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ABSTRACT

This work presents the research on optimizing neural networks and deploying them
for real-time practical applications. We analyze different optimization methods,
namely binarization, separable convolution and pruning. We implement each method
for the application of vehicle classification and we empirically evaluate and analyze
the results. The objective is to make large neural networks suitable for real-time
applications by reducing the computation requirements through these optimization
approaches. The data set is of vehicles from 4 classes of vehicle types, and a convo-
lutional model was used to solve the problem initially. Our results show that these
optimization methods offer many performance benefits in this application in terms
of reduced execution time (by up to 5×), reduced model storage requirements, with-
out largely impacting accuracy, making them a suitable tool for use in streamlining
heavy neural networks to be used on resource-constrained envrionments. The plat-
forms used in the research are a desktop platform, and two embedded platforms.
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1 INTRODUCTION

This work presents the research on optimizing neural networks and deploying them
for real-time practical applications. By ’practical’, we mean a setting where the neural
network is running on an embedded device and is receiving data from a live camera
source, and the inference is done in real time. The process starts by analyzing dif-
ferent optimization methods before selecting the most well-suited ones depending
on the application. Once an optimization method is selected, we empirically eval-
uate the method by implementing it. Typically, the accuracy and the performance
of the neural network is evaluated and compared with the original neural network
across different platforms. Once enough empirical data is gathered, we focus on the
deployment phase of the process by making it more efficient for specific hardware
and the application.

The scope of this work is to explore the general advantages of optimization meth-
ods and their limits, not to satisfy a specified goal or meet certain performance re-
quirements. This work is also not focused on finding neural network solutions, but
rather use existing networks to be optimized for deployment and inference. This
work also doesn’t deal with safety-critical application, where the accuracy of the
model is critical. Such applications also incorporate the concept of confidence in
their model, which is out of scope of this work. The work is largely focused on a
specific type of neural networks: convolutional neural networks for image classifica-
tion. The optimizations are general, but are focused on deployment on embedded
systems with parallel processing units.

The publications included can be categorized as follows: Specialized implemen-
tation of one optimization algorithm [33], empirical analysis and comparison of
different optimization methods [34], deployment of an optimized method on an
embedded system [53], and utilization of some features of the tool in high perfor-
mance computing application in [4] showing versatility .

The research is mostly centered around optimizing neural networks in practical
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setting, by analyze the results in performance and loss in accuracy. In the work, we
also evaluate the practical benefits of these approaches. The research questions can
be summarized as follows:

RQ1: What is the accuracy and performance trade-off from weight binarization,
separable convolution, and weights pruning, and how they compare.

RQ2: How well the optimizations work in real-time embedded systems?
RQ3: How to speed up the process of design and deployment of neural network

models?
This thesis is organized as follows: Section 2 discusses the background of neu-

ral networks and details about the algorithms, Section 3 discusses research method-
ology, Section 4 provides a summary of the results and their discussion, Section 5
discusses the related work, and Section 6 wraps up and concludes the thesis.
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2 BACKGROUND

Machine Learning (ML) is a term that covers a wide range of approaches and meth-
ods of data analysis such as data classification, clustering and regression. Artificial
Neural Networks (ANNs) fall under ML, and has a wide range of applications, that
continued to expand over the past few years. ANNs are typically designed using
supervised learning approaches such as the Backpropagation algorithm, where the
network is initialized in a random configuration, that is then systematically and iter-
atively adjusted until the desired network behavior is achieved. Other approaches
exist for designing ANNs, such as the works in [60][49] where neural network
models are designed using genetic algorithms. Reinforcement learning is another
method that can be used [62]. Neural networks have found great use in a vari-
ety of fields. Variations of ANNs have been applied in many areas such as image
classification[55][58][22][31], speech recognition[18][71] [69], medical diagnosis
[3][66][48][36][47], and object recognition [78][61][16][63][42]. This section pro-
vides the background for understanding how neural networks generally work and
how the computations are done. Then the concept of convolutional neural networks
are explained afterwards.

2.1 Perceptron

An ANN can essentially be thought of as a systen for processing information, with
fundamental components known as "perceptrons"[27] (also called "neurons"). The
perceptron has two basic components. First, it has a set of synapses or connecting
links, each with an associated weight value as shown in Figure 2.1. The neuron
computes its activation potential field v as a linear combination between input signal

19



Activation
function

∑︁w2x2

...
...

wmxm

w1x1

b

v

Figure 2.1 Illustration of a perceptron

x and its weights.

v =
m
∑︂

i=1

wi xi + b (2.1)

The parameter b in equation 2.1 is called the bias. This expression can be simpli-
fied by letting x0 = 1, and w0 = b , so that v can be rewritten as:

v =
m
∑︂

i=0

wi xi (2.2)

The second component is the activation functionφ, which is responsible for com-
puting the perceptron’s output y =φ(v). The choice of activation function is largely
dependent on the desired behavior of the neural network. A list of activation func-
tions that are commonly used are provided below with a brief explanation.

The logistic-sigmoid is a continuous function that compresses the value of its
input from 0 to 1. It can be thought of as a smooth step function.

σ(x) =
1

1+ e−x
(2.3)

A plot of the sigmoid activation function is shown in Figure 2.2.

The step function is a discrete-valued function that outputs either a 0 or a 1.

s (x) =

⎧

⎨

⎩

0 if x < 0

1 if x > 0
(2.4)
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Figure 2.2 Plot of the sigmoid activation function.

A plot of the step activation function is shown in Figure 2.3.

The tanh(x) function is a bipolar version of the logistic sigmoid function

tanh(x) =
e x − e−x

e x + e−x
(2.5)

A plot of the tanh activation function is shown in Figure 2.4.

Softmax can output posterior probabilities and it is usually used at the output
layer classification model to provide degree of certainty of the input belonging to
one of the classes.

softmax(x j ) =
e x j
∑︁

me xm
(2.6)

ReLU is a commonly used activation function which can reduce overfitting and
is given as follows.

ReLU(x) =max(0, x) (2.7)

A plot of the ReLU activation function is shown in Figure 2.5.
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Figure 2.3 Plot of the step function.

2.2 Feed-forward neural networks

Typically a neural network is comprised of fundamental units called perceptrons.
The network generally maps an input to an output that can include changes in the
input’s dimensionality. These days, neural networks can have multiple layers of
computation before the final output layer. Between each layer, there is an activa-
tion function, a non-linearity, that can enhance the expressiveness of the network.
The final layer in the network typically has a different activation function depending
on the purpose. Figure 2.6 shows a neural network that receives an input x ∈ R4,
which is used to generate an output y ∈R2. Then essentially, the network provides
a non-linear mapping from x to y.

Neural networks are implemented using techniques of linear algebra due to the
large number of variables involved. Computing hardware such as (Graphical Pro-
cessing Units) GPUs are often optimized to handle such operations efficiently. For
a single neuron, what is known as its induced local field can be stated as a dot product:

v =wT x (2.8)
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Figure 2.4 Plot of the hyperbolic tangent activation function.

Where the term w=
h

w0 w1 w2 . . . wn

iT
, and x=
h

x0 x1 x2 . . . xn

iT
.

w0 is the bias term for the neuron, and x0 is set to 1. Each layer in the network can be
characterized completely by its weights, or more conveniently as its weights matrix:

W=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

w0
0 w1

0 w2
0 . . . wnh

0

w0
1 w1

1 w2
0 . . . wnh

1

w0
2 w1

2 w2
0 . . . wnh

2

...
...

...
. . .

...

w0
m w1

m w2
m . . . wnh

m

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

This notation is convenient for its compact representation and usefullness when
implemented in a programming language. We can interpret the number nh + 1 to
denote the amount of neurons in the layer h, and m represents the dimensionality of
the input to the layer, which is the same as the dimensionality of the weights vector
of each neuron. We can compute the output of the layer as simply the result of the

23



-5 -4 -3 -2 -1 0 1 2 3 4 5

x

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

y

ReLU Activation Function

Figure 2.5 Plot of the ReLU activation function.

matrix-vector product

WT x=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

w0
0 w0

1 w0
2 w0

3 w0
4

w1
0 w1

1 w1
2 w1

3 w0
4

w2
0 w2

1 w2
2 w2

3 w2
4

w3
0 w3

1 w3
2 w3

3 w3
4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x0

x1

x2

x3

x4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

When an activation function φh is applied to the matrix, it can simply be written as
follows:

h=φh (W
T x) (2.9)

It is common to evaluate the neural network for batches of inputs, especially dur-
ing training. So if we have N inputs, each expressed as an m-vector in the columns
of the matrix
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Figure 2.6 Artificial Neural Network with one hidden layer, not including bias terms.

X=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x1
1 x2

1 x3
1 . . . xN

1

x1
2 x2

2 x3
2 . . . xN

2

...
...

...
. . .

...

x0
m x1

m x2
m . . . xN

m

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

then we can represent the output matrix Y in a neural network with L−1 hidden
layers, where the Lth layer represents the output layer Y, as the following more
general expression

Y=φL(W
T
L . . .φ2(W

T
2 φ1(W

T
1 X)) . . .) (2.10)

In order to avoid confusion, we clarify that the superscript in the elements of
the matrix X does not denote exponentiation, but is rather an index, together with
the subscripts, such that the superscript corresponds to columns, and the subscript
corresponds to rows.
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2.3 Convolutions

Convolution is a commonly used operation in signal processing applications, and it
is defined as

( f ∗ g )(t ) =
∫︂ ∞

−∞
f (τ)g (t −τ)dτ (2.11)

In equation 2.11, f (τ) and g (t−τ) are the input functions, also known as the ker-
nel and the signal, respectively. The integration is carried out over all possible values
of τ, from negative infinity to positive infinity. The variable t is the time parame-
ter that specifies the point in time at which the convolution is evaluated. However,
in image processing and digital systems, discrete convolution is more relevant. It is
given as

( f ∗ g )(n) =
∞
∑︂

−∞
f [m]g [n−m] (2.12)

In the discrete convolution equation 2.12 , f and g are discrete functions, n is the
index of the output signal, and m is the index of the input signal. More specifically,
in image processing applications, the expression can be written in the 2D form:

y[i , j ] =
∞
∑︂

m=−∞

∞
∑︂

m=−∞
h[m, n] · x[i −m, j − n] (2.13)

where, x represents the input image, h is the kernel to be convolved with the
input. The indices i and j depend on the image, while m and n relate to the kernel.
For example, if the size of the kernel is 5 × 5, then the indices m and n would range
from -2 to 2. The kernel is centered around each pixel in the image at each step in
the calculation. Pixel values outside the border of the kernel are considered to be 0
in most applications.

Various image processing applications can be performed by applying a convolu-
tion kernel to an image. For example, a kernel
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⎥
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,

can be used to blur an image. By convolving the kernel h with the picture of an
apple shown in Figure 2.7, results in a blurred image as shown to its right.

In convolutional neural networks, convolution filters are used as part of the learn-
able parameters in the network.

Figure 2.7 Image Blurring

2.4 Deep Convolutional Neural Networks

Deep Convolutional Neural Networks (CNNs) are a type of neural network that are
particularly effective in image and signal processing tasks. CNNs consist of several
layers, each with different types of neurons. One important layer type in CNNs is
the convolutional layer, which performs a convolution operation on the input data.
The goal of the convolutional layer is to identify local patterns or features in the
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input data that can be used to recognize more complex patterns at higher layers.
A convolutional layer has a set of filters, also known as kernels or weights, which

are learned during the training process. Each filter is a small matrix of numbers that
slides over the input data, performing a dot product at each location to produce an
output feature map. The filter slides over the input data with a certain stride, which is
the number of pixels or units it moves at each step. The output of the convolutional
layer is a stack of feature maps, where each map represents a different pattern or
feature that the layer has learned to detect.

Another important layer type in CNNs is the pooling layer, which downsamples
the feature maps by taking a max or average value over small regions. This helps
reduce the dimensionality of the feature maps and make the network more efficient.
There are also other types of layers such as activation, batch normalization, and
dropout layers that are commonly used in CNN architectures.

Training a CNN involves adjusting the weights of the network to minimize a loss
function, which measures the difference between the predicted output and the actual
output. This is typically done using an algorithm called backpropagation, which
computes the gradient of the loss with respect to the network weights and updates
them in the opposite direction to minimize the loss. However, training deep CNNs
can be challenging due to issues such as vanishing gradients and overfitting, which
can be mitigated using techniques such as weight initialization, batch normalization,
and regularization.

CNNs have been successfully applied in many areas such as image classification,
object detection, and natural language processing. Some well-known CNN archi-
tectures include LeNet-5, AlexNet, VGG, GoogLeNet, and ResNet, each with their
own strengths and weaknesses. Recent advances in CNNs include attention mech-
anisms, transfer learning, and adversarial training, which have pushed the state-of-
the-art in various domains. Overall, CNNs have proven to be a powerful tool for
extracting meaningful information from complex data and are likely to continue to
be an active area of research in the years to come.
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3 METHODOLOGY

This section discusses the research methodology, including the tools used and imple-
mentations. The mfethods we discuss include binarization, separable convolution,
pruning, and a method for automating the process abstraction to modelling. The
languages used in our implementations are C, OpenCL, and CUDA. The platforms
used include an Intel i7-7700K + NVIDIA GTX 1080, ARM Cortex-A72 + ARM
Mali T860, and a Tegra X2 (NVIDIA Jetson). The main application use case is ve-
hicle image classification using a private dataset because of industry relevance. We
summarized these points in Figure 3.1. Additionally, we list the interconnection of
the papers with various elements in the research in Table 3, where each column on
the right represents the published paper in the year indicated in the column. The
process starts with choosing an application, then a neural network solution that is
best suited for the application is selected for further optimization. Depending on
the deployment platform, the appropriate optimization approaches are chosen for
testing and implementation while keeping into account factors such as memory re-
quirements, performance and accuracy loss. Each step of the diagram is discussed in
further detail in later sections.

a) Method 2018 2019 2019 2022

Binarization × × ×

Separable Convolution ×

Weight Pruning × ×

Packing × × ×

Popcount instruction × × ×

Dataflow modelling + runtime ×

b) Languages
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C × ×

OpenCL/CUDA × ×

c) Platforms

NVIDIA GTX × ×

NVIDIA Jetson ×

XU3 ×

Mali × ×

RISC-V (ETISS simulator) ×

ARM A53 ×

i7 ×

d) Applications

CNN based vehicle classification × × × ×

e) Datasets

Private data set × × × ×

f) Evaluation

Accuracy × × ×

Performance × × × ×

Memory × × × ×

Power ×

Model complexity ×

g) Author’s Contributions

Writing the paper × × × ×

Model design and training × × × ×

Implementation coding × × × ×

Running the test, analyzing the results × ×

Setting up development environment × ×
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Table 3.1 A general outline of the elements of this work. The column date is associated with the paper
published in that year.

Platform CPU GPU Memory Power

GTX Intel i7-7700K NVIDIA GTX 1080 32 GB DDR4 300 W

ARM ARM Cortex-A72 ARM Mali T860 2 GB LPDDR4 15 W

TEGRA NVIDIA Tegra X2 NVIDIA Pascal GPU 8 GB LPDDR4 15 W

Table 3.2 Technical specifications of the three platforms.

Table 3.2 shows the three platforms used in this study, along with their abbre-
viated names, CPU, and GPU specifications. The Desktop platform (abbreviated
as GTX) consists of an Intel i7-7700K CPU and an NVIDIA GTX 1080 GPU. The
CPU has four physical cores and eight threads, with a base clock speed of 4.2 GHz
and a maximum turbo frequency of 4.5 GHz. The GPU has 2560 CUDA cores and
8 GB of GDDR5 memory, with a base clock speed of 1607 MHz and a boost clock
speed of 1733 MHz.

Thee embedded ARM system (abbreviated as ARM) is a low-power platform de-
signed for use in mobile and embedded devices. It features an ARM Cortex-A72
CPU and an ARM Mali T860 GPU. The CPU has four cores, with a maximum
clock speed of 2.5 GHz. The GPU has 16 shader cores and supports OpenGL ES
3.2, OpenCL 1.2, and Vulkan graphics APIs.

The embedded NVIDIA Jetson system (abbreviated as TEGRA) is another low-
power platform designed for use in embedded devices. It features an NVIDIA Tegra
X2 CPU and an NVIDIA Pascal GPU. The CPU has eight cores, with a maximum
clock speed of 2.0 GHz. The GPU has 256 CUDA cores and 4 GB of LPDDR4
memory, with a base clock speed of 1302 MHz and a boost clock speed of 1455
MHz.

3.1 Application

The application chosen in this work is vehicle classification, and this area of applica-
tion was chosen for various reasons such as the practical nature of the problem and as
a continuation of on going research in the university in collaboration with industry.
This particular application is highly industry relevant and is heavily utilized in com-
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Figure 3.1 Visual outline of the research methodology

panies. A neural network solution is already proposed for the problem in [28], how-
ever, performance limitations led to further research for optimizing the solution for
embedded devices [75]. We carry on and further optimize the problem. Generally,
neural networks are known for being very redundant [29][9][21][64]. Many tech-
niques exist in order to optimize various aspects of neural networks, and they can be
categorized into several groups: pruning of parameters [23][23][15], quantization of
weights [82][74][7], reduced precision weights[81][13][19][70], low-rank approxi-
mations [72][12][39][38], compact convolution kernels [46][80][57][25], and dis-
tillation [79][77][8][76][45].

The goal of such optimization approaches is to search for alternative solutions
that preserve accuracy in a neural network while reducing utilization of resources
such as memory and computation. In this work, we apply a selection of optimization
methods, namely binarization, separable convolution, and pruning to this problem
in present and analyze the results. Performance measurements are made on different
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platforms, summarized below. Details are provided in later sections:

- Intel i7-7700K +NVIDIA GTX 1080

- ARM Cortex-A72 + ARM Mali T860

- Tegra X2 (NVIDIA Jetson)

Throughout the research, several standard datasets such as the MNIST and Ci-
far10 were used to verify the optimization approaches. Often, the papers that pro-
pose these methods have carried out their experiments on these standard datasets,
allowing for direct comparison and verification of our implementation before ap-
plying it in other unexplored areas.

3.2 Author’s contributions

The contributions of this work includes implementing binarized convolutional neu-
ral networks and evaluating the performance on GPUs, empirical comparison of
several optimization methods, including binarization, separable convolution, and
pruning. Additionally, a dataflow model for automating the implementation of neu-
ral networks is presented.

Below is a detailed list of the roles of each of the authors in the publications,
ordered by publication date, from oldest to recent.

1. Mir Khan came up with the idea for the research, planned and implemented all
versions of the neural networks, ran the experiments and analyzed the results.
Heikki Huttunen participated in the planing of the neural network and along
with Jani Boutellier, reviewed the implementations and the results. While Mir
Khan wrote the majority of the paper, Heikki Huttunen and Jani Boutellier
also participated in writing, editing, and reviewing of the paper.

2. Mir Khan, Henri Lunnikivi, and Jani Boutellier came up with the idea for
the research. Both Mir Khan and Henri Lunnikivi implemented the different
versions of all the optimization approaches, ran the experiments, analyzed the
results, and wrote most of the paper. Mir Khan’s focus was on binarization
and separable convolution, while Henri Lunnikivi focused on pruning and
separable convolution. Heikki Huttunen and Jani Boutellier also participated
in reviewing the results and editing and reviewing the manuscript.

3. Saman Payvar, Jani Boutellier, Rafael Stahl, and Daniel-Gritschender came up
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with the idea for the research, and along with Mir Khan, were all involved
in the development process. Saman Payvar ran most of the experiments and
analyzed the results, while Mir Khan planned and implemented the binarized
image classifier for the experiments and analyzed parts of the results. Majority
of the paper was written by Saman Payvar , while Mir Khan, Jani Boutellier,
Rafael Stahl, and Daniel-Gritschender were also heavily involved in writing,
editing and reviewing the manuscript and reviewing of the results of the ex-
periments.

4. Jani Boutellier came up with the idea for the research, and he, along with Yu-
junrong Ma, Jiahao Wu, and Mir Khan were involved in the development pro-
cess. Mir Khan’s focus was on integrating and interfacing with the neural net-
works, and planning and implementing the neural networks. Majority of the
paper was written by Jani Boutellier, while Yujunrong Ma, Jiahao Wu, Mir
Khan, and Shuvra S. Bhattacharyya were also involved in the writing, editing
and reviewing of the manuscript.

3.3 Neural network

We should emphasize that the focus of this research is not centered on finding neu-
ral network solutions for problems, but rather we take existing solution from other
works, and then solve problems related to performance and deployment in resource-
constrained environments such as mobile and embedded devices. The contributions
of this works are mostly about extending neural network optimization approaches
to specific application areas and neural network solutions. These contributions are
highlighted in the next sections where our implementations are discussed in detail.
Optimization approaches offer different benefits, for example, binarization can dra-
matically reduce the model’s storage requirements depending on the choice of pack-
ing bitwidth, e.g., by up to 32X for a packing bitwidth of 32. On CPU platforms,
where the model computes sequentially and assuming no parallelism, a similar speed
up can be achieved. On GPU, the speed up is slightly lower due to parallelism. Bi-
narization however results in the most reduction in accuracy. Pruning has the most
significant impact on model size compression. Separable convolution offers a bal-
ance of benefits.

The results of paper [28] were reproduced and verified before any optimization
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approaches were applied. The original network has 5 layers, starting with 2 convo-
lutional layers, then followed by 2 dense layers. The convolutional layers use 5 ×
5 filters, and each result in 32 featuremaps. The first dense layer receives the out-
put of the final convolutional layer, and results in 100 outputs. The last layer before
the final classification layer also results in 100 outputs. We perform the training in
Tensorflow [2]. The weights are initialized according to [17]. We use ReLU [1]
activations throughout the network and an RMSprop optmizer [24]. The experi-
mental optimization approaches were first applied in Tensorflow and the accuracy
results evaluated. Then the research goes to the next phase where the new version of
the network is implemented in a number of different platforms using OpenCL and
CUDA, and their execution time is evaluated on each platform.

3.4 Optimization Challenges

Convolution is a key operation and an important algorithm in image processing
applications; the problem is that it is resource intensive and slow on CPUs. Al-
though a large number of dedicated hardware exists for deep learning as presented in
[5][67][6], many limitations are still present. The most commonly used approach
for speeding up convolutions is to reduce the process into a matrix multiplication
problem, which GPUs are optimized to handle. However, it is still very expensive
to form the matrix that is then used for multiplication for computing the convolu-
tion.

One approach to reduce the computation cost is using separable convolution or
low-rank approximations, where each convolution operation is replaced by a com-
bination of two smaller convolutions, resulting in a reduced total number of opera-
tions and memory requirements. More precisely, a k×k convolution is replaced by
a 1×k convolution, followed by another k×1 convolution. This approach is essen-
tially expected to reconstruct the results of the full convolution through this cheaper
process. Each smaller convolution has intermediate featuremaps that can be tuned
for maximizing the balancing between performance and accuracy. This process is
briefly illustrated in Figure 3.2.

Another variation of separable convolution exists called depthwise separable con-
volution and it’s used heavily in MobileNet [25]. Instead of low rank separability,
the separability is in the operations performed, where a regular convolution is re-
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Figure 3.2 The principle of separable convolution, compared with regular convolution.

placed by a convolution applied separately per channel, followed by a 1x1 convo-
lution, resulting in less computation. More precisely, a depthwise convolution of a
h ×w × c tensor with a k × k kernel performs the convolution for each pixel with
the k× k kernel, but a separate set of 1×1× c kernels tensor is used to combine the
channels and compute the featuremaps. This process is illustrated briefly in Figure
3.3, where an image with 3 channels is convolved with a set of filters with the same
number of channels. However, the results (in blue, with the number of channels
unchanged) are not combined as it is typically done in convolutions in neural net-
works. Instead, a separate set of filters with kernel size 1× 1 is convolved with the
result and combined as usual. Then the result is shown in Green on the right.

Figure 3.3 Depthwise separable convolution, illustrated for one output featuremap.

Binarized neural networks is an approach where the weights and activations for
intermediate computations are binarized to +1 and -1. For the MNIST data set a
7x speed up can be achieved [26]. Substantial speed up can be shown in CPU im-
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plementation and evaluated on the ImageNet dataset by packing 1-bit weights into
32-bit words, enabling replacement of multiplication operations by logic XNORs.
For a simple dot product this is shown as follows

a·b= W− 2× popcount(xor(A,B)), (3.1)

In this research, we apply the binarized neural network approach and implement
it for GPUs. At the time of this research, in this work, we obtained the first per-
formance advantages offered by (Binarized convolutional neural networks) BCNN
on GPUs. Additionally, we explored different approaches for the binarization of the
first layer in the network, which is typically not binarized due to the increased reduc-
tion in accuracy. The approaches we explored include transforming the input using
Local Binary Patterns (LBP) [51], thresholding on a grayscale input, and threshold-
ing on a color input. Threshholding basically means that we choose a pixel value in
the image, and all pixels above this value are set to 1, and the ones below it are set to
0. The results are presented and discussed in Section 4.

Pruning is a method for reducing the number of weights in a network in the fully-
connected layers resulting in a sparse weights matrix, which allows the computation
to be performed more efficiently using sparse matrix-vector multiplication. Prun-
ing is a general approach where a criteria is used to eliminate weights with certain
characteristics from the network by setting them to 0. In this work, the relevant
approach to fix weights to 0 if they fall below the threshold T = max(W l )+mi n(W l )

2 .
This can result in a very large drop in the model’s accuracy at this stage; however, by
retraining the network for several epochs, the accuracy can largely be restored. Some
implementations of this method incorporates L2 regularization in the initial train-
ing stage, which further increases the sparsity in the layers. The process is illustrated
as pseudocode in Algorithm 1.

One of the advantages of this approach is the massive reduction in memory re-
quirements. While there are no significant performance advantages on GPUs, there
are techniques such as sparse matrix-vector multiplication that leverages the sparsity
of the matrix to reduce the number of computations.
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Algorithm 1 Fully-connected layer pruning procedure

1: for l in Layers do
2: for w in W l do
3: w← LoadPretrained(w)
4: for stage in Stages do
5: // Retrain with L2 regularization
6: for epoch in Train_Epochs do
7: for l in Layers do
8: for w in W l do
9: w← Update(w,η, ∂L (X)∂ w )

10: // Pruning stage
11: for l in DenseLayers do

12: T ← max(W l )+mi n(W l )
2

13: for w in W l do
14: if w < T then
15: w← 0
16: // Fine-tune parameters
17: for epoch in Tuning_Epochs do
18: for l in Layers do
19: for w in NonZero(W l ) do
20: w← Update(w,η, ∂L (X)∂ w )

Figure 3.4 From left to right, a ’bus’, ’normal car’, ’truck’, and a ’van’.

3.5 Dataset

The most commonly used dataset in this work is the private cars dataset obtained by
a courtesy of a company working in this field. The data set has 6555 images. Each
image is 96x96 32-bit color images around size of 108 KB. There are 4 categories of
cars: bus, normal car, van, and truck, as illustrated in Fgure 3.4. The images have
been taken by a camera in various weather and lighting conditions. The data is split
into 80% for training, 10% for validation, and 10% for testing.
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3.6 Implementation

In this section, we discuss the implementation stage of the research. After the neural
network solution, target platforms, and the desired optimization approaches have
been identified, the network is implemented in Tensorflow for training from scratch
according to the specifications in the paper related to the network in question. Then
this network is preserved for later verification before an optimized version of the
network is implemented in Tensorflow and the accuracy is verified to be at least as
good as with the first implementation. Once the correctness is verified, we proceed
to implement the OpenCL/CUDA version.

After this step, a CUDA version is implemented. The implementation is veri-
fied again for correctness and then performance measurements are taken. This is
done first on the desktop machine, and then later compiled and tested on the tar-
get platforms. If the target platform does not have a CUDA capable device, we re-
implement the program in OpenCL. This process is very simple and can even be
automated, as it mostly involves replacing terms in the kernel code from CUDA
terms to OpenCL. While the host code is not as simple to translate, it is generic and
involves little changes.

We also re-implement the original version of the network and the optimized ver-
sion using vendor libraries, which claim to be optimized for the target platform. This
is done in order to compare the performance of the vendor library implementation
with our implementation, to insure that our implementation does not suffer from
basic optimization issues. Additionally, we wish to know to full extent of perfor-
mance benefits achieved from the neural network optimization approach applied.

These steps in the process be can summarized as follows:

1. The neural network is implemented in Tensorflow according to the specifica-
tions in the paper [28] and verified.

2. The network is reimplemented in Tensorflow with the optimization. Any
parameters that are a part of the optimization approach are selected in this
stage.

3. The new optimized version of the neural network is then implemented in
OpenCL and CUDA in order to run on the target platforms. For performance
comparison, we also implement this version of the network using vendor li-
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braries such as ArmCL, cuDNN, and cuBLAS.
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4 SUMMARY OF RESULTS

In this section, the results are summarized by optimization techniques.

4.1 Binarization

Table 4.1 shows the impact of input binarization on accuracy. It is typical in bina-
rized neural networks to leave the first layer (the input layer) in full-precision, and
binarize all subsequent layers. The last row in the table shows the accurcy of the
network without any binarization. The rows 1 to 3 showcase different techniques
of input binarization and how each method affects the accuracy. The 4th row is the
result with only the first layer binarized.

Table 4.2 shows the speed-up achieved from binarization per layer on the GTX1080
platform. The speed-up expressed in the last row is relative to equivalent implemen-
tations with cuDNN. It should be noted that the equivalence is in terms of network
accuracy performance, and not in terms of computation results, so in this case, even
though the results from cuDNN and binarization may not match exactly, the final
outputs of the neural network are largely similar as it pertains to classification accu-

Table 4.1 Impact of different input-binarization schemes on classification accuracy

Method Accuracy

LBP 92.06%

Thresholding Grayscale 89.16%

Thresholding RGB 92.52%

No input binarization 94.20%

Full-precision network 97.09%
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racy.

We can notice from Table 4.2 that the largest speed up is achieved in the final layer,
where the layer is basically a matrix-vector multiplication. A speed-up of roughly
32× is in-line with the results presented in the original binarized neural networks
paper [26]. However, in the matrix-multiplication stage of convolution layers, the
32× speed up was not achievable, mostly due to the overhead of packing the output
of the preceding im2col3d matrix.

It is common to decompose convolutions on GPUs into two steps where the in-
put is first rearranged (im2col) and then the convolution result is computed through
a simple matrix-matrix multiplication. Im2Col3d in the first row refers to the 3d
version of the im2col algorithm, rearranging an M×N×C matrix into P×(M×N )
matrix, where P ∈RC×K×K , for a kernal of size K ×K .

GEMM-convolution refers to General Matrix-matrix multiplication, which com-
putes the final results of the convolution. The layer that follows is Max-Pooling,
where a running window of size k×k(k = 2) in our case, moves throughout the im-
age, and the maximum value in each window is retained while the other values are
discarded. This reduces the dimensions of the image by k in each dimension. The
final row represents the final layer in the network before the classification results are
computed. This is simply a matrix-vector multiplication procedure.

Table 4.3 shows the overall network speedup on 3 platforms, GTX1080, Mali
T860 and the Tegra X2. We compare the execution time on each platform, imple-
mented using the optimized vendor library and our implementation. cuDNN is the
NVIDIA library for implementing neural networks. Arm CL is the vendor pro-
vided library for ARM platforms, and BCNN is our implementation. Additionally,
we compare the performance with an additional step of optimization (binarized in-
puts) in the last row.

4.2 Separable Convolution

Table 4.4 compares the various advantages achieved through binarization, spearable
convolution, and pruning, and how these methods compare with each other. The
first two columns shows the implementations done with vendor libraries, which are
expected to be optimal. The last two columns is our implementation. The GTX
label refers to a desktop machine equipped with a GTX 1080 GPU, Mali refers to an
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Table 4.2 Runtime per-layer (GTX1080), in the order of their execution

Layer cuDNN Binarized Speed-up

Im2col3d (96,96,3) 21.63 µs 3.17µs 6.82×
GEMM-convolution (32,5,5,3) 37.54µs 8.61µs 4.36×
Max-Pooling (96,96,32) 5.22µs 8.26µs 0.63×
Im2col3d (48,48,32) 65.41µs 5.50µs 11.89×
GEMM-convolution (32,5,5,32) 69.28µs 8.10µs 8.55×
Max-Pooling (48,48,32) 5.38µs 2.66µs 2.02×
Fully-Connected (100,24× 24× 32) 200.03µs 6.28µs 31.85×

Table 4.3 Runtime of the network on each platform

Implementation Method GTX1080 Mali T860 Tegra X2

cuDNN (full-precision) 401.83µs N/A† 2.27 ms

Arm CL (full-precision) N/A† 29.61 ms N/A†

BCNN 102.39µs 23.63 ms 0.53 ms

BCNN with binarized inputs 55.63µs 17.58 ms 0.41 ms

†Library not compatible with this platform.

embedded platform FireFly. The last 4 rows show the accuracy, memory require-
ments, number of multiplications, and number of additions for the whole network.
It can be noted from the table that the biggest reduction in memory requirements
is achieved with pruning, while the largest reduction in execution time is obtained
through binarization.

Figure 4.1 illustrates how the number of intermediate feature maps K in separa-
ble convolution affects the accuracy. The red dot corresponds to 7 intermediate fea-
turemaps, which is our chosen value for the vehicle classifer implementation. This
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Table 4.4 Results of optimization methods at inference

Baseline Pruning SepConv BCNN

GTX 3.1 ms 0.7 ms 1.1 ms 0.06 ms

Mali 120 ms 66 ms 80 ms 17.6 ms

Accuracy 97.5% 95.5% 97.3% 94%

Memory (KB) 7350 150 7254 230

Muls (in 106) 82.95 81.53 18.30 0.43

Adds (in 106) 86.12 84.35 20.37 0.43

value was chosen because it offers the best trade off between performance and accu-
racy. Even though a slightly higher accuracy can be achieved later at around K=12 as
it appears in the graph, it comes at an increased cost in performance is clearly visible
from the graph.

We also illustrate in Figure 4.2 how the loss in the neural network is affected
by changing K. We can clearly see that higher values of K yields better accuracy
performance, but this advantage diminishes at values close to K=9 at the bottom of
the graph.

4.3 Pruning

Figure 4.3 illustrates the process of pruning and how it impacts accuracy throughout
the training and retraining phases. The level of sparsity throughout this process is
also shown as dashed lines, with the range corresponding to the right vertical axis.
The accuracy of the network starts to vacillate within a bigger range; however, an
accuracy of 97% can be achieved at nearly 99% sparsity.

The green plot shows the fine-tuning stage, where the pruned weights are not up-
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Figure 4.1 Performance/accuracy trade-off for different values of K .

Figure 4.2 Loss for convolutional layers 1 (left) and 2 (right) shown for different values of K .

dated and held at 0. The blue plot marks the stage where all the weights are updated
and the previously pruned weights in the previous step are restored and re-updated.
We report the accuracy on the validation set in Figure 4.3.

4.4 Conclusion of Results

Our results show that these optimization methods offer many benefits. The opti-
mization method needs to be chosen depending on the optimization objective. For
example, separable convolution can offer minor reduction in model size, and a mod-
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Figure 4.3 Accuracy of the network on the validation set at retraining stages and fine-tuning stages.

est improvement in performance, and pruning can dramatically reduce the model
size. While this reduces the number of operations and can offer benefits on CPUs,
it is difficult to leverage this on GPUs without using specialized techniques of sparse
matrix-multiplication, which have an overhead of processing the matrix. Binariza-
tion can both reduce the model size and improve the performance. The loss in ac-
curacy is another thing to keep in mind when choosing an optimization method.
For example, binarization can result in a large reduction in accuracy in some appli-
cations, but in other applications like the MNIST dataset where the images are black
and white and the features are clear, the reduction in accuracy is very small, making
binarization very suitable for this particular application.

We restate the three research questions:

RQ1: What is the accuracy and performance trade-off from weight binarization,
separable convolution, and weights pruning, and how they compare.

RQ2: How well the optimizations work in real-time embedded systems?

RQ3: How to speed up the process of design and deployment of neural network
models?

The dissertation has successfully answered the three research questions posed
in the study. Firstly, regarding RQ1, the research examined the accuracy and per-
formance trade-off resulting from weight binarization, separable convolution, and
weight pruning techniques. The study employed a comprehensive evaluation frame-
work to compare the three optimization techniques and determine their effective-
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ness. The results indicated that weight binarization and separable convolution were
more effective in reducing the model size while maintaining accuracy, whereas weight
pruning offered better memory cost reduction. Secondly, the dissertation addressed
RQ2 by evaluating the effectiveness of the optimization techniques in real-time em-
bedded systems. The research employed a benchmarking methodology that assessed
the performance of the models in various real-time scenarios. The results showed
that the optimized models outperformed their non-optimized counterparts and could
even achieve real-time performance on resource-constrained embedded devices. Lastly,
RQ3 was answered by proposing a novel methodology that speeds up the process of
designing and deploying neural network models. The methodology involved the
use of automated tools that streamlined the optimization process, reducing the time
and effort required for model design and deployment. The study demonstrated the
effectiveness of the proposed methodology by evaluating its performance in several
benchmark datasets and comparing it to existing approaches.
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5 RELATED WORK

This work is mainly concerned with vehicle classification using neural networks and
optimizing them for real-time inference. Many works show that neural networks
are excellent at image classification applications [68][56][50][43][11], object recog-
nition [37][59][68][73][41], and object detection [52][14][44].

Binarized neural networks is a method of optimizing neural networks for infer-
ence by reducing their size and number of computations. Some of the earliest works
in BNNs were introduced in [35] [26] and their performance was demonstrated on
the MNIST dataset on GPUs, and later it was extended [10] to the training phase
of the neural network. The work in [54] demonstrated the performance advantages
of the method on CPUs, which can result in up to 32 × model size reduction and
speed up. This work extended binarized neural networks to convolutional neural
networks and was the first to demonstrate the performance of binarized convolu-
tional neural networkss on GPUs in the use case of vehicle classification.

Separable convolution is a technique for reducing the model size and computation
in a neural network by replacing convolutions with two separable convolutions [30].
A similar technique later appeared [25] [57] with a slightly modified approach that
results in less computation, and is heavily used in MobileNet and its variants. This
work demonstrated it works for detailed image classification applications such as
vehicle classification.

Another approach for optimizing neural network inference is pruning, where
a proportion of the parameters in the network are removed. The method reduces
the parameters at very little loss of accuracy, and can have some minor performance
advantages using sparse matrix-vector multiplication algorithms. These approaches
largely have benefits in model size reduction. While any variations of this approach
exist, the main difference is in the pruning criteria. Earlier pruning techniques sim-
ply removed weights that are low in magnitude, but more sophisticated approaches
evolved later. A method was discussed in [40]where the second derivative of the loss
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function used as the pruning criteria, their results show a reduction of model size
by up to 4 times, with a slight increase in accuracy speed. More techniques emerged
where the pruning criteria is closely connected with the loss function [32], and some
approaches focused on pruning by removing individual neurons rather than the indi-
vidual connections [65], or combining several different methods [20] for achieving
better pruning results. Our results show that in the use case of vehicle classification,
this method can offer great benefit in reducing the model size with low loss in accu-
racy; however, this does not translate to significantly reduced computation time on
GPUs.
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6 CONCLUSION

We presented our optimized implementations of a neural network for vehicle clas-
sification. Multiple optimization approaches have been evaluated on multiple plat-
forms, and their impact on performance, and model size have been analyzed thor-
oughly. Our work shows that the best performance can be achieved through bina-
rization, albeit at a greater loss in accuracy. However, in real-time applications, it
could be more beneficial to classify multiple images over a period of time with low
accuracy per classification, than classifying less images with higher classification ac-
curacy. These optimization approaches are able to bring performance of such neural
networks closer to real-time, making them suitable for such applications. A dataflow
model has also been introduced for simplifying the process of implementing the neu-
ral network, paving the way for applying such optimizations automatically in the
future.

In future work, we aim to expand on the generality of our results by testing our
optimization approaches on a larger set of datasets and neural network architectures.
This will allow us to assess the scalability of our approaches and identify any limi-
tations in their applicability. Moreover, we plan to shift our focus towards auto-
mated optimizations, which could significantly reduce the time and effort required
to optimize neural networks manually. To this end, we intend to explore high-level
abstraction models and tools that can automate the optimization process based on
user-defined constraints and objectives. This will enable us to efficiently explore the
optimization space and identify the best optimization approaches for a given neural
network and platform combination.
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Abstract—Convolutional neural networks have recently
achieved significant breakthroughs in various image classi-
fication tasks. However, they are computationally expensive,
which can make their feasible implementation on embedded
and low-power devices difficult. In this paper convolutional
neural network binarization is implemented on GPU-based
platforms for real-time inference on resource constrained de-
vices. In binarized networks, all weights and intermediate
computations between layers are quantized to +1 and -1,
allowing multiplications and additions to be replaced with
bit-wise operations between 32-bit words. This representation
completely eliminates the need for floating point multiplications
and additions and decreases both the computational load and
the memory footprint compared to a full-precision network im-
plemented in floating point, making it well-suited for resource-
constrained environments. We compare the performance of
our implementation with an equivalent floating point imple-
mentation on one desktop and two embedded GPU platforms.
Our implementation achieves a maximum speed up of 7.4×
with only 4.4% loss in accuracy compared to a reference
implementation.

Keywords: model compression, binarized convolutional
neural networks, optimization, image classification

1. Introduction

In the recent years, convolutional neural networks
(CNNs) have presented impressive performance in image
classification [16][4], face recognition [17][19], audio clas-
sification [14], and speech recognition [7].”

Large neural network models can be computationally
expensive, making them unsuitable for deployment to small
resource-constrained mobile devices. To this extent, contem-
porary CNN-based solutions often acquire the input data
on a mobile device, but transmit the data to a remote
server for CNN-based processing. However, performing the
CNN-based processing on the mobile device (a.k.a. edge
computing) would reduce the overall system complexity and
enable real-time applications.

The emerging CNN subfield of model compression aims
to retain the accuracy of the neural network while mini-
mizing redundant network parameters and reducing com-
putational load. Many such techniques have already been
proposed.

One technique [9] is based on pruning of parameters,
where majority of the parameters of the network are re-
moved without significantly impacting accuracy. Reduction
of parameters initially leads to a significant drop in accuracy;
however, retraining (fine-tuning) of the parameters restores
most of the network’s accuracy. The authors report 13×
reduction of memory requirements with no loss in accuracy
[9].

Another approach, low-rank approximation of convolu-
tional kernels [13], approximates 2D convolutions with con-
volutions by vectors. The separable kernels can be obtained
either by training the network with separable filters [1] or
by posing it as an optimization problem to minimize the
reconstruction error of the feature maps. Depending on the
approach [13][1], speedups between 2× to 4× have been
reported on CPU implementations.

Binarized neural networks (BNN) have been first intro-
duced in [11], where their performance was demonstrated
on the CIFAR-10 dataset. The weights and activations for
intermediate computations are binarized to +1 and −1.
The authors present a speed up of 7× on a network for
the MNIST dataset. In a further work [21] the approach
was refined for CPU implementation and evaluated on the
ImageNet dataset.

by packing 1-bit weights into 32-bit words, enabling
replacement of multiplication operations by logic XNORs.
In this paper, an approach for the implementation of BNNs
[11] on GPU platforms is presented. To the best knowledge
of the authors, this is the first work that presents a GPU
implementation of a binarized convolutional neural network
for inference. We present our implementation with an appli-
cation use case of vehicle type classification [12]. Results
show significant speedups in real-time inference compared
to a floating point version of an equivalent neural network.

As a summary, the contributions of this work are as
follows:

• Detailed presentation of efficiently implementing
CNN binarization, including the convolutional lay-
ers, on GPU-based platforms.

• Comparison of different approaches for binarizing
input data, and how each approach impacts the clas-
sification accuracy.

• Performance (execution time) comparisons on sev-
eral platforms.



The source code for our CUDA implementation is pub-
lically available 1.

2. Experimental Setup

2.1. Binarizing the network

Our binarized network architecture is based on the
original vehicle classifier network presented in [12]. We
implement a binarized version of the same architecture in
several steps. We do not use any ReLU [6] activations
in the binarized version. In the original binarization work
[5], the authors suggest two approaches for binarization:
stochastic and deterministic. For binarizing the weights and
intermediate computations, we use the deterministic sign
function, which is defined as

sign(x) =

{
−1 if x ≤ 0

+1 if x > 0
(1)

For training the BNN, following [10], we explicitly define
the gradient of the sign function to be the identity function
in the backward pass, such that ∂sign(x)

∂x = x.
The non-binarized network is trained with the RMSprop

optimizer [23], while the binarized version is trained with
the ADAM [15] optimizer. After training, only the binarized
weights are used for inference for the binarized network.

The network is trained with a dataset set consisting of
6555 images of vehicles that have been captured by a camera
and manually categorized into four different classes: bus,
normal, truck, and van. Each image has size 96 × 96 and
are in full color. The data has been split into a training set
(90%) and a test set (10%). We augment the training set
using flipping and filtering with a 2D Gaussian filter with
σ = 0.5, resulting in a total training set size of 14,108
images, 20% of which are used for validation. Throughout
this text, our accuracy reports are for the performance of the
network on the test set that corresponds to the best validation
set accuracy.

2.2. Testing pipeline

For obtaining runtime results, we use the built-in GPU
timers to measure the runtime of the kernels for our CUDA
and OpenCL programs. Our kernel execution time measure-
ments do not include memory transfer times to/from the
GPU, as they can be affected by various factors, some of
which are hardware-dependent, for example, on the NVidia
Jetson host and device memory are shared. The correctness
and accuracy of the profiling results generated have been
verified by the Nvidia Visual Profiler for the same CUDA
programs.

For each test run, 1000 images are randomly generated
and fed to the network one at a time. The timer begins
after the memory is copied, and the timer ends after the last
kernel’s computation is completed. Our final result is the

1. github.com/Valentin4869/BinCNN

total accumulated time per sample averaged over all 1000
samples.

2.3. Input binarization

In this section we describe our methods for binarizing
the inputs to the first layer of our BNN. We pre-process the
data set using these techniques and evaluate the accuracy of
the BNN on the pre-processed data set.

Thresholding A constant threshold T can be subtracted
from the input X before binarizing it. We simply substitute
the input X to the first layer with sign(X + T ), for X ∈
RH×W×C , and for T ∈ R1×1×C . The motivation is to shift
the range of values taken by X such that binarization with
the sign function produces meaningful results, as opposed
to all zeros for standard pixel-value ranges do not include
negative numbers. The network is trained as before but in
two stages: first, the network is trained for 50 epochs and
the loss is minimized with respect to all network parameters
except for T . Then a second stage of tuning is entered where
we minimize the loss with respect to the parameter T and the
validation set. We repeat this process for several thousand
training epochs until the performance on the validation set
no longer improves.

Figure 1. Input binarization with RGB Thresholding (first row) and LBP
(second row).

Local Binary Patterns (LBP) A well-known technique
called local binary patterns for extracting multi-resolution
and scale-invariant features from images has been intro-
duced in [18]. We use a similar approach in our application
for image binarization, but with a slight modification: we
operate on the grayscale image and process each pixel by
examining its neighborhood at a radius of 1 pixel, generate
3 artificial color channels and select 3 pixels at a clockwise
stride of 3 in the neighbourhood to distribute to these
channels. Then the value of these pixels are set to 1 if they
exceed the value of the center pixel and 0 otherwise. An
example of this transformation on an image from the dataset
is demonstrated in the second row of Figure 2.3.

2.4. Packing binary-valued vectors

To avoid confusion with terminology, we denote by
packing the encapsulation/conversion of an array of 1-bit
values into an individual 32-bit unsigned integer. Formally,



for a binary-valued vector x ∈ {−1,+1}D, assuming D
is divisible by B, then the packed representation of x,
xp ∈ {−1,+1}D/B for a packing bitwidth B ≤ 32 (as-
suming 32-bit word) and positive D, is given by

xp =



∑B
i=1(1 + xi)2

B−2−mod(i−1,B)∑2B
i=B+1(1 + xi)2

B−2−mod(i−1,B)∑3B
i=2B+1(1 + xi)2

B−2−mod(i−1,B)

...∑D
i=D−B+1(1 + xi)2

B−2−mod(i−1,B)


. (2)

3. Implementation

In this section, we present the details of our CUDA
implementation of the binarized neural network architecture
described in Section 2. We use CUDA terminology through-
out this section.

3.1. Convolutional layers

The convolutional layer in a neural network can sig-
nificantly improve image classification accuracy compared
to standard multi-layer perceptrons. Given a kernel H ∈
RK×K×C and an image X ∈ RH×W×C , an output feature
map F ∈ RH×W is given by the expression

F [i, j] =

C−1∑
c=0

R∑
l=−R

R∑
k=−R

H[R+l, R+k, c]X[i+k, j+l, c], (3)

for odd K, and the kernel radius R = K−1
2 . It should be

noted that equation (3) in fact computes cross-correlation
(not convolution), which is the convention in deep learning.
A common approach for computing convolutions efficiently
is through matrix multiplication [2], where the weights and
image tensors are reshaped into 2-dimensional matrices,
which will then allow us to compute the convolution through
a single matrix multiplication. The reshaping for the weights
is trivial, and this step can often be skipped if the weights
are already stored in this layout; however, the process of
arranging the input image into the matrix of columns used
for computing the convolution can be difficult to optimize.
This is due to inefficient access patterns, complicated index
calculations that involves many division and modulo oper-
ations, and the overhead of storing the large output matrix
to global memory.

A straightforward approach for avoiding inefficient ac-
cess patterns is to load regions from the image into shared
memory (on-chip memory) and then extract the patches
from shared memory [3]. For an image with dimensions
H ×W × C corresponding to height, width, and channels
respectively, and a K × K × C kernel with a radius of
R = K−1

2 , we use threadblock dimensions of S×W (S = 2
in our case), which covers the entire width of the image,
eliminating the need to redundantly load the horizontal
non-zero halo regions which are difficult to load with an

efficient access pattern. Then each thread-block loads an
image region of dimensions (S + 2R) ×W into a region
in shared memory in three steps, starting by loading the
top vertical halo region, the middle part, then the bottom
vertical halo region (except when loading from the bottom of
the image). The shared memory buffer is zero-initialized in
order to implicitly handle horizontal zero-padding. Loading
vertical halo regions can be done very efficiently since all
threads in the threadblock load from contiguous regions in
the image array.

In the second stage, the patches of size K × K × C
are extracted from shared memory. We avoid division and
modulo operations in the patch-extraction stage by using an
integer counter register. This results in a 2× performance
boost in our case. Since the network is binarized, the packing
and patch-extraction step can be fused into one step to
avoid redundant accesses to global memory, reducing global
memory stores by K ×K. The algorithm for the combined
step of extracting the patches and packing them is shown in
Algorithm 1.

Algorithm 1 Patch-extraction and packing
1: function ExtractPacked(sh block):
2: v ← 0
3: k ← 0
4: for i = 0 to B − 1 do
5: if (i− kK = K) then
6: k ++
7: idx = (W + 2R)(_ty + k) + _tx + i− kK
8: s = sh block[idx] > 0
9: v = bitOR( v, s << B − 1− i)

10: return v

In Algorithm 1, sh_block is the region of the image
loaded into shared memory using the previously described
steps, including the halo regions. _tx and _ty are the
thread indices for the x and y dimensions of the thread
block corresponding to the CUDA threadIdx.x and
threadIdx.y variables. B is the packing bitwidth, chosen
to be 25 in our case, << is the left bit-shift operator, and
v is the packed extracted patch.

For computing the convolution we implement a standard
matrix multiplication subroutine in a manner similar to [22],
where tiles from each matrix are loaded successively into
shared memory and used to compute a submatrix of the
output, such that each thread computes a single element in
the output matrix, but instead of computing multiplications,
we compute xnors and bit-counts following an approach
similar to what was suggested in [11] as

a·b = W− 2× popcount(xor(A,B)), (4)

where A and B are both 32-bit unsigned integer regis-
ters containing the packed representations of vectors a, b
∈ {−1,+1}W respectively. We denote by · the real-valued
dot product. The operation xor is the bit-wise xor operation,
and popcount is a function for computing the number
of bits set to 1. The packing bitwidth W is the number



TABLE 1. RUNTIME OF THE NETWORK ON EACH PLATFORM

Implementation Method GTX1080 Mali T860 Tegra X2

cuDNN (full-precision) 401.83µs N/A† 2.27 ms
Arm CL (full-precision) N/A† 29.61 ms N/A†

BCNN 102.39µs 23.63 ms 0.53 ms
BCNN with binarized inputs 55.63µs 17.58 ms 0.41 ms

†Library not compatible with this platform.

TABLE 2. RUNTIME PER-LAYER (GTX1080)

Layer cuDNN Binarized Speed-up

Im2col3d (96, 96, 3) 21.63 µs 3.17µs 6.82×
GEMM-convolution (32, 5, 5, 3) 37.54µs 8.61µs 4.36×
Max-Pooling (96, 96, 32) 5.22µs 8.26µs 0.63×
Im2col3d (48, 48, 32) 65.41µs 5.50µs 11.89×
GEMM-convolution (32, 5, 5, 32) 69.28µs 8.10µs 8.55×
Max-Pooling (48,48,32) 5.38µs 2.66µs 2.02×
Fully-Connected (100, 24× 24× 32) 200.03µs 6.28µs 31.85×

of elements that are packed together in a single unsigned
integer register.

3.2. Fully connected layer

For the fully-connected layer, we follow a slightly dif-
ferent approach from standard matrix multiplication. For a
packed weights matrix W ∈ RL×D, and a packed vector
x ∈ RD×1, we divide the process of computing the dot
product of each weight vector and x into 64 segments, such
that each of 64 threads handling a weight vector compute the
partial sum of the dot product between a weight vector and
x through xnor operations, and stores the results in shared
memory. The partial sums are then combined in a parallel
reduction sum that does not require synchronization (for a
warp size of 32 on the target platform).

4. Results

In this section we present our results for the impact of
input binarization on classification accuracy and the perfor-
mance improvement achieved.

Input binarization in Table 3 we report the classifi-
cation accuracy results we obtained using each different
input binarization scheme for our binarized version of the
vehicle classifier [12]. We can observe that accuracy is best
retained when the first layer is not binarized; however, only a
moderate loss in accuracy occurs when using LBP and RGB
Thresholding. Considering that RGB Thresholding is much
simpler to implement and results in almost no additional
computational overhead, we choose this approach for our
final binarized architecture, for which we report the speed
up results in the following section.

Performance Boost We time our binarized implementa-
tion on 3 different hardware platforms: Nvidia GTX 1080,
Nvidia Jetson (Tegra X2), and the Mali-T860. We derive an

OpenCL version of our implementation for testing on the
Mali-T860, which is a straightforward process. We compare
the performance of our implementation against an equivalent
full precision version of the same network implemented
with highly optimized libraries on each target platform, in
our case these are cuDNN on Nvidia platforms, and the
ARM Compute Library on the Mali-T860. We list in Table
1 the average execution times of the full network on each
platform. We can see that our binarized implementation
can achieve up to 7.5× speed up on the GTX1080 and
about 5.5× on the Tegra X2. We also notice that the
relative performance improvement on Mali GPU is much
smaller at about 1.7× for the fully binarized version. In
our optimizations, we heavily take advantage of using local
memory (in OpenCL terms) which resides on-chip in most
workstation GPUs and the Nvidia Tegra X2, but this does
not offer any performance benefits on Mali GPUs since
local memory is allocated in global memory. It should be
noted that cuDNN is optimized for batch processing and
that our results are for one sample at a time which means
these results may not necessarily be reflective of the full
potential of cuDNN; however, batch processing is not a
suitable option for real-time applications where a single
input is processed at a time. Additionally, we note that for
our cuDNN implementations, we use the explicit GEMM
convolution algorithm, which can be slightly slower than
the implicit GEMM algorithm. For example, cuDNN with
implicit GEMM can run at 316µs for the first convolutional
layer in our network on the GTX1080.

For a more detailed comparison, we present the execu-
tion times for each individual layer in Table 2. Each layer’s
name is followed with the dimensions of the input, except
for the convolution layers where the dimensions are for
the kernels, and the input dimensions can be inferred from
the previous layer. This table compares the execution time
of our binarized implementations with the full-precision
versions of the same layer in cuDNN on the GTX1080.
We omit from the table the computation times for ReLU
activations, which are present in the full-precision version
of the network, but are absent from the binarized version.
We also omit the last 2 fully-connected layers since they
are too small and in most practical applications it would be
more efficient to implement them on the CPU. We include
the computation time for packing the outputs of the previous
layer in the binarized version of the fully-connected layer for
a fair comparison. The results in Table 2 have been obtained
directly from the Nvidia Visual Profiler.

It should be noted that the runtime for the fully-
connected layer for full-precision cuDNN in Table 2 in-
cludes a matrix transposition. The run time excluding matrix
transposition is about 100µs; however, it is a necessary
step for evaluating this layer. Our full-precision matrix
multiplication kernel is in fact 2× slower than cuBLAS (as
measured in this network), yet a significant speed-up is still
achievable through binarization.



TABLE 3. IMPACT OF DIFFERENT INPUT-BINARIZATION SCHEMES ON
CLASSIFICATION ACCURACY

Method Accuracy

LBP 92.06%
Thresholding Grayscale 89.16%
Thresholding RGB 92.52%
No input binarization 94.20%
Full-precision network 97.09%

5. Conclusion and Future Work

We presented an efficient implementation of a binarized
convolutional neural network on GPUs that can achieve a
significant decrease in runtime while reasonably preserving
classification accuracy. In the future we wish to restructure
our algorithms to achieve a similar performance improve-
ment on other embedded platforms. We are also planning
to extend this work to alternative convolution algorithms
such as implicit GEMM, which can be faster than explicit
GEMM. Finally, we plan to extend our study of how in-
put binarization impacts classification accuracy on larger
datasets with more difficult classification tasks.
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Abstract—This paper compares three different optimization
approaches for accelerating the inference of convolutional
neural networks (CNNs). We compare the techniques of sep-
arable convolution, weight pruning, and binarization. Each
method is implemented and empirically compared in three
aspects: preservation of accuracy, storage requirements, and
achieved speed-up. Experiments are performed both on a
desktop computer and on a mobile platform using a CNN
model for vehicle type classification. Our experiments show
that the largest speed-up is achieved by binarization, whereas
pruning achieves the largest reduction in storage requirements.
Both of these approaches largely preserve the accuracy of the
original network.

Keywords: convolutional neural networks, model opti-
mization, image classification

1. Introduction
Convolutional neural networks (CNNs) have demon-

strated notable performance in a range of practical tasks,
including image classification [14][3], face recognition
[15][17], audio classification [11], and speech recognition
[5]. At the same time as CNNs have become significantly
popular, their deployment to small-scale devices has been
hindered by the considerable memory- and computation time
requirements of CNN models. To address this issue, several
approaches [10][8][4][6] for CNN model optimization have
been developed in the recent years.

Some techniques such as weight pruning [6] aim to
reduce the number of weights in the model, which in turn
reduces memory requirements for running and storing the
model. It has also been shown that a pruned network with
sufficient sparsity allows the computations to be performed
through efficient procedures for handling sparse matrices,
such as sparse matrix-vector multiplication [2]. Studies (e.g.
[6]) have shown that a considerable portion of network
weights can be removed without significantly impacting
accuracy: the authors of [6] report 13× reduction of memory
requirements with no loss in accuracy.

The separable convolution (SepConv) approach intro-
duced in [10] approximates 2D convolutions with convolu-
tions by vectors, i.e. separable rank-1 kernels. The separable
kernels can be obtained either by training the network from
scratch with separable filters [1] or by formulating the

process as an optimization problem where the reconstruction
error of the feature maps using separable filters is mini-
mized. These approaches [10][1], report speedups between
2× to 4× on CPU implementations.

Neural network binarization is a CNN quantization
technique that has been introduced in [8]. The principal
idea of binarization is to quantize weights, activations and
intermediate computations to values of +1 and −1. The
authors of [8] show a speedup of up to 7× on a network for
classifiying the MNIST dataset. Later works [18] extended
the binarization to larger datasets such as ImageNet.

The SepConv and weight pruning approaches are similar
in the sense that both approximate and optimize the CNN
model by reducing the number of parameters, while keeping
the precision of the remaining weights the same as in the
original model; in general as 32-bit floats. In contrast, the
CNN binarization optimization keeps the number of weights
the same as in the original model, but reduces the precision
of each weight. Based on existing works, it is not clear
how these two alternative approaches compare in terms of
preserving model accuracy, improving computation time,
and reducing memory space requirements.

This paper follows optimization approaches based on
separable convolution [10], binarization [8][4] and weight
pruning [6], and applies them to the practical use case of
CNN-based vehicle type recognition [9]. In case of the
binarization optimization, our results mostly build on our
previous work [12]. The different optimization approaches
are compared in terms of performance, storage requirements,
amount of computations and the network’s accuracy com-
pared to the uncompressed baseline.

The contributions of this work are summarized as fol-
lows:

• Detailed empirical analysis and comparison of three
different model optimization methods for compres-
sion and speeding up of neural networks, namely
separable convolution, weight pruning, and binariza-
tion.

• Open source optimized implementations of each
method for efficient real-time inference.

Our results show that pruning offers the highest reduc-
tion in storage requirements, while the lowest execution time
is attained with a binarized convolutional neural network



Figure 1. From left to right, a ’normal car’, ’bus’, ’truck’, and a ’van’.

(BCNN). The source code for our implementations are
publicly available 12.

2. Network Model

Our basic neural network model is that of the vehicle
classifier network presented in [12], with two convolutional
layers, each with 32 output feature maps, and filter dimen-
sions 5×5. Each convolutional layer is followed by a 2×2
maxpool operation. The convolutional layers are followed by
three fully connected layers with shapes 24×24×32×100,
100×100, and 100×4. Each optimization approach we are
using slightly alters the structure of the network. This will
be discussed in Section 3.

The dataset used for training the network consists of
6555 photos of vehicles captured by a camera and manually
categorized into four categories: bus, normalcar, truck, and
van. Each image is of size 96× 96 and is in full color. The
data has been split into a training set (80%), validation set
(10%) and a test set (10%). We use the accuracy recorded
on the test set that corresponds to the best validation set
accuracy as our final accuracy report. Figure 1 shows an
example image from each class.

We implement all of our training procedures, including
the custom model optimization approaches, in TensorFlow.
For inference performance measurements, we have our own
implementations for each model optimization approach. The
GPU implementations are done in CUDA or OpenCL, de-
pending on the platform tested.

3. Optimization Methods

In this section, we discuss in detail in each subsection the
different optimization approaches we use and how they are
incorporated to our network model. Each subsection begins
by introducing the algorithmic changes, and then proceeds
to explain how the method is implemented for inference
purposes.

3.1. Separable Convolution

Convolutional layers in a CNN can be replaced by
spatially separable convolution layers to reduce the num-
ber of computations and the number of parameters [10].
Essentially, a separable convolution layer will approximate
a standard convolutional layer as follows

1. github.com/Valentin4869/vcoptimizations
2. github.com/hegza/vcn-inference-rs

C∑
c=1

Zf
c ∗ xc ≈

K∑
k=1

hfk ∗
C∑

c=1

vkc ∗ xc (1)

In Equation 1, ∗ denotes the convolution operation. The
convolution of the image x ∈ RW×H×C with each Zf ∈
R5×5×C , which is full rank, is approximated by two con-
volutions with hf ∈ R1×5×K , and vk ∈ R5×1×C . C is
the number of channels (usually three), and K denotes the
number of intermediate feature maps, which are computed
by convolving the image by each of vk (K in total), which
are then in turn convolved by each of hf kernels (F in
total, corresponding to the original number generated by
the full rank kernel Zf ). The result in Equation 1 is the
computation of the f th feature map. The choice of number
of intermediate feature maps K has an impact on the number
of computations, memory requirements, and the network’s
accuracy. Therefore, it is imperative to carefully select a
value for K that offers the best trade off over all these
factors.

In our application, we choose the smallest value for K
that achieves the best accuracy. We discuss this in more
detail in Section 4. The separable filters can either be
obtained by training the network with separable filters [1]
or by minimizing the reconstruction error of the outputs of
each convolution layer [10], which allows us to state the
loss to be minimized with respect to the separable filters as
follows (for the f th set of filters in the lth layer):

L(X) =
1

N

∑
x∈X

∥∥∥ C∑
c=1

Zf
c ∗Ψl−1(x)

−
K∑

k=1

hfk ∗
C∑

c=1

vkc ∗Ψl−1(x)
∥∥∥2
2
, (2)

where the output of lth layer in the network denoted by
Ψl(x) on input x, so that Ψ0(x) = x , and Ψ1 is the output
of the first convolutional layer (or alternatively, the input to
the 2nd layer). The loss is then averaged across the entire
set X of N training samples.

We optimize with respect to each set of separable filters
independently for each convolutional layer, resulting in four
different optimization steps for each epoch for the entire net-
work. We use the RMSProp [19] optimizer with a learning
rate 0.001 and decay rate 0.95. We compare the accuracy
of the separable network with the original filters throughout
the optimization process and stop the optimization when the
validation accuracy stops improving (about 1000 epochs in
our case).

Table 1 depicts the development of SepConv accuracy
as a function of intermediate feature maps K. It can be
seen that the highest accuracy is already reached at K = 7.
Considering the nearly linear increase in execution time,
K = 7 becomes the value of choice in our later experiments
and comparisons with other optimization methods.



TABLE 1. INFERENCE CHARACTERISTICS OF SEPARABLE
CONVOLUTION LAYER AS A FUNCTION OF FEATURE MAP COUNT K

K Accuracy Performance Memory (KB)

1 87.3% 45 µs 1.9336
2 95.1% 48 µs 3.8672
3 96.6% 53 µs 5.8008
4 96.6% 58 µs 7.7344
5 97.0% 64 µs 9.668
6 97.1% 69 µs 11.6016
7 97.2% 75 µs 13.5352
8 97.1% 80 µs 15.4688
9 97.1% 85 µs 17.4023
10 97.1% 92 µs 19.3359
11 97.1% 97 µs 21.2695
12 97.3% 102 µs 23.2031
13 97.1% 109 µs 25.1367
14 97.3% 115 µs 27.0703
15 97.3% 121 µs 29.0039
16 97.4% 127 µs 30.9375

3.2. Pruning

Pruning is a method for reducing the number of weights
in a network in the fully-connected layers [6], resulting in a
sparse weights matrix, which allows the computation to be
performed more efficiently using sparse matrix-vector mul-
tiplication [2]. We prune the network parameters in the lth
layer that fall below the threshold T = max(W l)+min(W l)

2
by fixing them to 0. This initially results in a significant
drop in accuracy compared to the baseline model. The
network is then retrained for several epochs, which restores
the accuracy of the network. A variant of this method [6]
uses L2 regularization during the network training, which
further sparsifies the layer weights.

We use the L2-regularized pruning approach where we
first train the network normally, then we load the weights
into a new model that is pruned and fine-tuned in two
stages: first, the network is retrained for several (e.g. 30)
epochs, where all the parameters are updated, using L2
regularization. The stage that follows removes all weights
that are below T and then retrains (or fine-tunes) all the
network parameters except for the ones removed in the
pruning stage. This process is illustrated in Algorithm 1.
We use a value of λ = 0.35 in our application for the L2-
regularized loss function.

For inference, we implement a sparse matrix-vector mul-
tiplication procedure in a manner similar to [2]. The sparse
weights matrix is reordered to the Compressed Sparse Row
(CSR) format, which then allows the computation to be
performed efficiently by eliminating all weights that have
been pruned from the matrix.

3.3. Weights Quantization

Binarization is an optimization approach that reduces the
precision of network weights and activations to 1-bit. The
concept was first introduced and demonstrated in [8]. We

Algorithm 1 Fully-connected layer pruning procedure
1: for l in Layers do
2: for w in W l do
3: w ← LoadPretrained(w)
4: for stage in Stages do
5: // Retrain with L2 regularization
6: for epoch in Train Epochs do
7: for l in Layers do
8: for w in W l do
9: w ← Update(w,η,∂L(X)

∂w )
10: // Pruning stage
11: for l in DenseLayers do
12: T ← max(W l)+min(W l)

2
13: for w in W l do
14: if w < T then
15: w ← 0
16: // Fine-tune parameters
17: for epoch in Tuning Epochs do
18: for l in Layers do
19: for w in NonZero(W l) do
20: w ← Update(w,η,∂L(X)

∂w )

follow this approach and replace all ReLU activations with
the sign function defined as

sign(x) =

{
−1 if x ≤ 0

+1 if x > 0
(3)

Additionally, we binarize all the weights in the network
in the same way and use an approach identical to vcbcnn
[12] to implement the binarized version of the vehicle
classification network for inference.

For training the BCNN, following [7], we explicitly
define the gradient of the sign function to be the identity
function, such that ∂sign(x)

∂x = x. Gradients are in full
precision and are not binarized and the updates during
training are done to the full-precision weights.

The binarized version is trained with the ADAM [13]
optimizer. After training, only the binarized weights are used
for inference. Binary-valued weights can be ’packed’ such
that each subgroup of 32 binary weights can occupy whole
32-bit registers, allowing for a reduction in storage size of
the network parameters by up to 32×. This also allows for
computing dot products much more efficiently as follows:

a·b = W− 2× popcount(xor(A,B)), (4)

In Equation (4), both A and B are 32-bit unsigned
integers containing the packed (decimal) representations of
a, b ∈ {−1,+1}W, i.e., converted from an array of 32 bits
to a 32-bit unsigned integer. The real-valued dot product is
denoted by the · operator. The function xor is the bit-wise
xor operation, and popcount is a function for computing
the number of bits set to 1. The packing bitwidth W denotes
the number of elements (or bits) that are packed together in
a single unsigned integer register, which is 32 in our case.



Figure 2. Performance/accuracy trade-off for different values of K.

4. Results

This section presents the results of our experiments
and compares their impacts on accuracy, performance, and
memory usage for each optimization approach implemented.
The two platforms used to perform the computation time
measurements are provided in Table 2. From here on we
refer to the platforms using their tag (GTX or Mali).

Table 1 shows the performance of convolution layers
in the separable convolution network at different values of
intermediate feature maps K. Performance is measured as
execution time in microseconds on the GTX platform.

The graph in Figure 2 shows how the accuracy of the
network changes as we change the number of intermediate
featuremaps computed by the separable convolution layers.
The performance of the convolutional layers for the whole
network at each value of K is also shown in µs on the
GTX platform. We find that K = 7 offers a good trade-off
between accuracy and performance. While from Figure 2 it
appears that for K = 7 the convergence is slower, the loss
(Figure 3) is eventually reduced to a level comparable to
other values above 7. The slow-down in convergence is not
significant in our case, but it may impact larger networks
and in cases where an optimizer other than RMSProp is
used.

The plot of Figure 4 shows the effect of weight prun-
ing to fully-connected layers. As the sparsity increases in
the fully-connected layer, the network’s accuracy begins to
fluctuate at wider ranges; however, a high accuracy of 97%
(marked in red) is reached at a sparsity level of nearly
99.9%. The fine-tuning stage, where pruned weights are held
at 0 and are not updated, is shown in green. The blue plot
marks the stage where all the weights are updated and the
previously pruned weights in the previous step are restored
and re-updated. All accuracy reports in Figure 4 are on the
validation set.

A compact summary of these results is shown in Table 3.
Baseline (vnd. lib.) refers to our implementation of the
network using vendor-provided optimized libraries, which
are cuDNN for GTX and Arm Compute Library for Mali.

Figure 3. Loss for convolutional layers 1 (left) and 2 (right) shown for
different values of K.

Figure 4. Accuracy of the network on the validation set at retraining stages
and fine-tuning stages.

The column Baseline (own) is for our own low-level imple-
mentation without acceleration libraries.

We find that the best execution time is achieved through
BCNN quantization on both platforms, but this approach
also has the largest drop in accuracy across all methods.
In contrast, on very low-resource devices (e.g. Internet of
Things appliances), reduction of memory requirements can
be more important than computation speed, and for this
pruning outperforms BCNN by a clear margin. Combin-
ing pruning and separable convolution has the potential to
further reduce the memory requirements, but the accuracy
impact is not predictable and should be investigated.

5. Conclusion and Future Work

We compared several different CNN model optimiza-
tion approaches for the application of vehicle classification.
Our results show that significant reductions in memory
requirements and computations can be achieved, however
the compression technique must be selected based on the



TABLE 2. PLATFORMS USED FOR EXPERIMENTS

Tag CPU GPU Operating System
GTX Intel i7-7700K NVidia GeForce GTX1080 Ubuntu 16.04
Mali ARM Cortex-A72×2 + Cortex-A53×4 ARM Mali T860 Linux Firefly 4.4

TABLE 3. RESULTS OF OPTIMIZATION METHODS AT INFERENCE

Baseline Baseline Pruning SepConv BCNN
(vnd.lib.) (own)

GTX 0.4 ms 3.1 ms 0.7 ms 1.1 ms 0.06 ms
Mali 30 ms 120 ms 66 ms 80 ms 17.6 ms

Accuracy 97.5% 97.5% 95.5% 97.3% 94%
Memory (KB) 7350 7350 150 7254 230
Muls (in 106) 82.95 82.95 81.53 18.30 0.43
Adds (in 106) 86.12 86.12 84.35 20.37 0.43

optimization objective: BCNN quantization provides the
highest performance, whereas pruning provides the highest
reduction in storage requirements (assuming a network with
significant fully-connected layers). In future works we plan
to extend this study of optimization approaches to larger
and more detailed datasets with real-life applications. Also,
extending the analysis towards combinations of different
compression methods in the spirit of [16] is definitely a
direction worth investigating.
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Abstract—Convolutional Neural Networks (CNNs) have previ-
ously provided unforeseen results in automatic image analysis and
interpretation, an area which has numerous applications in both
consumer electronics and industry. However, the signal processing
related to CNNs is computationally very demanding, which
has prohibited their use in the smallest embedded computing
platforms, to which many Internet of Things (IoT) devices belong.
Fortunately, in the recent years researchers have developed many
approaches for optimizing the performance and for shrinking
the memory footprint of CNNs. This paper presents a neural-
network-based image classifier that has been trained to classify
vehicle images into four different classes. The neural network is
optimized by a technique called binarization, and the resulting
binarized network is placed to an IoT-class processor core
for execution. Binarization reduces the memory footprint of
the CNN by around 95% and increases performance by more
than 6×. Furthermore, we show that by utilizing a custom
instruction ’popcount’ of the processor, the performance of the
binarized vehicle classifier can still be increased by more than 2×,
making the CNN-based image classifier suitable for the smallest
embedded processors.

Index Terms—model compression, convolutional neural net-
works, image classification, internet-of-things

I. INTRODUCTION

Convolutional neural networks (CNNs) have enabled a
significant advance in automatic image analysis, such as image
classification [1], image segmentation [2], image captioning
[3] and object detection [4]. Unfortunately, up to recently
the computational requirements of CNNs have restricted their
use to server or desktop class computers, although their
deployment to edge devices could open up a variety of new
applications [5]. In the Internet-of-Things (IoT), the network
edge refers to devices that are within immediate connection
to sensors that provide input data for the whole IoT system.
Such an edge device can be a smartphone [6], or a tiny sensor
node commonly equipped with less than a megabyte of RAM
[7].

A CNN consists of a sequence of layers, of which the most
common types are fully-connected layers and convolutional
layers. Once a CNN has been trained [8], e.g. for image

classification, the parameters and weights of the layers are
fixed for deployment to a target device. On the target device,
the process that evaluates given input data is called inference,
where the input data flows through the layers of the CNN,
providing the requested output (e.g. classification result) from
the last layer.

In terms of computation, convolutional layers consist of
repeated 2D convolutions, where the input data of the layer
is convolved by 2D kernels with common sizes of 5×5,
3×3 or 1×1 [9]. The computational effort of convolutional
layers grows rapidly as the size of input images or kernels
grows [10]. However, it has been well-known for some time
that 2D convolution can also be interpreted and computed as
a 2D matrix multiplication [11]. The inference of a fully-
connected layer is also commonly performed by 2D matrix
multiplication.

Optimization of CNN processing can be performed by
optimizing software, hardware, or both [12]. Examples for
software-based optimizations are model compression [9][13]
or reduction of arithmetic precision [14][12]. Software-based
optimizations that target convolutional layers include separable
convolution [15] and depthwise convolution [16], whereas
fully-connected layers can be optimized by weight pruning
[13]. All of these optimizations have some negative impact on
the CNN accuracy.

Reduction of arithmetic precision, on the other hand, is
not limited to separate types of layers, but can be applied
to the whole CNN. Arithmetic precision can be reduced from
floating-point to, e.g., 16-bit fixed point [12] with minimal
degradation of CNN (classification) accuracy, or by extreme
quantization down to two [17] bits or one bit [18][14] of
weight precision. When the precision of weights (and possibly
also input data) is reduced to a single bit, the CNN is
binarized. Binarization dramatically reduces the memory foot-
print of a CNN, as the original weights, which are normally
expressed in 32-bit floating point, can be represented with
a single bit. This evidently has an impact on the CNN’s
accuracy [18]. However, besides shrinking the size of the

Neural Network-based Vehicle Image Classification for IoT Devices



TABLE I
RELATED NEURAL NETWORK OPTIMIZATION WORKS

Work Type Optimization Platform
Courbariaux et al. SW Binarization NVidia GPU

[18] only (fc layers only)
Rastegari et al. SW Binarization 64-bit CPU

[24] only (conv and fc layers)
Khan et al. SW Binarization NVidia and

[14] only (conv and fc layers) OpenCL GPUs
ESPRESSO SW Binarization NVidia GPU,

[25] only (conv and fc layers) CPU
Park et al. HW Zero skipping, Nvidia GPU,

[26] SW Data reuse GPU simulation
(conv layers only)

Conti et al. HW Binarization HW accelerator
[27] SW (conv and fc layers) for MCUs

Proposed HW Binarization RISC-V MCU
SW (conv and fc layers) (simulation)

network, binarization also enables CNN inference on devices
that have no support for floating-point arithmetic, such as
microcontrollers and FPGAs [19].

This paper presents a CNN for vehicle image classification
[20] that has been binarized including the weights of all
layers, as well as the input data, following the principles
of our recent work [14]. However, unlike our recent work
that concentrated on CNN inference on graphics processing
units, in this paper we focus on microcontroller-class devices
that can be found on edge nodes of an IoT system. As
the target microcontroller, we have selected PULPino [21],
which is based on the open-source instruction-set architecture
RISC-V [22], which is gaining interest in both academia and
industry.

The contributions of this paper are as follows:
• Performance and memory footprint measurements of our

binarized CNN-based image classifier on a RISC-V mi-
crocontroller, and

• Optimization of binarized CNN computations by the
custom instruction ’popcount’ found in a proposal for
RISC-V instruction set extensions [23].

The structure of this paper is as follows: Section II intro-
duces other works related to optimization of CNNs; Section III
describes the PULPino microcontroller that we use as the
target device for our image classifier; Section IV covers the
structure and binarization process of our CNN; Section V
presents our experimental results, and Section VI concludes
the paper.

II. RELATED WORK

This section describes previous works related to acceleration
of CNNs, some also considering acceleration by hardware.
Table I presents a summary of these works and the target
platforms they consider.

Binarized neural networks (BNN) were originally intro-
duced in [18]: network weights and activations are restricted
to +1 and −1, which enables replacing multiplications and
additions with bit-wise operations. Experiments have been

performed on MNIST and CIFAR-10 datasets. The authors
demonstrate a speedup of 7× for a multi-layer perceptron
network trained for MNIST handwritten digit classification.
Experimental results are limited to GPU acceleration of bina-
rized fully-connected layers.

Somewhat later the binarization optimization was extended
to the large-scale ImageNet image classification challenge
[24]. The authors of [24] concentrate on CPU targets and
report up to 58× execution time reduction on 64-bit CPUs
for binarized convolution and fully-connected layers. Also, the
authors claim an accuracy improvement of 16% compared to
[18] in the ImageNet top-1 classification challenge.

Our previous work [14] was among the first ones to present
GPU acceleration of both binarized convolution and fully-
connected layers. Experimental results are presented for two
mobile GPUs (NVidia Jetson and ARM Mali-T860), as well as
for a desktop GPU (NVidia GTX1080). Layer implementations
have been written from scratch in OpenCL and CUDA and
made available open source. Additionally, the accuracy impact
of various input image binarization approaches are analyzed.

In [25] a self-contained library ESPRESSO for binarized
neural networks is presented. The library provides layer im-
plementations in C and CUDA for both CPU and NVidia
GPU targets. ESPRESSO [25] uses an optimization called
unrolling (similar to im2col used in our previous work [14] and
the proposed work) for reshaping tensors prior to computing
convolution.

Optimization of CNN convolution operations is studied in
[26]. The authors have observed that Winograd convolutions
can involve a high number of multiplications by zero, espe-
cially if weight pruning (see, e.g. [13]) has been applied. This
redundancy is avoided by skipping zero weights by a software-
only and by a hardware-assisted approach. Additionally, the
authors present a data reuse approach for reducing the number
of additions. Both optimizations target NVidia GPUs.

In [27] the XNOR Neural Engine (XNE) is presented, a
hardware accelerator for binary neural networks to be closely
coupled with an MCU (micro controller unit) system. The
XNE is capable of executing both binarized convolutional and
fully-connected layers. The authors provide post-layout results
where the accelerator has been placed on the same chip and
same clock domain with a RISC-V microcontroller that acts
as the host processor for the accelerator.

The proposed work is similar to the work of Conti et al.
[27] in the sense that both consider an IoT edge computing
scenario, build on binarized CNNs, and consider RISC-V
MCU cores. However, a substantial difference is that the XNE
accelerator of [27] is a dedicated datapath for CNNs next to the
MCU core, whereas our proposed solution builds on a basic
microcontroller architecture with just one custom processor
instruction (’popcount’) for accelerating BNNs. Evidently, the
specialized circuit of [27] can achieve much higher energy
efficiency than our proposed solution, whereas our solution
only requires a tiny modification to a basic RISC-V MCU
system, and otherwise remains very generic and capable of
accelerating other types of applications as well.



Fig. 1. From left to right, a ’bus’, ’normal car’, ’truck’, and a ’van’.

III. THE PULPINO RISC-V PROCESSOR FOR IOT
APPLICATIONS

RISC-V is an open source instruction set architecture (ISA)
that is gaining interest in both academia and industry [22]. The
ISA is open and standardized, such that it is free to use for both
academia and industry. To promote adoption of the new ISA,
another goal was to design a modern ISA: it is designed in
a modular way by providing a small base instruction set with
optional extensions. Additionally, certain instruction opcodes
are reserved for custom extensions. This flexibility allows to
design RISC-V processors that are customized for special
workloads, which makes the ISA interesting for specialized
IoT devices.

While the open standard is just referring to the ISA itself and
not any micro-architecture, the community around RISC-V has
provided many open-source cores. An important motivation
for open hardware is security, especially with recent micro-
architecture bugs Spectre and Meltdown appearing in popular
media [28][29]. Kerckhoff’s principle and a long history of
research suggests that open systems provide certain advantages
over closed systems in terms of security [30][31][32].

The Parallel Ultra-Low-Power (PULP) project has devel-
oped several RISC-V-based microcontrollers that are suitable
for IoT applications [21]. The PULPino is particularly suited
for low cost, low power tasks, because it is a simple in-order
single-core microcontroller with many configuration options.
Due to these advantages, the custom processor used in this
work was derived from the PULPino-based SoC (System-on-
Chip).

IV. NEURAL NETWORK DESIGN

A. Network for Vehicle Classification

The neural network model we use is that of the vehicle
classifier network presented in [20]. The network has five
layers in total, starting with two convolutional layers, each
one with 32 output feature maps, and kernel sizes 5×5. Each
of the convolutional layers is followed by a 2×2 maxpooling
operation. The second convolutional layer is followed by three
fully-connected layers. The first fully-connected layer (the 3rd
layer in the network) has 100 neurons, resulting in the shape
24×24×32×100. The two layers that follow have shapes
100×100, and 100×4, in that order.

The dataset we use for training the network has 6555 photos
of vehicles from four categories: bus, normalcar, truck, and
van. Each vehicle image is a full-color image of size 96× 96.
Example images from each class in the data set are shown in
Fig. 1. We split the data into a training set (80%), validation

set (10%) and a test set (10%). Our test-set accuracy reports
are the recorded accuracy reports that correspond to the best
validation set accuracy.

B. Neural Network Binarization

We implement a binarized version of the vehicle classifier
network introduced in [20] reducing the precision of CNN
weights and their activations to 1-bit. This concept was first
introduced in [18], with reports of substantial reductions of
model execution time and size. In this work, we replace all
ReLU activations in the network with the sign function, which
is given as

sign(x) =

{
−1 if x ≤ 0

+1 if x > 0
(1)

We binarize the weights of the network using the sign function
as well. During training, the gradient of sign activations are
explicitly defined to be the identity function in the backward
pass so that ∂sign(x)

∂x = x. The full-precision version of
the network (non-binarized) is trained using the RMSprop
optimizer, and the binarized version is trained with the ADAM
optimizer. For the binarized version of the network, only the
binarized weights, where all have a value of either −1 or +1,
are used for inference on the target device. The network is
trained from scratch using binarization in a separate training
process. It would also have been possible to quantize the
network to ternary values [17] (or even higher 8- or 16-
bit precision), but that would have multiplied the memory
footprint of the solution compared to binarization.

We use the terms packing or bit-packing to denote the
encapsulation of an array of 1-bit values (+1’s and −1’s) into
one 32-bit unsigned integer. For example, if we wish to pack a
vector x ∈ {−1,+1}32, its packed representation, xp, is given
by

xp =

31∑
i=0

(xi + 1)2i−1, (2)

where xi is the ith element of x. This then allows operations
such as vector-summations and dot products to be performed
using binary (bit manipulation) operations. The dot-product,
for example, can be represented as

a·b = 32− 2× popcount(xor(A,B)), (3)

where both A and B are 32-bit unsigned integers holding
the packed representations of the vectors a, b ∈ {−1,+1}32.
The operation ’popcount’ (also known as Hamming weight
calculation) is a function for computing the number of bits set
to 1, which can essentially simulate vector summation. The
operation xor in Eq. 3 is the bit-wise ’xor’ operation.

C. Acceleration by Bit Manipulation Instructions

Looking at Eq. 3 we see that both ’xor’ and ’popcount’ are
used in inference of binarized CNNs to perform an operation
that emulates multiplication for packed weights; this means
that both for fully-connected and convolutional layers ’xor’



and ’popcount’ are in heavy use and offer a clear optimization
target.

The hardware implementation of ’xor’ can be found on any
programmable processor, whereas a hardware implementation
for ’popcount’ is mostly available on graphics processing units
or CPU SIMD extensions such as ARM NEON. For our target
processor, the PULPino microcontroller, the base ISA does
not include ’popcount’ – this instruction is only present in
the bit manipulation extension of RISC-V that is still under
development [23].

In our experiments, in cases where the target processor did
not have a hardware instruction for ’popcount’, the LLVM
C language description1 shown in Algorithm 1 was called
through builtin popcount().

Algorithm 1 LLVM ’popcount’, i.e. Hamming weight
int32 popcountsi2 (int32 a) {
uint32 x = (uint32) a;
x = x− ((x >> 1) & 0x55555555);
x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
x = (x + (x >> 4)) & 0x0F0F0F0F;
x = (x + (x >> 16));
return (x + (x >> 8)) & 0x0000003F;

}

V. EXPERIMENTS

The experimental evaluation of this work consisted of
two parts: 1) evaluating the effect of the software-based
binarization optimization for our image classifier, and 2)
evaluating the effect of the ’popcount’ custom instruction on
the binarized classifier. Unfortunately, as our ultimate target
platform was the PULPino microcontroller for IoT devices,
it was not possible to benchmark the original non-binarized
vehicle classifier on this device as it has no hardware support
for floating point computations. Hence it was necessary to use
two different target platforms to complete our experiments,
and these platforms are summarized in Table II.

The ARM Cortex A53 core is a powerful mobile processor
and in our experiments the processor was used under Linux
for benchmarking a C language implementation of the original
vehicle classifier [20], as well as for the C language imple-
mentation of the binarized vehicle classifier.

Experiments on the PULPino microcontroller platform were
performed in a simulation environment, which is described
next.

A. The ETISS Simulator

The RISC-V ISA is still in a phase of development, as for
example the specification is not officially standardized yet.
Still, the central components of the specification have matured
and have been used to fabricate various chips such as the
SiFive FE310 SoC [33]. The application being evaluated in

1https://github.com/sifive/riscv-llvm/blob/master/compiler-
rt/lib/builtins/popcountsi2.c

this work however requires the bit manipulation instruction
extension (’B extension’) of the RISC-V ISA. This extension
is still in active development [23] and not part of the current
specification. Therefore, there is no RISC-V chip available
that could be used for evaluating our results, however an
alternative way to estimate the performance gain achievable
through custom instructions is by simulation.

An RTL (Register-Transfer Level) hardware simulation
would not be suitable for fast prototyping as the micro-
architecture should be modified to enable the execution of
the chosen custom instructions. Additionally, for a time-
consuming workload such as our CNN application, the RTL
simulation time would be prohibitively high.

The Extensible Translating Instruction Set Simulator
(ETISS) focuses on extensibility [34] to support fast prototyp-
ing. As ETISS already supports the standard RISC-V base in-
struction sets, contains a virtual prototype of the PULPino [21]
SoC, and allows profiling the application execution time, the
use of this simulator was a natural decision our binarized
image classifier application.

B. Implementation of the Popcount Instruction

As the PULPino virtual prototype of ETISS currently only
supports the RISC-V base ISA, a temporary modification of
the virtual prototype was required to enable profiling with
support for ’popcount’. From ETISS execution traces it was
discovered that the ’xori’ instruction of the RISC-V base ISA
remained almost unused throughout the whole execution of the
binarized vehicle classifier. Therefore, in the PULPino virtual
prototype the functional description of ’xori’ was modified to
provide alternative functionality, i.e. ’popcount’, toggled by
the value of the 2nd instruction operand.

In the software implementation of the binarized vehicle
classifier, the calls to ’popcount’ were then replaced with inline
assembly calls to ’xori’ with the specific operand value that
would invoke ’popcount’ behavior.

C. Execution Time and Memory Footprint Analysis

Table III shows the experimental results for both A53 and
PULPino. From top to bottom the table rows report execution
time on A53, execution time on PULPino, data memory
footprint, PULPino instruction memory footprint, and CNN
classification accuracy.

Looking at the A53 results it can be seen that binarization
alone reduced the execution time by more than 80%, and
dropped the data memory usage close to 95% when compared
to the original floating point C version.

Acceleration by the hardware ’popcount’ instruction re-
duced the computation time of the binarized vehicle classifier
by around 55% on the PULPino platform, and also reduced
the instruction memory footprint by around 2 kB. The reason
for the 55% reduction in execution time can be seen from
Table IV that shows the count of executed instructions on the
PULPino platform for the binarized vehicle classifier with and
without the hardware ’popcount’ instruction: the code version
that calls the hardware ’popcount’ instruction has respectively



TABLE II
PLATFORMS USED FOR EXPERIMENTS.

Tag CPU Platform type Compiler Operating System
A53 ARM Cortex A53 (1416 MHz) Silicon SoC g++ 5.4.0 Linux Firefly 4.4
PULPino PULPino (33 MHz) Virtual prototype on ETISS riscv32-unknown-elf-gcc 7.1.1 n/a

TABLE III
EXECUTION TIME, MEMORY FOOTPRINT AND ACCURACY

Application version Baseline Binarized Bin+pop
Arithmetic float32 int32 int32
A53 Execution time 0.362 s 0.057 s -
PULPino Exec. time - 2.62 s 1.18 s
Data Memory 7.2 MB 369 kB 369 kB
Pulpino Instr. Memory - 21 kB 19 kB
Accuracy [14] 97.09% 92.52% 92.52%

55% less executed instructions. This is because if there is no
hardware support for ’popcount’, the functionality must be
implemented by means of several regular instructions, which
can be seen in increased execution counts of ’srli’, ’and’,
’sub’ and ’add’ instructions for the binarized version without
the hardware ’popcount’ instruction. Algorithm 1 shows that
these instructions are needed for the software implementation
of ’popcount’

The accuracy results shown in Table III are identical to our
previous work on binarization that targeted graphics process-
ing units [14].

VI. CONCLUSIONS

In this paper we have presented a convolutional neural
network based vehicle image classifier that has been opti-
mized for real-time execution and small memory footprint
by a technique called binarization. We show that by using
’popcount’, a custom instruction in our target processor, the
runtime of the binarized image classifier can be reduced by
55%. This result is important due to the fact that ’popcount’
has been proposed to be included to a standardized instruction
set extension (’B extension’) of the recently introduced open
source RISC-V instruction set architecture. Besides RISC-V,
’popcount’ is already supported in graphics processing units
and e.g. in the NEON SIMD extension of ARM processors.

Our work shows that the software-based binarization trans-
formation coupled with the hardware-based ’popcount’ in-
struction yields an extremely powerful combination for opti-
mizing inference of convolutional neural networks. Together,
the memory footprint is reduced by close to 95%, and exe-
cution time is reduced by a magnitude while maintaining an
acceptable loss in accuracy. As a results, image classification
is performed in 1.18 seconds on the tiny 33 MHz RISC-V
microcontroller that is well suited for IoT applications.

As binarization inevitably reduces classification accuracy
(most clearly on larger datasets), a potential step for improving

2’popcount’ implemented as ’xori’ alternative behavior

TABLE IV
NUMBER OF EXECUTED INSTRUCTIONS

Instruction Binarized Bin+pop
name int32 int32

lw 8797430 8797417
lbu 272 272
addi 6372539 6354083
slli 2801668 2801668

popcount/xori2 4 3302052
srli 16510241 1
srai 4 4
ori 1 1

andi 3302062 14
sb 268 268
sh 4 4
sw 782165 782109
add 16704267 3496013
mul 0 0
sub 3670893 368845
sll 18632 18632
slt 2553032 2553032
xor 3302048 3302048
or 2451656 2451656

and 13208192 0
bne 3232555 3232555
blt 0 0
bge 370058 370058
bltu 4 4
jalr 39 39
jal 57 57

csrrw 1 1
Total 84078092 37830833

accuracy would be the adoption of heterogeneous bitwidth bi-
narization [35]. This approach degrades accuracy considerably
less than full binarization, already when on average 1.4 bits
per weight are used [35].
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Abstract—The dataflow concept has been successfully used for
modeling and synthesizing signal processing applications since
decades, and recently, dataflow has also been discovered to match
the computation model of machine learning applications, leading
to extremely successful dataflow based application design frame-
works. One of the most attractive features of dataflow, especially
for signal processing, is related to its formal nature: when properly
defined, a dataflow-based application model can be analytically
verified for correctness at the stageof applicationdesign.Thispaper
proposes VR-PRUNE, a novel dataflow model of computation that
is aimed for design of high-performance signal processing software,
together with runtime support that allows efficient application
deployment to heterogeneousGPU-equippedplatforms.Compared
to prior work, VR-PRUNE features variable token rate processing,
which enables designing adaptive signal processing applications,
and implementing solutions that, e.g., allow trading-off between
power consumption and filtering bandwidth at runtime. The pa-
per presents the formal concepts of VR-PRUNE, as well as four
application examples from domains related to signal processing,
accompanied with quantitative results, which show that using
VR-PRUNE enables, for example, application power-performance
scaling, and on the other hand describing adaptive application
behavior with 59% fewer dataflow graph components compared
to previous work.

Index Terms—Dataflow computing, design automation, signal
processing, parallel processing.

I. INTRODUCTION

DATAFLOW modeling for signal processing systems has
been investigated actively since the 1980 s. Many widely

used signal processing flavored design frameworks employ
dataflow concepts — a couple of prominent examples are GNU
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Radio [2] and TensorFlow [3]. In the application areas of ma-
chine learning (Tensorflow) and software-defined radio (GNU
Radio), dataflow features several advantages over conventional,
unstructured software design approaches: it provides applica-
tion modularity, software reuse, concurrency and support for
heterogeneous computing.
The dataflow concept however exists in multiple Models

of Computation (MoC) that have varying features, especially
in terms of analyzability and expressiveness. For a MoC, an-
alyzability refers to the model’s predictability: e.g., a well-
analyzable model enables a software compiler to reason about
the application’s execution flow, apply powerful software opti-
mizations and guarantee absence of deadlocks. Expressiveness,
in contrast, refers to the model’s flexibility in describing the
structure or run-time behavior of an application. In many cases,
analyzability and expressiveness are contradictory properties of
MoCs.
A key aspect of a dataflow MoC that influences both its

expressiveness and analyzability is support for conditional ex-
ecution — in particular, support for decision making that is
required for implementing fundamental if-then-else and for-loop
behavior within the dataflowmodel. Since many classical signal
processing applications behave in a very static fashion (in terms
of the rates at which functional modules exchange data), fully
static dataflow MoCs, such as synchronous dataflow (SDF) [4],
have been successfully used also in industrial software (e.g.
National Instruments LabView [5] or Keysight SystemVue [6]).
However, as algorithms in various signal processing domains,
such as wireless communications, video coding and machine
learning are exhibiting increasing levels of dynamics and config-
urability, the need for conditional execution at the dataflow level
is becoming important for making modern dataflow frameworks
sufficiently expressive. Recent examples of this are adaptive
inference graphs [7] and hydra nets [8] that adaptively switch
or skip computations in Convolutional Neural Network (CNN)
inference.
In a general sense, such adaptive computation scenarios

require the underlying dataflow MoC to support conditional
execution, which has traditionally been associated with dynamic
dataflow, such as Boolean dataflow (BDF) [9]. However, it has
been shown that the general problem of determining whether a
BDF graph can be scheduled for execution with bounded mem-
ory, is undecidable [1]. Throughout this paper, the following
definition of dataflow graph consistency is adopted:
Definition 1 (Consistency): A dataflow graph is consistent if

it can be scheduled with guarantees of bounded memory and
deadlock-free operation, regardless of what inputs are applied.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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Fig. 1. A weakly consistent dataflow graph. Adapted from [1]. The conf actor
evaluates sample values coming through port pc1, originating from the input
actor. conf emits Boolean True through port pc2 if the sample value is> 0, and
False otherwise.

Consider Fig. 1, which shows a dataflow graph with condi-
tional behavior. The input vertex produces samples to the three
edges that depart from it, whereas the conf vertex evaluates
whether incoming sample values are greater than zero. In case
of a sample value > 0, conf emits a Boolean True value to
its output pc2, otherwise a value of False. The switch vertex
relays the sample coming from psI to its output psT if it has
received a True value from conf, otherwise it relays the sample
to its output psF . The graph of Fig. 1 is weakly consistent
– all samples produced within the graph do not necessarily
become consumed, leading to potentially unbounded use of
memory: for each sample value≤ 0 emitted by the input vertex,
one token is accumulated to the pi1 — pp2 edge. In other
words, unless the input vertex doesn’t eventually settle into
emitting token values > 0, unbounded use of memory will
ensue.
It depends on theMoC adopted by the dataflow design frame-

work, how a weakly consistent graph such as the one in Fig. 1
is treated. In a design framework that follows the restricted
SDF [4] MoC, the graph could not be modeled at all, as SDF
does not allow conditional execution. As another example, in
TensorFlow, which is more flexible in this respect, control flow
operations [10] would enable implementing the graph, causing
version-dependent behavior1.
The dataflowMoC and design framework VR-PRUNE advo-

cated in this paper addresses the inherent conflict between ana-
lyzability and expressiveness in a different way: theVR-PRUNE
MoC enables describing conditional execution, however regu-
lated by a set of formal rules and design patterns, which ensure
that graph inconsistencies can be detected at design time.
Furthermore, VR-PRUNE features support for variable token

rates, which increases the model’s expressiveness compared
to previous works. Consequently, in this paper we show that
VR-PRUNE offers a theoretically solid dataflow basis for future
programming frameworks similar towhat TensorFlow andGNU
Radio are at the moment.
Some of the main ideas of VR-PRUNEwere briefly presented

in [11] recently. This full-length article extends the conference
paper by

1In TensorFlow 1.14 the execution of the graph caused a runtime error,
whereas in 2.3.1 the sink vertex received 0 samples.

� A complete theoretical presentation of the VR-PRUNE
Model of Computation,� Design rules and patterns that ensure compile-time consis-
tency analysis of VR-PRUNE application graphs,� An open source2 runtime framework VPRF that has been
constructed around VR-PRUNE concepts, and� Run-time experiments on heterogeneous desktop and em-
bedded platforms, which highlight the efficiency and ex-
pressiveness of VR-PRUNE.

The rest of this paper is organized as follows: Section II
presents related works, Section III describes the proposed VR-
PRUNEModel of Computation, Section IV presents the formal
VR-PRUNE design rules, Section V discusses consistency of
VR-PRUNE graphs, Section VI shows the experimental results
related toVR-PRUNE,SectionVII discusses the proposedwork,
and Section VIII concludes the paper.

II. BACKGROUND

In the dataflow programming concept, applications are ex-
pressed as directed graphs. The application graph consists of
nodes, which are called actors that are interconnected by edges.
Edges carry data that is encapsulatedwithin tokens; for example,
in an image processing application, a single token may encapsu-
late the data related to one image pixel, or the data of a complete
frame, depending on the application.
The interconnection between an actor and an edge is called

a port. A port that is connected to an edge, which departs from
an actor is called an output port, and respectively a port that is
connected to an incoming edge is called an input port of an actor.
Each port is associated with a non-negative integer value called
token rate that determines how many tokens the actor consumes
(for input ports) from its associated edge, or how many tokens
the actor produces (for output ports) to its associated edge upon
one firing.
Firing is the dataflow concept for computation. Consider a

simple actor a that has the mere purpose of dividing one integer
value with another integer. Logically, a should have two input
ports, one for the divisor and one for the dividend, as well as one
output port for the result. In order to perform the computations
related to a division operation, a needs to have one token
available from the port that provides the dividend value, and
one token from the port that provides the divisor value. Hence,
we can say that for the dividend port a has a fixed input token
rate of one, which is also the case for the divisor port and the
result port.
Anotherwell-knownmodel for describing information flow in

dynamic discrete systems is Petri nets [12]. The main advantage
of dataflow graphs over Petri nets is their compactness and
convenience in mapping real-life applications to graph-based
models [13]. However, a significant class of dataflowmodels can
be transformed toPetri nets, thus enabling application of analytic
methods that have been designed for Petri nets, to dataflow
models [14].
Most of the differences between existing dataflow MoCs

associatewith rules and restrictions related to token rates.Homo-
geneous dataflowMoCs require that every port of each actor has

2Available at https://gitlab.com/jboutell/vprf
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strictly a token rate of one, whereas the synchronous dataflow
(SDF) [4]MoC allows a fixed positive integer token rate for each
port. Examples of design frameworks that are based on SDF are
PREESM [15] and StreamIt [16], [17]. Cyclo-static dataflow
(CSDF) [18], on the other hand, enables token rates to change in
fixed, periodic cycles. SDF (and its homogeneous variant) and
CSDF are regarded as static dataflowMoCs, as their token rates
are completely predetermined at application design time. Con-
sequently, the dataflow graphs are analyzable at compile-time,
enabling formal proofs for absence of deadlocks and bounded
memory.
Somewhat more flexibility can be added to the SDF MoC

by adding scenarios, different SDF graph topologies that are
at runtime switched, e.g., based on a finite state machine. The
baseline work in this direction is SADF [19], and recently also
full software design frameworks such as HOPES+ [20] have
been built around the SADF concept.
Dynamic dataflow MoCs, of which dataflow process net-

works (DPN) [21] is one of the most well-known examples,
allow port token rates to change arbitrarily at application run
time, and therefore possibilities for graph consistency veri-
fication at design time are very limited. In the past decade,
dynamic dataflow around the CAL language [22] and its sub-
variant RVC-CAL [23] has triggered the development of sev-
eral design frameworks such as Tÿcho [24], Orcc [25] and
SHeD [26].
Between the extremes of fully static and fully dynamic

dataflow exist a number of MoCs that balance between analyz-
ability and expressiveness.Well-behaved dataflow [27] restricts
dynamic application behavior to take place within subgraphs
that follow a predefined topology. These subgraph templates
enable expressing conditional constructs such as if-then-else and
loops at the dataflow level, while still guaranteeing finite-time
verification for bounded memory. Our recent work PRUNE [28]
elaborated the ideas of WBDF into a MoC accompanied with a
high-performance runtime framework for heterogeneous com-
puting, and design time algorithms for verifying graph consis-
tency.
Another branch of work in boundedly dynamic dataflow is

variable-rate dataflow (VRDF) [29]. The paper [29] presents
a dataflow MoC that allows non-negative integer port token
rates that can vary between arbitrary pre-defined limits (called
variable-rate from here on), and an algorithm that computes the
memory capacity required to execute the graph. Additionally,
the paper [29] describes a check procedure for determining if
a given graph is valid for memory capacity computation. The
proposedVR-PRUNEMoC adopts the concept of variable token
rates from VRDF, however the emphasis of VR-PRUNE is on
high-performance processing on heterogeneous platforms, and
consequently VR-PRUNE introduces the restriction of symmet-
ric token rates, preventing direct adoption of VRDF models to
VR-PRUNE.
Table I summarizes related dataflow MoCs and frameworks

detailing their features: decidable indicates whether graph con-
sistency analysis is a decidable problem, dynamic expresses
whether the model supports port token rates that can at run
time vary according to a two-valued function, high-performance
tells whether a design framework with performance metrics has
been published, and variable-rate shows whether the model

TABLE I
COMPARISON TO RELATED DATAFLOW MODELS AND LANGUAGES

permits variable-rate port token rates. Variable-rate dataflow
can be considered as a generalization of two-valued dynamic
dataflow, and in Section VI we will show that variable-rate
dataflow provides a higher degree of expressiveness in terms
of describing the same application behavior with consider-
ably fewer dataflow graph elements than two-valued dynamic
dataflow.
Cases requiring explanation in Table I are: SADF [19] –

variable-rate dataflow is in principle possible, but this requires
one dataflow graph per specific token rate making the solu-
tion impractical for larger rate variations; DAL – dynamic and
variable-rate dataflow can be built on top of the framework, but
not for GPU-accelerated graph components.
The proposed VR-PRUNE Model of Computation builds on

concepts introduced in VRDF [29], WBDF [27], and our pre-
vious work PRUNE [28]. Consequently, the VR-PRUNE MoC
features� A dataflow model that supports dynamic token rates,� Token rate variability within pre-defined limits, and� Design time analysis for bounded memory and absence of

deadlocks through a set of design rules and patterns.
In Section VI of this paper we show that token rate variability

enables 1) expressing data dependent graphs in a more compact
representation, 2) capturing application behavior that was not
possible in our previous work PRUNE. Additionally, we show
that the increased flexibility ofVR-PRUNEdoes not add compu-
tational overhead compared to PRUNE. The following section
formally presents the VR-PRUNE MoC.

III. PROPOSED MODEL OF COMPUTATION

In this section, the components of VR-PRUNE graphs are
introduced together with an example graph.

A. Notation and Port Types

Following the notation of our previous work [28], a VR-
PRUNE application graphG = (A,F ) consists of a set of actors
A, and a set of directed edges F that interconnect the actors of
A. By definition of dataflow, the edges follow first-in-first-out
(FIFO) communication behavior, and for this reason we inter-
changeably also refer to edges as FIFOs. Actors connect to
edges over ports, which are classified into input ports (for ports
that consume tokens) and output ports (for ports that produce
tokens). Each actor a ∈ A can contain any non-negative number
of input and output ports, and a = parent(p) denotes an actor a
contains port p. More briefly, this can also be expressed by p+a1,
which refers to the first output port of actor a (Note: the subscript
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does not indicate any formofmultiplication, only indexing). The
superscript +/− corresponds to output/input port respectively.

VR-PRUNE ports consist of three different port types: each
port is either a (input or output) control port, static regular
port (SRP) or dynamic regular port (DRP). A SRP p has a
fixed token consumption/production rate atr(p), which is set
at application design time. A DRP p, however, has a vari-
able token rate that is defined as lrl(p) ≤ atr(p) ≤ url(p),
where non-negative integers lrl, atr and url stand for lower
rate limit, active token rate, and upper rate limit of p, respec-
tively. lrl and url are values that are fixed at design time,
whereas atr may vary within the limits of lrl and url at run
time. Finally, a control port p must have a fixed token rate
of 1.
Each FIFO f ∈ F is connected to exactly one output port

p+ of actor parent(p+) and to exactly one input port p− of
parent(p−). Moreover, fifo(p+a ) and fifo(p

−
b ) refer to the FIFO

connected to ports p+a and p−b , respectively. Ports p
+
a and p−b are

connected when fifo(p+a ) = fifo(p−b ) = f , where actors a and
b are referred as the source (source(f)) and sink (sink(f)) of
the same FIFO f . In VR-PRUNE, connected ports must always
be of the same port type, and a valid VR-PRUNE graph is not
allowed to have unconnected ports, as for example the port F of
Fig. 1.
In the VR-PRUNE MoC, an output port p+ that is a control

port or SRP, can be connected to multiple FIFOs, but in this
case each FIFO must have a unique source and sink port, and
every input port p− must have only one FIFO connected to it. If
an output port p+ is connected to multiple input ports p−i , i =
1. . .K in the aforementioned way, then each p−i must be of the
same port type as p+.
The current number of tokens in FIFO f is denoted

as tokencount(f), the FIFO’s token capacity is given by
capacity(f), and delay(f) denotes the number of delays (initial
tokens) in f .
Similar to its predecessor PRUNE, VR-PRUNE adopts the

concept of symmetric-rate dataflow, which requires for con-
nected ports p+a and p−b that atr(p+a ) = atr(p−b ). A VR-
PRUNE actor a can fire when a) for each input port p−a
holds tokencount(fifo(p−a )) ≥ atr(p−a ), and b) for each output
port p+a holds capacity(fifo(p+a ))− tokencount(fifo(p+a )) ≥
atr(p+a ).

B. Actor Types

Each actor in a VR-PRUNE graphGmust fall into one of the
four actor types that are characterized by numbers, types and
directions of ports, as described below. If an actor does not meet
the requirements of any of the four actor types, the actor cannot
be included into VR-PRUNE graph G.

1) Static Processing Actor (SPA): The ports of SPA actors
can only be of the type SRP, and therefore an SPA actor can be
understood to operate similar to an actor of the SDF [31] MoC.

2) Dynamic Actor (DA): A DA has at least one DRP, at
least one input control port, and any non-negative number
of SRPs. All the DRPs of DA x need to be either of in-
put direction, or of output direction as required by the de-
sign rules (Section IV). This restriction enforces modularity
of VR-PRUNE graphs and acts as a necessary condition for

analyzability. Furthermore, the number of DRPs in x must be
greater or equal to the number of its input control ports, since
each DRP of x is controlled by exactly one input control port
of x.
When a DA x first fires, x first consumes one token from

each of its control ports. The values of these consumed tokens
set the atr(px) for each DRP px of x. After the atrs of each
DRP px have been set, firing of x proceeds by following usual
dataflow semantics: tokens are consumed from the input ports
of x according to the port-specific atr values, and consequently
tokens are produced to the output ports of x following the port-
specific atr values.
Fig. 2 shows a VR-PRUNE subgraph with one configuration

actor q and two dynamic actors, x and y. The figure illustrates
how the token values originating from black-colored input con-
trol ports px1 and px2 associate with the DRPs px3, px4 and px5
in a one-to-many relationship. For actor x that has a DRP p,
cport(p) is the input control port of x that is associated with p.
Drawing an example from Fig. 2, cport(px3) = px2.

3) Dynamic Processing Actor (DPA): DPAs are required to
have at least one input DRP, at least one output DRP, at least one
control input port, and any number of SRPs. In the beginning
of firing DPA a, a first consumes one token from each of its
control ports. The values of the tokens originating from the
control ports set the atr for each DRP of a. Similar to DAs,
the number of DRPs must be greater or equal to the number
of input control ports, and firing of a proceeds by consuming
atr(p−ai), i = 1, 2, . . .,K tokens from each of a’sK input (SRP
or DRP) ports, finally producing atr(p+aj), j = 1, 2, . . ., L to-
kens to each of a’s L output (SRP or DRP) ports. Evidently,
FIFO f that is connected to DRP p must have a token capacity
of at least url(p): capacity(fifo(p)) ≥ url(p).
In Fig. 2, a, b and c are DPAs. Out of these, b has two input

DRPs (pb1 and pb3) and one output DRP (pb2), all of which are
controlled by the single input control port of b.

4) Configuration Actors: A configuration actor (example: q
in Fig. 2) must have one or more output control ports, which are
required, bydefinition, to have a token rate of unity.Additionally,
a configuration actor can have zero or more data ports, which are
SRPs. The data ports can either have input or output direction.
The tokens produced by the output control ports contain non-

negative integer values that define port-specific atrs for DAs
and/or DPAs that consume the control tokens. The relationships
between output control ports of configuration actors and input
control ports of DAs/DPAs are unambiguously defined by a
control table that is described below.

C. Control Table and Firing

In the VR-PRUNE MoC, variable token rates are restricted
to subgraphs called Dynamic Processing Graphs (DPGs) that
define graph-level structure for ensuring analyzability. The
VR-PRUNE concept allows various DPG types, however in
this paper we define one specific DPG type in Section V,
which is suitable for all application examples presented in
Section VI. DPG types may impose additional restrictions
to actor types, actor port counts, or connectivity between
actors.
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Fig. 2. VR-PRUNE subgraph example. An example of control relationships between a configuration actor (q), dynamic actors (x, y), and DPAs (a, b, c) expressed
equivalently by a control table, and graphically. Note: the rate column of the control table refers to the range of valid atr values (defined by lrl and url) emitted
by the output control port.

The complete VR-PRUNE application graph G can consist
of any number of interconnected DPGs: dynamic actors and
configuration actors of a DPG are allowed to connect outside the
DPG over SRPs without restrictions. In fact, using the concept
of hierarchical dataflow graphs (e.g. [32]), a DPG could be
represented as a composite actor with static token rate ports.
Formal presentation of hierarchical graphs is however limited
outside the scope of this work as clustering of actors may change
the graph semantics and cause deadlock [32]. In the rest of this
paper the analysis concentrates on internal behavior of individual
DPGs.
Fig. 2 shows an example of a DPG, where q is a configuration

actor, a, b and c areDPAs,x and y areDAs, and d is an SPA. Each
DPG is associated with a control table T that unambiguously
defines 1) the control relationships between output control ports
of configuration actors, and DRPs of DAs and DPAs, and 2) sets
limits for variable token rates by means of output control port
specific lrls and urls.
The control table of Fig. 2 is shown below the DPG — it is

a matrix with dimensions h× (w + 1), where h and w equal
the number of output control ports and DRPs, respectively. In
the control table, a value of ‘1’ indicates a control relationship
between the corresponding output control port (row) and DRP
(column), whereas a value of ‘0’ indicates that the control port
and DRP are not related. Since each DRP is required to be
controlled by exactly one output control port of a configuration
actor, a valid control table must have a column sum of ‘1’
for each DRP column. The lrl and url values are defined
per output control port in the last column of the control ta-
ble, and apply to all DRPs that are associated (‘1’) with that
row.
Finally, we define the meaning of a complete cycle related to

a DPG in the spirit of [9]: assuming that a DPG is consistent

(as discussed Section V), we define a complete cycle of a DPG
as a sequence of actor executions that returns the DPG to its
original state. The execution of a complete cycle S of actors of
the form S = q1, q2, . . ., qm, a1, a2, . . ., an, where the qi’s are
the control actors of the DPG, and the ai’s are the SPAs together
with the active DAs and DPAs of the DPG, as determined by the
execution sequence q1, q2, . . ., qm. Here, an active DA or DPA
a means that (1) a has input tokens on all control ports, and (2)
a is configured by the incoming control tokens so that at least
one DRP of a will have a nonzero rate on the next actor firing.
To be valid, a complete cycle must also satisfy the condition that
there is no FIFO buffer underflow within the edges of the DPG
when executing S.

IV. DESIGN RULES

This section presents the VR-PRUNE design rules, which
apply to all types of DPGs, providing generic restrictions for
supporting dataflow consistency. The approach of using design
rules is similar to previous works [27], [28], [32]. Specific
types of DPGs may impose further design restrictions beyond
VR-PRUNE design rules. Before presenting the rules, some
mandatory definitions are provided.
We define two actors, a and b, as adjacent, if at least one port

of a is connected with at least one port of b.
Definition 2 (Chain): A chain is a non-empty sequence S =

(a1, a2, . . ., aN ) of actors, such that ∀i = 1, 2, . . ., N , ai and
ai+1 are adjacent.
Consequently, chain S connects a1 and aN . Furthermore, if

all ai are distinct, then we call S a simple chain.
Suppose px and py are distinct ports of two actors x and y, re-

spectively.We say thatpx andpy are linkedports if (a)fifo(px) =
fifo(py), or (b) there is a simple chain (x, a1, . . ., aN , y) such
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Fig. 3. VR-PRUNE design rules. Illustrations related to design rules (a)–(e).
Solid black triangles denote control ports.

that px connects with a port of a1 and py connects with a port of
aN . Note that for the linked ports {px, py}, there can bemultiple
connecting subchains a1, . . ., aN . If px and py are linked ports,
and they are both DRPs, then we say that they are linked DRPs.
For all design rules (a)–(e): Suppose {px, py} are linked

DRPs whose parents are dynamic actors x and y, and S1 =
(a1, a2, . . ., aN ) is a connecting subchain associated with
{px, py}:
a) Linked port control rule: Each pair of linked DRPs

{px, py}, and each DRP within actors of S1 must be controlled
by the same output control port pq.

b) Balanced delay rule: The input control ports associated
with the linked DRPs {px, py}, and each DRP within actors of
S1 must be connected to pq with the same delay. In other words
– suppose pa is a DRP of a ∈ S1, then delay(pq, cport(px)) =
delay(pq, cport(py)) = delay(pq, cport(pa)).
c) Connecting subchain rule: The actors ai, i = 1, 2, . . ., N

must all be of type SPA or DPA, and ai ∈ S1 may not belong
to any connecting subchain S2 = (b1, b2, . . ., bM ) that is asso-
ciated with a dynamic actor z /∈ {x, y}.

d) Single-sided dynamism rule: The DRPs of actor x are only
allowed to have output direction, and the DRPs of actor y are
only allowed to have input direction.
e) Encapsulation rule: Suppose k /∈ S1 is an actor that con-

nects to ai, i = 1, 2, . . ., N . 1) If k ∈ {x, y}, then ai may con-
nect to k only via a DRP pa1. 2) If k /∈ {x, y}, then k must
belong to another connecting subchain S2 = (b1, b2, . . ., bM )
associated with a pair of linked DRPs {px2, py2} such that
parent(px2) = x and parent(py2) = y.

Fig. 3 illustrates the design rules (a)-(e) as follows: The
topmost subfigure is a joint example of rules (a) and (b): the
dynamic actors x and y are connected by the chain S1 =
a1, . . ., ai, . . ., aN , and consequently px, py and each DRP of
each DPA within S1 need to be controlled by the same con-
trol output port pq of control actor q. Moreover, each FIFO
{pq, pxc}, {pq, pyc}, as well as {pq, cport(pai

)}, where pai
is a

DRP of actor ai ∈ S1, need to have the same number of delay
tokens.
Subfigure (c) of Fig. 3 illustrates the Connecting subchain

rule: on one hand, actor ai of S1 is not allowed to be a
control actor (CA), and on the other hand ai is not al-
lowed to be part of any connecting subchain that is associ-
ated with dynamic actors other that x and y, such as z in the
figure.
Violation of the Single-sided dynamism rule (Subfigure d) is

illustrated by a dynamic actor x, which incorrectly features both
an input DRP p−x1, and an output DRP p+x2.
Finally Subfigure (e) of Fig. 3 depicts an actor k that does

not belong to the connecting subchain between linked DRPs
{px, py}. The actor k is part of a connecting subchain that is
associated with a different pair of dynamic actors, z and v,
which is disallowed. Additionally, Subfigure (e) also illustrates
(observe actor a1) the case where k is one of the two dynamic
actors that are interconnected by S1. In this case, an actor
a1 ∈ S1 is not allowed to connect to the dynamic actor via a
port pa1 of type SRP— in contrast, the connection is allowed if
pa1 is of type DRP.

V. CONSISTENCY

This section first defines the Dynamic Processing Graph type
used throughout the rest of this paper, and consequently shows
that determining its consistency is a decidable problem.

A. The Switch Type Dynamic Processing Graph

The previously introduced VR-PRUNE MoC (Section III)
and design rules (Section IV) have been defined without unnec-
essarily strict constraints, not to limit expressiveness or future
developments that build on the MoC. However, for ensuring de-
cidable consistency analysis, additional constraints might need
to be incorporated to specific DPG types. Next, we introduce
the Switch DPG (sDPG) type that is a restricted type of DPG,
however generic enough for capturing all the application use
cases presented in Section VI. In addition to enabling anal-
ysis of the application use cases in our experimental study,
the developments we present involving the sDPG demonstrate
how groups of relevant applications can be represented and
formally analyzed by formulating suitable constraints within the
VR-PRUNE modeling framework.
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Each sDPG consists of a) exactly one configuration actor q, b)
exactly two dynamic actors, x and y, and c) any positive number
of linked DRPs that connect x and y. These restrictions a)-c)
are only associated with the sDPG type, and together with the
VR-PRUNE design rules ensure decidable consistency analysis
for sDPGs.Other types ofDPGswith different restrictionswould
consequently require a separate consistency analysis procedure.
The linked DRPs of an sDPG establish zero or more connect-

ing subchains between x and y. These chains form the dynamic
components (DCs) of the sDPG. Given an sDPG D, the set of
DCs of D is denoted as Zc(D), and the pair of dynamic actors
in D is denoted δ(D) = {x, y}. Fig. 2 shows an example of
such an sDPG with actors q, x and y. The DCs of this graph are
explained in the end of this subsection.
Consider an sDPG D that contains dynamic actor x with K

output DRPs pxi (i = 1, 2, . . . ,K), and dynamic actor y with L
input DRPs pyj (j = 1, 2, . . . , L). We require that each pxi is a
linked DRP with at least one of pyj . Our procedure for finding
theDCsZc(D) associatedwith a givenDPGD can be expressed
as follows:
1) For each SRP pa of actor a ∈ {q, x, y}, remove fifo(pa).

Next, remove all actors and edges that have become discon-
nected from the set of actors {q, x, y} through the preceding
removal of FIFOs fifo(pa).
2) For each linked DRP {pxi, pyj}, where fifo(pxi) =

fifo(pyi), insert a dummy actor d (DPA) such that fifo(pxi) =
fifo(p−d ) and fifo(p+d ) = fifo(pyj).
3) Remove q, x, y, and all FIFOs fifo(pq), fifo(px) and

fifo(py) inD. This removal procedure decomposesD into a set
of connected components that form the DCs. Thus, Zc(D) =
{Z1, Z2, . . . , ZM}, where M ∈ [1,min(K,L)] is an integer
constant.
For an sDPGD to be valid, 1) eachDPAawithin eachZk, k ∈

[1,M ] ofDmust have exactly one control port pa, and 2) within
D, no fifo(p), where p is a DRP, may have delay(fifo(p)) > 0.

Fig. 2 depicts an example of a valid sDPG D. Following the
above described three-stage procedure for discovering DCs, the
resulting DCs are Zc(D) = {Z1, Z2}. The actors related to the
DCs are all DPAs, such that Z1 = {a, b}, Z2 = {c}. Notice that
the SPA actor d was removed in the 1st stage, and is not part of
the DCs. As required by the design rules (Section IV) and sDPG
validity requirements, both DPAs a and b of Z1 have one input
control port each, which is connected to pq1. The control port
of actor c (which belongs to DC Z2) is connected to pq2, and
consequently the token rates of ports related to actors within Z1

and Z2 can vary independently of each other.

B. VR-PRUNE Graph Consistency

VR-PRUNE graphs may consists of several DPGs, but our
design rules ensure that the individual DPGs are independent of
each other. Since the existence of DRPs (and hence non-static
token rates) is limited to within DPGs, a) the actors outside
DPGs and b) ports of DPG actors connecting outside the DPGs
necessarily have static token rates. Hence, the consistency of
the VR-PRUNE application graph G can be validated using
standard SDF validation techniques [31]. Therefore, we limit
our discussion on consistency to within sDPGs.

In the following, a proof for the decidability of the consistency
analysis of sDPGs is presented. The reasoning followed by the
proof is to show that 1) the configuration actor of the sDPG fixes
the token rate of each DRP within the sDPG for the duration of
one complete cycle of an sDPG, 2) consequently, each DC of
the sDPG can be interpreted as a fixed token rate (SDF) graph
for the duration of that complete cycle, and 3) finally, the whole
sDPG can be considered as an SDF graph, for which it is well-
known [4] that determining consistency is a decidable problem.
Lemma 1: Assuming all DAs and DPAs are contained within

sDPGs: if all sDPGs of a VR-PRUNE graph G are consistent,
then the whole VR-PRUNE graph G is consistent.
Proof: Let Zc(D) = Z1, Z2, . . . , ZM be the set of DCs of a

valid sDPGD. The actors ofDCs are by theConnecting subchain
rule required to be of type DPA or SPA.
Sinceweonly consider valid sDPGs, eachDRPofactors(Zk)

within a single DC Zk, k ∈ [1,M ] is controlled by the same
output control port pq of configuration actor q. Consequently,
pq sets the atr of all DRPs within actors(Zk) to the same value
for each complete cycle of an sDPG, andZk can be considered as
an SDF graph. Since there is a finite maximum of url − lrl + 1
different token rates per DC, and, considering that the set of DCs
within one sDPG is finite, it is decidable to determine whether
or not the sDPG is consistent.
If all theZk’s are consistent, then there exists a valid, periodic

schedule P (Zk) for each Zk [4]. P (Zk) defines a schedule for
each actor, actors(Zk), related to the current atr set by pq that
is associated with Zk.
Considering actors(Zk), for each FIFO f connected an actor

a ∈ actors(Zk), there exists a buffer boundBk(f) that indicates
the maximum token count on f at any stage ofP (Zk) execution.
This buffer bound exists as a consequence of SDF graph con-
sistency [4]. Among all DCs Zc, there is a finite FIFO-specific
bound β(f) = max(Bk(f) | Zk ∈ Zc(D)).

The whole sDPG can then be executed by a sequence of
schedules Ω = (O1, O2, . . .) such that for every Ok, there is
an Hk ∈ Zc(D), where Ok = P (Hk). Hk is the kth executed
DC within the sDPG.
As each Zk is assumed to have a valid, periodic schedule,

execution ofOk does not cause a net change to the token counts
of the FIFOs between actors(Zk). Therefore, the token count
of FIFO f is bounded byBk(f). Finally, the token count of f is
during execution of Ω is limited to β(f). �

VI. EXPERIMENTAL RESULTS

Experiments related to VR-PRUNE were performed on four
application use cases: 1) adaptive digital predistortion, 2) paral-
lel image classification, 3) dynamic-update digital predistortion
and 4) object detection. Examples 1 and 3 concern real-time sig-
nal processing for wireless communications, whereas examples
2 and 4 concentrate on deep convolutional neural networks.
The experimental results show that the increased expressive-

ness of VR-PRUNE (compared to PRUNE [28])� Enables expressing the same application structure by
clearly fewer dataflow graph elements,� Enables describing dataflow behavior that cannot be cap-
tured by PRUNE,
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TABLE II
PLATFORMS USED FOR EXPERIMENTS

� Provides means for saving power by adaptive reduction of
computational effort, and� Does not cause excessive computational run-time over-
head.

The first point listed above results because VR-PRUNE en-
ables more compact representation of design functionality. For
elaboration on the importance of using compact representations
in system-level modeling, see for example [33]. The run-time
measurements have been performed on three platforms (see
Table II), one of which is a regular mobile workstation (i7),
and the other ones are embedded platforms (XU3 and N2), all
equipped with GPUs.

A. Run-Time Framework and Application Programming

In order to conduct run-time experiments for measuring
the efficiency of VR-PRUNE, the PRUNE runtime framework
was extended to accommodate variable token rates. We refer to
the resulting extension as the VR-PRUNE Runtime Framework
(VPRF).
VPRF operates under Linux, and bases its concurrent com-

putation infrastructure on Linux parallel computing primitives:
each actor is instantiated as a separate thread that can either
be assigned to a specific processor core, or be auto-assigned
to a free core by the operating system. FIFOs are implemented
as memory arrays, and read/write access to them is arbitrated
by mutex constructs. Although Section V discussed execution
schedules of VR-PRUNE graphs for the purpose of consistency
analysis, VPRF follows static assignment scheduling [34] where
the operating system determines the execution order of actors at
run-time, subject to dataflow constraints.
VPRF also features deeply embedded support for interfac-

ing GPUs. This means that the FIFO and actor primitives of
VPRF have been designed from the beginning for efficient
data transfers between CPU cores and the GPU, as well as
data exchange between GPU kernels, including functionality for
variable-length data transfer to/fromGPU.VPRF also includes a
prototype graph validity checker that inspects application graphs
against VR-PRUNE design rules. The dataflow models and
experiments described in Sections VI-B and VI-C have been
done under VPRF.
The VPRF application programmer writes the application

code using the C language or OpenCL for actor descriptions,
and XML for describing the application graph. VPRF follows
a predefined actor template that originates from the DAL [35]
framework: each actor has initialize, fire and finish functions,
as well as a persistent actor-specific data structure for preserv-
ing actor state between firings. For actors that are aimed to
GPU execution, the actor behavior is expressed in the OpenCL
language (OpenCL was selected over CUDA for reasons of
wider hardware support, as almost all CUDA devices support
OpenCL, but not vice-versa). VPRF provides a compact set of

Fig. 4. The adaptive digital predistortion application. Subfigures: (a) VR-
PRUNE graph, (b) PRUNE graph. In Subfig. (b) double-line arrows depict
2×FIFOs.

function calls for inter-actor data exchange over FIFO buffers.
The function calls effectively hide the complexity related to
GPU programming from the programmer: data transfer from
a CPU-based actor to a GPU-based actor is carried out using the
same function as data transfer between two CPU-based actors.
VPRF includes a compiler that transforms the application graph
XML file into a top-level C file, which can together with the
actor descriptions be compiled into an executable.
Exploiting target platform heterogeneity and parallelism is

an important factor for efficient signal processing. Here, VPRF
follows the approach first introduced by DAL [35], and later
used in PRUNE: using a mapping specification (XML file) the
application programmer can assign each actor to a specific CPU
core, or to the system’s GPU. If an actor is assigned to the GPU,
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the programmer also needs to indicate the number ofwork items
and work groups as required by OpenCL [36]. If the work size
of an actor exceeds the maximum work size of the GPU, the
underlying OpenCL driver automatically divides the processing
into multiple passes. On the other hand, if the actor work size
is less than the GPU’s maximum work size, the GPU runs with
reduced utilization; simultaneous execution of several actors on
the same GPU is not supported.
CPU core assignments are handled by Linux CPU affinity

masks that define which CPUs/cores are eligible to execute each
thread (actor). Mapping an actor to the GPU requires expressing
the actor’s internal behavior in OpenCL, but data exchange
between the GPU and CPU, as well as GPU initialization are
handled by VPRF.

B. Expressiveness and Computational Efficiency

One of the main advantages of VR-PRUNE over PRUNE
is the increased expressiveness offered by variable token rates
compared to binary (on/off) token rates of PRUNE. The in-
creased expressiveness can be quantified in terms of graph size:
with a more expressive model it is possible to represent the same
functionalitywith fewer elements (actors, edges) thanwith a less
expressive model. The adaptive digital predistortion and paral-
lel image classification application examples that are introduced
next highlight that in addition to expressiveness, variable token
rates provide potential for saving power by computational effort
reduction, while maintaining implementation efficiency.
1) Adaptive Digital Predistortion: Digital predistortion is a

signal processing approach for compensating non-linear effects
of a wireless transmitter’s power amplifier [37]. The signal
processing for predistortion is computationally very demanding,
and therefore solutions [38] that trade-off predistortion band-
width against computational effort are useful for saving power
when possible, e.g. due to varying interference conditions.
Fig. 4 shows such an adaptive predistortion filter in two im-

plementations: a) is a VR-PRUNE implementation, and b) is the
conventional PRUNE implementation introduced in [28]. Both
implementations describe the same 10-tap parallel Hammerstein
filter structure [39], with adaptive functionality such that indi-
vidual filter branches can be enabled or disabled on-the-fly at
run time. In Fig. 4, s1 and s2 are source actors that provide
samples from the transmitter baseband side; x is a dynamic
actor that computes polynomial basis functions and distributes
the samples to parallel FIR filter branches f ; y is a dynamic actor
that implements a summation function for combining the filter
branch outputs and compensates for I/Q imbalance; t1 and t2
finally act as output actors towards the power amplifier. Adaptive
processing is controlled by the configuration actor q that based
on external input can enable/disable filter branches f1. . .f4 and
f7. . .f10 in the PRUNE implementation. In the VR-PRUNE
implementation the same effect is accomplished by variable
token rates to/from the actor f . In the PRUNE implementation
the FIRfilter actors are SPAs,whereas theVR-PRUNEFIR actor
f is a DPA.
It can be seen that the VR-PRUNE implementation (Fig. 4(a)

compactly captures the adaptive predistortion functionality
within 8 actors and 11 FIFOs, whereas the PRUNE implemen-
tation (Fig. 4(b) requires 17 actors and 46 FIFOs (double-line

TABLE III
ADAPTIVE DIGITAL PREDISTORTION LINES OF CODE PER ACTOR

TABLE IV
ADAPTIVE DIGITAL PREDISTORTION THROUGHPUT IN COMPLEX FLOAT

MEGASAMPLES/S, AS A FUNCTION OF ENABLED FILTER BRANCHES (%), ON
THE I7 CPU AND ON THE N2 CPU. HIGHER IS BETTER

arrows stand for 2×FIFOs, one for the I channel, and one for
the Q channel). This reduction of graph elements comes from
the fact that VR-PRUNE is able to capture the functionality of
actors f1. . .f10within a single actor f , and consequently reduces
the number of connecting FIFOs from 40 down to 4. Based
on the number of architectural elements, VR-PRUNE therefore
reduces the predistortion model complexity by 70% compared
to PRUNE. This reduction ratio depends on the structure of the
original dataflow graph, more specifically on the count of f
(filter) actors.
One potential fallacy in evaluating model complexity reduc-

tion as described above is that actor and edge counts can often
be reduced by just lumping actors together. For example, an
entire SDF graph can be implemented as a single actor, thereby
reducing the graph size to 1 actor and 0 edges. To show that this
is not the case here, Table III shows the lines of code per actor
for the Fig. 4 graphs. It can be seen, that on average, the VPRF
implementation requires fewer lines per code than the PRUNE
implementation. Looking at the dynamic actors x and y, it can
be seen that the PRUNE implementations of these actors have
around 30% more code than their VPRF counterparts, which is
related to inter-actor communication: initiating and terminating
inter-actor data transfer requires two lines of code per FIFO.
Since the PRUNE x and y actors have 20 FIFOs towards the f
actor each, whereas the VR-PRUNE x and y have only 2, the
difference is obvious. In contrast, the VPRF f actor has 20 lines
of code more than the PRUNE counterpart – this is due to the
fact that the single f actor stores all the filter coefficients that in
the PRUNE implementation are distributed over f1. . .f10.

Finally, Table IV shows the throughput of the adaptive digital
predistortion application for both the i7 and N2 platforms. The
throughput is largely limited by the compute resources of each
platform, but the runtime framework’s impact can still be seen in
the performance figures: due to the considerably simpler graph
structure, the VPRF implementation (Fig. 4(a) causes reduced
computational overhead compared to the conventional PRUNE
implementation (Fig. 4(b). It is worthwhile to point out that
reducing the number of actors as between Fig. 4(b) and Fig. 4(a)
evidently decreases potential for parallel execution. Therefore,
if the underlying execution platform has spare cores, it is not
advisable to collapse all actors f1. . .f10 into a single actor, but
instead consider distributing the computation effort evenly over
available compute resources.
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Fig. 5. The parallel image classification application. Subfigure (a) shows the
static PRUNE graph, whereas (b) shows the adaptive VR-PRUNE graph. In
both graphs, actors a, b, and c are executed on the GPU, and N = 24 images
are classified in parallel.

2) Parallel Image Classification: Image classification is a
fundamental computer vision task that is nowadays exclusively
performed by deep CNNs. Driven for example by surveillance
applications [40], there has also been interest in pushing clas-
sification to be done on low-resource computing devices. Some
edge/IoTcomputingplatforms such as theOdroidXU3 (Table II)
are also equipped with a reasonably powerful GPU that offers
optimal performance and efficiency only when the processing
workload is sufficiently parallel.
Fig. 5(a) shows a PRUNE graph for parallel image classifi-

cation: actor s is the source actor that acquires N = 24 parallel
images from a source (e.g., camera interface), and using the
underlying PRUNE CPU-GPU interface sends the N 96 ×
96 RGB images in parallel to the GPU-mapped actor a that
performs 2D convolution, ReLU non-linearity, max-pooling and
2× subsampling to all N input images in parallel. Actor b (on
GPU) also performs 2D convolution, max-pooling and subsam-
pling, followed by the GPU-mapped actor c that implements a
dense layer. After actor c, the feature maps of theN images are
transferredback toCPUprocessingby thePRUNE infrastructure
for final processing by two small dense layers, ReLU activations
and softmax output, all performed by actor t. All actors in the
Fig. 5(a) graph are SPAs.
Fig. 5(b) shows the VR-PRUNE graph for the same CNN-

based image classifier, however modified such that the configu-
ration actor q can at runtime determine which of the N parallel
images will undergo classification, and which are skipped. For
this, the VR-PRUNE graph contains additional dynamic actors
x and y (a, b and c are DPAs in Fig. 5(b).
Fig. 6 shows a useful effect of this adaptivity: the computation

effort decreases almost linearly on the i7 platform from the
maximum ofN = 24 processed images down to 0, offering great
potential for saving processing power. Fig. 7 shows the similar
effect on the XU3 embedded platform for N = 4 images.
Fig. 8 shows the power scaling effect of VPRF parallel image

classification on the embedded XU3 platform. Summing the
power dissipation of the GPU, CPU, and memory, it can be
seen that when all frames (100%) are classified, the total power
dissipation by the application is 3.4W.Decreasing the number of
classified frames down to 0% by adjusting the token rate, makes
the application power dissipation as small as 20 mW. For each

Fig. 6. Parallel image classification performance on the i7 GPU platform
for N = 24 parallel images: static processing pipeline of PRUNE vs. VPRF
adaptive processing by variable token rates.

Fig. 7. Parallel image classification performance on the XU3 GPU platform
forN = 4 parallel images. VPRF adaptive skipping of frames by variable token
rates vs. no adaptiveness.

Fig. 8. Parallel image classification power dissipation on the XU3 platform
under VPRF forN = 4 parallel images. Thex axis depicts percentage of frames
processed (e.g. 25%= on average every fourth frame undergoes classification).

hardware component (GPU, CPU, memory), the power figures
were acquired from the on-board current sensors of the XU3
platform.
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Fig. 9. The dynamic-update predistortion (DU-DPD) filter application. Sub-
figures: (a) VR-PRUNE and (b) PRUNE graphs. Both graphs implement two
alternative token rates: N and N

2 .

C. Further Application Examples

1) Dynamic-Update Predistortion Filter: The GPU-based
dynamic-update predistortion filter (DU-DPD) for 5 G small
cells is based on a recent architecture presented in [37]. The
original dataflow implementation of [37] was imported to VPRF
and modified such that the sample rate of the learning part can
be changed adaptively at run-time for the purpose of saving
computation effort in situations where radio frequency interfer-
ence is low. The VR-PRUNE graph of the DU-DPD is shown
in Fig. 9(a); the actor s contains essentially a power ampli-
fier model, l encapsulates decorrelation-based filter coefficient
learning functionality, whereas the actor u updates filter coef-
ficients. Actual signal predistortion is performed by the f actor
that has a constant I/O sample rate of N and is executed on the
GPU. In practice, N can be e.g. 10000 or 65535 [37].

The variable-rate processing feature of the DU-DPD is exhib-
ited between the actors s, l and u: the current sample rate (atr)
can be adaptively changed among N

2 and N , as dictated by the
q actor. The subset of the four aforementioned actors also form
the sDPG for the DU-DPD application: s and u are the pair of
dynamic actors δ for the sDPG, and l is a DPA. The actor f has
static token rates at all its inputs and outputs, and hence it is an
SPA.
With respect to computational characteristics, DU-DPD dif-

fers from the adaptive digital predistortion application of Sec-
tion VI-B in two ways: 1) DU-DPD includes a feedback loop,

Fig. 10. The object detection and tracking application. VR-PRUNE graph
of the SSD-Mobilenets object tracking component. The full application graph
consists of 53 actors and 72 edges.

and 2) the learning algorithm (actor l) is recursive by nature.
Here, recursiveness means that the algorithm operates on blocks
of samples, and with respect to the algorithm’s output, sample
value si+1 depends on sample value si (i ∈ [0, N − 1]). There-
fore, output sample si+1 cannot be computed independently of
sample si, for all i ∈ [0, N − 1].
The significantly higher expressiveness of VR-PRUNE over

PRUNE is illustrated in Fig. 9(a) and Fig. 9(b). Using the
PRUNE MoC, implementing several learning rates would re-
quire replicating the l actor for each different token rate; Fig. 9(b)
shows an example, where the l actor can operate at sample rates
N and N

2 . For a finer-grained set of token rates of, e.g., 8 different
sample rates, the l actor and its associated edgeswould need to be
replicated 8 times. In contrast, the VR-PRUNEmodel is capable
of supporting any number of integer sample rateswith the simple
graph that is shown in Fig. 9(a): the only change required is the
token rate range (or rate list) in the control table.
2) Object Detection and Tracking: Visual object detection

has been one of the most successful applications of computer
vision since the introduction of deep CNNs. A CNN-based
object detector can be understood to consist of a few main
components: 1) A CNN-based feature extractor, 2) the actual
object detector, and 3) object post-processing for application
specific purposes. One of the most apparent post-processing
operations for object detection is object tracking that can be used
to discover themotion trajectories of objects and formaintaining
object identifiers across sequences of images.
For VPRF, an object tracker was implemented based on the

MobileNets [41] CNN for feature extraction, followed by the
SSD (single-shot detector) [42] object detector, and an object
tracking block.3 Fig. 10 depicts the final stages of this 53-
actorVR-PRUNEgraph: theNon-max suppression (NMS) actor
receives object predictions and coordinates from the feature
detector CNN, resolving these into the number of detected
objects (object_count). This number is distributed from the

3This MobileNet-SSD implementation is fully stand-alone and requires no
external computer vision frameworks or libraries. The trained weights for CNN
layers were extracted from TensorFlow using a prototype software tool written
by one of the paper authors, M. Khan.
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output control port pnc to the Object tracking actor (DPA)
and to the Output actor (DA) that performs visualization. The
number of detected objects varies frame-by-frame between 0
and MAX_OBJECTS, which is a compile-time constant. Con-
sequently, the number of detected objects directly controls how
many bounding boxes (boxes), class predictions (classes) and
prediction scores (scores) are communicated from NMS to the
object tracking actor. Similarly, this number also adjusts the
number of tracked boxes (iboxes), and motion vectors (dx and
dy) between the Object tracking and Output actors. As Fig. 10
shows, theNMS actor is a joint configuration and dynamic actor,
and hence the pair of dynamic actors δ(D) is {NMS, Output}.
Such a merged actor can be beneficial for, e.g., simplifying the
actor network [28]. For the purpose of consistency analysis, as
described in Section V, the configuration and dynamic actor
should be treated as separate actors, however.
Similar to the DU-DPD application example, implementing

the varying object count feature of Fig. 10 without the variable
token rate feature of VR-PRUNE would be complicated. The
VR-PRUNE graph displayed in Fig. 10 shows an implemen-
tation where the tracked object count can vary between 0 and
9 (visible within the control table) — implementing this rate
scalability feature within PRUNE would require 9 instances of
the object tracking actor.

D. Comparison With Other Frameworks

For years, efficient computing has been of highest importance
in signal processing and machine learning, especially in the
embedded systems context. Unfortunately, achieving highest
computation efficiency requires adapting software to the intrica-
cies of the hardware architecture, which is a very work-intensive
task. To this extent, computing hardwaremanufacturers active in
the machine learning domain (NVidia, Intel, ARM, Qualcomm,
etc.) have in the recent years released proprietary libraries and
frameworks for acceleratingmachine learning inference on their
computing architectures.
The performance of a dataflow flavored runtime framework

consists of two components: 1) the actor implementations, and
2) inter-actor communication and synchronization. The scope
of the proposed VPRF framework is entirely related to the latter
(2) item, whereas towards actor implementations (1) VPRF is
implementation-agnostic. To provide perspective over VPRF
efficiency, this section shows some results for VPRF in the
context of commercial frameworks that utilize optimized actor
implementations (1).
In order to benchmark VPRF synchronization efficiency (2)

meaningfully, we chose to adopt actor implementations (1)
from ARMCL and oneDNN libraries for machine learning on
ARM and Intel platforms, respectively. As the programming
interface of ARMCL is not directly compatible with VPRF, the
experiment required manual program adjustments to the VPRF
implementation after automatic VPRF code generation.
Table V provides a performance evaluation on the Image clas-

sification application (Fig. 5(a), reflecting the performance of
VPRF against TensorFlow, and the optimized actor implementa-
tions of ARMCL and oneDNN. The comparison between VPRF
and PRUNE is omitted here, because with this graph the runtime
computations for VPRF and PRUNE are identical. The first

TABLE V
IMAGE CLASSIFICATION PERFORMANCE IN THE CONTEXT OF COMMERCIAL

FRAMEWORKS. EACH CELL REFLECTS PROCESSING TIME IN MILLISECONDS

PER FRAME FOR N IMAGES PROCESSED IN PARALLEL USING THE GRAPH OF

FIG. 5(A), AND 100% OF IMAGES UNDERGO CLASSIFICATION

column of the table shows results of an experiment, where image
classification has been performed by VPRF and TensorFlow4 on
the i7 CPU, both leveraging oneDNN. It can be seen that VPRF
provides a substantially higher processing performance than
TensorFlow, related to the fact thatVPRFprograms are compiled
and optimized by the GNU C compiler, whereas TensorFlow
emphasizes ease of programming by Python. The last row of
column 1 shows for reference the execution time of the same
program implemented as single-threaded C code, leveraging the
same computation kernels as the VPRF implementation. VPRF
distributes the computations across the different cores of the i7
platform, providing higher throughput than the Baseline imple-
mentation. For reference, the second row shows a performance
figure fromFig. 6whereN = 24 images are classified in parallel
on the i7’s GPU using generic OpenCL actor implementations.
It can be seen that the performance-optimized oneDNN CPU
actor implementations outperformGPUacceleration in this case.
Since TensorFlow requires a CUDA compatible GPU (and Ten-
sorFlow Lite requires Android or IOS for OpenCL), the column
2 experiment could not be done for the TensorFlow framework.
The last two columns show results using the embedded N2

platformwith andwithout use of theGPU. In the last column, ac-
tor implementations were adopted from the ARMCL library and
executed on the GPU from a) the Baseline C language program,
and b) VPRF, yielding almost identical performance. Since all
the significant actors of the Image classification application are
executed on the single GPU of the system, there are no possibili-
ties to leverage concurrent computing, and consequently both the
Baseline C andVPRF versions effectively execute the classifica-
tion sequentially. However, the result shows that the concurrent
thread-based VPRF runtime adds negligible overhead com-
pared to the ARMCL accelerated Baseline C implementation.To
achieve highest performance,GPU-mapped FIFOswere used in
VPRF. Details on this technique are explained in Appendix A.
Column 3 also shows a comparison between VPRFwith generic
actor implementations against TensorFlow5 CPU on the N2
ARM platform, indicating faster execution for VPRF.
Finally, Table VI shows a detailed comparison of VR-PRUNE

vs. other dataflow models in terms of graph sizes. The table
shows that for each application VR-PRUNE clearly outper-
forms both PRUNE and SADF [19] models in expressiveness.
VRDF [29] and Dataflow Process Networks (DPN) [21], on
the other hand, are more expressive than VR-PRUNE and can
consequently capture VR-PRUNE graphs with similar, but a
slightly fewer number of components. However, the DPNmodel

4Python 3.6.9, TensorFlow 2.3.1 with eager execution and JiT compilation
enabled.

5Python 3.5.7, TensorFlow 1.14
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TABLE VI
GRAPH SIZE VERSUS OTHER DATAFLOW FRAMEWORKS. THE RATE ROW

EXPRESSES TOKEN RATE VARIATION FOR EACH APPLICATION, E.G. [0..24]
EQUALS TO 25 DIFFERENT TOKEN RATES, AND “N

2 OR N” EXPRESSES TWO

ALTERNATIVE RATES. FOR EACH FRAMEWORK AND APPLICATION, THE CELLS

DENOTE NUMBER-OF-VERTICES, NUMBER-OF-EDGES. FOR EXAMPLE: (8, 11):
8 VERTICES AND 11 EDGES

is so general that possibilities for graph consistency verification
at design time are very limited, whereas for VRDF no practical
design frameworks have been released so that the MoC’s appli-
cability to high processing performance could be evaluated. A
detailed explanation of the graph size calculations is presented
in Appendix B.

VII. DISCUSSION AND FUTURE WORK

Section I presented a weakly consistent dataflow graph that
was originally introduced in [1], with a note that for example the
TensorFlow dataflow environment produces version-dependent
behavior upon execution of this graph.
How does VR-PRUNE handle this graph of Fig. 1? As such,

the graph is not a valid VR-PRUNE graph. Since the graph
contains dynamic token rate ports, an sDPG structure needs
to be identified for VR-PRUNE compliance. Evidently, conf
would serve as the configuration actor q, whereas switch and
proc would represent the pair of dynamic actors δ associated
with q. However, VR-PRUNE requires that both dynamic actors
of δ need to be controlled by the same configuration actor, and
hence the output of conf is required to be connected to proc as
well. Now, the output port psT of switch and its counterpart pp1
in proc could be interpreted as DRPs controlled by the output of
conf.With these changes, the graphwouldbe avalidVR-PRUNE
graph, and would also avoid unbounded use of memory: upon
emitting a False token, the conf actor would set the atrs of the
two DRPs (psT and pp1) to zero, allowing proc to consume the
token arriving from input independent of sample values. This
example highlights the importance of formal design rules and
computation models for detecting and diagnosing model flaws
as early as possible.
Since one of the major attributes of VPRF is high process-

ing performance on multicore and heterogeneous (CPU+GPU)
platforms, one might wonder how VPRF compares to other
similar frameworks in terms of performance. Table IV and Fig. 6
illustrate the processing performance of VPRF versus PRUNE,
showing that performance differences between the frameworks
are minimal, which is expectable because the differences in
the runtime frameworks are modest. On the other hand, the
PRUNE paper [28] presented extensive benchmarks, where it
was shown that PRUNE outperformed the DAL [35] framework
in all application benchmarks.
Currently, VPRF only supports a single OpenCL device in

the system. As future work, this could be extended to en-
able multiple OpenCL devices including multiple GPUs and/or

OpenCL-compatibleCPUs.A further interestingdirectionworth
exploring would be introducing distributed computing [35] for
executing parts of VR-PRUNE graphs in a cloud similar to [43].

VIII. CONCLUSION

In this paper we have presented VR-PRUNE, a Model of
Computation for high-performance signal processing applica-
tions, which features variable token rates and is accompanied
with VPRF, a runtime library that has deeply integrated support
for heterogeneous computing. VPRF is going to be released as
open source similar to its predecessor PRUNE.
We have formally defined the VR-PRUNEModel of Compu-

tation, design rules, and consistency analysis, and have discussed
its decidability.Compared to previous relatedModels ofCompu-
tation,VR-PRUNEoffers a unique combination of analyzability,
expressiveness and practical applicability for high-performance
applications.
Through extensive experiments using VPRF with four appli-

cation examples, we have shown how VR-PRUNE� Is applicable to practical signal processing algorithms,� Offers considerably higher expressiveness than previous
work,� Enables adaptive processing for saving power, and� Provides high processing performance.

APPENDIX A
GPU-MAPPED FIFOS

Heterogeneous computing across CPU and GPU resources
needs to be implemented carefully to avoid unnecessary com-
putation time overheads. One significant source of overhead
in GPU based computation acceleration are memory transfers
between the CPU and the GPU.
InVPRF, thememory structures related to dataflow actors and

FIFOs reside by default in CPUmemory. However, especially in
machine learning applications, it is common that the application
consists of a pipeline of actors (neural network layers) that are
processed on the GPU. In such cases, highest performance is
achieved when FIFOs between GPU-mapped actors reside in
the GPU memory, avoiding unnecessary data transfers between
the CPU and GPU: tokens flow within GPU memory from one
GPU-mapped actor to the next GPU-mapped actor.
Although it is common practice in GPU computing to main-

tain intermediate data between GPU kernels (≈ actors) in GPU
memory buffers (≈ FIFOs), implementing GPU buffering in the
dataflow computing context requires some additional consider-
ation to maintain data-driven application behavior.
In VPRF, this is achieved such that each FIFO buffer, which

is mapped to GPU memory, has a dummy counterpart in CPU
memory. This dummy counterpart of a FIFO does not carry any
data (as the token data is in GPU memory) — it only serves for
implementing synchronization between actors. By using these
dummy synchronization FIFOs, the VR-PRUNE application
simultaneously maintains data-driven behavior, while avoiding
computation time overhead by keeping token data in GPU
memory.
In the Image classification application, the use of GPU-

mapped FIFOs decreases average image classification time from
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18.7 ms to 16.2 ms when the ARMCL library is used for actor
implementations on the N2 platform.

APPENDIX B
GRAPH COMPLEXITY COMPARISON

Details of the graph complexity comparison in terms of edge
counts and vertex counts are explained below for PRUNE,
SADF [19] and VRDF [29] models.
In terms of graph complexity, the PRUNE [28] model differs

from VR-PRUNE in two significant ways: 1) PRUNE does
not inherently support variable token rates, and hence token
rate changes need to be emulated by a series of actor (vertex)
instances that can individually be enabled or disabled, which
increases graph component count compared to VR-PRUNE. 2)
PRUNE does not require edges from configuration actors to
those actors that are enabled/disabled at runtime. This decreases
graph component count compared to VR-PRUNE. For an il-
lustration related to these differences, the reader should refer
to Fig. 4 whose subfigures a) and b) show equivalent PRUNE
and VR-PRUNE graphs. Related to the PRUNE model of the
Fig. 5 parallel image classifier, it is important to notice that
subfigures a) and b) do not depict graphs of equivalent behavior.
A PRUNE graph equivalent to the Fig. 5(b) VR-PRUNE graph
would consist of 24 instances of actors a, b, and c, which would
result in the 77 actors and 100 edges, as shown in Table VI.
The SADF model captures dynamic (runtime) changes on

graph topology by scenarios such that each possible topol-
ogy is described by a separate SDF graph. In the Adaptive
DPD application the number of active filter branches ranges
between 1 and 5, resulting in 5 scenarios (graphs), each of which
has a different number of actors and edges in the branches:
Sadpd
edges = ΣN

i=18i+ 4, and Sadpd
vertices = ΣN

i=12i+ 6. ForN = 5,
a total of 60 actors and 140 edges ensue when all scenarios are
added together. In the Image classification application, between
0 and N = 24 images can be classified in parallel, resulting
in 25 graph scenarios: Simcl

edges = ΣN
i=04i+ 2, and Simcl

vertices =

ΣN
i=03i+ 4, which totals into 1000 actors and 1250 edges (the

numbers are exact) for N = 24 + 1. For DU-DPD the number
of scenarios is N = 2 (Sdudpd

edges = ΣN
i=14i+ 3, and Sdudpd

vertices =

ΣN
i=1i+ 3), and for Object detection there are N + 1 = 10

scenarios: Sobjd
edges = ΣN

i=06i+ 65, and Sobjd
vertices = ΣN

i=0i+ 52.
Since SADF does not explicitly mention the need of configura-
tion actors, the component counts do not include the configura-
tion actor, or edges connected to the configuration actor.
Finally, the VRDF [29] and DPN [21] models are slightly

more expressive than VR-PRUNE: neither of these models
requires symmetric token rates, nor any need for configuration
actors. To this extent both VRDF and DPN are able to directly
capture VR-PRUNE graphs, albeit without configuration actors
and edges. Consequently VRDF and DPN graph complexities
are very similar, but slightly lower than those of VR-PRUNE
graphs.
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