δlk = 1 for

l = k. Finally, by applying the approximated quantities the following matrix equation is

obtained

(H −D)p = Gvs = f . (4.20)

Here matrix G represents the single layer potential with elements

glj = sk

∫︂
Γ

G(x, zl)ϕ̄j(x)dΓ (x). (4.21)

Matrix H contains the integral-free term and the contribution to the double layer potential

with elements

hlj = c(zl)δlj +

∫︂
Γ

∂G(x, zl)

∂n(x)
ϕj(x)dΓ (x). (4.22)

Matrix D has the boundary admittance terms as

dlj = ik

∫︂
Γ

G(x, zl)
[︂
ϕ̃

T
(x)Ỹ

]︂
ϕj(x)dΓ (x). (4.23)

Since boundary elements lay on the surface between the structure and the fluid they

are two-dimensional. The most commonly used elements are triangular and quadrilat-

eral elements. Element’s interpolation functions can also be defined as continuous or
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discontinuous. For discontinuous elements, the approximated pressure is not continuous

across element boundaries. Linear and quadratic quadrilateral continuous elements with

Lagrange-type polynomial shape functions are discussed next. Linear polynomials are

formulated as

ψl
1(ηk) =

1

2
(1− ηk),

ψl
2(ηk) =

1

2
(1 + ηk),

(4.24)

while quadratic polynomials are given by

ψq
1(ηk) =

1

2
ηk(1− ηk),

ψq
2(ηk) =

1

2
ηk(1 + ηk),

ψq
3(ηk) = (1− η2k).

(4.25)

Here ηk is the local coordinate in k direction. Actual interpolation functions are then given

for the linear elements as

φl
1 = ψl

1(η1)ψ
l
1(η2), φl

2 = ψl
2(η1)ψ

l
1(η2),

φl
3 = ψl

2(η1)ψ
l
2(η2), φl

4 = ψl
1(η1)ψ

l
2(η2),

(4.26)

and for the quadratic elements as

φq
1 = ψq

1(η1)ψ
q
1(η2), φq

2 = ψq
2(η1)ψ

q
1(η2), φq

3 = ψq
2(η1)ψ

q
2(η2),

φq
4 = ψq

1(η1)ψ
q
2(η2), φq

5 = ψq
3(η1)ψ

q
1(η2), φq

6 = ψq
2(η1)ψ

q
3(η2),

φq
7 = ψq

3(η1)ψ
q
2(η2), φq

8 = ψq
1(η1)ψ

q
3(η2), φq

9 = ψq
3(η1)ψ

q
3(η2).

(4.27)

Similar expressions can also be derived for the discontinuous and triangular elements.

Same as in the finite element method the pressure at any point on the surface Γ can then

be approximated by the use of the nodal values and the interpolation functions.

Once the pressure and its normal gradient on the surface Γ are solved the corresponding

quantities in the domain (exterior or interior) can be obtained by using a suitable boundary

integral equation. The choice of the equation depends on the formulation used and the

type of problem considered. It should be noted that the point of interest in the domain

should not be too close to the boundary, since this could lead to numerical difficulties. [3]

The classical boundary element method for external problems suffers from the so-called

non-uniqueness of the solution. This means that the governing integral equations are

not sufficient alone to provide a solution that is always unique. The problem arises in
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practical examples when the wavenumber corresponds with the eigenfrequency of the

related interior region with a rigid boundary. Several methods such as the combined

Helmholtz integral equation formulation (CHIEF) method have been proposed to solve

this non-uniqueness problem. [3]

4.3 Statistical energy analysis

The basic idea of the statistical energy analysis (SEA) is to divide the analyzed system

into subsystems, and then investigate the average energy flow relationships between

them. The subsystems usually consist of simple geometrical features such as beams,

plates, and volumes. SEA is applicable to high-frequency analysis where the modal den-

sity of the systems is high. Then it is possible to observe the system responses as sta-

tistical averages. It should be noted that unlike the finite and boundary element methods

SEA is not a deterministic or mesh-based method. [15]

Statistical energy analysis has been used in interior cabin analysis for the automotive

[2], agricultural [14, 11] and aerospace [10] applications. It offers an efficient method

to analyze high-frequency systems and allows for easy integration of trim materials and

acoustical treatments to the analysis.

When the modal density of the system is high and the excitations are broadband in nature,

the system response is dominated by the resonant frequencies. Usually, in SEA, it is

assumed that energy transport from one subsystem to another is between these resonant

modes of vibration.

Three key concepts relating to the energy flow in a system consisting of two or more

subsystems are the energy input to each subsystem, internal losses of the subsystems,

and the coupling loss factors (energy transport) between the subsystems. The assump-

tion made in SEA is that the energy flow between the subsystems is proportional to the

difference in the average coupled modal energies of the subsystems. This is expressed

as

⟨Π12⟩ = γ [⟨E1⟩/n1 − ⟨E2⟩/n2] , (4.28)

where ⟨E1⟩ and ⟨E2⟩ are the time-averaged total vibrational energies of the subsystems,

n1 and n2 are the modal densities, and γ is the constant of proportionality. Modal densities

are a measure of how many modes are present per unit frequency. The equation (4.28) is

analogous to the concept of heat transfer, where the rate of transfer is proportional to the

temperature difference. Similarly, the energy flow between subsystems can be expressed

with the help of the coupling loss factors as
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⟨Π12⟩ = ω⟨E1⟩η12 − ω⟨E2⟩η21, (4.29)

where η12 is the coupling loss factor for the energy flow from subsystem one to subsystem

two. Similarly, η21 is related to the energy flow in the opposite direction. Frequency ω

represents the band’s center frequency, typically in the one-third-octave or octave band.

The equation (4.29) is very intuitive since it simply defines the net energy flow between

two subsystems as the difference between the flow from system one to two, and the flow

from system two to one. Combining equations (4.28) and (4.29) yields the relation

n1η12 = n2η21. (4.30)

This is the so-called reciprocity relationship between the subsystems. Next, an example

with two subsystems presented in Figure 4.2 is discussed. Only subsystem one is driven

with energy, and thus Π2 = 0.

Π1 Π2 = 0

E1 E2𝑛1 𝑛2

1 2

𝜔E1𝜂1 𝜔E2𝜂2

𝜔E1𝜂12

𝜔E2𝜂21

Figure 4.2. Two subsystem SEA model, adapted from [15]

Collecting the steady-state energy balance equations for both subsystems results in

Π1 = ωE1η1 + ωE1η12 − ωE2η21

0 = ωE2η2 + ωE2η21 − ωE1η12
(4.31)

Next, the energy relation E2/E1 can be solved from equation (4.31). Utilizing the relation

(4.30) the energy ratio becomes

E2

E1

=
n2η12

n2η2 + n1η12
. (4.32)

For simple structural members, the modal densities can be derived analytically. For a
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uniform bar vibrating in flexure, the modal density as a function of the frequency f is

given by

n(f) =
L

(2πf)1/2

(︃
ρAc

EI

)︃1/4

, (4.33)

where L is the bar length, Ac the cross-sectional area, and EI the flexural stiffness of the

bar. For a flat plate of thickness h the modal density is

n(f) =
S
√
12

2c
′
lh

, (4.34)

where S is the surface area of the plate. Similar expressions for the modal densities

can also be derived for structural members with more complex geometries. For a three-

dimensional acoustic volume, the modal density is given by

n(f) =
4πf 2V

c3
+
πfS

2c2
+
L

8c
, (4.35)

where V is the volume, S is the total surface area, and L is the edge length. For large

volumes, the modal density is commonly approximated by only the first term of equation

(4.35).

Internal loss factor for structural elements is thought to be a linear sum of three types of

damping as

η = ηs + ηrad + ηj, (4.36)

where ηs is the loss factor for the energy dissipated in the structure, ηrad is the loss factor

related to acoustic radiation damping, and ηj is the loss factor for the energy dissipated

at the structural boundaries. For rigid connections between subsystems the term ηj be-

comes insignificant. If the structure is not lightweight the internal loss factor is dominated

by the term ηs. For lightweight and thin-walled structures the radiation loss factor ηrad
becomes a significant term.

The radiation loss factor for a structural element is given by (3.39). At low frequencies, the

radiation efficiency σ is generally low, and thus the radiation loss factor is small. When

approaching the critical frequency, the radiation efficiency grows faster than the frequency,

and the radiation loss factor becomes a more significant term than the structural loss

factor ηs. After the critical frequency, the radiation efficiency remains at unity, and as

the frequency increases the radiation loss factor decreases. This means that at high

frequencies the internal loss factor is again dominated by the structural loss factor.
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A common way to obtain the internal loss factor for an acoustic volume is the use of the

reverberation time T60. This is the time it takes the signal to decay to 1/60 the strength of

the original or to attenuate by 60 dB. The internal loss factor is then given by

η =
13.82

ωT60
. (4.37)

This is often a convenient way to obtain the loss factor for an acoustic volume since the

reverberation times are easily measurable.

For the coupling loss factor in the equation (4.29) three distinct cases can be identified.

Point connection can be used to represent a bolted connection between plates, or edge

contact when edges are not parallel to each other. Line connection can represent a

welded connection between plates. Area connection is commonly used to represent the

connection between a plate and acoustic volume or the junction between two volumes.

Analytical equations can be derived to obtain the coupling loss factors for point, edge,

and area connections. For more complex geometries analytical estimates are often not

available and experimental measuring techniques can be used.

Next, a simple example of a plate connected to an acoustic room volume is analyzed. For

the plate, the mean square vibrational energy is given by

E1 = ⟨v21⟩ρSS, (4.38)

where ⟨v21⟩ is the time- and space-averaged mean square velocity, ρS is the surface mass,

and S is the plates surface area. For the reverberant volume or room with a diffuse sound

field, the mean square energy is given by

E2 =
⟨p2⟩V
ρ0c2

, (4.39)

where ⟨p2⟩ is the time- and space-averaged mean square pressure and V is the room vol-

ume. Now utilizing the steady-state energy ratio between the two subsystems in equation

(4.32), a direct link between the velocity of the plate and the room pressure is obtained.

Only the internal and coupling loss factors, modal densities, and some system parame-

ters have to be calculated analytically or measured experimentally. This emphasizes the

power of the SEA method, where once the relevant system parameters are known, the

relation between the input and output quantities is solved very fast and efficiently.

Since the pressure and velocity quantities are averaged over the subsystem, the system

needs to be divided into several subsystems if spatially varying quantities are desired.

This is demonstrated clearly in an aerospace case study [10], where the airplane’s cabin
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is subdivided into small segments to observe the spatially varying pressure inside the

compartment.

4.4 Simulation of unbounded domains

For exterior acoustic problems solved with the finite element method, only the near-field

region close to the structural surface is meshed. This is done to limit the computational

requirements of solving the problem. This subdivision of the exterior acoustic domain to

meshed near-field and unmeshed far-field regions poses a problem at the mesh boundary.

Some kind of boundary condition must be imposed on this boundary to correctly state the

acoustic problem. In this section, some of the most used methods for dealing with this

boundary problem are presented. [7]

Different kinds of absorbing boundary conditions have been proposed. Some act as

local conditions, where the degrees of freedom at the boundary are only locally coupled.

Other formulations are so-called non-local boundary conditions, where all of the degrees

of freedom at the boundary are coupled. These non-local formulations can be made

exact, where the boundary does not introduce any approximation to the solution. This

often comes with a penalty of higher computational cost compared to local boundary

conditions.

One possibility to deal with this boundary problem is the use of a perfectly matched layer

(PML). PML is an additional meshed volume region outside the acoustic meshed near-

field. The boundary mesh coincides with the acoustic mesh at the boundary. In the PML

mesh region, some exponential damping function is then applied to the acoustic waves.

The waves can be reflected at the PML outer boundaries and be further damped while

going back through the layer. Once the waves reach back to the boundary of the acoustic

region their strength can be considered insignificant. The size of the PML -region needed

is dependent on the analysis frequency and on the chosen damping function.

Another option is to use the infinite element formulation (IE) at the acoustic meshed

boundary. Infinite elements are formulated to extend radially to infinity from the surface of

the meshed region. This formulation offers the great benefit of being able to obtain values

for the acoustical parameters outside the meshed near-field. Values in the far-field can

be approximated with the use of the infinite elements formulation and the values at the

meshed acoustic regions boundary.

Comparing the computational efficiency between the PML and IE boundary methods,

one can observe that at low frequencies, where acoustic wavelengths are long, the PML

requires a large meshed boundary region. This comes with a higher computational cost

compared to infinite elements. At high frequencies, the comparison is somewhat reversed

as the IE computational cost stays in the same order as in the low frequencies, but the
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required PML region becomes much smaller with the shorter acoustic wavelengths. [5]

4.5 Comparison of numerical methods for solving acoustical

problems

The choice of the best numerical method for solving acoustical problems is dependent

on the frequency range of interest and the properties of the analysis domain. For low-

frequency analyses, where individual modes have a clear impact on the system’s dynam-

ical response, the use of either finite or boundary element methods is advised. For higher

analysis frequencies, where modal densities are high, the statistical energy analysis be-

comes an efficient analysis tool. For mid-frequencies either FEM, BEM, or SEA can be

used.

It is hard to state definitive cut-off frequencies for low-, mid-, and high-frequency ranges.

Typically frequencies below 1 kHz are considered low frequencies, frequencies from 1 to

3 kHz are considered mid-frequencies, and frequencies above 3 kHz are considered high

frequencies. Figure 4.3 illustrates this division of the audible frequency spectrum and the

applicability of different analysis methods.

Low Frequencies Mid Frequencies High Frequencies

20 1k 3k 20k

Finite element method

Boundary element method

Statistical energy analysis

f [Hz]

Figure 4.3. Division of the audible frequency spectrum to low, mid, and high frequencies,
and the applicability of different numerical methods for solving acoustical problems.

Comparing FEM and BEM analyses, some key differences can be observed. With the

boundary element method, only the structural surface is meshed. This results in a much

lower number of elements compared to the finite element method for the same analysis.

However, the matrix structures in the boundary element method are often much denser

compared to FEM, and thus the solution algorithms optimized for sparse matrix structures

are less efficient. This results in an increased computation time for BEM compared to

FEM for a problem with the same number of degrees of freedom.

Additionally, a common simplification made with the boundary element method is the

assumption that the surrounding domain is homogeneous and source-free. This kind of
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restriction is not present in the finite element method, where the analysis domain is only

limited by the size of the calculation mesh. There are workarounds for this problem with

the boundary element method such as the multi-domain BEM, but they often come with a

penalty of increased computation complexity.

The advantage of the BEM over FEM is that the result quantities of interest can easily be

evaluated outside the calculation mesh. With BEM analysis, when the system response is

computed at the boundary elements, the results can be also directly estimated anywhere

in the surrounding domain with little computational effort. For FEM analysis similar tech-

niques for computing far-field values, such as the infinite element formulation, can also

be utilized.

The advantage of the SEA over FEM and BEM is clear at high frequencies. Since the

number of elements required for both FEM and BEM analysis is dependent on the acous-

tical wavelength, the number of elements required becomes very large at high frequen-

cies. Statistical energy analysis is not a mesh-based method and thus does not suffer

from the same limitations. SEA is also based on the principle of averaging quantities over

the subsystems and thus takes into account some variability in the system properties,

loading, and boundary conditions.
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5. SIMULATION MODEL

The simulation process for the exterior acoustic radiation problem can be divided into

two main steps: the multibody dynamics model (MBD) and the acoustic radiation model.

Referring back to the structural-borne sound process presented in Figure 3.1 the MBD

model covers the first three phases (generation, transmission, and propagation), and the

acoustic model covers the sound radiation. The focus of this thesis is on the acoustic

model, but the main principles behind the MBD modeling are also presented.

5.1 Multibody dynamics model

Multibody dynamics (MBD) simulation results for the W8L25 engine were provided by

Wärtsilä. The MBD simulation process can be divided into five main steps presented

in Figure 5.1. The first steps consist of creating an initial finite element (FE) model from

existing CAD model data. The FE model can include material data and additional masses

for components not included as structural parts. Next, the size of the model is reduced by

condensating it with dynamic reduction. This greatly reduces the computational resources

required for the dynamic simulation. The reduced model is then used to simulate the

engine’s dynamic behavior, and in the final step, the results are recovered for the original

full FE model.

CAD model FE model Condensation MBD simulation Recovery

Figure 5.1. Multibody dynamics simulation process for generating input data to acoustic
simulation.

5.1.1 Condensation

Running the dynamic simulation on the complete FE model would not be feasible for large

structures, where the FE model can contain several million degrees of freedom. This is

why the model needs to be condensed or reduced before running the dynamic simulation.

The structure is divided into substructures that can be individual parts or subassemblies.

The substructure modeling approach also enables the use of a hierarchical model, where
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several substructures are incorporated into a parent substructure, which is then included

in the full model. The condensation process allows representing of these substructures as

so-called superelements, which are characterized only by the needed interface degrees of

freedom and reduced system matrices. This superelement or direct matrix input method

enables one to include the substructures in the dynamic simulation as flexible bodies.

For parts of the engine either Altair Optistruct or Abaqus simulation software was used to

condense the substructures. After the condensation only the so-called master degrees

of freedom are conserved. Nodes are needed only at the interfaces between different

components, such as bolt and bearing locations. Additionally, for these retained nodes

only the relevant degrees of freedom are needed. This can be utilized to further reduce

the model size, since for example for a frictionless contact region only the degrees of

freedom normal to the contact surface are needed.

In Optistruct the model condensation is done with the component mode synthesis (CMS)

using the Craig-Bampton nodal (CBN) method [13]. The goal of the model reduction is to

represent the substructure parts with superelements, that are characterized by interface

degrees of freedom and reduced stiffness, mass, and damping matrices. In the CBN

method, these reduced matrices are formed by running a normal and static mode analysis

for each substructure.

In the normal mode analysis, each interface node is set as fixed and a normal mode

analysis is run on the substructure. This results in a diagonal matrix Dω that contains the

eigenvalues and matrix Aω for eigenmodes. In addition to fixed interface normal mode

analysis, a static response analysis is performed for the interfaces. A unit displacement is

applied in turns to each interface degree of freedom while keeping other interface degrees

of freedom fixed. This results in a matrix for static displacement modes As and interface

forces fa.

Once the normal mode and static interface response analysis are performed the reduced

stiffness and mass matrices are calculated as

Kreduced = STKS =

[︃
Dω 0

0 fa

]︃
, (5.1)

Mreduced = STMS, (5.2)

where S =
[︁
Aω As

]︁
is the displacement matrix, and K and M are the original stiff-

ness and mass matrices for the substructure.
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5.1.2 Dynamic simulation and excitations

Multibody dynamics simulation was done for the condensed model with the AVL Excite

Power Unit simulation software. Main engine components were included in the model as

superelements and their interfaces at the bolt and bearing locations were considered with

the retained degrees of freedom. The main bearings were modeled with elastohydrody-

namic behavior, and spring joints were used to represent bolted connections. The main

excitation for the multibody simulation comes from the measured pressure curves applied

to the cylinder firing chambers. Additionally, the noise created during the gear meshing

contacts is a major source of noise in the engine. Components not included in the full

model were simulated separately and applied to the model as external force excitations.

These included for example the camshaft.

Table 5.1 shows typical noise sources in an engine and estimated frequency ranges,

where they have the biggest influence. Factors influencing the frequency ranges and

noise magnitude are listed in the rightmost column. From the table, it can be seen that

in the frequency range used in the acoustic simulation (around 0-2 kHz) the combustion,

valve, piston slap, and gear noises are the most prominent. Exhaust gas noise is not

considered in this thesis, and the turbocharger and intake noise have a major contribu-

tion only at higher frequencies. In addition to the intake noise, the turbocharger creates

significant noise at its blade passing frequency (BPF) and its harmonics. For the W8L25

engine with diesel mode and full load, the first BPF is around 4,2 kHz. This is well above

the frequency ranges considered in the current acoustic simulation model.

Table 5.1. Engine noise sources, estimated frequency ranges, and factors influencing the
noise frequency range and magnitude. Table provided by Wärtsilä.

Noise Source Frequency [Hz] Influencing factors on magnitude and/or frequency

Combustion 0 – 2000 Max pressure and rise rate of cylinder pressure

Piston slap 200 – 2000 Engine speed

Valves 200 – 2000 Valve clearance

Intake 2000 – 10 000 Turbocharger speed

Exhaust 0 – 300 Engine speed, power, V-angle, exhaust manifold and crank star

Gears 500 – 2000 Gear properties, damping and torsional vibrations

In general smaller engines tend to have higher excitation frequencies for the noise sources

listed in the table 5.1. It should also be noted that the noise sources can excite other

parts of the engine even outside their nominal excitation frequency range. For example,

the cylinder pressure curves typically have the highest excitations below 800 Hz but can

excite the engine block up to around 2 kHz.
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5.1.3 Damping

Damping in the multibody simulation was considered in two ways: internal body damping

and damping at connections. A viscous damping coefficient was applied to some con-

nections. The bodies’ internal damping was considered with a simple Rayleigh damping

model [1]. The idea in Rayleigh or proportional damping is that a systems damping matrix

is expressed as a linear combination of systems mass and stiffness matrices as

C = α1M + α2K. (5.3)

The systems damping can also be characterized with modal damping factors ξj for each

natural frequency ωj of the system as

ξj =
1

2

(︃
α1

ωj

+ α2ωj

)︃
. (5.4)

Generally, the internal material damping is thought to be almost frequency independent

[20]. Since a constant value for the internal material damping is desired, the parameters

α1 and α2 are solved from the equation (5.4) by defining two control points (f1, ξ0) and

(f2, ξ0). The resulting schematic plot for the damping factor as a function of frequency is

presented in Figure 5.2. From the figure, it can be observed that the proportional damping

model is quite poor at representing a constant damping factor. For frequencies f1 < f <

f2 the damping factor ξ is lower than the constant value of ξ0, and for frequencies f < f1

and f > f2 the damping factor ξ is higher than ξ0.

Figure 5.3 shows the actual Rayleigh damping curves used for different parts or compo-

nents in the MBD simulation. The MBD model was optimized for low-frequency vibration

analyses, and thus the control points for the damping curves are set at quite low fre-

quencies. This results in overly high damping values in the frequencies above 1 kHz. For

example, the engine block damping was set to be around 2 percent at low frequencies, but

due to the Rayleigh damping model at 2 kHz, the actual damping is very high at around 16

percent. This could have a meaningful impact on the results at higher frequencies. Going

forwards, more optimization for the damping models used in the dynamic simulation is

needed to better model the engine behavior for higher-frequency acoustical analyses.

Despite its limitations, the proportional damping model is still quite widely used because

of its simplicity and ease of implementation. A major benefit of the proportional damping

model is that it guarantees that all of the system’s normal modes are real. This means

that the equations of motion in modal coordinates can be uncoupled, and thus solved

more efficiently. [1]
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Figure 5.2. Modal damping factors as a function of frequency for proportional or Rayleigh
damping model.

f1 [Hz] f2 [Hz] ksi1 ksi2

Engine block 50 200 0.02 0.02

Intermediate gear, 
Fuel pumps, 
Camshaft

50 1000 0.02 0.01

Crankshaft 85 1000 0.02 0.02

Conrods 160 1000 0.03 0.03

LOM, TC, 
Oil pump, 
Water pump

50 500 0.02 0.02

0 500 1000 1500 2000 2500 3000
Frequency [Hz]

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Da
m

pi
ng

 ra
tio

Rayleigh damping ratios
Engine block
Intermediate gear, Fuel pumps, Camshaft
Crankshaft
Conrods
LOM, TC, Oil pump, Water pump

Figure 5.3. Modal damping factors used for the different bodies or components in the
MBD simulation.

5.1.4 Results recovery

The MBD simulation was done in the time domain for a couple of crankshaft revolutions.

At the end of the simulation, the results are converted into the frequency domain with a

Fourier transformation. By storing the data created during the condensation process the
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results can be efficiently recovered for the original non-condensed model. This recovery

process can be done on a part-by-part basis.

Most of the computational effort for the MBD simulation process is required during the

model condensation phase. The normal mode analysis for the condensation needs to

be performed up to the analysis frequency. The computation time of this modal analysis

gets very high as the frequency increases. The benefit of condensating each part sepa-

rately is that changing an individual part and re-running the simulation can be done quite

efficiently.

The end result of the engine MBD simulation for acoustic radiation analysis is a frequency-

dependent velocity field at the surface nodes. The structural mesh and the velocity data

for each analysis frequency are stored in either Optistruct or Abaqus result file format.

Displacement or acceleration data could also be used in the acoustic radiation simulation

instead of the velocity. Due to the part-by-part condensation, a separate result file is

obtained for each engine component. This can later be utilized in the acoustic radiation

model to easily change out a single part of the engine without affecting the rest of the

model.

5.2 Acoustic model

The acoustic radiation model was built for the complete W8L25 engine with the MBD

simulation results as model excitations. The entire acoustic simulation process including

mesh preparation was done with Actran VI simulation software. The use of single software

for model creation and post-processing creates a possibility to automate the simulation

process in the future.

The simulation was done as a one-way coupled analysis, where only the fluid part is

modeled and the results from the MBD simulations are inputted as external excitations to

the model. This means that the fluid movements do not influence the structure’s response.

This assumption is mostly valid for a heavy and rigid structure vibrating in a light fluid, such

as an engine vibrating in the air. The analysis was done as a direct frequency response

analysis, where the governing dynamic equations are sequentially solved at each analysis

frequency.

5.2.1 Mesh

The first part of the simulation process is mesh preparation. An exterior shrinkwrap mesh

is created around the structural mesh, and the excitations are mapped from the structural

simulation mesh to the acoustic mesh. During the solution phase, a near-field volume

mesh is created around the shrinkwrap mesh, and an infinite element layer is created on

the outer surface of the near-field volume. The automatic mesh generation during solu-



49

tion allows using adaptive meshes. Figure 5.4 illustrates the exterior shrinkwrap mesh,

acoustic near-field volume mesh, and infinite element layer created during the solution for

2 analysis frequencies.

500 Hz 1000 Hz

Infinite 
element layer

Acoustic 
near-field Exterior 

shinkwrap

Figure 5.4. Exterior shrinkwrap mesh, acoustic near-field volume mesh, and infinite ele-
ment layer for 500 Hz and 1000 Hz analysis frequencies.

The use of a shrinkwrap mesh instead of the existing structural mesh is beneficial in a

couple of ways. By using the shrinkwrap mesh the discontinuities present in the structural

mesh can be eliminated. This is important since the definition of the acoustic problem

requires that the space is divided into external and internal domains separated by a con-

tinuous boundary. Another benefit of using the shrinkwrap mesh is the ability to specify

the mesh size independent of the MBD simulation. The size requirements for an acoustic

mesh are dependent on the analysis frequency.

The first step to creating the shrinkwrap mesh is to close any larger holes in the model with

additional patch-meshes. This can be done automatically inside Actran VI or manually

in case of problematic areas. Once the larger holes are closed the shrinkwrap can be

automatically created inside Actran VI. The meshing tool takes three main parameters:

distance from the structural mesh, mesh size, and the defeaturing angle. The mesh

created at this stage should be sufficiently fine to capture the desired level of structural

details. Once the initial shrinkwrap mesh is created it can be made coarser at larger

surface areas by using the mesh-on-mesh automatic tool. Here the mesh size is set

to the desired final size depending on the maximum analysis frequency of interest. As

previously stated, a good approximation for the minimum number of elements to be used

is 4 quadratic or 8 linear elements per wavelength. With linear elements, this results in a

maximum element size of around 40 mm for a maximum frequency of 1000 Hz, and an

element size of around 15 mm for a maximum frequency of 3000 Hz.

Two shrinkwrap meshes with linear elements were created for the simulation. A coarser
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shrinkwrap with an element size of 40 mm was used for the analysis in the frequencies

below 1 kHz, and a finer mesh with an element size of 15 mm was used in the analyses

above 1 kHz. Linear elements were chosen for the first acoustic simulation because of

their simplicity, but the use of quadratic elements should be further investigated in the

future.

Finally, the mesh quality is checked for deformed and bad-quality elements and possible

problem areas are fixed. The mesh is then divided into several components or PIDs

(Actran VI naming convention) according to the part division of the result files from the

MBD simulation. This component division is necessary when dealing with several input

files for the excitations. Additionally, this provides a convenient way to investigate the

contribution of individual components to the overall sound power levels. The component

division made according to the MBD simulation part division is presented in Figure 5.5.

Engine 
block

TC 
system

LOM

Pump 
module

Cam 
covers

Water 
pumpOil 

pump

Figure 5.5. Part division for the exterior acoustic shrinkwrap mesh made according to the
MBD simulation result files.

With the use of the exterior acoustic component in Actran VI the creation of the volume

mesh in the near-field is done automatically during the solution phase. The desired ele-

ment size and mesh thickness for the acoustic near field can be defined in the component

settings. The mesh size used in the analysis was 8 linear elements per wavelength, and

the near field thickness was set to equal one wavelength. The frequency domain can also

be divided into bands and different mesh can be created for the analysis at each band.

This can greatly speed up the computation and lower the overall required computational

resources.
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A boundary condition has to be applied on the outer surface of the near-field volume ele-

ments. Available options to use in the Actran VI software are the infinite elements and per-

fectly matched layer (PML). The infinite elements perform better at low frequencies and

require fewer computational resources compared to PML. After some cutoff frequency,

PML and especially adaptive perfectly matched layer (APML) become an efficient bound-

ary condition. Since the analyses in this thesis are mostly at lower frequencies, the infinite

element formulation was chosen as the boundary condition. Infinite elements allow the

result quantities to be also directly evaluated outside the meshed near-field region.

A key parameter related to infinite elements is the interpolation order used. Higher in-

terpolation order provides a better solution accuracy at the far-field but comes with the

cost of an increased number of degrees of freedom. Generally, the number of degrees of

freedom for each node in the infinite elements is IO − 2, where IO is the interpolation

order. An interpolation order of 10 was used in the analysis to ensure sufficient accuracy

in the far-field.

5.2.2 Boundary conditions

Excitation for the acoustic radiation model is the frequency dependant velocity values

at the structural simulation nodes. Since the shrinkwrap mesh used for the acoustic

simulation is non-coincident with the structural mesh, the excitation velocities need to

be mapped. Mapping is governed by two tolerance values: gap and plane tolerance. Gap

tolerance is an absolute value that describes how far in the element’s normal direction

the neighboring structural nodes are searched from the acoustic nodes. Plane tolerance

gives a relative value that extends the search area in all directions. Figure 5.6 illustrates

the quality of the mapping investigated with the Actan VI built-in tool. Areas shown in blue

are fully mapped and areas shown in red are not mapped. Some larger red areas are due

to the structural mesh having holes in that place. Overall mapping qualities for different

parts were around 90 percent.

The exterior acoustic component allows the definition of one or more symmetry planes for

the analysis. These baffle planes can be used to represent rigid fully reflecting boundaries

such as the concrete floor under the engine. The floor was not included in the initial model,

but the effect of the floor is investigated later with a limited analysis frequency range.

When using a symmetry plane along with the infinite elements boundary condition the

infinite element center should be defined correctly. The infinite element’s center should

lie on the symmetry plane to ensure that the plane wave propagation is actually along this

symmetry plane. If the infinite element’s center is above the symmetry plane, the waves

can propagate along a conical surface below the symmetry plane. The exterior acoustic

component inside Actran VI automatically sets this infinite element’s center correctly.
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Figure 5.6. Mapping quality from the structural mesh used in the MBD simulation to the
acoustic shrinkwrap mesh. Blue areas are fully mapped, and red areas are not mapped.

5.2.3 Calculation procedures

Actran VI offers many possible analysis types. For exterior radiation problems in the

frequency domain, three analysis options are presented here. The most used analy-

sis type is the direct frequency response (DFR). It offers the greatest flexibility in the

post-processing options but comes with a higher computational cost when the number

of analysis frequencies gets larger. Other options to more efficiently recover limited re-

sult quantities and to benefit from better restart capabilities are the Green and pellicular

analysis.

For the direct frequency response analysis the governing dynamic equations are solved

at each analysis frequency subsequently. The system of equations is in the form

(K + iωC − ω2M )x(ω) = F (ω), (5.5)

where K is the stiffness matrix, C the damping matrix, M the mass matrix, and F the

external excitation. From the equation (5.5) the vector of unknowns x is solved subse-

quently at each analysis frequency ω = 2πf .

The DFR analysis allows using a wide range of different post-processing tools including

field and output maps, and direct radiated power results. The initial model build-up during

the solution is relatively fast, but solutions for individual frequencies can take some time.

The total analysis time is then highly dependent on the number of analysis frequencies

and the maximum analysis frequency. Parallel computing, where several frequencies are
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computed simultaneously, and multi-threading, where several cores are used to speed up

a single calculation task, can be used to greatly speed up the calculation times.

The Green analysis allows one to efficiently and quickly solve the result quantities at a

limited number of pre-defined microphone locations. The analysis has a different ap-

proach to the exterior acoustic problem, where the solution is divided into two steps. In

the first step each microphone location is treated as a spherical source and the resulting

incident pressure field is evaluated at the vibrating surface. From this, the transfer matrix

of the system is calculated. This first step of forming the systems transfer matrix can be

time-consuming depending on the number of pre-defined microphones.

In the second step, the transfer matrix is multiplied with the structural excitation field and

integrated over the radiating surface to obtain the acoustic pressure at the microphone

locations. The second analysis step, where the pressure is evaluated at the microphone

locations, is computed very quickly for each analysis frequency. The Green analysis

allows the calculation to be restarted after the first step, where the transfer matrix is

evaluated. Between restarts, the structural excitations and other model parameters can

be changed. This makes the Green analysis a very powerful tool to investigate acoustic

radiation in different load cases, where the structural excitations differ but the calculation

mesh and the microphone locations stay constant. This can be efficiently utilized for

example in the load-ramping analyses to produce waterfall diagrams.

Since the Green analysis does not support a direct evaluation of the radiated power,

some approximation techniques can be used to obtain the radiated power from the simu-

lated pressure values over some surface enclosing the radiating body. Different standard

definitions for this kind of radiated power analysis are available. A case study [5] for an au-

tomotive powertrain shows that it is possible to obtain excellent estimates for the radiated

power by utilizing the simulated pressure values.

Another multi-step analysis option in Actran VI offering great restart capabilities is the

pellicular analysis. The pellicular analysis consists of three steps. In the first step, the

pellicular modal basis is created for the acoustic shrinkwrap mesh. In the second step,

the acoustic radiation for these pellicular modes is simulated and the systems transfer

matrix is computed. In the final step, the structural excitations are projected into the

pellicular modal basis, and the result quantities are solved and post-processed.

Each step can be computed separately allowing great flexibility in restart capabilities. The

great benefit of the pellicular analysis is that the acoustic radiation of the pellicular modes

solved in the second step does not need to be re-evaluated for different structural exci-

tations. This allows one to efficiently calculate the result quantities for different excitation

fields.
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5.2.4 Post-processing

Actran VI offers lots of post-processing options depending on the type of calculation pro-

cedure used. Microphones or field points are used to obtain result quantities at certain

points in space at each analysis frequency. Figure 5.7 shows the 18 microphone posi-

tions defined in the acoustic model according to the points used in the measurements.

Microphones are positioned at 1 m distance from the engine surface. Each microphone

is represented by a 100 mm radius point cloud to average out some small local variances

around the microphone positions.
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Figure 5.7. Microphone positions in the simulation model defined according to the mea-
surement points. Microphones are positioned at 1 m distance from the engine surface.
Each microphone is represented by a 100 mm radius point cloud.

The results for an array of microphones can also be reversed from the default represen-

tation to a form, where for a given analysis frequency the result quantities are listed for

each microphone location. This can be used to obtain directivity plots for chosen analysis

frequencies.

Similarly to microphones, the result quantities can also be evaluated at chosen field maps

or at the acoustic mesh (output map). A field map is a separate results mesh that can

have an arbitrary shape. For field and output maps the results are evaluated at the nodal

positions. These maps allow the results to be visualized by mapping the result values to

chosen color bands. The results at field points and field maps can also be automatically

evaluated outside the meshed near field region by using the infinite element interpolation

or Ffowcs-Williams and Hawkings (FWH) integral. FWH integral can be utilized when the

PML layer is used instead of the infinite elements.

In addition to the microphone and map results, the total radiated power at a given analysis

frequency can be evaluated. When using several BC Mesh components for the structure,

the part contribution of each separate part to the total radiated power can be investigated

with a contribution plot.
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6. MEASUREMENTS

The sound measurements for the W8L25 engine were done in the Wärtsilä test lab [21].

Measurements for sound pressure, sound power, exhaust gas noise, and air inlet noise

were conducted at various engine operating conditions for both the diesel and gas mode.

In this thesis, only the diesel mode sound pressure and sound power at full engine load

and nominal speed (1000 rpm) will be compared to the simulation results.

Figure 6.1 shows the engine situated at the test lab. For the measurements, the hotbox

covers (Figure 6.1 rear side top part) were not mounted. This means that the measured

sound pressure and power can be considered as the upper limit values. The engine was

mounted to a fixing rail with rubber feet, and separate fixing rails were used for the engine

and the generator. The side covers are laser welded.

Operating side Rear side

Rear side – Top Generator side

Figure 6.1. W8L25 engine in the test lab [21].



56

Sound pressure level was measured at various measurement points shown in Figure 6.2.

Microphone positions were set to be at 1 m distance from the engine surface. Mea-

surement point locations were approximated in the simulation (figure 5.7) and the same

naming was used. Microphone positions with names ending with the letter b are located

at the engine read side.

Figure 6.2. W8L25 engine sound pressure level measurements points at 1 m distance
from the engine surface [21].

Sound power and intensity measurements were done by scanning over the engine surface

at around 100 mm distance. The intensity is measured in the normal direction of the

engine surface with a directional PU microphone, where both the fluid particle velocity

and pressure are measured at the same position. The time-averaged sound intensity

is then calculated as the product of the velocity and pressure with equation (2.8). The

radiated power is then obtained by integrating the sound intensity over the measurement

area as (2.9). In practice, the intensity is averaged over the measurement area and the

sound power is calculated by multiplying the average intensity by the measurement area.

In addition to the average sound power and intensity measurements, the sound pressure

level at the engine operating side was measured with the "Scan and Paint" technique.

In the "Scan and Paint" measurement the microphone is moved over the measurement

surface and the microphone position is recorded with a camera setup. This allows spa-

tially mapping the result quantities and illustrating them over a recorded background. The

resulting color map is compared with the simulation results.
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7. RESULTS

The goal in presenting the simulation results is to first compare the simulated values to

the relevant measurement quantities and to validate and understand the simulation model

behavior. Additionally, the aim is to highlight the benefits and possibilities of the acoustic

simulation approach compared to conventional measurements.

First, the results related to the sound pressure levels are presented. Next, the radiated

power and intensity levels are observed. This includes some conversation about the part

contributions. Lastly, the effects of including a fully reflective floor or an acoustic fluid

damping in the model are investigated, and some estimates for computational resource

usage are presented.

7.1 Sound pressure levels

Figure 7.1 shows the A-weighted one-third-octave band sound pressure level averaged

over 18 microphone positions (shown in 5.7) at 1 m distance from the engine surface.

Simulated values are compared to the measured quantities. The overall average A-

weighted sound pressure values summed over the one-third-octave bands are presented

in the rightmost columns. For the measurement, the overall value is a sum of frequencies

from 0 to 20 kHz and for simulated values, the overall value is a sum from 0 to 2 kHz.

From the figure, it can be seen that from 50 to 630 Hz one-third-octave bands the simu-

lated values are 3 to 13 dB higher than the measured values. For low values below 50

Hz the simulated values a generally 1 to 6 dB higher than the measured values. In these

very low frequency one-third-octave bands the simulated values have a fair bit of uncer-

tainty due to the relatively low simulation resolution (simulation was run every 8,3 Hz). For

one-third-octave bands from 800 to 1250 Hz, the simulated values match the measured

ones within 1 to 3 dB. At higher frequencies above 1 kHz, the simulated values start to

drop faster than the measured values, the value at 2 kHz one-third-octave band being 8

dB lower than the measured one.
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Figure 7.1. Comparison between measured and simulated average A-weighted one-
third-octave band sound pressure level at 1 m distance from the engine surface.

Figure 7.2 shows the overall A-weighted sound pressure level for all microphone locations.

The overall value is a sum over a chosen frequency range. For measurements, two

values are plotted: sum from 0 to 20 kHz and sum from 0 to 2 kHz. The latter is directly

comparable to the simulated values that are summed over the same frequency range.

C3
b

B3
b

A3
b

D3
b D3 A3 B3 C3

FW
E3

FW
E1 C1
b

B1
b

A1
b

D1
b D1 A1 B1 C1

Microphone location

90

92

94

96

98

100

102

104

106

108

110

A-
we

ig
ht

ed
 S

ou
nd

 P
re

ss
ur

e 
Le

ve
l [

dB
, r

ef
. 2

0u
Pa

]

109

107

108

104

103

106 106

105

104 104

107

106

105

102

103

105 105

103

104

106 106

102 102

104

105

103

101

100

103 103

102

100

101

103 103

101

103

104

103

101

104

107

106

105

101

93

104

105 105

100

103

107

106

104

Overall sound pressure level
Measured values 0-20 kHz
Measured values 0-2 kHz
Simulated values 0-2 kHz

Figure 7.2. Overall A-weighted sound pressure level for all microphone positions. Com-
parison between measurements and simulation results.

From the figure, it can be observed that the overall sound pressure levels for most micro-

phone positions are 0 to 4 dB higher in the simulation compared to the measurement val-

ues summed over the same frequency range (0 to 2 kHz). For the microphones A3b-D3b

(rear side lower microphones) the simulated values are 1 to 3 dB lower than in the mea-

surements. The higher measurement point near the turbocharger area (FWE1) shows a
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clear discrepancy between the simulated and measured values. This microphone position

will be investigated more closely later.

Figure 7.2 also illustrates the contribution of the higher frequencies to the overall sound

pressure levels. If the higher frequencies from 2 to 20 kHz are omitted from the mea-

surement results, the overall pressure values in the microphone positions are 1 to 5 dB

lower. This emphasizes the importance of increasing the maximum simulation frequency

to better capture the overall sound pressure levels in the audible frequency range.

Figure 7.3 shows the overall (0 - 2 kHz) A-weighted sound pressure level at 1 m distance

from the engine surface for both the operating and rear side. Microphone positions are

plotted as black point clouds and noted with the corresponding labels. Two types of

interesting areas can be observed from the figure.

1. The areas marked with number 1 have the highest sound pressure level. This is

due to those areas being too close to the engine surface (around 0,8 m instead of

1 m). The results for these areas should be overlooked here.

2. The areas marked with number 2 are at the comparable distance of 1 m and have

a higher overall sound pressure level than neighboring microphone positions. This

demonstrates the uncertainty of measuring the sound pressure level at discrete

measurement points.

A1 B1 C1

A3 B3 C3D3

D1 A1bB1bC1b

A3bB3bC3b D3b

D1b11

2

2

Operating side Rear side

Figure 7.3. Overall (0 - 2 kHz) A-weighted sound pressure level at 1 m distance from the
engine surface. Results are shown for the operating and rear side. Microphone positions
are marked with point clouds and labels. Values below the lower dBA limit are shown as
gray.
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7.2 Sound power and intensity

Figure 7.4 shows the total radiated A-weighted sound power levels comparing the simu-

lated and measured values. In the simulation, the radiated power was calculated at the

infinite element layer between the acoustic near and far field. Overall sound power lev-

els are presented in the rightmost column. For the measurements, the overall value is

calculated from 0 to 20 kHz, and for the simulated values from 0 to 2 kHz.

The radiated total sound power levels have very similar relative differences between the

measured and simulated values as the average sound pressure levels. In the one-third-

octave bands from 50 to 630 Hz, the simulated values are 2 to 10 dB higher than the

measured values. For bands around 1 kHz, the difference is between 1 and 3 dB. After 1

kHz the simulated values start to decrease faster than the measured values.
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Figure 7.4. Total radiated A-weighted sound power levels. Comparison between mea-
surements and simulation results.

Figures 7.5 and 7.6 show the simulated sound power levels and contribution percentage

for different engine parts. The part division (5.5) is made according to the MBD simulation

model. These part-by-part results are not directly comparable to the measurements since

in the measurements the engine surface was divided into parts differently than in the MBD

simulation. The part division of the MBD simulation was used in the acoustic simulation

model directly due to its ease of implementation, but going forward the possibility of using

other part divisions should be further investigated.

The part-by-part radiated power results are obtained with simulation by using multiple

load cases. For each part a separate load case is created, where the surface velocity ex-

citations are only applied to the investigated part. Additionally, a single load case, where

all of the surface velocity excitations are present is created. The radiated power is then
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Figure 7.5. A-weighted sound power levels for different engine parts in the simulation.

Figure 7.6. Radiated power contribution plot for different engine parts.

calculated over the entire infinite element surface for each load case. This method is con-

ceptually slightly different compared to the measurement technique, where the radiated

power is calculated by measuring average normal intensity over a chosen measurement

surface.

A similar approach to the measurement technique was also considered for the simulation

model, but due to software limitations, it was deemed to not be practical to implement.

There is no simple way to obtain the normal direction intensity values for an arbitrarily

shaped surface, since during the solution the result quantities including sound intensity

are only computed at the nodal points. The direction of the local surface normal is not

uniquely defined for a nodal point connected to several surface elements. The normal
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intensity results are however utilized for the engine operating and rear side comparison.

Since the side surfaces are mostly planar the limitation of not being able to compute the

normal intensity can be avoided by using the intensity in a single coordinate direction.

From Figure 7.6 it can be observed that in the lower frequencies below 500 Hz, the engine

block dominates the total radiated power. An exemption to this is seen at 125 Hz, where

the turbocharger has a high peak value in the relative contribution plot. In the frequencies

above 500 Hz, the LOM and fuel pump modules provide a significant contribution to the

overall radiated power. For the camshaft covers two distinct peak values can be observed

at around 233 and 400 Hz.

Figure 7.7 shows the dBA intensity at 125 and 150 Hz frequency. The results are from

the load case, where all the structural velocity excitations are present. Comparing the

results for the two frequencies it can be seen that the turbocharger area has a high peak

intensity value at 125 Hz, while at 150 Hz the oil pan area (part of the engine block in

Figures 7.5 and 7.6) has the highest intensity. The mapped intensity results correlate

well with the relative power contribution graph (7.6). It should however be noted that the

contribution plot alone does not give adequate information on the system’s behavior. In

this case, the high relative contribution of the turbocharger area at 125 Hz is explained by

both the turbocharger radiated power increasing and by the engine block radiated power

decreasing at the same time.

150 Hz125 Hz

Figure 7.7. A-weighted sound intensity level at 100 mm distance from the engine surface.
Comparison between simulated values at 125 and 150 Hz. Load case, where all of the
surface velocity excitations are present.

The two peak radiated power values of the camshaft covers at 233 and 400 Hz are in-

vestigated in Figures 7.8 and 7.9. The figures show the A-weighted sound pressure level

near the engine surface and the structural excitation velocities. The pressures are taken

from the load case, where all the structural excitations are present. At 233 Hz the peak

radiated power value for the camshaft covers is caused by the high excitation velocity at

the engine rear side covers. At 400 Hz the peak radiated power results from the high
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excitation of the operating side lower camshaft covers. Referring back to Figure 7.6 the

relative participation of the camshaft covers to the overall radiated power is quite low in

the analyzed frequency range. This is due to the small surface area of the covers.

233 Hz – Operating side 233 Hz – Rear side

dBA Pressure dBA Pressure

dBA Velocity dBA Velocity
Highest excitation 
velocity for covers

Figure 7.8. A-weighted structural surface velocity excitation and sound pressure level at
the acoustic shrinkwrap mesh at 233 Hz. High excitation velocity and sound pressure
level are observed for camshaft covers at the engine rear side.

400 Hz – Operating side 400 Hz – Rear side

dBA Pressure dBA Pressure

dBA Velocity dBA Velocity
Highest excitation 
velocity for covers

Figure 7.9. A-weighted structural surface velocity excitation and sound pressure level at
the acoustic shrinkwrap mesh at 400 Hz. High excitation velocity and sound pressure
level are observed for camshaft covers at the engine operating side.

The A-weighted overall (0-2 kHz) mean intensity at 100 mm distance from the engine

surface is shown in Figure 7.10. The intensity values are averaged over small segments

of the engine operating and rear side, and the measured and simulated values are com-

pared. To obtain an approximate normal direction intensity the X-component of the sim-
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ulated intensity values is used. Simulated and measured values are mostly within 3 dB.

The simulated values for the top right side of the operating side are 4 to 5 dB lower than

the measured values. The intensity value around the pump module (middle left of the

operating side) is 4 dB higher in the simulation than in measurements. This is most likely

due to the pump module cover not being included in the simulation model.

102|100105|106 103|103 102|100

101|98102|106 102|100

101|102103|103 102|103 101|103

101|96103|103 102|97

103|101102|101 101|103 102|103

103|101100|99 101|99 102|100

102|102101|99 102|100 103|100

Operating side Rear side

Overall dBA Intensity (0-2 kHz)

Measured|Simulated

Cover missing

Figure 7.10. A-weighted overall (0-2 kHz) mean intensity at 100 mm distance from the
engine surface. The simulated intensity values are taken in the X-coordinate direction.
Comparison for engine operating and rear side segments between measurement and
simulation results. Acoustic wrapmesh for the engine surface is shown on the bottom left
and right.

Figure 7.11 shows the A-weighted sound pressure level in 1000 Hz one-third-octave band

at 100 mm distance from the engine surface. The simulated values are compared to the

values measured with the "Scan and Paint" technique. In the measurements, the position

of the microphone probe is recorded with a camera setup, and the measured values are

mapped as color values on top of the background image. The highest sound pressure

levels in the measurement area are observed to be in the approximately same locations

in the simulation and measurements, and the overall scale of the values is very similar.

Looking back to the average sound pressure levels (7.1) the 1000 Hz one-third-octave

band had quite good correspondence between the simulation and measurements. Figure

7.11 also illustrates one of the strengths of the acoustic simulation approach, where the

sound pressure level is easily mapped over the entire engine surface. Obtaining a similar

results map with measurement techniques would be quite time-consuming.
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Cover missing

Measurement area

dBA Pressure, 1000 Hz
one-third-octave band

Figure 7.11. A-weighted sound pressure level in 1000 Hz one-third-octave band at 100
mm distance from the engine surface. Comparison between simulated values and mea-
sured "Scan and Paint" values. Acoustic wrapmesh for the engine surface is shown on
the top left.



66

7.3 Semi-free field and damped models

The effect of including a fully reflecting floor or 1 percent acoustic fluid damping in the

simulation model is investigated in Figure 7.12. The model results with the floor are noted

as the semi-free field model, and the original simulation model results (7.1) are shown as

the free field model. The values presented in Figure 7.12 are the A-weighted one-third-

octave band sound pressure levels averaged over the 18 microphone positions at 1 m

distance from the engine surface.

For the damped simulation model, the average pressure levels are consistently around

0 to 2 dB lower than in the non-damped simulation model. The addition of the reflecting

floor to the simulation model yields around 0 to 2 dB increase for the average sound

pressure levels with the exemption of the 200 Hz band, where the value with the floor is 1

dB lower than in the free field simulation model.
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Figure 7.12. Average A-weighted one-third-octave band sound pressure level at 1 m dis-
tance from the engine surface. Comparison between measurements and different simu-
lation models.

Figure 7.13 shows the overall A-weighted sound pressure level for all microphone posi-

tions. For the measurement results two values are provided: an overall value from 0 to 1

kHz and an overall value from 0 to 20 kHz. For the simulation models, the overall values

are a sum from 0 to 1 kHz. Generally, the free field simulation values are 2 to 5 dB higher

than the measured values summed over the same frequency range. For the rear side

lower microphones (A3b-D3b) the free field simulation values are within 1 dB of the cor-

responding measured values. Comparing the different simulation models the semi-free

field model’s overall sound pressure levels are generally around 0 to 1 dB higher than the

free field model. The damped model has around 1 to 2 dB lower values than the non-

damped model. The results from the microphone position FWE1 are significantly different
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compared to other microphone positions. This will be further investigated next.
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Figure 7.13. Overall A-weighted sound pressure level for all microphone positions. Com-
parison between measurements and different simulation models.

The A-weighted one-third-octave band sound pressure levels for the microphone position

FWE1 comparing the measurements, free field, and semi-free field simulation models

are shown in Figure 7.14. From the figure, it is observed that after the 500 Hz one-

third-octave band the free field simulation values start to considerably drop compared to

measured and semi-free field simulation model values. The behavior of the semi-free

and free field simulation models around the microphone position FWE1 at the 1000 Hz

one-third-octave band is further investigated in Figure 7.15.
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Figure 7.14. A-weighted one-third-octave band sound pressure level for the microphone
position FWE1 at 1 m distance from the engine surface. Comparison between measure-
ments and different simulation models.
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Figure 7.15 shows the A-weighted sound pressure level for 1000 Hz one-third-octave

band at the acoustic shrinkwrap mesh and at a field map crossing the engine center

plane. The free field and semi-free field simulation models are compared around the

microphone position FWE1. From the figure, it can be seen that in the semi-free field

model, the sound waves coming from the engine flywheel end are able to reflect from the

floor, and thus create a higher pressure area around the microphone FWE1. It can also

be observed that a small change in the microphone position could have a measurable

difference in the resulting value for a certain one-third-octave band.

Free field simulation
1k one-third-octave band

Semi free field simulation
1k one-third-octave band

FWE1
FWE1

Floor level

Figure 7.15. A-weighted sound pressure level for 1000 Hz one-third-octave band. Pres-
sure is shown at the acoustic shrinkwrap mesh and at a field map crossing the engine
center plane. Comparison between free and semi-free field simulation models. Micro-
phone position FWE1 is shown in the figure.
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7.4 Computational resource estimates

Figure 7.16 shows the estimated memory consumption and computation time (for a sin-

gle frequency) as a function of the model degrees of freedom. The maximum analysis

frequencies used for the corresponding meshes are marked in the figure as data labels.

From the figure, it is observed that the computation time for a single frequency and the

required system memory for the solution are roughly linearly dependent on the number

of degrees of freedom. However, when looking at the graph it is seen that the number of

degrees of freedom for the model grows rapidly as the analysis frequency increases.

Since the computation times noted are for a single analysis frequency the overall solution

time can be drastically reduced by utilizing parallel computing, where several frequencies

are solved at the same time. The number of parallel processes is, however, limited by

the amount of available system memory, since each process requires the same amount

of memory. In short, if n parallel processes are used, the overall solution time is close to

1/n of the original, but the total amount of memory required for the solution is n times the

original. If the memory requirement exceeds the system’s maximum amount the solution

is switched to out-of-core mode, where the system’s hard drive is used instead of the

system memory. This is usually much slower.
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Figure 7.16. Memory consumption and computation time (for a single frequency) as a
function of model degrees of freedom. Corresponding maximum analysis frequencies are
marked with data labels.
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8. EVALUATION OF RESULTS

From the results figures it can be seen that the simulation and measurement results have

a quite good correspondence in the frequencies from 800 to 1250 Hz. This is likely due to

the good modeling of the gear noise in the simulation. At lower frequencies, the simulated

results are higher than the measured ones, and at higher frequencies, the simulated

values drop faster than the measured ones. Further investigation is still required to better

understand the causes behind the observed differences.

The acoustic radiation simulation model was based on the existing MBD model that is

mostly optimized for low-frequency vibration analysis. The structural damping curves

used in the MBD model are likely to give overly high damping values for higher frequen-

cies. This could be one of the contributing factors to the differences observed at high

frequencies, but additional investigation is still needed to better understand the actual

contribution of structural damping values to the overall sound radiation levels.

The limitations of the acoustic radiation model should also be acknowledged. The initial

model did not include any room parameters or fluid damping. Two test models on a

smaller frequency range were analyzed, where a fully reflective floor and 1 percent fluid

damping were included in the model. The effect of these additions was generally quite

small and consistent with frequency. Some of the structural details, parts, and model

parameters not included in the acoustic radiation simulation model are listed below.

1. Test lab walls and ceiling with some absorptive materials.

2. Floor and fluid damping were included only in partial frequency range test models.

No absorption for the floor was considered.

3. Some of the engine covers, such as the pump module side cover.

4. Piping, wiring, and working platforms in the test lab room.

5. Common base frame below the engine oil pan. This partially limits the sound radi-

ated from the oil pan, and in turn, also participates in the total sound radiation.

6. Generator set connected to flywheel end.
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9. CONCLUSIONS

In recent years reducing noise and vibration levels has become a more important goal

in engine design. In this thesis, the acoustic simulation approach was investigated as a

tool to evaluate design iterations faster and cheaper compared to the conventional design

process based on measurements and physical prototypes. The simulation approach also

gives a better understanding of the engine behavior and allows the highlighting of the most

critical areas and components in terms of noise and vibration. The first step in adopting

the simulation approach as a part of the engine design process is model validation. For

this purpose, an acoustical simulation model was built for the W8L25 engine, and the

simulation results were compared to the measurements made in the Wärtsilä test lab.

The average A-weighted sound pressure levels (1 m away from the engine surface) and

the total radiated A-weighted sound power levels for the simulation and measurement

results were within 3 dB in the 800 to 1250 Hz one-third-octave frequency bands. This

is likely due to the good reproduction of the gear hammering noise in the simulation. In

the frequency bands below 800 Hz, the simulated sound pressure and power levels were

significantly higher than in the measurements, with a maximum difference of 13 dB. In the

higher frequencies above 1250 Hz, the simulated sound pressure and power levels start

to drop faster than the measured values, and the maximum difference at 2 kHz one-third-

octave band was 8 dB. To get a better understanding of the differences observed in the

lower and higher frequencies, more investigation and research is still needed. Possible

causes could include incomplete excitations in the MBD model and the used structural

damping models, which are more optimized for lower frequency vibration analysis.

Due to the modeling limitations, the part-by-part radiated power level results are not di-

rectly comparable between the measurements and simulation. From the simulation re-

sults, it was found that at low frequencies below 500 Hz, the engine block (including the

oil pan) dominates the sound radiation. An exemption was found at 125 Hz, where the

turbocharger area shows a high peak value in the relative sound power levels. The two

lowest peak radiated sound power levels for the camshaft covers were found at 233 and

400 Hz frequencies. In those frequencies, clear modal shapes for the covers are ob-

served. The peak at 233 Hz is caused by the high excitation of the rear side covers, and

the peak at 400 Hz is caused by the high excitation at the operating side lower covers.
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The measured and simulated sound pressure levels (100 mm distance from the engine

surface) for the 1000 Hz one-third-octave band at the engine operating side showed quite

good correspondence. The areas with the highest sound pressure levels were in the

approximately same locations, and the absolute scale of the values was comparable. The

sound intensity levels (100 mm distance) for engine operating and rear side segments

were also compared between the measurements and simulation results. Generally, the

intensity values were within 3 dB, except for the operating side pump module area. There

a cover plate present in the measurements was missing from the simulation model.

The effect of including a fully reflecting floor or 1 percent acoustic fluid damping was

investigated with acoustic simulation models up to 1 kHz. The differences between the

free field (no floor), semi-free field (floor included), and free field damped models were

found to be quite constant over the analyzed frequency range. Compared to the non-

damped model the damped model had around 0 to 2 dB lower average A-weighted sound

pressure levels at 1 m distance from the engine surface. For the semi-free field model,

the average pressure levels were around 0 to 2 dB higher than for the free field model.

A major difference between the semi-free and free field models was observed at the

flywheel end upper microphone location FWE1. This is caused by the acoustic waves

reflecting from the floor and creating a high-pressure area near the microphone location.

The semi-free field simulation model results for the microphone location FWE1 match

better with the measurement results.

The calculation time for a single frequency and estimated system memory consumption

for the solution were found to be roughly linearly dependent on the number of degrees

of freedom in the model. However, as the analysis frequency increases the number of

degrees of freedom in the model grows rapidly. At lower frequencies, parallel computing

can be used to greatly speed up the overall computation but at the cost of higher overall

memory consumption. At higher frequencies, the total amount of system memory avail-

able becomes a limiting factor, and the degree of parallelism has to be reduced. This

will further increase the overall calculation time at high frequencies. Going forwards, the

solver parameters and the usage of calculation resources should be further optimized to

reduce the overall simulation times.

Although a quite good correspondence between the simulated and measured values was

obtained around 1 kHz frequency range, more research is still needed to fully validate

the simulation model. Especially the MBD model needs to be further optimized to better

suit acoustical simulations. Additionally, more acoustic simulations on different engine

designs should be carried out to gain a broader insight into the behavior of acoustic

models and to observe if the differences between the simulated and measured results

are consistent. In sum, this thesis provides a valuable starting point, from which the

acoustical simulation models and process can be further developed.
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The limitations of the current acoustic simulation model should also be acknowledged.

The existing MBD model was not optimized for acoustical simulation. This could have

a noticeable impact on the results, especially at higher frequencies. Some of the en-

gine covers present in the measurements were not included in the simulation model.

The exclusion of the common base frame and generator from the simulation model likely

produced overly high results near the oil pan area. The room acoustics were not fully

considered in the acoustic simulation model. The effect of a fully reflecting floor was in-

vestigated in a limited frequency range, but the walls and ceiling of the test room were not

included. Additionally, the wiring, piping, and working platforms of the test lab room were

not considered in the simulation model.

Some of the possible subjects for future research are presented below.

• Optimization of the MBD model for acoustical simulation, and the validation of the

acoustical simulation model for a wider frequency range.

• Optimization of solver parameters and usage of computational resources to reduce

the calculation time and memory consumption of the higher frequency acoustic

simulations.

• Investigation of different engine geometries or part combinations with the acoustic

simulation model.

• Exploring alternative modeling approaches for the acoustic simulation to obtain

part-by-part radiated power results that can be directly compared to the measure-

ment results.

• Looking into using Green’s analysis to efficiently investigate load-ramping scenarios

and to produce waterfall diagrams.

In concluding remarks, the acoustic simulation approach shows great promise to be an

efficient design tool in the future development of engines with reduced noise levels. More

work and research are still needed to fully validate the simulation model and to adopt the

simulation approach as a part of the engine design process.
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